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Abstract Support stiffness is one of important

factors on structure dynamics. Considering the vertical

support stiffness, a multi-cable-stayed shallow-arch

model of the cable-stayed bridge is established. Its

differential equation governing the planar motion of

cables and the shallow arch and the boundary condi-

tions are derived by Hamilton’s principle. Firstly, the

in-plane free vibration of the system is explored in

order to find the modal functions and the possible

internal resonances of nonlinear dynamics. Then, the

1:2:2 internal resonance among the different modes of

the shallow arch and two cables are investigated by the

multiple time scale method and pseudo-arclength

algorithm. Meanwhile, the frequency-/force–response

curves are used to explore the nonlinear behaviors of

the system, especially the influence of vertical support

stiffness, excitation frequency and amplitude on the

internal resonance of the system is considered. To a

certain extent, the support stiffness can reduce the

response amplitudes of members by absorbing some

energy from excitation.

Keywords Nonlinear vibration � Modeling � Cable-

stayed bridge � Vertical support stiffness � Internal

resonance

1 Introduction

As one of the popular bridges, cable-stayed bridge is of

the large spanning ability, elegant appearance and

mature method of construction. However, cable-

stayed bridge is sensitive to external load due to its

lower stiffness and the complex environments, which

has been attracting many researchers [1–4]. In order to

understand its internal mechanism of dynamics and

find appropriate method to control its large vibration,

many scholars have been devoted to researches on

dynamics of the cable-stayed bridge.

To study the dynamic properties of cable-stayed

bridge, a simplified model, i.e., a single cable [5–8] or

a cable-stayed beam is utilized by many scholars.

Fujino et al. [9] established a three-degree-of freedom

model of a cable-stayed beam and the one-to-one-to-

two internal resonance was observed from a theoret-

ical and experimental point of view. Fung et al. [10]

studied the nonlinear vibrations of a cable-stayed
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beam with time-varying length and tension in the cable

by using Hamilton’s principle and finite element

method. Zhang et al. [11] investigated one-to-one

main parametric resonance of the cable-stayed beam.

In their study, the ‘beat’ vibration was observed and

they mentioned that the occurrence of amplitude main

parametric excitation resonances can be controlled by

limiting the initial displacement of the beam end.

Lenci and Ruzziconi [12] explored the nonlinear

dynamic of a planar cable-supported beam. They

pointed out that the effects of secondary attractors

cannot be ignored and awakened the designer that the

dynamics of cable-supported beam was complex due

to resonance. Gattulli and co-workers [13–15] inves-

tigated the parametric influence on linear and nonlin-

ear behaviors of the cable-stayed bridge. A

localization factor is proposed to evaluate the local-

ization level of cables and the nonlinear interaction

between global and local modes was investigated by

analytical, finite element and experimental models.

They found that the axial force caused by cable tension

has little influence on the natural frequencies of the

cable-stayed beam even within a wide range of

parameter. Wei et al. [16] studied the bifurcation and

chaos of a cable-stayed beam when internal and

external resonances simultaneously occur. In another

paper, Wei et al. [17] analyzed the nonlinear dynamics

of cable-beam coupled system driven by subharmonic

resonance of the beam and principle parametric

resonance of the cable. Meanwhile, the parametric

analysis aiming to some key parameters of the cable-

stayed beam was carried out systematically. In addi-

tion to the cable-stayed beam, there are also some

models for the overall modeling of the cable-stayed

bridge, such as the model consists of a simply

supported four-cable-stayed deck beam and two rigid

towers [18], the dynamic multi-beam model with

discrete springs [19, 20] and so on.

The above cable-stayed beam model can reveal the

nonlinear coupling between the cable and beam,

whereas the geometric of the beam is not taken into

account. In the practical engineering, a certain pre-

arch value is usually set for long-span cable-stayed

bridge to offset the vertical displacement caused by the

shrinkage or creep of concrete during the working

state of the bridge. Hence, many studies considering

the initial configuration of the beam emerged. Blair

et al. [21] considered the dynamic response of a

shallow arch subjected to harmonic excitation by

using harmonic balance method and continuation

technique. The results show that a small change in

excitation frequency or amplitude will lead to an

obvious change in the response of the arch. Breslavsky

et al. [22] investigated the stability of the snap-through

of a shallow arch by utilizing a two-degree-of-freedom

nonlinear model. Benedettini et al. [23] studied the

nonlinear coupling and dynamic instability of a non-

shallow arch. By applying theoretical and experimen-

tal methods, the post-critical behavior and two-to-one

internal resonance between the first symmetric and

antisymmetric modes were discussed. Recently, Kang

et al. [24, 25] established a double-cable-stayed

shallow-arch model of the cable-stayed bridge and

studied 1:1:1 the internal resonance analysis among

the shallow arch and two cables.

On the other hand, in previous studies, the boundary

conditions of the model are considered to be hinged–

hinged (H–H) or clamped–clamped (C–C). Actually,

due to the existence of isolation rubber, the bearing

may produce slight deformation, which will lead to an

obvious reduction in the natural frequency of the

system, especially low-order frequency [26]. Leissa

and Qatu [27] considered that even a steel beam that is

completely welded to an infinite constraining block

(that is, an infinite half-space) will rotate at the

clamping end during vibration. Yi et al. [28] proved

that the elastic constraints played a significant role in

the nonlinear dynamics of the elastically constrained

shallow arch, which will affect the frequency and

mode shape of the system. And there was a corre-

spondence between the elastic constraints and the

coefficients in the modulation equation. Hence, it is

more reasonable to treat the boundary condition as

elastic support and consider its stiffness, which has

been adopted in many references, e.g., [28–32] to

name but a few.

