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Abstract The epileptic focus is an area of the cerebral
cortex that is essential for the generation of seizures.
It is the region where epileptic seizures begin, or the
site with the most ictal activity, also known as the
epileptogenic zone. On a clinical approach, the iden-
tification and study of the epileptic focus can aid in
the diagnosis and treatment of patients with epilepsy;
thereby, the automatic determination of its quantita-
tive characteristics could be helpful. In this paper, we
present a methodology based on clinical guidelines for
the automatic identification of the epileptic focus and
its dynamics using complex networks and linear tech-
niques. This methodology identifies the EEG channels
with the most frequent and lasting ictal events. Further-
more, the propagation of seizures on the cortex can be
determined as well as the EEG channels through which
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seizures propagate. Our approach leads to estimate the
connectivity parameters of the cerebral networks gen-
erated during seizure events such as the degree and
clustering coefficient of the network’s nodes with the
highest prevalence. The efficiency of seizure identifica-
tion was computed in about 97.2%. This methodology
allows to identify the zone with the highest ictal activ-
ity and its dynamical characteristics, and whether the
identified channels are located in the same region in
the cerebral cortex or if they are contiguous. All this
information could help neurologists in the diagnosis
and analysis of the dynamics of epileptic seizures in
case the primary studies were non-conclusive.

Keywords Epileptic focus · Propagation of seizures ·
Complex brain networks · Seizure dynamics ·Network
parameters · Scalp EEG · Clustering coefficient ·
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1 Introduction

Epilepsy is a neurological disorder characterized by
recurrent seizures due to changes in the normal brain
activity [4]. The correct clinical diagnosis and syn-
dromic classification can provide information on the
location of the epileptogenic area. Some techniques
such as electroencephalography (EEG), video EEG,
high-density EEG, deep intracerebral electrodes, mag-
netic resonance imaging (MRI), magnetoencephalog-
raphy (MEG), among others are useful supporting tools

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-021-06418-y&domain=pdf
http://orcid.org/0000-0001-5868-8248
https://orcid.org/0000-0002-1725-2090


2688 C. A. Ramírez-Fuentes et al.

to identify the epileptogenic area [11,45]. However,
some questions still remain open. For instance, it is
not clear if seizures begin in the same region where
the highest ictal activity occurs. Another issue relies in
determining the region at which seizures involve more
than three EEG channels simultaneously, and the way
seizures spread over the cerebral cortex [44]. To aid in
clarifying these questions, we developed a methodol-
ogy to identify the region on the cerebral cortexwith the
highest ictal activity and its dynamical characteristics.
This methodology could help neurologists to improve
diagnostics and to accurately determine the epilepto-
genic zone, thus further information about this brain
region could be obtained.

In this section, we introduce some well-known con-
cepts related to epileptic seizures and give a survey of
related works on the search of the epileptic focus.

1.1 Epileptic seizures

An epileptic seizure is a sudden and unexpected distur-
bance of the electrical activity of the brain accompanied
by clinical manifestations, e.g., changes of behavior
and even abnormal movements such as convulsions. In
some cases, epileptic seizures may originate as local-
ized spots of unusual electrical activity that spread over
the entire brain. In other cases, the onset of seizures is
unknown and may not have a clear pattern of evolution
[38]. Epileptic seizures lead to transient occurrence of
signs and/or symptoms due to excessive abnormal or
synchronous neuronal activity in the brain [4]. Syn-
chronicity is manifested by the simultaneous occur-
rence of EEG waves over distinct regions on the brain
with similar speeds and phases [25].

Epileptic seizures are identified in EEG signals as
abrupt changes in the background activity consisting
of repetitions of excessive neuronal discharges with
characteristic patterns that evolve and last several sec-
onds. When EEG seizures do not show the clinical
epileptic manifestations, they are referred to as elec-
trographic seizures or ictal EEG patterns [25]. Electro-
graphic seizures and some abnormal transients share
similar characteristics and bothmay showevolving pat-
terns. However, their differences lie in the duration and
distribution of their patterns. In particular, seizures can
last several seconds (more than 10 s), while transients
are shorter (less than 1 s). For example, the ictal gener-
alized spike-wave (GSW) and slow wave complex dis-

play a larger number of complex repetitions that occur
constantly without intervening of background activity
and have a typical duration of at least 5 s [30,41].

Figure 1 shows two EEG segments that last 8 s.
The part (a) of the figure represents an abnormal tran-
sient that is noticeable from the background activity of
the EEG. The part(b) shows a typical electrographic
seizure. Both share similar morphological characteris-
tics but the electrographic seizure lasts longer. These
signals have patterns of repetitive epileptiform EEG
discharges represented by the high peaks followed by
slow waves. In particular, this kind of pattern is known
as spike and slow wave complex, which is one of the
most commonly found patterns in epileptic seizures
[41].

Sometimes EEG seizure patterns aremanifested like
events of short duration (less than 10 s) with a notice-
able increase in the frequency (typically higher than
25 Hz) and amplitude reduction. This is the case of
the fast EEG ictal activity, also known as low voltage
fast activity or low fast activity [25,41,47]. Officially,
no minimum time span has been established to define
seizures, hence any pattern of neuronal discharge may
qualify as electrographic seizure regardless its duration
[29].

A focal epileptic seizure is an abnormal event origi-
natedwithin neural networks limited to one hemisphere
of the brain. It can be located in one lobe of the brain
or distributed over a wider region. In addition, focal
epileptic seizuresmayoriginate in the subcortical struc-
tures [4]. The onset of ictal activity is manifested by a
seizure on a certain area of the cortex that ends up cov-
ering a larger area with a preferential spreading pattern
that may even reach the opposite hemisphere. Every
seizure has a consistent onset site, though more than
one neural network may be involved, and more than
one kind of seizure may occur [4].

For those patients that continue suffering seizures
in spite of pharmacological treatments, surgery could
be an appropriate option. For this reason, the accurate
location of the epileptic focus becomes essential. How-
ever, in some cases surgery is not an option, or even
some patients may not want to undergo any surgical
intervention. For these patients, neuromodulation ther-
apy can be a suitable alternative [40]. The identification
of the epileptic focus is also decisive for this therapy,
which works by actively stimulating nerves to produce
a natural biological response in the site of action. This
therapy employs a device that sends small electric cur-
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(a)

(b)

Fig. 1 a Typical EEG segment showing an abnormal transient. b An electrographic seizure pattern

rents to specific points of the central nervous system
aimed to modify its behavior [40].

1.2 Epileptic focus

The epileptic focus is a region of the brainwhere epilep-
tic seizures originate. This region is most likely associ-
ated with the epileptogenic zone. The epileptic focus is
essential for the generation of clinical seizures, and can
be associated with the region with strongest ictal activ-
ity or the regions where seizures spread over. These
regions lie in one lobe of the brain and may even reach
another lobe, or begin in one hemisphere and may
extend to the other.

Nowadays, the boundaries of the regions of the brain
that show abnormalities during interictal periods can-
not be defined from a diagnostic test, but EEG or MRI
recordings can aid to estimate their locations. In addi-
tion, these techniques allow to estimate the regions
where interictal peaks are generated, and those with
structural damage. Nonetheless, the regions where the
epileptic focus originates and to where it spreads can-
not be accurately identified by a joint study of EEG and
MRI recordings. Note that all of these regions define
the epileptogenic zone only if they are spatially con-
cordant [29].

Next, we present a survey of the most relevant
approaches about the identification of the epileptic
focus using the electrical signals from the brain.

1.3 Related works

Functional connectivity refers to the statistical depen-
dence between the neural activity of different regions,
regardless of any underlying anatomical connection
[44]. Brazier pioneered the analysis of human ictal
intracranial electroencephalography (IEEG) record-
ings using functional connectivity measurements [9].
Her method is based on coherence and phase analy-
sis to infer the causal relations between two channels.
A computer program was developed to determine the
essential frequencies composing each burst of abnor-
mal wave trains and to follow their passage from the
initiating region to other parts of the brain during the
spreading of seizures. Coherence was used to estimate
the strength of the connection of the channels, while
phase was used to determine directionality [9].

