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Abstract Dynamical systems subject to intermittent

contact are often modeled with piecewise-smooth

contact forces. However, the discontinuous nature of

the contact can cause inaccuracies in numerical results

or failure in numerical solvers. Representing the

piecewise contact force with a continuous and smooth

function can mitigate these problems, but not all

continuous representations may be appropriate for this

use. In this work, five representations used by previous

researchers (polynomial, rational polynomial, hyper-

bolic tangent, arctangent, and logarithm-arctangent

functions) are studied to determine which ones most

accurately capture nonlinear behaviors including

super- and subharmonic resonances, multiple solu-

tions, and chaos. The test case is a single-DOF forced

Duffing oscillator with freeplay nonlinearity, solved

using direct time integration. This work intends to

expand on past studies by determining the limits of

applicability for each representation and what numer-

ical problems may occur.

Keywords Nonlinear dynamics � Piecewise-smooth

representation � Freeplay nonlinearity � Chaotic
responses

1 Introduction

Research on nonlinear dynamics of systems has

become very prevalent in the past several decades,

with applications ranging from structural design [1–4]

to control systems [5, 6] to super-resolution sensors

[7]. Vibro-contact dynamical systems, in particular,

occur in many different engineering fields, ranging

from large structures such as aircraft [8–12] and

spacecraft [13] to small energy harvesters [1, 14].

These systems exhibit strongly nonlinear behaviors,

and a variety of numerical methods are used to study

these systems including finite element analysis (FEA)

and reduced-order modeling. Reduced-order models

(ROMs), in particular, have seen a lot of attention due

to their combination of usually good fidelity and low

computational costs compared to FEA or physical

tests. Time-integration [8, 10] methods, and various

forms of harmonic balance and modifications thereto

[13, 15–17], are among the most common types of
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solution approaches used to study ROMs of contact

systems.

Piecewise-smooth nonlinearities such as contact

can induce strong, complex behavior and cause unique

numerical difficulties due to their discontinuous and

nonsmooth nature. For example, time integration

methods suffer from accumulating roundoff error if

the precise times and locations of contacts are not

captured [8, 18, 19]. The improved accuracy from

accurately capturing contacts requires a trade-off with

computational cost. Harmonic balance methods

(HBMs) also suffer because chaotic or otherwise

aperiodic responses cannot be determined, and a very

large number of harmonics may be required to obtain

accurate periodic results [20]. Thus, an important

consideration is how to adequately represent the

contact forces in a piecewise-smooth nonlinear sys-

tem’s equations of motion. Detroux et al. [13] utilized

HBM to perform bifurcation tracking of Neimark–

Sacker bifurcations in a spacecraft with mechanical

stoppers. They used third-order polynomials to regu-

larize the trilinear contact force ‘‘in the close vicinity

of the clearances,’’ in order to implement C1 continu-

ity and avoid numerical problems. Alcorta et al. [17]

utilized a 15-mode HBMwith continuation algorithms

to perform bifurcation tracking of period-doubling

(flip) bifurcations in a freeplay system and map out

isolated resonance branches. In order to prevent their

algorithms from failing, they had to represent the

freeplay with an arctangent-based function that

closely resembled the freeplay but was fully smooth

and continuous.

Other continuous and fully smooth functions have

been used to represent nonsmooth contact forces, such

as absolute-value and polynomial functions [1, 21],

the hyperbolic tangent function [8, 16], or combina-

tions of similar functions. One advantage of replacing

a nonsmooth contact force with a continuous repre-

sentation is lower computational costs, but there are

tradeoffs with new sources of error. The approximate

contact force within a freeplay gap may be nonzero,

for example, or the contact force outside the gap may

be too large or too small. These errors may be

significant or not depending on the particular repre-

sentation used.

Kim et al. [15] tested four different representations

(hyperbolic tangent, arctangent, hyperbolic cosine,

and a quintic spline) on a single-degree-of-freedom

torsional system. They found the first and second

representations to be the best overall when used

carefully, the third model performed worst due to

singularity problems, and the fourth model was

advantageous only for semianalytical methods like

HBM. Vasconcellos et al. [8] studied an aeroelastic

system with control-surface freeplay by comparing

time-integration results obtained using three different

models (piecewise, polynomial, and hyperbolic tan-

gent) to past experimental data. They showed the

hyperbolic tangent model could capture aperiodic

responses well in conjunction with the exact discon-

tinuous model, but the polynomial failed and only

predicted periodic responses. More recently, Yoon

et al. [16] compared three different representations

(hyperbolic tangent, arctangent, and a proposed poly-

nomial-based spline) for use with HBM to model a

four-degree-of-freedom gear system with backlash.