This paper aims to establish a more accurate model,

i.e., a multi-cable-stayed shallow-arch model with

vertical elastic supports at both ends, to study the

nonlinear dynamics of the cable-stayed bridge. Since

the initial configuration of the beam and the support

stiffness of the bearing are considered, the model is

closer to the real state of the cable-stayed bridge and

can reflect the nonlinear phenomena in the practical

engineering better. This study will explore the effect

of support stiffness on the nonlinear dynamics of the

cable-stayed bridge. By solving the planar eigenvalue

problems of the proposed model, the mode shapes are
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obtained and taken as the trial functions in Galerkin’s

procedure. In this way, a set of ordinary differential

equations (ODEs) are derived. By utilizing the mul-

tiple time scale method, the ODEs are solved and the

1:2:2 internal resonance among the first modes of the

shallow arch and two cables are explored. Meanwhile,

the frequency-/force–response curves are presented to

investigate the effect of support stiffness on the

dynamic properties of the system.

The paper is organized as follows. In Sect. 2, the

planar eigenvalue problem of the model is solved. In

Sect. 3, the differential equations of the system are

solved by the multiple time scale method. Numerical

analysis of 1:2:2 internal resonance is performed in

Sect. 4. Conclusions are given in Sect. 5.

2 Planar eigenvalue problem

The problem model considered is depicted in Fig. 1, in

which n ? 1 Cartesian coordinates soy and xjojyj
(j = 1, 2…n) are established to describe the motions of

the shallow arch (hereinafter referred to as arch) and

cables. According to the number n of cables, the arch is

divided into n ? 1 segments. hj is the angle between

the cable and the arch. v�a and u�a denote transverse and

axial displacements of the arch, while v�cj and u�cj
denote transverse and axial displacements of the cable.

Considering the influence of bearing deformation, the

vertical supports at both ends are replaced by two

springs, the stiffness of which are k�1 and k�2, respec-

tively. Additionally, the arch is subjected to a

harmonic excitation, i.e., f � cosX�t, which can be

used to simulate wind action [33, 34]. For simplicity,

the following assumptions are made:

(a) the sag-to-span ratio of the cable is small (�
1/10). Hence, the equilibrium configuration for

the inclined cable is described by the parabola

[13];

(b) the initial deflection of the arch is described

through a sinusoidal function and also its rise-

to-span ratio f �0 is much less than 1/10;

(c) the axial vibration of the arch is neglected,

because it is usually much smaller than trans-

verse vibration and its frequency is far more

than that of transverse vibration;

(d) the displacement of the cable is considered as

the superposition of two parts, i.e., pure modal

displacement and vertical dragging by the

vibration of the arch.

(e) the tower is considered to be rigid, since the

stiffness of the tower is usually larger than that

of the beam, which is also verified by experi-

mental measurements and finite element analy-

sis [18].

According to Hamilton’s principle, the differential

equations governing the planar motion of the arch

segment [35] and cables [13] can be expressed as

mai €v
�
ai þ EaiIaiv

�0000
ai þ l�ai _v

�
ai �

1

la
ðy�000

þ v�00ai Þ
Xnþ1

p¼1

EapAap

Z s�p

s�
p�1

ðy�00 v
�0
ap þ

1

2
v�02ap Þds�¼p�aðs�; tÞ

ð1Þ

mcj €v
�
cj þ l�cj _v

�
cj � ½Hcjv

�00
cj þ EcjAcjðy�00cj þ v�00cj Þe�j ðtÞ�

¼ 0

ð2Þ

where i = 1, 2…n ? 1, s�0 ¼ 0; s�nþ1 ¼ la and ‘�’

denotes dimensional parameter. The subscripts a and

c represent the arch and the cable, respectively.m, E, I,

n and A are mass per unit length, Young’s modulus,

moment of inertia of the cross section, damping

parameter and cross-sectional area of the arch and

Fig. 1 Multi-cable-stayed shallow-arch model with vertical elastic supports of cable-stayed bridge
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cables, respectively. y0 and la are the initial configu-

ration and horizontal length of the arch, respectively.

Hcj and ycj is the initial force and initial configuration

of the jth cable, respectively. p�aðs�; tÞ is the total load

acting on the arch, which will be given later. The

prime and dot denote the differentiation with respect to

coordinate x�j and time t. e�j denotes the uniform

dynamic elongation of the cable and is given by

e�j ðtÞ ¼
u�cjðlcj; tÞ

lcj
þ 1

lcj

Z lcj

0

ðy�0cjv�0cj þ
1

2
v�02cj Þdx�j ð3Þ

where lcj is the length of the jth cable.