The work [44] applied the adapted directed transfer
function (ADTF) both to simulated signals and IEEG
recordings of patients with refractory epilepsy. The
epileptic focus was located by a time-variant connec-
tivity analysis at seizure onsets. The connectivity pat-
terns obtained from IEEG recordings provided useful
information about the spreading of seizures and their
dynamics. On the other hand, the work [45] gives a
survey of functional connectivity methods applied to
EEG and IEEG. There it is shown that functional con-
nectivity patterns obtained from intracranial and scalp
EEG recordings convey information on the dynamics of
seizures, which can be used to locate their onset zone.
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The work [48] performed a graph analysis of epilep-
togenic networks to identify the cortical regions respon-
sible for the initiation and propagation of the ictal activ-
ity. They used invasive electrocorticography (EcoG)
data of patients diagnosed with intractable epilepsy.
They performed a betweenness centrality study to iden-
tify critical nodes in cortical networks during both ictal
and interictal states. For this aim, they used an algo-
rithm from [37] to identify seizures. It was observed
that the betweenness centrality of the identified nodes
decreased from the onset of the ictal activity and
attained a minimum approximately one minute after
ictal cessation.

The works [9] and [39] used brain mapping for
visualizing the brain activity over the scalp. There it
was observed that implementing a time delay analysis
between the EEG channels using topographic mapping
can lead to the location of the epileptic focus. However,
its successful detection is only possible when specific
epileptic seizures can be observed throughout the EEG
recordings.

In the literature, one can find several approaches
to detect the seizure onset zone (SOZ). For instance,
the work [15] proposed a method that uses EEG and
functional magnetic resonance imaging (fMRI), both
simultaneously acquired. This method allows to quan-
titatively determine the concordance distance between
presumed SOZ, and interictal epileptiform discharges
(IED) related toblood-oxygen-level-dependent (BOLD)
imaging response. This provided an improvement for
tracing the SOZ in different brain regions. From these
results, it was possible to find full concordance in
17 from 21 IED types. It was concluded that BOLD
changes are related to epileptic spikes, which can help
to localize the foci in various brain regions.

The recent study [11] performed a comparison
between magnetoencephalographic (MEG) and EEG
signals. It was shown that during the resting state, i.e.,
without requiring any action from the patient and in the
absence of interictal spikes, MEG can provide entirely
new insights on the malfunctioning operation of differ-
ent regions of the brain, with more accurate measure-
ments and localization of the foci than simply using
EEG.

The approach of [28] involves an analysis of map-
ping synchronization in three phases: (1) awake stage
(AS); (2) sleep stage (SS); and (3) ictal stage (IS) in
EEG recordings from two patients, one diagnosed with
temporal lobe epilepsy, and the other with frontal lobe

epilepsy. They found significant differences of mutual
information and nonlinear parameters among the three
stages. Besides, it was found that the networks corre-
sponding to seizures always presented a high degree
distribution, and the nodes with the largest degrees are
related with the onset zone.

Regarding the identification of the epileptogenic
zone in the cerebral cortex and the analysis of its behav-
ior in different states (for instance during rest, sleep,
stress, awake, or ictal stage), several approaches aimed
to study the neural dynamic structures in time and
the way seizures propagate. In this path, we can men-
tion the following recent works [16,18,19,34,49,50].
Besides, other relevant works related to improve or aid
in the focus identification are [9–11,15,28,39,44,45].

All of the above-mentioned works are devoted to
locate the regions where seizures originate and the
region with the most ictal activity as well as the regions
where seizures spread. These works lack in determin-
ing whether all these regions are located in the same
area or if they are distributed in a wider region on the
cerebral cortex.Hence, an integrated report of the infor-
mation obtained from EEG is still needed. Having all
this information could aid to define suitable treatments
for patients and to improve their quality of life.

In the present work, we present a methodology that
identifies all the brain regions with behaviors associ-
ated with the epileptic focus automatically. This novel
methodology arises from the analysis of the complex
networks formed in the brain during epileptic seizures.
To the best of our knowledge no similar complex net-
work approach has been used for analyzing seizures
and their spreading dynamics, though several methods
already exist that can identify the zone of the epileptic
focus.

1.4 Approach of this paper

In this work, we analyze several EEG recordings from
patients diagnosed with two kinds of epilepsy and
implement a methodology based on two processes
for automatically detecting the epileptic focus and
its dynamics. An algorithm was developed for each
process. The first algorithm analyzes the ictal activ-
ity of the brain and automatically identifies the seg-
ments in EEG recordings corresponding to electro-
graphic seizure events. That is, this algorithm identi-
fies ictal EEG patterns and reports the EEG channels
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where electrographic seizures were detected as well
as the instants at which they occurred and their dura-
tion, among other data. The second algorithm treats the
EEG channels as nodes of a network if electrographic
seizures are detected. For each network, we identify
the most important node, which is the EEG channel
corresponding to the epileptic focus, and determine its
dynamics by means of complex network techniques.
More precisely, this second algorithm constructs a net-
work whenever at least three EEG channels show elec-
trographic seizures simultaneously. From the resulting
networks of the whole recording, we determine the
important nodes, together with their degrees and clus-
tering coefficients. Also, we are able to determine the
instants at which propagations occur. All this informa-
tion allows to identify the epileptic focus and the way
it spreads over the cerebral cortex.

The rest of the paper is organized as follows. In
Sect. 2, the characteristics of the EEG recordings and
the device to acquire the signals are presented. In
Sect. 3, we describe the methodology implemented
by the two main algorithms. The first algorithm for
classifying all segments of one second duration cor-
responding to abnormal events and attenuations from
EEG recordings, and for identifying the seizures and
the channels with the most ictal EEG activity. The sec-
ond algorithm for identifying the regions of the cerebral
cortex where seizures spread. In Sect. 4, an analysis of
the results obtainedwith thismethodology is presented.
Finally, in Sects. 5 and 6, the discussion of the results
and conclusions are presented, respectively.

2 Materials and data

The clinical procedure to obtain the EEG recordings
was the following: the patients attended their sched-
uled appointments to carry out their EEG studies. The
neurologist informed them about the privacy notice
where it was specified the protection of their data.
An adult patient and the parents of the minor patients
gave their consent to make a more thorough analysis
of their EEG data for scientific purposes. Seventeen
EEG recordings were selected from seventeen subjects
diagnosed with different neurological disorders. Six
recordings correspond to generalized seizures, seven
correspond to focal seizures on different areas of the
cortex, two correspond to attention deficit hyperactiv-

ity disorder (ADHD), and two correspond to conduct
disorder (CD).

The ages of the considered subjects range from
5 to 24 years, see Table 1. The seventeen EEG
recordings last from 28 to 45 minutes and were
taken according to the tenets of the Declaration of
Helsinki [21] by the neurologist using aComet-PLUS®

PortableEEG-Recording&ReviewSystem fromGrass
Technologies®, at a sampling rate of 200 Hz. The dis-
tribution of electrodes was according to the 10–20 stan-
dard with an average assembly in which the amplitudes
of the electrical signals correspond to the potential dif-
ferences between electrodes and the average of the rest
of electrodes. The raw EEG signals were split into seg-
ments of one second. This duration was chosen in order
to coincide with the duration of regular intervals when
reading EEGs, as it is established by clinical guidelines
[25].

3 Methodology

In order to identify the epileptic focus, we developed a
methodology based on two algorithms described in this
work. The first algorithm implemented inMATLAB®1

analyzes the 19 EEG channels forming each EEG
recording to obtain information about the duration and
prevalence of ictal activity (crises) as well as atten-
uations. The second algorithm implemented in Net-
workX from Python [1,36] identifies the EEG chan-
nels and regions of the cerebral cortex where seizures
spread, and determine their dynamics from a complex
network approach. The results of the first algorithm
called ictal activity analysis feed the second algorithm
called seizure propagation analysis, see Fig. 2.