When properly converged, all three models produced

good results but still suffered from numerical

discrepancies.

These works indicate that some continuous repre-

sentations are unable to capture all of the nonlinear

behaviors that may be present in a dynamical system,

whether using direct time integration or harmonic

balance methods. This means that potentially danger-

ous responses, such as grazing and other discontinuity-

induced bifurcations, may not be predicted. The goal

of this work is to analyze the effectiveness of smooth

and continuous contact-force representations at cap-

turing the physics and nonlinear behavior of a general

contact system. In particular, a single-degree-of-

freedom forced Duffing oscillator with freeplay non-

linearity [22] is used as a test case. The different

representations studied consist of (i) simple polyno-

mial, (ii) rational polynomial, (iii) hyperbolic tangent,

(iv) arctangent, and (v) logarithm-arctangent models.

Numerical results using each representation and

MATLAB ode45 time integration are compared to

results using the exact piecewise-smooth contact force

model, computed using ode45 with its Event Location

capability for high accuracy [19]. The effectiveness of

each representation is examined for numerical accu-

racy, including the ability to capture super- and

subharmonic resonances, multiple solution branches,

and chaotic responses, in addition to computation

time. This work intends to expand on past studies by

determining the limits of applicability for each

representation and discussing under what conditions
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each representation may be used in lieu of the exact

piecewise representation.

The remainder of this paper is structured as follows:

Sect. 2 describes the nonlinear Duffing-freeplay sys-

tem and the numerical method used. Section 3

discusses the representations to be analyzed and how

well they can approximate the exact piecewise contact

force. Section 4 is divided into two parts: Sect. 4.1

presents frequency–response curves and bifurcation

diagrams obtained using each representation to deter-

mine how well each one can capture nonlinear

behavior, and Sect. 4.2 compares computational costs

and discusses the limits of applicability for each

representation. The conclusions of the investigation

are provided in Sect. 5.

2 Nonlinear system formulation and contact-force

representations

The nonlinear system used to compare the different

contact-force representations studied here is a single

degree-of-freedom forced Duffing oscillator with

freeplay nonlinearity. A physical mockup of this

spring-mass system was studied experimentally by

deLangre et al. [22] and has the following equation of

motion:

€x tð Þ þ 2fxn _x tð Þ þ x2
nx tð Þ þ a

m
x tð Þ3þ 1

m
Fc xð Þ

¼ p

m
cos xtð Þ; ð1aÞ

Fc xð Þ ¼
Kc xþ j1ð Þ;

0;
Kc x� j2ð Þ;

8
<

:
�

x\� j1
j1 � x� j2
x[ j2

; 0\j1\j2

ð1bÞ

where f denotes the linear damping ratio, xn is the

linear natural frequency,m represents the system mass

(treated as a point mass), a is the nonlinear cubic

stiffness, Fc is the force applied by two contact

springs, p is the forcing magnitude, x represents the

forcing frequency, Kc is the contact-spring stiffness,

and j1; j2 denote the lower and upper gap boundaries,

respectively, between the mass and the springs.

A spring is in contact with the mass only if the

displacement exceeds x\� j1 or x[ j2. This Duff-

ing-freeplay model is represented in Fig. 1. This

system has been shown to exhibit complex nonlinear

behaviors, such as superharmonic and subharmonic

resonances and chaos [17, 22]. The limit as Kc ! 1
turns the contact into hard impact which generally

enables contact systems to be more easily analyzed

with analytical methods [23, 24]. The considered

parameters in this study are given in Table 1.

Numerical simulations are performed in

MATLAB� using the ode45 time integration solver.

The Event Location feature is enabled to accurately

capture the intermittent contact and discontinuous

behavior [19]. It works by stopping and restarting time

integration any time a user-defined ‘‘event’’ occurs

(i.e., a contact between the mass and either of the

contact springs). This forces a timestep at every

location of contact so that the transitions from in-

contact to out-of-contact are not abruptly crossed,

which leads to accumulating roundoff error. Relative

and absolute error tolerances are set to 10�4 and 10�7,

respectively, for all simulations. All simulations are

run until transient motions decayed out.