For the convenience of calculation, only two cables

(n = 2) are considered and the model is assumed to be

symmetrical. In this case, i = 1, 2, 3 and j = 1, 2

(hereinafter inclusive). According to Fig. 1, the

boundary conditions of the model can be written as

v�00a1ð0; tÞ ¼ v�00a3ðla; tÞ¼0; v�cjð0; tÞ ¼ 0 ð4Þ

The continuous conditions at the node s�j are

v�ajðs�j ; tÞ ¼ v�aðjþ1Þðs�j ; tÞ; v�0ajðs�j ; tÞ
¼ v�0aðjþ1Þðs�j ; tÞ; v�00aj ðs�j ; tÞ ¼ v�00aðjþ1Þðs�j ; tÞ

u�cjðlcj; tÞ ¼ v�ajðs�j ; tÞ sin hj; v
�
cjðlcj; tÞ

¼ v�ajðs�j ; tÞ cos hj ðj ¼ 1; 2Þ
ð5Þ

Meanwhile, the left and right side of the node s�j
should satisfy the following mechanical relationships

EajIajv
�000
aj ðs�j ; tÞ � Eaðjþ1ÞIaðjþ1Þv

�000
aðjþ1Þ ðs�j ; tÞ

¼ EcjAcje
�
j ðtÞ sin hj þ Hcjv

�0
cjðlcj; tÞ cos hj

þ EcjAcje
�
j ðtÞ½v�0cjðlcj; tÞ þ y�0cjðlcjÞ� cos hj

ð6Þ

In addition, the following mechanical boundary

conditions at the elastic supports can be derived

through Hamilton’s principle, i.e.,

Ea1Ia1v
�000
a1 ð0; tÞ þ k�1v

�
a1ð0; tÞ � ½y�00 ð0Þ

þ v�0a1ð0; tÞ�
X3

p¼1

EapAap

Z s�p

s�
p�1

ðy�00 v
�0
ap þ

1

2
v�002ap Þds�

¼ 0

ð7Þ

Ea3Ia3v
�000
a1 ðla; tÞ � k�2v

�
a3ðla; tÞ � ½y�00 ðlaÞ

þ v�0a3ðla; tÞ�
X3

p¼1

EapAap

Z s�p

s�
p�1

ðy�00 v
�0
ap þ

1

2
v�02ap Þds�

¼ 0

ð8Þ

Substituting Eq. (5) into Eq. (3), we can obtain

e�j ðtÞ ¼
v�ajðs�j ; tÞ sin hj

lcj
þ 1

lcj

Z lcj

0

ðy�0cjv�0cj þ
1

2
v�02cj Þdx�j

ð9Þ

To render the equations non-dimensional, the

following non-dimensional variables and parameters

are defined:

xj ¼
x�j
lcj

; s ¼ x0t; yj ¼
y�j
lcj

ucj ¼
u�cj
lcj

;

vcj ¼
v�cj
lcj

; kcj ¼
EcjAcj

Hcj
; vai ¼

v�ai
la

;

ccj ¼
la
lcj

; s ¼ s�

la
;x0¼ 1.0rad � s�1;

lai ¼
l�ai

maix0

; dj ¼
d�j
lcj

; y0 ¼ y�0
la
; lcj ¼

l�cj
mcjx0

;

vj ¼
EajIaj
l2aEcjAcj

; vjþ1 ¼
Eaðjþ1ÞIaðjþ1Þ
l2aEcjAcj

; b4
ai ¼

mail
4
ax

2
0

EaiIai
;

b2
cj ¼

mcjl
2
cjx

2
0

Hcj
;

f0 ¼ f �0
la
; gai ¼

Aail
2
a

Iai
; pa ¼

p�a
max2

0l
2
a

; k1 ¼ k�1l
3
a

Ea1Ia1

;

k2 ¼ k�2l
3
a

Eaðnþ1ÞIaðnþ1Þ
; ði ¼ 1; 2; 3Þ

Then Eqs. (1), (2) and (9) are transformed into non-

dimensional form as

€vai þ
1

b4
ai

v0000ai þ lai _vai �
1

b4
ai

ðy000

þ v00aiÞ
X3

p¼1

gap

Z sp

sp�1

ðy00v0ap þ
1

2
v02apÞds

¼ paðs; sÞ ð10Þ

€vcj þ lcj _vcj �
1

b2
cj

v00cj �
1

b2
cj

kcjejðy00cj þ v00cjÞ ¼ 0 ð11Þ
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ejðsÞ ¼ �ccjvajðsj; sÞ sin hj þ
Z 1

0

y0cjv
0
cj þ

1

2
v02cj

� �
dxj

ð12Þ

To solve the planar eigenvalue problem of the

model, the excitation, nonlinear and damping terms of

Eqs. (10) and (11) are commonly ignored, then we can

obtain

€vai þ
1

b4
ai

v0000ai �
1

b4
ai

y000
X3

p¼1

gap

Z sp

sp�1

y00v
0
apds ¼ 0 ð13Þ

€vcj �
1

b2
cj

v00cj �
1

b2
cj

kcjêjy
00
cj ¼ 0 ð14Þ

where

êj ¼ vcjð1; sÞ tan hj þ
Z 1

0

y0cjv
0
cjdxj ð15Þ

The non-dimensional linear forms of Eqs. (4)–(8)

can be written as

v00a1ð0; sÞ ¼ v00a3ð1; sÞ ¼ 0; vcjð0; sÞ ¼ 0 ð16Þ

vajðsj; sÞ ¼ vaðjþ1Þðsj; sÞ; v0ajðsj; sÞ ¼ v0aðjþ1Þðsj; sÞ;
v00ajðsj; sÞ ¼ v00aðjþ1Þðsj; sÞ