3.1 First algorithm: ictal activity analysis

Let us consider theEEG signal of Fig. 3 that lasts 3000 s
(50 min). Eight abnormal events are clearly noticeable
due to their intense amplitudes compared to the rest of
the signal. These events can be considered either ictal
or epileptic depending on their morphological charac-
teristics and the conditions defining seizures, see Table
8. Though some events are noticeable by the naked eye,

1 This algorithmwas registered inMéxico, at the Public Registry
of Copyrights with the number 03-2016-102711465800-01.
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Table 1 Some characteristics of the EEG recordings of the considered patients

Diagnosis of patients Age (years) No. of recordings

Generalized seizures 7–12 6

Focal seizures (on different areas of the cortex) 5–14 7

Attention deficit hyperactivity disorder 10, 12 2

Conduct disorder 14, 24 2

Average age/total of recordings 10.41 ± 4.44 17

Fig. 2 Two algorithms
developed in this work to
identify the epileptic focus

Fig. 3 Eight noticeable abnormal events in an EEG recording of a given channel

most of the information gets lost by visual analysis. For
this reason, we developed an algorithm that accounts
for both the noticeable and the imperceptible events.
This algorithm involves three main steps: (1) identifi-
cation of reductions and abnormal events, (2) identifi-
cation of attenuations and electrographic seizures, and
(3) calculation of duration and prevalence.

3.1.1 Identification of reductions and abnormal events

The data of the 19 channels of an EEG recording were
split into segments of one second, since it is the min-
imum length for the analysis of EEG signals [25].
Next, abnormal behaviors and reductions were identi-
fied from the segments of the 19 channels and classified
throughout the entire recording according to the thresh-
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olds shown in Table 8 of Appendix 6. The identification
was carried out automatically based on the previous
work [36], where three main features are considered:
frequency, amplitude, and the age of the patient.

3.1.2 Identification of seizures and attenuations

Seizures are characterized by their long duration,which
may last even few minutes. In order to discard short
transients during the process of crises identification,
we established for definiteness that seizures must last
at least 3 s, which is equivalent to the repetition of
three consecutive abnormal segments. On this basis,
all repetitions of abnormal events larger than 2 s were
automatically identified.

On the other hand, attenuations may occur tran-
siently or more permanently. Given that attenuations
can last more than one second, their localization
throughout the entire recording consists in identify-
ing all the repetitions of reductions, i.e., those seg-
ments with amplitudes less or equal than 10 μV in
the 19 EEG channels [25]. After that, we identified the
regions in the cerebral cortex with the highest number
of abnormal segments that fulfill the characteristics of
seizures, abnormal transients, or attenuations. Recall
that each region of the brain is associated to an EEG
channel, thereby the information obtained in this pro-
cess is translated into corresponding cerebral regions.

3.1.3 Accuracy of the identification process

For determining the accuracy of the identification pro-
cess we form a random sample as follows. From four
recordings of patients diagnosed with epilepsy, we
choose three EEG channels. (Recall that each EEG
recording entails 19 channels.) This selection process
was carried out randomly but the selected channels
must contain at least three crises. From the selected
EEG channels we choose three sections each of which
lasts 8 s. Therefore, 4 recordings× 3 channels× 3 sec-
tions of 8 s produce a sample of 36 EEG sections with
both ictal and interictal segments. Next, we employed
the confusion matrix [5] of Table 2.

The sensitivity and specificity of the identification
process are calculated by the expressions

Sensitivity = TP

TP + FP
, Specificity = TN

TN + FP
.

Sensitivity relates to the ability of recognizing patterns
when they are present. Thismeasurement is used to esti-

Table 2 Confusionmatrix for the identification process of crises

Results† Seizure Normal

Positives TP FP

Negatives FN TN

†TP (true positive): when a crisis occurred and it was classified
as seizure.
TN (true negative): when a crisis did not occur and the event was
classified as normal.
FP (false positive): when a crisis did not occur but the event was
classified as seizure.
FN (false negative): when a crisis occurred though it was not
identified, and the event was classified as normal

mate the probability of getting a positive result from ill
subjects. On the other hand, specificity relates to the
ability to discard patterns when they are not present.
This measurement is employed to estimate the prob-
ability of getting a negative result in healthy subjects
[17].

3.1.4 Calculation of duration and prevalence

For calculating the duration and prevalence, all seizures
and attenuations on each EEG channel were counted.
Their initial and final instants were automatically
obtained to determine their duration. The prevalence
of these events in the whole EEG recording was deter-
mined according to Table 9 of Appendix A.

3.1.5 Output data

The first algorithmgenerates several data from theEEG
recordings with relevant clinical meaning, which are
summarized next.

Regarding seizures and abnormal behaviors the
algorithm provides:

1. TheEEGchannelwith the highest number of abnor-
mal behaviors.

2. The EEG channel where crises begin (that is,
the channel where the first seizure was identified,
ChCB).

3. The EEG channel with most crises (ChMC).
4. The duration and prevalence in the EEG channel

with most crises.
5. The instants at which seizures begin in all EEG

channels.

Regarding attenuations the algorithm provides:
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1. The EEG channel with most attenuations (ChMA).
2. Their duration and prevalence in the EEG channel

with most attenuations.

The instants at which seizures begin are used as input
data for the second algorithm,which is introduced next.

3.2 Second algorithm: seizure propagation analysis

The algorithm of Sect. 3.1 classifies all the segments
of EEG recordings and identifies the regions on the
cerebral cortex with the strongest ictal activity. With
this information, it is possible to observe the cortical
distribution of seizures. It happens that seizures may
start in one or two channels and then they spread to
adjacent channels. In other cases, an epileptic event
may extend to the channels of different lobes, even in
both hemispheres.

The second algorithm is aimed to analyze the prop-
agation of seizures, that is, to identify the regions of the
cerebral cortex where seizures spread. This algorithm
consists of three main steps: (1) identification of the
instant at which propagations occur; (2) generation of
adjacency matrices for the complex networks formed
during ictal events; and (3) calculation of the network
parameters and identification of the most important
nodes of such networks.

3.2.1 Identification of the instants at which
propagations occur

To identify the instants atwhich propagations occur, the
initial instants of seizures involving simultaneously two
ormore EEGchannelswere automatically detected and
stored inmemory, and the involved EEG channels were
counted. These initial instants for each ictal event were
provided by the first algorithm. A key aspect in the pro-
cess of identifying the epileptic focus is that the EEG
channels that take part in the propagation of seizures
must belong to adjoint regions or lobes in the cerebral
cortex [29]. Hence, we are interested in investigating if
the channel where seizures begin and the channel with
themost ictal activity are involved in the propagation of
seizures, and verify if those EEG channels are adjacent.

3.2.2 Generation of adjacency matrices

Adefinite characteristic of epileptic seizures is that sig-
nals from different EEG channels tend to increase their

synchronization during ictal events. This effect implies
a stronger correlation between the signals from dif-
ferent EEG channels during ictal events than during
interictal events. An example of such a synchroniza-
tion is shown in Fig. 4. The horizontal axes represent
a time interval of 8 s, and the vertical axes represent
the amplitudes of signals from six EEG channels mea-
sured inμV. It is possible to observe δ and θ activity of
great amplitude and a strong synchronization between
the channels C3, F3 and P3, as is highlighted by the
gray rectangle.

Since all the regions of the brain have certain degree
of connectivity, and given that some of them are more
connected than others, no isolated regions can be found
in the brain evenduringnormal events.On this basis,we
analyze electrographic seizures from a point of view of
complex networks. For each identified seizure involv-
ing more than two channels we construct a network
consisting of 19 nodes, one node per each EEG chan-
nel.By aprocedure introducedbelow in this subsection,
we construct fully connected networks [2] by using the
cross-correlation as a measure of synchronization.