For reference, the frequency–response curves

shown in later figures are generated by computing

time histories to steady-state and plotting peak ampli-

tude versus forcing frequency, with all time histories

having the same initial conditions (ICs). This is

repeated for different ICs. Bifurcation diagrams are

similar but plot all the steady-state extrema (i.e.,

minima, maxima, and inflections) versus bifurcation

parameter (usually the forcing frequency), and this is

not repeated for multiple ICs. These two figures are

similar but have different capabilities. A frequency–

response curve will show the overall response of a

system at different frequencies, will clearly reveal

multiple solution branches (multistable behavior), and

can imply the presence of chaos (or an otherwise

aperiodic response), but periodic and aperiodic

responses can be difficult to distinguish. On the other

hand, a bifurcation diagram constructed as described

above can distinguish aperiodic from periodic. A

period-n response at a given forcing frequency will

generally manifest as 2n discrete points, whereas an

aperiodic response will manifest as a coarse line of

points. Other analyses can be performed to further

guarantee a response is chaotic (such as Poincare map

or Lyapunov exponent [25, 26], Melnikov function

[27], etc.) if needed.

The contact-force representations that are studied

and compared in this work are listed below and are

123

Insights on the continuous representations of piecewise-smooth nonlinear systems 1481



taken from several different works [8, 10, 13, 15–17].

Those representations are modified as needed to

represent an arbitrary symmetric freeplay function,

since some works only studied or used a symmetric

freeplay system. The different representations are as

follows:

1. Simple polynomial model [8, 13]:

Fc ¼ Kc0 þ Kc1xþ Kc2x
2 þ Kc3x

3 þ � � � þ Kcnx
n

ð2Þ

It should be noted that Kc0represents the freeplay

force at x ¼ 0 and Kc1the slope of the freeplay

force at x ¼ 0: Intuitively, both would have values

near zero for a symmetric freeplay system.

2. Rational polynomial model [10]:

Fc ¼
anx

n þ an�1x
n�1 þ � � � þ a2x

2 þ a1xþ a0
bmxm þ bm�1xm�1 þ � � � þ b2x2 þ b1xþ b0

ð3Þ

3. Hyperbolic tangent model [8, 15, 16]:

Fc¼ Kc
1

2
1� tanh e xþ j1ð Þð Þ½ � xþ j1ð Þ

�

þ1

2
1þ tanh e x� j2ð Þð Þ½ � x� j2ð ÞþP

� ð4Þ

Here, e is a convergence parameter; increasing its

value produces a more accurate representation of

the piecewise-smooth function. Also, P denotes a

preload that works to shift the entire force–

displacement curve up or down. For a freeplay

system, there is no contact force within the

freeplay gap making e = 0.

4. Arctangent model [15, 16]:

Fc ¼ Kc
1

2
1� 2

p
arctan e xþ j1ð Þð Þ

� �

xþ j1ð Þ
�

þ 1

2
1þ 2

p
arctan e x� j2ð Þð Þ

� �

x� j2ð Þ
�

ð5Þ

Like before, e is a convergence parameter and a

larger value improves the model’s accuracy.

5. Logarithm-arctangent model [17]:

Fc xð Þ ¼ Kc xþ 1

p
Fþ � F� þ 1

2c
FL þ Ac

� �� �

;

ð6aÞ

Fþ xð Þ ¼ x� j2ð Þ tan�1 c x� j2ð Þð Þ;F� xð Þ
¼ xþ j1ð Þ tan�1 c xþ j1ð Þð Þ; ð6bÞ

FL xð Þ ¼ log
1þ c xþ j1ð Þð Þ2

1þ c x� j2ð Þð Þ2

" #

; Ac

¼ F� 0ð Þ � Fþ 0ð Þ � 1

2c
FL 0ð Þ ð6cÞ

Fig. 1 a A schematic of a physical system and b a spring–mass–damper representation of the Duffing-freeplay system

Table 1 Default variable values used for simulations

Term Description Value

f Linear damping ratio 0:03

xn Linear natural frequency 5Hz; or10prad=s

m System mass 3kg

a Nonlinear cubic stiffness 7� 108N=m3

p Forcing magnitude 4N

x Forcing frequency 0� 30Hz

Kc Contact spring stiffness 1:4� 104N=m

j1; j2 Lower, upper spring boundaries 0:4mm; 0:4mm

x0; v0 Initial conditions 0mm; 0m=s
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The convergence parameter in this model is c. It
should be mentioned that lime!1 xþ j1ð Þ tanh
e xþ j1ð Þð Þ ¼ xþ j1j j and lime;c!1 xþ j1ð Þ arctan
e xþ j1ð Þð Þ ¼ p

2
xþ j1j j. Thus, Eqs. (4–6) approach

one another as their convergence parameters are

increased. Kim et al. [15] studied the convergence

properties of simpler forms of Eqs. (4) and (5) and

found that the convergence parameter could be low

enough to ensure the representation was smooth and

would perform well in numerical codes, but also large

enough to ensure the results were accurate to some

tolerance.