ucjð1; sÞ ¼ ccjvajðsj; sÞ sin hj; vcjð1; sÞ
¼ ccjvajðsj; sÞ cos hj

ð17Þ

vjv
000
ajðsj; sÞ þ vjþ1v

000
aðjþ1Þðsj; sÞ

¼ êjðsÞ sin hj þ
cos hj
kcj

v0cjð1; sÞ þ êjðtÞy0cjð1Þ cos hj

ð18Þ

v000a1ð0; sÞ þ k1va1ð0; sÞ � y00ð0Þ
X3

p¼1

gap

Z sp

sp�1

y00v
0
apds

¼ 0

ð19Þ

v000a3ð1; sÞ � k2va3ð1; sÞ � y00ð1Þ
X3

p¼1

gap

Z sp

sp�1

y00v
0
apds

¼ 0

ð20Þ

The solutions of Eqs. (13) and (14) can be

expressed as

vai ¼ /aiðsÞeiðx=x0Þs vcj ¼ /cjðxÞeiðx=x0Þs ð21Þ

According to assumptions (a) and (b), the initial

configurations of cables are expressed as

ycjðxjÞ ¼ 4djðxj � x2
j Þ ð22Þ

where dj is the sag-to-span ratio of the cable.

Substituting Eqs. (21) and (22) into Eqs. (13) and

(14), we can obtain

/0000
ai � b

4

a/ai ¼ gay
00
0

X3

p¼1

Z sp

sp�1

y00/
0
apds ð23Þ

b
2

c/cj þ /00
cj ¼ 8kcdêj ð24Þ

where b
4

a ¼
mal

4
ax

2

EaIa
, b

2

c ¼
mcl

2
cx

2

Hc
and

êj ¼ /cjð1Þ tan hj þ
Z 1

0

y0cj/
0
cjdxj ð25Þ

Substituting Eq. (21) into Eqs. (16)–(20), the

following can be derived

/00
a1ð0Þ ¼ /00

a3ð1Þ ¼ 0; /cjð0Þ ¼ 0 ð26Þ

/ajðsjÞ ¼ /aðjþ1ÞðsjÞ; /0
ajðsjÞ ¼ /0

aðjþ1ÞðsjÞ; /00
ajðsjÞ

¼ /00
aðjþ1ÞðsjÞ; /cjð1Þ ¼ ccj/ajðsjÞ cos hj

ð27Þ

vj/
000
ajðsjÞ þ vjþ1/

000
aðjþ1Þ ¼ êjðsÞ sin hj þ

cos hj
kcj

/0
cjð1Þ

þ êjðtÞy0cjð1Þ cos hj

ð28Þ

/000
a1ð0Þ þ k1/a1ð0Þ � y00ð0Þ

X3

p¼1

gap

Z sp

sp�1

y00/
0
apds ¼ 0

ð29Þ

/000
a3ð1Þ � k2/a3ð1Þ � y00ð1Þ

X3

p¼1

gap

Z sp

sp�1

y00/
0
apds ¼ 0

ð30Þ

The general solution of Eq. (24) is

/cjðxÞ ¼ cj1 sin bcxþ cj2 cos bcxþ Djc ð31Þ

where
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Djc ¼
8kcdêj

b
2

c

ð32Þ

According to Eqs. (25) and (32), we can derive

Djc ¼ gj1cj1 þ gj2cj2 ð33Þ

where

gj1 ¼ 8kcd

b
2

c � 8kcd tan hj

� sinbc tan hj � 4dðsin bc þ
2 cos bc � 2

bc
Þ

� �

gj2 ¼ 8kcd

b
2

c � 8kcd tan hj

� cos bc tan hj � 4dð1 þ cos bc �
2 sinbc

bc
Þ

� �

The general solution of Eq. (23) is

/aiðsÞ ¼ ai1 cos basþ ai2 sin basþ ai3 cosh bas
þ ai4 sinh basþ ai5h ð34Þ

where h belongs to particular solution, which can be

chosen as h ¼ sin ps.
Obviously, Eq. (34) has to satisfy Eq. (13).

Together with Eqs. (26)–(30), we finally obtain the

following equation

½T�fXg ¼ 0 ð35Þ

where Xf g¼ cj1;cj2;ai1;ai2;ai3;ai4;ai5
� �T

. The ele-

ments of the matrix ½T� in Eq. (35) are reported in

‘‘Appendix A’’. Equation (35) is just so-called char-

acteristic equation of the system, which is the function

of natural frequencies. Using numerical analysis

software, the frequencies and mode shapes can be

obtained.

3 Perturbation technique

In this section, the nonlinear analysis of the model is

performed. Here, there is no need to segment the

shallow arch, because the interaction between the

cable and arch is illustrated by external load (see

Eq. (37)) and excitation (see Eq. (39)). In this case,

the non-dimensional form of the differential equations

governing the planar motion of the arch can be written

as

€va þ
1

b4
a

v0000a þ la _va

� ga
b4
a

v00a þ y000
� 	 Z1

0

1

2
v02a þ y00v

0
a

� �
ds

2
4

3
5

¼ paðs; sÞ ð36Þ

where paðs; sÞ consists of two parts, namely, the action

of the cable and the external load. It can be expressed

by

paðs; sÞ ¼
X2

j¼1

dðs� sjÞKjejðsÞ sin hj
þ f cosXs ðj

¼ 1; 2Þ ð37Þ

where Kj ¼ EcjAcj

max2
0
l2a

, f ¼ f �

max2
0
la

and X ¼ X�

x0
. dðÞ denotes

Kronecker delta function.