Cross-correlation of EEG signals

Let Xt and Yt be a pair of stochastic processes, which
are assumed to be jointly wide-sense stationary [33].
Here Xt ≡ x (t) and Yt ≡ y (t) are the pair of signals
to be analyzed. Owing to stationarity, their correspond-
ing means μX = E [Xt ], μY = E [Yt ] and standard
deviations

σX =
√
E

[
(Xt − μX )2

]
, σY =

√
E

[
(Yt − μY )2

]

remain constant over time, where E [ · ] denotes the
expected value. Cross-correlation ρXY of the jointly
wide-sense stationary processes Xt and Yt is defined
by

ρXY (τ ) = KXY (τ )

σXσY
= E

[
(Xt − μX ) (Yt+τ − μY )

]

σXσY
,

where KXY (τ ) is the cross-covariance function, and τ

is the lag time between two instants. Cross-correlation
establishes the relationship between two different
stochastic processes at the same time or different time
considering a lag τ , [6]. Should the function ρXY (τ )

is well-defined, its range is the segment [−1, 1], where
1 represents a total correlation, −1 implies total anti-
correlation, and 0 indicates no relationship between the
processes.
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Fig. 4 Plots of six channels that show a strong synchronization during an ictal event

In general, biosignals are nonlinear, noisy, and non-
stationary [20]. Nonetheless, on considering a small
enough window, the data covered by it can be consid-
ered stationary as a whole [24]. Thus, a large signal
register can be treated piecewise stationary by split-
ting the register into segments with the appropriate
sizes. This approach can be used in EEG registers
for the sake of simplicity in the analysis [12,26,46].
Indeed, in the work [14], it was shown that EEG sig-
nals may be considered stationary random processes
for epochs shorter than 12 s. On this basis, cross-
correlation can be used as a connectivity measure-
ment between EEG signals [45]. It is worth mention-
ing that cross-correlation has been widely used in the
literature as a measure of synchronization for EEG
signals (see, e.g. [6,13,23,31,32,35] and references
therein).

Cross-correlation of a given pair of EEG segments
can be estimated from their samples. Let Xi ≡ x (i)
and Yi ≡ y (i) denote the discrete time realizations
of a pair of EEG segments, both of which consist of
N samples. Then, cross-correlation is defined by the
formula

ρXY (τ ) = 1

N − τ

N−τ∑
i=1

(Xi − μX ) (Yi+τ − μY )

σXσY
.

Let

CorXY = max
τ∈[0,N−1]

ρXY (τ )

denote the maximum cross-correlation between the
EEG segments Xi and Yi for positive time lag τ . In
the present work, the analysis window spans 5 s, which
agrees with the conditions of stationarity by Cohen and
Sances, [14]. The window begins at the instant t0 at
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Fig. 5 a Spatial layout of the EEG electrodes on the scalp according to the 10–20 standard and their corresponding tags. b An example
of a network and the correspondence between nodes and EEG channels

which an ictal event is detected. Recall that the instants
at which seizures begin were determined by the first
algorithm.

Adjacency matrices

On constructing a network, a link between a pair
of nodes is established depending on their level of
synchronization, which is determined by the cross-
correlation CorXY . Each node is assigned a tag cor-
responding to the number of channel from the EEG
assembly.As shown inFig. 5a, the tags of the nodes cor-
respond to the electrodes on the scalp sensing the cere-
bral cortex. For instance, the position Fp1 corresponds
to node 1 of a graph, the position Fp2 corresponds to
node 5, and so on. Figure 5b shows an example of a
network formed during certain ictal event.

From the time series of the 19 EEG channels corre-
sponding to a n-th seizure (each ofwhich has a duration
of 5 s), we calculate their cross-correlations. The results
are organized in a 19 × 19-matrix,

Cor (n) =

⎛
⎜⎜⎜⎜⎝

Cor(n)
1,1 Cor(n)

1,2 · · · Cor(n)
1,19

Cor(n)
2,1 Cor(n)

2,2 · · · Cor(n)
2,19

...
...

. . .
...

Cor(n)
19,1 Cor(n)

19,2 · · · Cor(n)
19,19

⎞
⎟⎟⎟⎟⎠

,

where n takes the role of an index representing the num-
ber of event, and Cor(n)

i j denotes the cross-correlation

between the i-th and j-th (i, j = 1, 2, . . . , 19) EEG
samples from that event.

Once the correlation matrix Cor (n) was generated,
its average x̄ (n)

Cor and standard deviation σ
(n)
Cor are calcu-

lated according to the formulas:

x̄ (n)
Cor = 1

192

19∑
i=1

19∑
j=1

Cor(n)
i j ,

σ
(n)
Cor =

√√√√ 1

192

19∑
i=1

19∑
j=1

(
Cor(n)

i j − x̄ (n)
Cor

)2
.

These parameters will be used to determine a correla-
tion interval In = (

a(n), b(n)
)
, and a vector of weights

W (n). The components of vectorW (n)will determine
whether a link is established in the n-th network or not.
The ends of the correlation interval In are defined by

a(n) = x̄ (n)
Cor − σ

(n)
Cor, b(n) = x̄ (n)

Cor + σ
(n)
Cor.

To construct the vector of weightsW (n), the length∣∣b(n) − a(n)
∣∣ of interval In is split into 18 equal seg-

ments of length �n . The components of vector W (n)

are arranged in a decreasing order as follows:

W (n) =
(
b(n), b(n) − �n, b

(n) − 2�n, . . . , a
(n)

)
.

Thus, vector W (n) will have 19 components like the
number of channels of an EEG recording.

Let W (n)
i (i = 1, 2, . . . , 19) be the i-th component

of vector W (n). The adjacency matrix
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A (n) =
(
A(n)
i j

)19
i, j=1

for the n-th event is defined as follows.We begin letting
k = 1, then we set

A(n)
i j =

⎧
⎨
⎩
1, if W (n)

k ≤ Cor(n)
i j < 1,

0, if W (n)
k > Cor(n)

i j or if Cor(n)
i j = 1,

(1)

for each i, j = 1, 2, . . . , 19. As was mentioned above,
no isolated regions should be found in the brain. To
verify if the resulting adjacencymatrix describes a con-
nected network, the following condition

19∑
j=1

A(n)
i j > 0 (2)

must hold for each row i = 1, 2, . . . , 19. If this con-
dition is not satisfied the process is repeated by setting
k = 2, 3, . . . , 19 until condition (2) is fulfilled. Then,
that component W (n)

k of vector W (n) corresponding
to the value of k for which condition (2) is satisfied
corresponds to highest possible degree of correlation
between the EEG channels during the n-th ictal event,
which is denoted by W (n)

max.

Remark 1 Condition (2) may not be satisfied once the
previous process finishes. In that case, the follow-
ing procedure should be carried out. Identify a row
λ (λ = 1, 2, . . . , 19) from matrix A (n) for which the
condition

19∑
j=1

A(n)
λ j = 0

is satisfied. Then, we form a set̂Cor from the entries
of the λ-th row of matrix Cor (n), which is defined by

Ĉor =
{
Cor(n)

λ,1,Cor
(n)
λ,2, . . . ,Cor

(n)
λ,19

}
.

Then, we generate an interval În = (̂
a(n), b̂(n)

)
of

length
∣∣̂b(n) − â(n)

∣∣, where
â(n) = min

(
Ĉor

)
, and b̂(n) = a(n).

Next, we split the length of the interval În into, say, 10
segments of equal length �̂n (the number 10 has been
chosen arbitrarily, though other positive numbers less

than 19 can be used as well). After that, we construct
the modified vector of weights Ŵ (n) defined by

Ŵ (n) =
(
b̂(n), b̂(n) − �̂n, b̂

(n) − 2�̂n, . . . , â
(n)

)
.

Let Ŵ (n)
i (i = 1, 2, . . . , 10) denote the i-th component

of vector Ŵ (n). Now, the elements A(n)
λ j of the λ-th row

of the adjacency matrix A (n) are defined as follows.
We begin letting k = 2, then for each j = 1, 2, . . . , 19
we set

A(n)
λ j =

⎧
⎨
⎩
1, if Ŵ (n)

k ≤ Cor(n)
λ j < 1,

0, if Ŵ (n)
k > Cor(n)

λ j or if Cor(n)
λ j = 1.

(3)

Finally, we verify if the condition

19∑
j=1

A(n)
λ j > 0 (4)

holds. If not, this process is repeated by letting k =
3, 4, . . . , 10 until condition (4) is satisfied.