3 Model accuracy considerations

The contact-force representations in Eqs. (2)–(6) are

analyzed here for their ability to match the shape of the

exact piecewise-smooth function in Eq. (1b). Starting

with the polynomial model of Eq. (2), one might think

to use a model of this type because of its simplicity and

straightforward implementation into numerical sol-

vers. Appropriate coefficients Kc0;Kc1; . . . must be fit

to the reference function before solving the numerical

model, using either a simple least-squares regression

or by manually selecting coefficients until the numer-

ical results match a selection of experimental or

numerical data. The latter method is avoided here

because preliminary tests showed it to be very

unreliable at capturing the proper system responses

(results omitted for brevity). For the polynomial

representation, regression is performed over the dis-

placement range x 2 �4; 4½ �mm as this encompassed

the largest displacements present for the parameters in

Table 1. MATLAB’s polyfit function is used to

perform the actual regression.

Figure 2 presents the results of using polynomials

to represent the piecewise freeplay force–displace-

ment curve. Figure 2a is for symmetric and relatively

soft contact, Kc ¼ 1:4� 104N=m; j1 ¼ j2 ¼ 0:4mm,

and shows polynomials of degree 3 through 21. It is

clear that the polynomials match the piecewise

behavior away from the freeplay gap better than the

behavior near the gap. Within the gap itself, the

freeplay force is over- or underestimated from zero,

but this error decreases with higher degree. In Fig. 2b,

the constant and linear terms Kc0;Kc1 are removed

from the regression to ensure zero position and slope at

x ¼ 0, and it is clear that the polynomial function

better captures the behavior in the freeplay gap but

now oscillates outside the gap range. The polynomials

for two other contact stiffnesses, very soft Kc ¼
1:4� 103N=m and hard Kc ¼ 1:4� 106N=m, and

with the Kc0;Kc1 terms added back to the regression,

are shown in Fig. 2c. The polynomial representation

matches the very soft contact but still fails to capture

the transition at the freeplay boundaries. For hard

contact, the match is poor even with 21 coefficients. In

all cases, the polynomial representation converges

slowly yet also suffers from being ‘‘badly condi-

tioned’’ at higher degrees. More coefficients are

required for harder contact stiffness beyond what

was investigated here.

The rational polynomial is studied next in Fig. 3.

Curves are denoted as n=m, for n-degree numerator

and m-degree denominator. A danger to consider with

this type of polynomial function is the existence and

locations of discontinuities caused by roots of the

denominator polynomial. It should be ensured that all

real roots are located outside the possible range of

displacement. MATLAB’s cftool is used to perform

curve fitting regression, but it is limited to numerator

and denominator polynomials of degree 5 at most. In

addition, the calculated curve fit can change every

time a given numerator/denominator degree combi-

nation is selected and re-selected since the curve fitter

depends on ‘‘random start points’’ to calculate a

solution [28]. For curve fits that failed using cftool, an

alternative curve fitting tool is employed instead [29].

In Fig. 3a, the soft contact freeplay is approximated by

both a 3/2 and a 5/3 rational polynomial. Both curves

match the behavior beyond the freeplay gap, and the 5/

3 curve also fits more closely within the freeplay gap.

The 3/2 curve is not rotationally symmetric about the

origin and shows a negative force within most of the

freeplay gap, unlike the 5/3 curve. Figure 3b, c shows

rational polynomials for very soft contact Kc ¼ 1:4�
103N=m and for hard contact Kc ¼ 1:4� 106N=m.

For the softer contact, a larger range of rational

polynomials can be used, ranging from 3/5 to 5/5, but

as seen there is little advantage if any of using a

particular combination of numerator and denominator

degrees, as they are all very similar. Generally, up to a

limit, harder contact stiffnesses are captured better

with higher-degree numerator and denominator
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polynomials. For these reasons, convergence analysis

is more difficult to perform than for simple

polynomials.

The three remaining representations for soft contact

Kc ¼ 1:4� 104N=m, shown in Fig. 4, are the hyper-

bolic tangent, arctangent and logarithm-arctangent

models. These functions do not require least-squares

regression but instead employ the actual contact

stiffness and freeplay gap boundary values explicitly,

along with the convergence parameters e and c in

Eqs. (4–6). In the limit as e; c ! 1, each of these

representations approaches the exact piecewise model.

As such, these models are simpler to use than either the

polynomial or rational polynomial models. They also

converge significantly faster and do not suffer from

‘‘poor conditioning’’ errors that can arise when using

regression for the polynomial and rational polynomial

representations. When one of these three representa-

tions is used, the convergence parameter should be

sufficiently large to adequately capture freeplay

behavior. However, in some situations the conver-

gence parameter should not be too large because then

the smoothness of the representation will be lost as it

converges to the exact piecewise model. Following a

recommendation from Yoon [16], particular care

should go into determining an appropriate conver-

gence parameter when using harmonic balance meth-

ods or any other numerical method that requires the

contact force to have some level of smoothness.