Based on the assumption (d), the non-dimensional

forms of the planar transverse displacements of the

arch and cables are expressed as

vaðs; sÞ ¼ /aðsÞgðsÞ ð38Þ

vcjðxj; sÞ ¼ ccjvaðs; sÞxj cos hj þ /cjðxjÞqjðsÞ ð39Þ

where gðsÞ and qjðsÞ are generalized coordinates.

/aðxÞ is the modal function of the arch, which is

determined in Sec. 2. /cjðxjÞ is the pure modal

function of cables and are taken as sinusoidal function

for simplicity. Substituting Eqs. (38) and (39) into

Eqs. (36) and (11) and applying Galerkin’s method,

the following ODEs can be derived

€gþ la _gþ b11gþ b12g
2 þ b13g

3 þ b14q1 þ b15gq1

þ b16q2 þ b17gq2 þ b18q
2
1 þ b19q

2
2 þ b110 cosðXsÞ ¼ 0

ð40Þ

€qj þ lcj _qj þ bðjþ1Þ1 _gþ bðjþ1Þ2 €gþ bðjþ1Þ3g

þ bðjþ1Þ4qj þ bðjþ1Þ5g
2 þ bðjþ1Þ6gqj

þ bðjþ1Þ7q
2
j þ bðjþ1Þ8g

2qj þ bðjþ1Þ9gq
2
j þ bðjþ1Þ10q

3
j ¼ 0

ð41Þ

where j = 1,2. bmo (m = 1,2,3 and o = 1,2…10) are

Galerkin’s integral coefficients and they are presented

in ‘‘Appendix B’’. Next, the multiple time scale

method is applied to solve Eqs. (40) and (41). First, a

small bookkeeping parameter e is introduced, namely
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e2 ~la¼la; e ~b12¼b12; e
2 ~b13 ¼ b13; e ~b14 ¼ b14;

e ~b15 ¼ b15; e ~b16 ¼ b16; e ~b17 ¼ b17; e ~b18 ¼ b18;

e ~b19 ¼ b19; e
2 ~b110 ¼ b110

e2 ~lcj¼lcj; e
2 ~bðjþ1Þ1 ¼ bðjþ1Þ1; e

2 ~bðjþ1Þ2 ¼ bðjþ1Þ2;

e ~bðjþ1Þ3 ¼ bðjþ1Þ3;

e ~bðjþ1Þ5 ¼ bðjþ1Þ5; e ~bðjþ1Þ6¼bðjþ1Þ6; e ~bðjþ1Þ7 ¼ bðjþ1Þ7

e2 ~bðjþ1Þ8 ¼ bðjþ1Þ8; e
2 ~bðjþ1Þ9 ¼ bðjþ1Þ9; e

2 ~bðjþ1Þ10 ¼ bðjþ1Þ10

To balance the damping, excitation and nonlinear

terms, Eqs. (40) and (41) are rewritten as

€gþ e2la _gþ x2
agþ eb12g

2 þ e2b13g
3 þ eb14q1

þ eb15gq1 þ eb16q2 þ eb17gq2 þ eb18q
2
1 þ eb19q

2
2

þ e2b110 cosðXsÞ ¼ 0

ð42Þ

€qj þ e2lcj _qj þ e2bðjþ1Þ1 _gþ e2bðjþ1Þ2 €gþ ebðjþ1Þ3g

þ x2
j qj þ ebðjþ1Þ5g

2 þ ebðjþ1Þ6gqj þ ebðjþ1Þ7q
2
j

þ e2bðjþ1Þ8g
2qj

þ e2bðjþ1Þ9gq
2
j þ e2bðjþ1Þ10q

3
j ¼ 0

ð43Þ

where the wavy symbols on the letters have been

removed for brevity and

x2
a ¼ b11;x2

1 ¼ b24;x2
2 ¼ b34.

To obtain a second order approximation, a fast time

scale T0 ¼ e0s and a slow time scale T2 ¼ e2s are

introduced, respectively. In this way, the solutions of g

and qj are uniformly expanded in power series of e as

g ¼
X3

i¼1

ei�1giðT0; T2Þ þ Oðe3Þ;

qj ¼
X3

i¼1

ei�1qjiðT0; T2Þ þ Oðe3Þ
ð44Þ

Substituting Eq. (44) into Eqs. (42) and (43) and

equating the terms of like order in e, we can obtain.