Example 1 As an example of the above procedure let
us consider the network of Fig. 5b that was generated
during a seizure that spreads to three EEG channels.
This corresponds to the eleventh event indicated by a
green disk in Fig. 8b, of the results section. The result-
ing network contains 44 links, and its highest degree of
correlation was W (11)

max = W (11)
5 = 0.564, which was

found at the fifth iteration (that is, k = 5). The resulting
vector and matrices are the following:

W (11) = (
0.678, 0.650, 0.622, 0.594, 0.564, 0.539, · · · 0.205, 0.177

)
,

Cor (11) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.000 0.592 0.307 · · · 0.427
0.592 1.000 0.582 · · · 0.580
0.307 0.582 1.000 · · · 0.138

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0.427 0.580 0.138 · · · 1.000

⎞
⎟⎟⎟⎟⎟⎟⎠

,

A (11) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
1 0 1 · · · 1
0 1 0 · · · 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

0 1 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We observe that the entries in bold of the correlation
matrix Cor (11) are larger than W (11)

5 = 0.564. It is
worth noticing that the main diagonal of the adjacency
matrix A (11) contains only zeros because no self-links
are generated in the network.
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Fig. 6 a Four important nodes identified in a network during an ictal event; b the same network with labeled nodes corresponding to
certain positions on the cortex, see Fig. 5a

Once the adjacency matrix was determined for each
ictal event, we proceeded to identify themost important
node by means of the NetworkX package of Python.

3.2.3 Identification of the most important node

The shortest path between a pair of nodes vi , v j ∈ V
refers to the path connecting these nodes through the
least number of links of a networkG, without loops nor
self-intersections [2]. Here, V = V (G) denotes the set
of nodes or vertices of the network G. On the other
hand, the betweenness centrality indicates the level of
influence of a node on the flow of information in a
network, [8]. The betweenness centrality of a node v ∈
V , denoted by cb (v), is calculated by the expression

cb (v) =
∑

s,t∈V (G)

σ (s, t | v)

σ (s, t)
, (5)

where s and t are dummy indices representing a pair
of nodes of the network G, σ (s, t) is the number of
shortest paths between the nodes s and t , andσ (s, t | v)

is the number of those shortest paths passing through
the analyzed node v.

In order to identify the important nodes of a n-th net-
work generated during an ictal event we implement the
betweenness centrality algorithm [7] as follows. First,
we calculate the betweenness centrality of each node
vi (n) (i = 1, 2, . . . , 19) of the network by expression
(5). The obtained results form a set denoted by Cb (n),

that is

Cb (n) = {cb (v1 (n)) , cb (v2 (n)) , . . . , cb (v19 (n))} .

Next, we calculate the average avg (Cb (n)) of the ele-
ments ofCb (n), and their standarddeviation std (Cb (n)).
Finally, if the condition

cb (vi (n)) ≥ (avg (Cb (n)) + std (Cb (n)))

is satisfied by node vi (n) then it is classified as impor-
tant.

Example 2 As an example, Fig. 6a shows the four
important nodes identified in the network from Fig. 5b,
which is redrawn in Fig. 6b for the sake of clarity.
The important nodes 2, 11, 17 and 19 correspond to
the positions F7, P3, Fz and Pz in the cerebral cortex,
respectively.

The important nodes of the network G (n) corre-
sponding to the n-th ictal event form a set 	(n). For
each node v ∈ 	(n) we calculate its degree k(n)

v (that
is, the number of links established by node v with other
nodes of the network) and clustering coefficient C (n)

v

according to the formulas [2]

k(n)
v =

19∑
j=1

A(n)
v j , C (n)

v = 2L(n)
v

k(n)
v

(
k(n)
v − 1

) ,

where L(n)
v represents the number of links that con-

nect the neighboring nodes of node v ∈ 	(n) to each
other [42]. The resulting values of degree and clustering
coefficient form the sets K (n) and C (n), respectively.
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(a) (b)

Fig. 7 Two different ictal events identified in some EEG recordings

This procedure is carried out over all seizures at
which propagations occur. From the collections 	(n),
K (n) and C (n) obtained during all seizures we form
the (super) sets �, K and C by preserving the ordering
of their elements as follows

� = {	(1) ,	 (2) , . . . , 	 (N )} ,

K = {K (1) , K (2) , . . . , K (N )} ,

C = {C (1) ,C (2) , . . . ,C (N )} ,

where N is the number of identified seizures in which
more than two channels were involved.

A single node ωmax ∈ � with the highest preva-
lence is identified in a histogram constructed from the
set �, in which the frequency of occurrence of nodes
v

(n)
i (i = 1, 2, . . . , 19) is registered as a function of the
number n of event. We can think in � as vector

−→
� =

⎛
⎜⎝ω1, ω2, · · · , ω�︸ ︷︷ ︸

	(1)

, ω�+1, . . . , ωm︸ ︷︷ ︸
	(2)

, . . . , ωn+1, . . . , ωM︸ ︷︷ ︸
	(N )

⎞
⎟⎠

where components ω j ( j = 1, 2, . . . , M) preserve the
ordering of the sets 	(i) (i = 1, 2, . . . , N ). Similarly,
from the sets K and C we form their corresponding

vectors
−→
K and

−→
C , that is

−→
K =

⎛
⎜⎝K1, K2, . . . , K�︸ ︷︷ ︸

K (1)

, K�+1, . . . , Km︸ ︷︷ ︸
K (2)

, . . . , Kn+1, . . . , KM︸ ︷︷ ︸
K (N )

⎞
⎟⎠ ,

−→
C =

⎛
⎜⎝C1,C2, . . . ,C�︸ ︷︷ ︸

C(1)

,C�+1, . . . ,Cm︸ ︷︷ ︸
C(2)

, . . . ,Cn+1, . . . ,CM︸ ︷︷ ︸
C(N )

⎞
⎟⎠ .

Let us find the positions (indexes) j of the compo-

nents of vector
−→
� such that ω j ≡ ωmax. These posi-

tions form a set of indexes denoted by J . We identify in

the vectors
−→
K and

−→
C those components corresponding

to the positions specified in J and construct the sets

kJ =
{
K j ∈ −→

K : j ∈ J
}

, cJ =
{
C j ∈ −→

C : j ∈ J
}

.

Once all of these sets have been determined, the
following results are obtained:

1. TheEEGchannels atwhich propagations take place
and the instants at which these occur.

2. The most important node ωmax, which represents
the EEG channel through which seizures spread.

3. The set kJ with the values of the degree taken by
the most important node at the identified seizures.

4. The set cJ with the values of clustering coefficient
taken by the most important node at the identified
seizures.

4 Results

4.1 First algorithm: ictal activity analysis

The first algorithm of this methodology analyzes the
EEG recordings to identify the regions with the higher
ictal activity and the attenuations in the cerebral cor-
tex. The obtained results allow to identify and count the
crises and attenuations in their respective EEG chan-
nels. Figure 7 shows two examples of ictal events that
were identified by means of this algorithm. The mor-
phology of these signals agrees with the characteristics
of patterns associated to epilepsy. In particular, a spike-
slow wave complex is shown in Fig. 7a, and a complex
of slowwave is shown in Fig. 7b. Bothwaves showhigh
amplitudes that stand out from the background activity.

Table 3 shows the results of identification of ictal
events in the considered recordings. The channel with
the higher amount of crises, their quantity, duration, and
prevalence are presented in the table. Similarly, Table
4 shows the obtained results regarding attenuations.
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Table 3 Identification of crises of seventeen complete EEG recordings

Patient (diagnosis)† ChCB ChMC Number of crises ST/RT (s/s) Proportion (%) Duration Prevalence

E − 1 (FS) 1 = Fp1 12 = O1 47 230/2690 8.5502 Intermediate Occasional

E − 2 (FS) 5 = Fp2 16 = O2 12 93/2140 4.3458 Intermediate Occasional

E − 3 (FS) 5 = Fp2 9 = F3 68 346/1950 17.7436 Long Frequent

E − 4 (FS) 1 = Fp1 1 = Fp1 165 710/3140 22.6115 Long Frequent

E − 5 (FS) 5 = Fp2 5 = Fp2 130 750/1920 39.0576 Long Frequent

E − 6 (FS) 16 = O2 16 = O2 34 157/2545 6.169 Intermediate Occasional

E − 7 (FS) 1 = Fp1 9 = F3 90 426/3190 13.3542 Long Frequent

E − 8 (GS) 8 = T6 8 = T6 33 185/2268 8.157 Intermediate Occasional

E − 9 (GS) 17 = Fz 11 = P3 4 29/1640 1.7683 Brief Occasional

E − 10 (GS) 4 = T5 16 = O2 123 1008/2400 42 Long Frequent

E − 11 (GS) 5 = Fp2 5 = Fp2 9 48/2490 1.9277 Brief Occasional

E − 12 (GS) 19 = Pz 12 = O1 42 195/2260 8.6283 Intermediate Occasional

E − 13 (GS) 8 = T6 8 = T6 26 122/2175 5.6092 Intermediate Occasional

ADHD-1 16 = O2 18 = Cz 5 21/2460 0.8529 Brief Rare

ADHD-2 17 = Fz 8 = T6 4 21/1800 1.1667 Brief Rare

CD-1 2 = F7 2 = F7 2 12/2080 0.5758 Brief Rare

CD-2 1 = Fp1 1 = Fp1 12 55/3688 1.4913 Brief Occasional

†E epileptic, FS focal seizures, GS generalized seizures, CD conduct disorder, ADHD attention deficit hyperactivity disorder, ChCB
channel where crises begin, ChMC channel with most crises, ST seizure time, RT recording time