(a) (b)

(c)

Fig. 2 Polynomial representations using least-squares regression for small, symmetric freeplay gap j1 ¼ j2 ¼ 0:4mm
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The final part of this section quantifies the accuracy

of each representation. Figure 5 gives the root mean

square error (RMSE) and R2 best-fit factor for each

representation with respect to the exact piecewise

function, for the system with Kc ¼ 1:4� 104N=m;

j1 ¼ j2 ¼ 0:4mm. It can be seen that the polynomial

slowly converges with higher degree, the convergence

for rational polynomial is not straightforward, and the

tangent-based models all converge quickly with

hyperbolic tangent being the fastest and logarithm-

arctangent the slowest.

4 Accuracy and limits of applicability

of the continuous representations

4.1 Frequency–response and bifurcation analyses

Frequency–response and bifurcation characteristics of

the nonlinear system in Eq. (1) are presented in this

section to show the general accuracy of each repre-

sentation at capturing the system’s nonlinear behav-

iors. For all results, the following representations are

used: a 13th-degree polynomial, a 5/3 rational poly-

nomial, and tangent-based models with e; c ¼ 104.

This ensures each model has RMSE\0:5 and

R2 [ 0:998 for the symmetric-soft system

(a) (b)

(c)

Fig. 3 Rational-polynomial representations for small symmetric freeplay gap j1 ¼ j2 ¼ 0:4mm
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Kc ¼ 1:4� 104N=m; j1 ¼ j2 ¼ 0:4mm, according to

Fig. 5, so the ‘‘quality’’ of each model can be

compared. This also allows the success or failure at

capturing nonlinear behavior to be observed for

stronger or weaker contact with increased and

decreased contact stiffness, respectively.

Figure 6 shows the frequency–response curves for

the freeplay system with soft contact

Kc ¼ 1:4� 104N=m
� �

and three different freeplay-

gap configurations. Figure 6a has the largest gap and

therefore the weakest freeplay nonlinearity of the

three. The only nonlinear behavior that is expected

here is superharmonic resonance near x ¼ 2Hz, and

every representation except the rational polynomial

(RatPoly 5/3) agrees well with the exact piecewise

representation. The RatPoly 5/3 predicts a larger

Fig. 4 Representations for soft contact Kc ¼ 1:4� 104N=m
based on hyperbolic tangent (solid lines), arctangent (dashed

lines), and logarithm-arctangent (dotted-dashed lines) functions

Fig. 5 RMS error and R2 of

the a polynomial, b rational

polynomial, and c tangent-
based (#3 hyperbolic

tangent, #4 arctangent, and

#5 logarithm-arctangent)

representations as they are

improved toward

convergence
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region of superharmonic resonance and a region of

subharmonic resonance near x ¼ 11� 12Hz, and for

x[ 22Hz the peak amplitude is predicted to be

negative. Further study omitted here showed that the

resulting system responses in that region are low-

amplitude steady-state sinusoidal, shifted down far

enough that the entire response is below x\0.

In Fig. 6b, all the representations are able to capture

the region of superharmonic resonance to varying

degrees, with the RatPoly 5/3, hyperbolic tangent

(Tanh), and arctangent (Arctan) models appearing to

capture the entire range of subharmonic resonance.

The RatPoly 5/3, Tanh, and Arctan also have the best

agreement to the primary resonance peak and to the

jump to lower amplitude. The polynomial (Poly-13)

and logarithm-arctangent (Log-Arctan) do not capture

any of the subharmonic resonance near

x ¼ 17� 21Hz, and the RatPoly 5/3 model predicts

more subharmonic-resonance branches than the single

one predicted by the exact piecewise model.

The plotted curves in Fig. 6c show weaker agree-

ment for all models. The Poly-13 model shows

excellent agreement up until the jump phenomenon,

and afterwards captures none of the various chaotic,

subharmonic-resonance, or periodic behaviors that

occur beyond 12Hz. The RatPoly 5/3 operates simi-

larly, except it does capture one section of periodic

response between x ¼ 15� 18Hz and section of

(a) Large symmetric gap          (b) Small symmetric gap 

(c) Small asymmetric gap 

Fig. 6 Frequency–response curves for soft contact Kc ¼ 1:4� 104N=m and three different freeplay-gap configurations
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subharmonic resonance betweenx ¼ 21� 22Hz. The

Tanh and Arctan models have the best agreement to

the piecewise results but still lose accuracy as forcing

frequency increases. Finally, the Log-Arctan model

has the weakest accuracy in the superharmonic-

resonance region and also has poor accuracy in the

chaotic region within x ¼ 13� 15Hz. It also fails to

capture one branch of subharmonic resonance and

underestimates the low-amplitude responses at higher

frequencies.