order e0,

ðD2
0 þ x2

aÞg1 ¼ 0

ðD2
0 þ x2

j Þqj1 ¼ 0
ð45Þ

order e1,

ðD2
0 þ x2

aÞg2 ¼
� ðb12g

2
1 þ b14q11 þ b15g1q11 þ b16q21 þ b17g1q21 þ b18q

2
11 þ b19q

2
21Þ

ðD2
0 þ x2

j Þqj2 ¼
� ðbðjþ1Þ3g1 þ bðjþ1Þ5g

2
1 þ bðjþ1Þ6g1qj1 þ bðjþ1Þ7q

2
j1Þ

ð46Þ

order e2,

ðD2
0 þ x2

aÞg3 ¼
� ðlaD1

0g1 þ 2D1
0D

1
2g1 þ 2b12g1g2 þ b13g

3
1

þ b14q12 þ b15g1q12 þ b15g2q11 þ b16q22

þ b17g1q22 þ b17g2q21 þ 2b18q11q12 þ 2b19q21q22

þ b110 cosðXT0ÞÞ
ðD2

0 þ x2
j Þqj3 ¼

� ðbðjþ1Þ1D
1
0g1 þ bðjþ1Þ2D

2
0g1 þ lcjD

1
0qj1

þ 2D1
0D

1
2qj1 þ bðjþ1Þ3g2 þ 2bðjþ1Þ5g1g2

þ bðjþ1Þ6g1qj2 þ bðjþ1Þ6g2qj1 þ 2bðjþ1Þ7qj1qj2

þ bðjþ1Þ8g
2
1qj1 þ bðjþ1Þ9g1q

2
j1 þ bðjþ1Þ10q

3
j1Þ

ð47Þ

where Dj
w is a differential operator and it is defined as

Dj
w ¼ o j=oTw (j = 1,2 and w = 0,2).

The solutions of Eq. (45) is

g1 ¼ A1ðT2Þexp(ixaT0Þþcc ð48Þ

qj1 ¼ Ajþ1ðT2Þexp(ixjT0Þþcc ð49Þ

where cc denotes the complex conjugates of the

preceding terms. AmðT2Þ are the complex amplitudes,

which will be determined by eliminating the secular

terms in the following. Substituting Eqs. (48) and (49)

into Eq. (46), and ignoring the homogenous solutions,

we can obtain the solutions of Eq. (46). In order to

study one-to-two-to-two internal resonance of the

system, substituting the solutions of Eq. (46) into

Eq. (47) together with Eqs. (48) and (49), the follow-

ing can be derived
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ðD2
0 þ x2