Table 4 Identification of attenuations of seventeen complete EEG recordings

Patient (diagnosis)† ChMA Number of attenuations AT/RT (s/s) Proportion (%) Duration Prevalence

E − 1 (FS) 14 = C4 2 6/2690 0.22305 Very brief Rare

E − 2 (FS) 3 = T3 148 854/2140 39.9065 Long Frequent

E − 3 (FS) 10 = C3 11 35/1950 1.7903 Brief Occasional

E − 4 (FS) NA 0 NA NA NA NA

E − 5 (FS) 14 = C4 4 14/1920 0.7329 Brief Rare

E − 6 (FS) 10 = C3 29 105/2545 4.1257 Intermediate Occasional

E − 7 (FS) 10 = C3 71 364/3190 11.3928 Long Frequent

E − 8 (GS) 10 = C3 42 175/2268 7.7093 Intermediate Occasional

E − 9 (GS) 14 = C4 92 463/1640 28.2317 Long Frequent

E − 10 (GS) 10 = C3 3 10/2400 0.4167 Brief Rare

E − 11 (GS) 10 = C3 67 280/2490 11.245 Intermediate Frequent

E − 12 (GS) 10 = C3 8 28/2260 1.2389 Brief Occasional

E − 13 (GS) 10 = C3 64 378/2175 17.3793 Long Frequent

ADHD-1 14 = C4 170 1302/2460 52.9268 Long Abundant

ADHD-2 11 = P3 159 807/1800 44.8333 Long Frequent

CD-1 6 = F8 166 1277/2080 61.3942 Long Abundant

CD-2 10 = C3 275 2855/3688 77.3948 Long Abundant

†E epileptic, FS focal seizures, GS generalized seizures, CD conduct disorder, ADHD attention deficit hyperactivity disorder, NA not
available, ChMA channel with most attenuations, AT attenuation time, RT recording time

123



Epileptic focus location in the cerebral cortex 2701

Table 5 Confusion matrix and performance of the process of
crises identification

Results Seizure Normal Performance

Positives TP = 35 FP = 1 Sensitivity 0.972

Negatives FN = 0 TN = 36 Specificity 0.973

According to the results of Table 3, the patients
E − 4, E − 5, E − 6, E − 9, E − 11 and E − 12
presented in the same region of the cortex the chan-
nel where crises began (ChCB) and the channel with
most crises (ChMC). For the patient E − 4, ChCB and
ChMC correspond to Fp1, while for the patient E − 5
these channels correspond to Fp2. On the other hand,
the patients E − 7 and E − 12 presented ChCB and
ChMC in contiguous channels of the cortex. More pre-
cisely, the patient E − 7 presented ChCB at Fp1, and
ChMC at F3, while the patient E −12 presented ChCB
at Pz, and ChMC at O1.

As was expected, the results of Table 3 show that
epileptic patients presented a higher crisis activity com-
pared with those patients diagnosed with ADHD and
CD. In turn, the results of Table 4 show that patients
with ADHD and CD presented a higher activity of
attenuations compared with epileptic patients.

Once the automatic process of classification of ictal
events had finished we could confirm that the seg-
ments that formed the sample to evaluate the method-
ology fulfills the characteristics established in Table 8
of Appendix A. After the visual evaluation of the sam-
ple by the neurologist, the results were registered in
a confusion matrix of Table 5. There we can see the
performance of our first algorithm.

4.2 Second algorithm: seizure propagation analysis

The second algorithm of this methodology allows to
identify the EEG channels and regions of the cerebral
cortex where seizures spread. From the seventeen EEG
recordings employed in this work, only those thirteen
EEG recordings from patients diagnosed with epilepsy
were analyzed by this algorithm, but only the results
of two of them are shown below, which correspond to
patients having different kinds of epilepsy.

Figure 8 shows the dynamic of seizures of the two
considered patients as they spread through the EEG
channels. The horizontal axes of the plots represent

the time at which seizures occurred, and the vertical
axes represent the number of involved channels during
seizure registration, and not the individual tags of elec-
trodes over the scalp. We can see that seizures begin in
a certain channel, and then they propagate to the oth-
ers. Figure 8a corresponds to a patient diagnosed with
generalized seizures, in which 15 propagation events
were identified. We can observe that seizures reached
up to 16 channels in about 500 s. On the other hand,
Fig. 8b shows that seizures begin in certain channel
and then they propagated through the 19 channels in
about 1350 s. This last case corresponds to a patient
diagnosed with focal seizures, where 70 propagation
events were identified.

The set� = {	(1) ,	 (2) , . . . , 	 (N )} gathers the
information of the important nodes involved during
crises, so that some statistical treatment can be per-
formed on it. For instance, we can determine a his-
togram for each recording as shown Fig. 9. In these
plots, the horizontal axes represent the EEG channels
corresponding to the nodes of the networks, and the ver-
tical axes represent the frequency of occurrence of the
nodes that were identified as important. For instance, in
Fig. 9a, the node 10 labeled as C3 (located in the cen-
tral left position on the cerebral cortex) has the highest
prevalence with a counting of eight occurrences. On
the other hand, in Fig. 9b, the node 4 with the label
T5 (located in the left temporal position on the cere-
bral cortex) has the highest prevalence with a total of
twenty four occurrences.

Once the most important node was determined from
the histogram (that is, the node with the highest preva-
lence), and the sets kJ and cJ were determined we con-
tinue calculating the average Avg and standard devi-
ation ST D of their elements. Let us consider the dia-
grams shown in Figs. 10 and 11, which represent the
results obtained during the whole recordings of the two
selected patients with epilepsy. Figure 10 belongs to
the patient diagnosed with generalized seizures, and
Fig. 11 corresponds to the patient diagnosed with focal
seizures. Thehorizontal axes of thefigures are related to
the time at which propagations occur, thereby these fig-
ures effectively represent the dynamics of propagation
for each patient. The values of degree and clustering
coefficient of the most important node (violet discs)
tend to cluster about their average and get dispersed
according to the standard deviation, which lie on the
gray rectangle.
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(a) (b)

Fig. 8 Propagation of seizures and number of channels involved during seizures. a Seizures registered from a patient diagnosed with
generalized seizures. b Seizures registered from a patient diagnosed with focal seizures

(a) (b)

Fig. 9 Prevalence of the most important nodes (violet bars of the histograms) of the two selected recordings: a patient with generalized
seizures, b patient with focal seizures

The violet disks in figures represent the most impor-
tant node ωmax. According to Fig. 10a, the average
Avg = 13.88 and the standard deviation ST D = 0.78
of the set kJ for the first patient indicate that the most
important node (in this case the node 10 associatedwith
the EEG channel C3) tends to link to about 14 channels
during seizures. On the other hand, Fig. 10b shows that
the average Avg = 0.77 and the standard deviation
ST D = 0.03 of the set cJ for the same patient spec-

ify that 77% of the neighboring channels to the most
important node tend to link each other.