The representations with better convergence are

studied for the soft contact, asymmetric gap in Fig. 7.

They consist of a 21-degree polynomial, 5/5 rational

polynomial, and tangent-based models with

e; c ¼ 106. All representations show excellent agree-

ment in the superharmonic-resonance region and

leading up to the primary resonance peak, but the

Poly-21 and RatPoly 5/5 models begin to disagree

with the reference model after the jump phenomenon.

The tangent-based models are the most accurate, with

Tanh and Arctan having similar accuracy and Log-

Arctan having slightly less accuracy at higher forcing

frequency.

The system’s bifurcation diagrams with respect to

forcing frequency are presented next. These show how

well the different representations can capture transi-

tions in response type. Figure 8 presents 3D bifurca-

tion diagrams of the dynamical systemwith symmetric

freeplay gap j1 ¼ j2 ¼ 0:4mm and very soft, soft, and

hard contact stiffnesses. Note that the third axis is only

used to expand the results of the different models in 3D

for better visualization. All models are in excellent

agreement for the very soft contact case of Fig. 8a.

The exact piecewise representation indicates a region

of superharmonic resonance is activated and the

presence of ‘‘ringing’’ behavior as the system exceeds

a freeplay boundary at very low frequencies, and all

five representations capture both behaviors well.

Figure 8b is the case for a harder intermediate contact

stiffness and corresponds to the results of Fig. 6b. The

Poly-13 model (red) is unable to capture the full

frequency range of ‘‘ringing’’, chaotic, or superhar-

monic resonance behaviors that all the other models

are generally able to capture. The Arctan (gray) and

Log-Arctan (yellow) models also fail to capture the

narrow chaotic band near 4� 5Hz. Only the Tanh

model (blue) captures both the narrow transitions to

superharmonic resonance near 6Hz and 7Hz. At higher

frequency, the Poly-13, Arctan, and Log-Arctan

slightly overestimate the frequency value of the

primary resonance peak. The RatPoly 5/3 (green)

and Arctan models predict a region of nonlinear

behavior shortly after the jump phenomenon and

before the region of subharmonic resonance. The

RatPoly 5/3, Tanh, and Arctan models all capture the

subharmonic resonance behavior but predict a much

larger frequency band, predict the correct-size band

but shifted slightly down in frequency, and predict the

correct-size band but shifted slightly up in frequency,

respectively. Finally, Poly-13 and Log-Arctan do not

capture any subharmonic resonance behavior.

In Fig. 8c, with a contact stiffness two orders of

magnitude harder than the soft case, all the represen-

tations seem to have failed altogether for their

convergence quality. The Poly-13 and Log-Arctan

predict very low-amplitude periodic solutions for the

entire frequency range. The RatPoly 5/3 model

predicts a low-amplitude periodic solution, with

negative mean, for most of the frequency range before

predicting higher amplitude periodic solutions above

20Hz. Tanh predicts a very low-amplitude periodic

response with a high mean value, almost as if the

system becomes trapped in a potential well away from

the origin. Arctan also captures none of the correct

system physics.

The final bifurcation analysis in Fig. 9 shows

results using the representations with better conver-

gence that were previously used for the data in Fig. 7.

The freeplay system studied is the same as in Fig. 8c.

The Tanh and Arctan models show the best agreement

Fig. 7 Frequency–response curves for soft contact Kc ¼ 1:4�
104N=m and small asymmetric gap j1 ¼ 0; j2 ¼ 0:8mm for

more converged representations
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among all the models and capture the low-frequency

chaos, the chaotic-to-periodic transitions, and the

additional nonlinear behavior between

x ¼ 10� 12Hz. Arctan captures more of the very

narrow higher-period regions between 12� 20Hz

than Tanh does. Log-Arctan is less accurate and does

not capture the full range of chaotic responses well,

and it also predicts a narrow region of behavior beyond

20Hz that does not occur in the other models. Lastly,

the Poly-21 and RatPoly 5/5 models are still unable to

capture any of the system’s rich behavior.