aÞg3

¼ � 1

2
b110 expðiT0XÞ � ilaxaA1 expðiT0xaÞ

� 2ixaD
1
2A1 expðiT0xaÞ þ C1

aA
2
1B1 expðiT0xaÞ

þ C2
aA1 expðiT0xaÞ þ C3

aA1A2B2 expðiT0xaÞ
þ C4

aA1A3B3 expðiT0xaÞ þ C5
aA2B1 exp iT0ðxb � xaÞ

þ C6
aA3B1 expðxc � xaÞ

þ C7
aA1A3B2 exp iT0ðxa � xb þ xcÞ

þ C8
aA1A2B3 exp iT0ðxa þ xb � xcÞ þ NST1 þ cc

ð50Þ

ðD2
0 þ x2

bÞq13

¼ �ilc1xbA2 expðiT0xbÞ � 2ixbD
1
2A2 expðiT0xbÞ

þ C1
bA1A2B1 expðiT0xbÞ þ C2

bA
2
2B2 expðiT0xbÞ

þ C3
bA2 expðiT0xbÞ þ C4

bA2A3B3 expðiT0xbÞ
þ C5

bA
2
1 expð2iT0xaÞ þ C6

bA3 expðiT0xcÞ
þ C7

bA1A3B1 expðiT0xcÞ
þ C8

bA
2
3B2 expðiT0ð2xc � xbÞÞ þ NST2 þ cc

ð51Þ

ðD2
0 þ x2

cÞq23

¼ �ilc2xcA3 expðiT0xcÞ � 2ixcD
1
2A3 expðiT0xcÞ

þ C1
cA1A3B1 expðiT0xcÞ þ C2

cA
2
3B3 expðiT0xcÞ

þ C3
cA3 expðiT0xcÞ þ C4

cA2A3B2 expðiT0xcÞ
þ C5

cA
2
1 expð2iT0xaÞ þ C6

cA2 expðiT0xbÞ

ð52Þ

where x1 ¼ xb and x2 ¼ xc. Bm T2ð Þ are complex

conjugates ofAm T2ð Þ.NSTm denotes non-secular terms

and Cz
a, Cz

b and Cz
cðz ¼ 1; 2:::8Þ are reported in

‘‘Appendix C’’. The nearness of the three in-plane

frequencies involved in a one-to-two-to-two internal

resonance is described by introducing internal and

external detuning parameters r1, r2 and r, namely

X ¼ xa þ e2r;xb ¼ 2xa þ e2r1;xc ¼ 2xa þ e2r2

ð53Þ

To solve Eqs. (50)–(52), the polar forms of Am T2ð Þ
are utilized, i.e.,

AmðT2Þ ¼
1

2
amðT2ÞeiwmðT2Þ ð54Þ

where amðT2Þ and wmðT2Þ are amplitude and phase

angle of Am T2ð Þ. Substituting Eq. (54) into Eqs. (50)–

(52), letting the secular terms equal to zero and

separating the real and imaginary parts, the following

autonomous modulation equations can be derived

8xa _a1 ¼ �4laxaa1 � 4b110 sin a1 þ 2C5
aa1a2 sin a2

� C7
aa1a2a3 sin a2 � a3ð Þ

þ C8
aa1a2a3 sin a2 � a3ð Þ þ 2C6

aa1a3 sin a3

ð55Þ

8xaa1 _a1 ¼ 8xaa1rþ 4C2
aa1 þ C1

aa
3
1 þ C3

aa1a
2
2 þ C4

aa1a
2
3

� 4b110 cos a1 þ 2C5
aa1a2 cos a2

þ C7
aa1a2a3 cosða2 � a3Þ

þ C8
aa1a2a3 cos a2 � a3ð Þ þ 2C6

aa1a3 cos a3

ð56Þ

8xb _a2 ¼ �4lc1xba2 � 2C5
ba

2
1 sin a2

� C8
ba2a

2
3 sin 2ða2 � a3Þ � 4C6

ba3 sin a2 � a3ð Þ
� C7

ba
2
1a3 sin a2 � a3ð Þ

ð57Þ

8xaxba1a2 _a2 ¼ 8xaxba1a2r1 þ 8C2
aa1a2xb

þ 2C1
aa

3
1a2xb þ 2C3

aa1a
3
2xb

þ 2C4
aa1a2a

2
3xb � 8a2b110xb cos a1

þ 4C5
aa1a

2
2xb cos a2

þ 2C7
aa1a

2
2a3xb cos a2 � a3ð Þ

þ 2C8
aa1a

2
2a3xb cos a2 � a3ð Þ

þ 4C6
aa1a2a3xb cos a3

� 4C3
ba1a2xa � C1

ba
3
1a2xa

� C2
ba1a

3
2xa � C4

ba1a2a
2
3xa

� 2C5
ba

3
1xa cos a2

� C8
ba1a2a

2
3xa cos 2 a2 � a3ð Þ

� 4C6
ba1a3xa cos a2 � a3ð Þ

� C7
ba

3
1a3xa cos a2 � a3ð Þ

ð58Þ
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8xc _a3 ¼ �4lc2xca3 þ C8
ca

2
2a3 sin 2ða2 � a3Þ

þ 4C6
ca2 sin a2 � a3ð Þ þ C7

ca
2
1a2 sin a2 � a3ð Þ

� 2C5
ca

2
1 sin a3

ð59Þ

8xaxca1a3 _a3 ¼ 8xaxca1a3r2 þ 8C2
aa1a3xc

þ 2C1
aa

3
1a3xc þ 2C3

aa1a
2
2a3xc

þ 2C4
aa1a

3
3xc � 8a3b110xc cos a1

þ 4C5
aa1a2a3xc cos a2

þ 2C7
aa1a2a

2
3xc cos a2 � a3ð Þ

� 2C5
ca

3
1 cos a3

þ 2C8
aa1a2a

2
3xc cos a2 � a3ð Þ

þ 4C6
aa2a

2
3xc cos a3 � 4C3

ca1a3xa

� C1
ca

3
1a3xa � C4

ca1a
2
2a3xa

� C2
ca1a

3
3xa

� C8
ca1a

2
2a3xa cos 2 a2 � a3ð Þ

� 4C6
ca1a2 cos a2 � a3ð Þ

� C7
ca

3
1a2xa cos a2 � a3ð Þ

ð60Þ

where a1 ¼ T2r� w1 T2ð Þ; a2 ¼ T2r1 � 2w1 T2ð Þþ
w2 T2ð Þ; a3 ¼ T2r2 � 2w1 T2ð Þ þ w3 T2ð Þ.

Letting _a1 ¼ _a2 ¼ _a3 ¼ _a1 ¼ _a2 ¼ _a3 ¼ 0, the

steady-state equilibrium solutions of Eqs. (55)–(60)

can be obtained by Newton–Raphson method and

pseudo-arclength algorithm [36]. The stability of the

equilibrium solutions can be determined by checking

the eigenvalues of Jacobian matrix of the system and

evaluating whether the real part of each eigenvalue is

negative or not [37].

4 Numerical analysis of 1:2:2 internal resonance

The following parameters are chosen for numerical

analysis. For the arch, the length of each segment is

100 m and the total length is 300 m; mass per unit

length is 4.4 9 104 kg/m; Young’s modulus is

34.5Gpa; moment of inertia of the cross section is

9.8m4; damping parameter is 0.003 and cross-sec-

tional area is 16.3 m2. For cables, the total length is

115.5 m; mass per unit length is 10.4 kg/m; Young’s

modulus is 210Gpa; damping parameter is 0.003;

cross-sectional area is 6.3 9 10-3m2; the initial force

is 1MN; the angle between the cable and arch is 30�.
Additionally, the initial configuration of the arch is

y0ðsÞ ¼ f0 sinðpsÞ and f0 is sag-to-span ratio of the

arch, which can be used to adjust the frequencies of the

arch to satisfy different internal resonance relation-

ships. According to the above parameters, the values

of some key variables are given in Table 1. Figure 2

shows the mode shapes of the arch with different

support stiffness when the 1:2:2 internal resonance

occurs. It can be seen that when the support stiffness is

different, the mode shapes of the arch under 1:2:2

internal resonance are fundamentally changed, which

indicates that the support stiffness affects the mode

shapes of the arch and further affects the nonlinear

behaviors of the system. Hence, in order to explore the

effect of the elastic support on the nonlinear dynamics

of the system, different cases of the support stiffness

are considered in the following analysis. It should be

noted that in the following figures, SN and HB denote

saddle-node bifurcation and Hopf bifurcation, respec-

tively. Stable solutions are represented by solid lines,

k1=k2=k=1000000 k1=k2=k=10000 

Fig. 2 The mode shapes of the arch with different support stiffness when the 1:2:2 internal resonance occurs

Table 1 Key parameters of the arch and cables

Arch Cables

ba ga Kj kcj bcj

5.69801 149,694 0.332659 1317.33 0.37238
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while unstable solutions are represented by dashed

lines.