Similarly, in Fig. 11a, the average Avg = 7.79 and
the standard deviation ST D = 2.2 of the set kJ indicate
that the most important node (in this case, the node 4
corresponding to the EEG channel T5) tends to connect
with about eight channels during seizures. In Fig. 11b,
we observe that the average Avg = 0.51 and the stan-
dard deviation ST D = 0.16 of the set cJ indicate that
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(a) (b)

Fig. 10 Dynamics of important nodes (blue discs) and the most important node (violet discs) of a patient diagnosed with generalized
seizures. a Degree of nodes from the set kJ , and b clustering coefficient from the set cJ

(a) (b)

Fig. 11 Dynamics of important nodes (blue discs) and the most important node (violet discs) of a patient diagnosed with focal seizures.
a Degree of nodes from set kJ , and b clustering coefficient from set cJ

51% of the neighboring channels to the most important
node tend to link each other.

This methodology was carried out on the EEG
recordings of the thirteen patients diagnosed with
epilepsy. The results of the most important nodes are
shown in Table 6, while Table 7 summarizes the results
of the relevant channels identified with this methodol-
ogy.

5 Discussion

Definitions of epileptogenic zone, seizure focus and
epileptic focus remain complex and elusive. Some-

times epileptogenic zone and seizure focus can be con-
sidered as equivalent [29]. The zone where seizures
begin and the SOZ can be the same. Sometimes these
regions are located in the zone where the most ictal
activity occurs. Also, these concepts may correspond
to different regions on the cerebral cortex. For this rea-
son, it is possible that ChCB and ChMC (see Table 3)
correspond to different locations on the cerebral cor-
tex. However, these channels can be considered as the
epileptogenic zone only if they are contiguous [29].
Moreover, it is possible that ChCB and ChMC can be
located in the same channel.

With the aim of identifying a source of seizures,
the works considered in the introduction describe
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Table 6 Degree and clustering coefficient of the most important nodes

Patient† Node (MICh) Frequency avg (kJ ) std (kJ ) avg (cJ ) std (cJ )

E − 1 (FS) 8 = T6 5 9.2 5.91 0.41 0.34

E − 2 (FS) 10 = C3 1 15 0 0.78 0

E − 3 (FS) 4 = T5 24 7.79 2.2 0.51 0.16

E − 4 (FS) 8 = T6 42 12.29 2.04 0.8 0.07

E − 5 (FS) 12 = O1 50 11.66 3.0 0.65 0.11

E − 6 (FS) 5 = Fp2 3 6.0 0.0 0.49 0.06

E − 7 (FS) 19 = Pz 45 8.31 2.54 0.41 0.13

E − 8 (GS) 10 = C3 8 13.88 0.78 0.77 0.03

E − 9 (GS) 7 = T4 3 8 1.41 0.64 0.12

E − 10 (GS) 9 = F3 63 6.87 2.53 0.39 0.16

E − 11 (GS) 19 = Pz 2 8.5 2.5 0.58 0.05

E − 12 (GS) 15 = P4 24 7.62 2.36 0.14 0.15

E − 13 (GS) 9 = F3 6 6.38 2.03 0.34 0.17

† E epileptic, FS focal seizures, GS generalized seizures,MICh most important channel

Table 7 Summary results of important channels

Patient† MICh ChCB ChMC ChMA Contiguous channels

E − 1 (FS) T6 Fp1 O1 C4 NA

E − 2 (FS) C3 Fp2 O2 T3 C3 and T3

E − 3 (FS) T5 Fp2 F3 C3 F3 and C3

E − 4 (FS) T6 Fp1 Fp1 NA NA

E − 5 (FS) O1 Fp2 Fp2 C4 NA

E − 6 (FS) Fp2 O2 O2 C3 NA

E − 7 (FS) Pz Fp1 F3 C3 Fp1, F3 and C3

E − 8 (GS) C3 T6 T6 C3 NA

E − 9 (GS) T4 Fz P3 C4 T4 and C4

E − 10 (GS) F3 T5 O2 C3 F3 and C3

E − 11 (GS) Pz Fp2 Fp2 C3 NA

E − 12 (GS) P4 Pz O1 C3 P4 and Pz

E − 13 (GS) F3 T6 T6 C3 F3 and C3

† E epileptic, FS focal seizures, GS generalized seizures, NA not available, MICh most important channel, ChCB channel where crises
begin, ChMC channel with most crises, ChMA channel with most attenuations

methodologies to search for each region separately. For
instance, the works [9] and [39] are aimed to detect on
the one hand the SOZ by assuming that seizures get
triggered in this region; and on the other hand, to deter-
mine the directionality of the frequencies with higher
coherence from the SOZ to other parts of the brain.
Similarly, the works [44,45] are focused on determin-
ing the functional connectivity patterns obtained from
IEEG and EEG recordings, which reveal information

on the dynamics of a brain suffering epilepsy that can
be used to localize the SOZ. In these three works, only
one region associated with the epileptic focus can be
found. Moreover, in all cases, the identification of ictal
events in the recordings was performed only by spe-
cialists.

The epileptogenic zone, seizure focus, SOZ, and the
zonewhere seizures begin can be considered equivalent
[29]. By considering the specific characteristics of the
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several kinds of epileptic patterns in EEG signals, the
first algorithm (ictal activity analysis) of the present
work provides the time and places at which seizures
begin. This information could be crucial to the neurol-
ogist. Also, we can determine the EEG channels with
the highest ictal activity and its prevalence with respect
to the whole recording. Furthermore, attenuations can
also be identified since these behaviors display charac-
teristics of low fast activity, which is considered as an
EEG ictal pattern. This activity has been observed dur-
ing epileptic focal seizures, generally occurring at the
SOZ [25,47]. Therefore, by identifying where the low
fast activity is located would lead to associate the loca-
tion of this behavior with the locations of other seizure
patterns.

Given that there is no official minimum time to
define seizures [29], the first algorithm also allows us
to identify abnormal transients that can be related to
epilepsy.Hence, repetitions of abnormal behaviors last-
ing less than 3 s can be identified and analyzed individ-
ually.

The methods used in this work to identify crises
were designed on the basis of the thresholds and con-
ditions defined on updated standards and clinical guide-
lines. For this reasons, it was possible to detect all of
the events automatically, i.e., without supervision of
the specialist. It is worth mentioning that no artificial
intelligence techniques were used at all for this purpose
along this paper.

With respect to the second algorithm (seizure prop-
agation analysis), the results on the locations at which
propagations occur show that it is possible to identify
which epochor stimulus during the acquisition protocol
(like open-closed eyes, hyperventilation, sleep among
others) involves a higher number of channels during
the seizures, as shown in Fig. 8. Note that the bottom
margins of Figs. 8a, b show the instants at which the
different epochs were presented during the recording.

Regarding the propagation of seizures, the work
[48] based on electrocorticography (EcoG) recordings,
implemented a betweenness centrality measurement to
identify the critical nodes of networks during both ictal
and interictal states; however, in order to identify ictal
events, they used an algorithm developed by [37] to
reduce artifacts in EEG signals. Next, the selection of
ictal events wasmade visually with a sample consisting
of 65 events of ictal and interictal periods with length
of 5 minutes. Unlike the mentioned work [48], in order
to identify themost important node, we analyzed a total

of 762 crises (all of them automatically identified) with
different lengths. On the other hand, in the work [28],
it is calculated the number of links per node to identify
which one had the highest degree during awake, asleep
and seizure stages. It has been assumed that the node
with the highest degree is that which plays an important
role in the dynamics of seizures in the brain. Indeed the
nodewith the highest degree is the one that is most con-
nected with others, but sometimes the most important
node is not the same than the one with highest degree.

In the works [48] and [28], the graph theory was
applied to analyze the cortical networks and to identify
the nodes through which information travels. Unlike
these two works, our second algorithm analyzes the
seizures involving more than two channels under a
complex network approach. More specifically, we cre-
ated a network for each seizure and implemented
a betweenness centrality measurement by which the
important nodes were identified. In this way, the degree
kv and clustering coefficient Cv of the important nodes
were calculated.

Basedon thedefinitions of shortest path andbetween-
ness centrality, we deduced that during seizures, the
most important node represents the channel through
which seizures propagate to the others. In addition,
the degree of the most important node indicates the
number of synchronized channels that involve it, and
the clustering coefficient offers an estimation of the
level of synchronization that exist between its neigh-
boring EEG channels. An example of this is depicted in
Fig. 12a, where the arrows represent the links between
the most important node (the red one) and its neighbors
(the blue nodes). In Fig. 12b, the blue disks linked by
arcs represent the neighbors to themost important node
that connect each other.