Fig. 8 Bifurcation diagrams for small, symmetric freeplay gap j1 ¼ j2 ¼ 0:4mm and three different contact stiffnesses

Fig. 9 Bifurcation diagrams for small, symmetric freeplay gap

j1 ¼ j2 ¼ 0:4mm and hard contact stiffnesses Kc ¼
1:4� 106N=m for more converged representations
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4.2 Computation time analysis and limits

of applicability

In this section, the computational cost of using each

representation is studied and the limits of applicability

of each representation are discussed. Table 2 presents

the total time to compute the bifurcation diagrams

seen in Fig. 8b (case 1) and Fig. 9 (case 2). These

simulations used representations with weaker and

stronger convergences, respectively, and the color bars

indicate slowest (darkest) to fastest (lightest) models.

In both cases, the exact piecewise representation took

either the first or second longest to run because it uses

the event detection capability, which requires the

simulation to stop and restart at every instance of

contact. The rational polynomial model took the

longest to run for case 2 and the second longest for

case 1. The polynomial model was third slowest for

both cases, but it was faster than the second slowest by

a factor of about 1.5. The tangent-based representa-

tions were the fastest in both cases and differed by no

more than half a second. These averaged about 6.5

times faster than the slowest model in both cases.

The final discussion in this study focuses on the

limits of applicability of each representation and what

models are appropriate for weak, medium, and strong

nonlinearity. It is clear so far that the tangent-based

representations are the most accurate and fastest for a

given convergence accuracy. The rational-polynomial

model is the most difficult to formulate and implement

because the importance of the numerator and denom-

inator degrees on the representation’s accuracy is

unclear. Generally, the accuracy is good for soft

contact stiffnesses as long as the degrees are ‘‘large

enough’’ and the numerator degree is greater than the

denominator degree, but these are not necessary

conditions. As the contact stiffness increases, how-

ever, increasing the degrees does little to improve the

representation accuracy and eventually leads to

‘‘badly conditioned’’ errors which can make the

rational polynomial representation unusable. The

polynomial was also challenging to utilize due to the

often large number of coefficients required to get an

accurate representation. A high contact stiffness may

be represented by upwards of 20–45 coefficients and

still have a poor accuracy. In addition, a small freeplay

gap tends to produce a polynomial that behaves

linearly over the entire displacement range without

enough coefficients, rendering its use for capturing

freeplay moot.

Even when a polynomial or rational polynomial can

be found to model the freeplay force, the nonlinear

behavior may not be captured entirely or at all and

numerical problems may persist. A common problem

that appeared is best explained by Figs. 2c and 9. If the

freeplay representation has multiple roots within the

freeplay gap and oscillates up and down (i.e. multiple

zero-crossings due to overshoot), then the system

response can become trapped at a higher amplitude

and unable to return to the origin. This was a clear

failure of the polynomial-based methods. A polyno-

mial representation may offer better accuracy if a

system’s contact force behaves like a quadratic or

cubic curve, instead of linearly, but otherwise this

method is unwieldy and converges too slowly to be

accurate for anything but weak freeplay nonlinearities.

Unlike the polynomial-based representations, all

three of the tangent-based representations were easy to

implement and systematically evaluate convergence

and also showed good to excellent agreement in all

cases. For a given value of convergence parameter e or
c, the hyperbolic tangent model overall seemed to be

Table 2 Computation times for each representation in Figs. 8b and 9

Weaker convergence Stronger convergence
Representation Time (s) Representation Time (s)
Piecewise 48.69 Piecewise 117.7
Poly-13 18.57 Poly-21 65.69
RatPoly 5/3 26.49 RatPoly 5/5 132.9
Tanh, = 10

4 7.66 Tanh, = 10
6 18.57

Arctan, = 10
4 7.41 Arctan, = 10

6 18.08 
Log-Arctan, = 10

4 7.29 Log-Arctan, = 10
6 18.49 
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the most accurate, with the arctangent model second

and the logarithm-arctangent model third. Each of

these models can also be applied for soft and hard

contact stiffnesses and to large, small, and asymmetric

freeplay gaps without problem since the accuracy

depends only on the convergence parameter.

Some final studies are performed using the hyper-

bolic tangent representation to determine an upper

limit to its accuracy. Figure 10 presents the bifurcation

diagrams of the system for the case of hard contact

and asymmetric freeplay: Kc ¼ 1:4� 106N=m;

j1 ¼ 0; j2 ¼ 0:8mm. Here, the hyperbolic tangent

representation is used with two different large values

of the convergence parameter, e ¼ 106 and 109, and it

is compared to the exact piecewise representation both

without and with event detection. In theory, the

hyperbolic tangent results would converge to the

piecewise results without event detection as e ! 1
but may not due to accumulating numerical errors.

Comparing Fig. 10a, b, both hyperbolic tangent

responses (blue, green, respectively) show excellent

agreement with the piecewise no-event-detection

response (pink). Any improvement gained from using

the more converged representation is minimal. Com-

paring Fig. 10b, c shows that there are discrepancies

between the result without and with event detection

that do not resolve by increasing the convergence

parameter. The narrow bands of periodic responses

(a) (b)

(c)

Fig. 10 Bifurcation diagrams of the hard contact, asymmetric

freeplay case Kc ¼ 1:4� 106N=m; j1 ¼ 0; j2 ¼ 0:8mm com-

paring hyperbolic tangent with e ¼ 106 (blue) and e ¼ 109

(green) to the exact piecewise representation without (pink) and

with event detection (black). Plot markers have different sizes to

show overlap. (Color figure online)
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agree well in all cases, but the regions of chaos and

other nonlinear behavior show less agreement.

Two examples are given in Fig. 11, which show the

time histories and frequency spectra at excitation

frequencies x ¼ 11Hz and 21:75Hz. In Fig. 11a, b,

the responses using hyperbolic tangent representation

and the piecewise model without event detection

scenario match well but differ significantly from the

response using the piecewise model with event

detection. A period-1 response with superharmonics

should have been captured, but a period-3 response

with both subharmonics and superharmonics is falsely

detected instead. In the plotted curves in Fig. 11c, d,

the overall behavior of the response is captured well,

indicating a period-2 response with one subharmonic

and many superharmonics. However, the results still

differ on a small scale. The only way to remove these

numerical issues at this point is to either refine the

tolerances of the numerical solver itself (i.e., the

relative and absolute tolerances within ode45) or to

implement an event detection procedure such as the

one used in this work based on ode45. Both options

can be done together, but the accuracy improvement

from using event detection by itself can be comparable

to using finer ode45 tolerances.

(a) Time history, (b)Frequency spectrum, 

(c) Time history,   (d) Frequency spectrum, 

Fig. 11 Time histories and frequency spectra for the system in Fig. 10 at two different forcing frequencies
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The results of Figs. 10 and 11 show that, although

the hyperbolic tangent model approaches the exact

piecewise function as e ! 1, the ability to accurately

represent the freeplay contact force is only one aspect

to accurately capturing contact behavior. The freeplay

representation gives no provision for determining the

precise times and locations of contacts, and it must be

combined with the event detection procedure for the

most accurate results. Despite the accuracy of the

hyperbolic tangent model, an event detection proce-

dure is needed to further improve accuracy and

remove accumulating roundoff error. Otherwise, the

numerical solver can predict significant errors and fail

to capture important nonlinear behavior. Thus, the

limit of applicability of the hyperbolic tangent model

approaches that of the exact piecewise model without

any event detection procedure. Thus, it would be

valuable to ensure one’s numerical solver is ade-

quately capturing contact times and locations, whether

using a direct time integration method or a harmonic

balance method.

5 Conclusions

In this work, different mathematical representations of

the contact force in a forced Duffing oscillator with

freeplay were studied for their effectiveness at

capturing the physics and nonlinear behavior of the

system. The representations studied consist of (i) poly-

nomial, (ii) rational polynomial, (iii) hyperbolic

tangent, (iv) arctangent, and (v) logarithm-arctangent

models. The convergence behavior of each model was

studied to assess their ability to actually resemble the

piecewise-smooth force curve. Then, frequency–re-

sponse and bifurcation analyses were performed and

indicated the polynomial and rational polynomial

representations performed the worst at accurately

capturing system behavior and had the greatest

computational costs of all the models studied. The

tangent-based models generally had greater accuracy

with lower, and nearly equal, computational costs.

However, the accuracy of all representations is still

limited when strong contact behavior is present; the

precise times and locations of contact events must be

captured to avoid additional numerical errors. If this is

not a concern, the hyperbolic tangent representation is

recommended based on the findings in this study.

Overall, it was most effective at capturing both weak

and strong contact nonlinearities, and it is easy to use

and implement into a numerical solver code.

A future research path may be to expand this

analysis to multiple-degree-of-freedom systems or

continuous systems. The authors’ preliminary

thoughts are that similar conclusions as seen in this

paper would be drawn: the tangent-based methods are

accurate, and it is important to capture the precise

moments of contact. This means another important

avenue of work, which is already ongoing for a

number of years now, is continuing the development

or optimization of numerical solvers specifically for

reduced-order nonsmooth systems. MATLAB’s

ode45, for example, is very common but suffers from

significant overhead costs when it is used with its

event location feature on a contact system. This is due

to repeated stopping and restarting of ode45 to force a

timestep at every contact ‘‘event.’’ If ode45 with event

location could be modified to run without restarting,

significant time savings could be obtained.
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