The present work is mainly focused on analyzing
the dynamics of the epileptic seizures as well as their
spatial location on the cerebral cortex. On considering
that links represent the correlations between nodes, the
betweeness centrality represents the level of influence
that a node has on the flow of information in a graph.
The most important node possesses the highest preva-
lence. Hence, the degree kv and clustering coefficient
Cv of the most important node stand as reliable tools
to identify the EEG channels through which seizures
spread, and this information can be used to improve the
identification of the epileptic focus.
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Fig. 12 Physical sense of the clustering coefficient and degree
of the most important node. a The EEG channel F7 has a degree
of 8.5882, which implies a synchronization with at least 8 EEG

channels. b The clustering coefficient of the same EEG chan-
nel is 0.5102, which means that at least 50% of the neighboring
nodes to F7 are synchronized each other

6 Concluding remarks

The first algorithm proposed in this work identifies all
the segments of crises, attenuations and all abnormal
behaviors, which are counted in their respective EEG
channels. With this information it is possible to iden-
tify: (i) the EEG channels where seizures begin; (ii)
the EEG channels with the more lasting crises; (iii) the
EEG channel with the greatest number of crises and the
prevalence of these events during thewhole recordings;
(iv) the EEG channel with the greatest number of atten-
uations, and also their prevalence; (v) the EEG channel
with the greatest number of abnormal transients; and
(vi) the instant at which propagations occur as well the
epoch of the EEG recording with the higher number
of involved EEG channels during seizures. Regarding
to point (iii), it is worth mentioning that the patients
E − 4, E − 5 and E − 10 presented more than 100
crises because, in these patients, the recurrent presence
of short-term crises of 3 and 4 s predominates.

Our methodology splits the signals from the 19 EEG
channels into segments where propagations occur, and
analyzes the level of synchronization among the EEG
channels during the seizures with a complex network

approach. The links between nodes were established
depending on their level of correlation. More precisely,
condition (1) determines if a link is established in a n-th
network. This condition implies that correlation values
lie in the interval In . Otherwise, if correlation is below
the standard deviation (that is, inside the interval În),
(3) governs the creation of links.

After analyzing 762 networks, which were gener-
ated from all identified ictal events in the total of EEG
recordings, up to 48307 linkswere generated according
to condition (2), and six links according to condition
(4). Therefore, our approach leads to generate fully con-
nected networks, which implies that no disconnected
regions of the brain exist. Furthermore, with the imple-
mentation of the concepts of cross-correlation, short-
est path, and betweenness centrality, it was possible to
identify which EEG channels are more likely related to
the propagation of seizures. Indeed, the important EEG
channels through which propagations occur and the
most important node (which corresponds to the node
with the highest prevalence during the whole record-
ing) can be well-identified. This leads us to conclude
that the most important node is that which is highly
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connected with its neighbors, which link each other
during the propagation of the seizures.

Finally, with the joint work of our algorithms, it is
possible to identify in the cerebral cortex the regions
that satisfy the characteristics of the epileptic focus, that
is, the channels in the EEG recordings where attenua-
tions, seizures and abnormal activity occur. Moreover,
it is possible to determine the EEG channels through
which seizures spread and the way these events occur.
Also, it is possible to verify if the identified EEG chan-
nels are located in adjoint regions on the cortex. Once
the regions that involve the epileptic focus are identi-
fied, it is possible to accomplish deeper studies of the
electrical activity from this region of the brain.

Depending on the location of the important chan-
nels, the results listed in Table 7 could let the neurol-
ogist discard a certain area of the cortex as epileptic
focus if it does not satisfy the condition of adjacency
of the channels, and improve his diagnosis. We stress
that this work is not intended to be an automatic clin-
ical diagnostic tool for a patient, but all the informa-
tion obtained by our methodology may lead the medi-
cal specialist to link the behavior of the EEG channels
where the greatest ictal activity occurs with the EEG
channels through which this activity spreads. Themed-
ical specialist can also take into account the additional
information on the EEG channels where attenuations
and abnormal transients occur, since sometimes atten-
uations precede crises [27].
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A Glossary

Attenuation It is a pattern that shows a
reduction in the amplitude
of EEG activity. It is char-
acterized by a relatively
low amplitude, regardless
of the absolute amplitude

of the attenuated segment.
It may occur transiently or
more permanently [25,41].

Complex A sequence of two or more
waves having a character-
istic form or recurring with
a fairly consistent form,
distinguished from back-
ground activity.

Crisis EEG ictal patterns, it is a
synonym of electrographic
seizure.

Duration The time that a sequence of
waves or complexes or any
other distinguishable fea-
ture lasts in an EEG record,
see Table 9.

Epoch EEGsegmentwith adefined
duration, e.g., open-closed
eyes, wakefulness, hyper-
ventilation among others.

Ictal It refers to a physiologic
state or event such as a
seizure, stroke, or headache.

Interictal It refers to theperiodbetween
seizures, or convulsions,which
are common in epilepsy.

Low fast activity An EEG pattern that is
characterizedbyadecrease
in signal voltage with a
marked increase in signal
frequency (typically beyond
25 Hz).

Magnetoencephalograhy Is the graphic representa-
tion of the magnetic fields
producedbyneurons in your
brain while EEG senses
electrical signals.

Reductions Segments in EEG signals
with an amplitude less or
equal than 10µV, seeTable
8.

Repetition This pattern consists of any
transient that occurs two or
more times without inter-
ruption. It may be an iso-
latedwave that recurs form-
ing a rhythm. A repetition
may also be a recursive
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Table 8 Classification of abnormal behaviors in EEG signals

Behavior Amplitude Am (µV) Frequency f (Hz) Age (years) References

Abnormal δ Am > 50 f ≤ 4 > 2.5 [25,41,43]

Abnormal θ 50 < Am ≤ 100 4 < f < 8 > 7 [3,43]

Abnormal α Am > 60 8 ≤ f ≤ 13 > 3 [25,41,43]

Abnormal β Am > 40 13 < f ≤ 35 Any [25,41,43]

Reduction Am ≤ 10 Any Any [22,25]

complex such as series of
spike and slow wave com-
plexes in immediate suc-
cession [25,41].

Prevalence Proportion of the record-
ing or a given epoch that
includes a particular EEG
pattern, see Table 9.

Propagation The active neural process
whereby electric activity
spreads from one area of
the brain to another.

Quantity Amount of EEG activity
with respect to number of
transients or waves.

Slow-wave Wave with duration longer
than alpha waves, i.e. over
1/8 s (> 125 ms).

Synchronization The simultaneous occur-
rence of EEG waves over
distinct regions on the same
or opposite sides of the
brain with the same speed
and phase.

Transient It is any isolated wave or
complexdistinguished from
thebackgroundactivity.Tran-
sients usually last less than
one second and rarely last
more than 2 s [25,41].

Wave Any change of the poten-
tial differencebetweenpairs
of electrodes in an EEG
recording.

B Acronyms

ADHD Attention deficit hyperactivity disorder.
ADTF Adapted directed transfer function.

Table 9 Classification of duration and prevalence of events in
EEG recordings [22,25]

Duration Prevalence

Long 5–59 min Abundant 50–89% of record or epoch

Intermediate 1–4.9 min Frequent 10–49% of record or epoch

Brief 10–59 s Occasional 1–9% of record or epoch

Very brief < 10 s Rare < 1% of record or epoch

AS Awake stage.
BOLD Blood-oxygen-level dependent imaging.
CD Conduct disorder.
CNS Central nervous system.
EcoG Electrocorticography.
EEG Electroencephalography.
fMRI Functional magnetic resonance imaging.
FN False negative, when a seizure occurred and

it was no identified and the event was clas-
sified as normal.

FP False positive, when a seizure did not
occurred and the event was classified as
seizure.

GSW Generalized spike-wave.
IEEG Intracraneal electroencephalography.
IED Interictal epileptiform discharges.
IS Ictal stage.
MEG Magnetoencephalography.
MRI Magnetic resonance imaging
TN True negative, when a seizure did not

occurred and the eventwas classified as nor-
mal.

TP True positive, when a seizures occurred and
it was identified and classified as seizure.

SOZ Seizures onset zone.
SS Sleep stage.
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