Firstly, in order to study the nonlinear dynamics of

the system and compare it with the earlier work,

relatively large support stiffness is chosen, namely,

k1 = k2 = k = 1,000,000. In this case, the boundary

conditions are close to H–H ends. Adjust f0 to 0.0492

so that 2xa � xb � xc. Figure 3 presents the fre-

quency–response curves of the arch and cables when

excitation amplitude f = 0.001 and internal detuning

parameters r1 ¼ r2 ¼ 6:38 � 10�6. Runge–Kutta

method is also used to directly integrate Eqs. (40)

and (41) in Fig. 3 and a satisfactory agreement

between the two methods can be observed. It should

be pointed out that the numerical results, especially the

large response amplitudes, are very sensitive to the

initial conditions of the system and they are relatively

hard to obtain unless the initial condition is chosen

precisely [38]. It can be seen from Fig. 3a that the

curve of the arch (i.e., a1) bends to the left and exhibits

softening characteristic. When the excitation fre-

quency (i.e., r) increases from a relatively small

value, the response amplitude of the arch increases

slowly until SN1 is reached. If we continually increase

r, a jump from the lower branch to the upper branch

will occur, as shown by the arrows in Fig. 3. After

SN1, the response amplitude will decrease with the

increase in r and losses its stability via HB1, while

regain stability via HB2. When r[ 0.245, there are

two close branches in the response curve of the arch,

which corresponds to the upper and lower branches of

the response curve of the cable, respectively. This is

actually related to double-jumping phenomenon

[24, 25] and also confirmed in Fig. 3b. As seen in

Fig. 3b, there are two peaks in the response curves and

they bend to the left and right, respectively. Nayfeh

et al. [39] firstly observed the double-jumping phe-

nomenon in pitch and roll coupling vibration of a ship

by a two-degree-of-freedom nonlinear model and

since then, this phenomenon has been found in many

other nonlinear systems.

Comparing Fig. 3(a) with Fig. 3(b), we can see that

the response amplitude of the arch is smaller than that

of the cable. The reason may be that the mass of the

cable is much less than that of the arch and the arch

provides a parametric and forced excitation at the

lower end of the cable, which is consistent with the

large amplitude vibration of the cable in practical

engineering. Due to the existence of the double-

jumping phenomenon, there are two stable solutions

when r\ 0.241 or r[ 0.43 and they belong to upper

and lower branches, respectively. This means that

cables may exhibit different dynamic characteristics

even they are subjected to the same excitation, which

depends on initial conditions. This may be caused by

different energy transfer mechanism, namely, the

energy transferred from the arch into two cables is

different at this time. Additionally, it can be found that

when r decreases from a larger value, the jumping

phenomenon of the arch is different from that of the

cable. The response amplitude of the cable jumps from

the lower branch to the upper branch at SN2, while it is

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
(a)

a 1

stable solution
unstable solution
Runge-Kutta

SN1 SN2

HB1
HB2

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
(b)

a 2,a
3

stable solution
unstable solution
Runge-Kutta

SN1

SN2

HB1 HB2

Fig. 3 The frequency–response curves of the arch and cables with k1 = k2 = k = 1,000,000, r1 ¼ r2 ¼ 6:38 � 10�6 and excitation

amplitude f = 0.001: a for arch, b for cables
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opposite for the arch. The above phenomena are

similar to those in references [24, 25], which further

verifies the present model.

Figure 4 is the frequency–response curves of the

arch and cables when f = 0.002 and f = 0.004. It can

be seen that Fig. 4 differs a lot from Fig. 3. Compared

with Fig. 3a, SN and unstable solutions of the lower

branch when r[ 0 disappear in Fig. 4a. Instead, a

new stable branch appears, the amplitude of which is

much larger than that of the other branches. Due to the

disappearance of SN on the right, the double-jumping

phenomenon also vanished. This indicates that when

the excitation amplitude increases to a certain value,

the dynamic characteristics of the arch and cables will

change. When r\ 0.25, the amplitude of the new

stable branch decreases rapidly with the increase of the

excitation frequency, while it is almost unchanged for

cables (see Fig. 4b). This is related to the energy

transfer between the arch and cables. When r\ 0.25,

the arch requires a great deal of energy to maintain its

large amplitude vibration, with no excess energy

transferred to the cable. Hence, the response amplitude

of cables is small and almost invariable for the new

stable branch. This new phenomenon may exist in the

earlier work but it is firstly observed in the present

work.

Figure 5 illustrates the force–response curves of the

arch and cables when external detuning parameter

r = - 0.6. It can be seen that the jumping phe-

nomenon occurs again. With the increase in excitation

amplitudes, the response amplitudes increase rapidly

until SN1 is reached. At this time, a jump from the

lower branch to the upper branch will occur. If we go

on increasing excitation amplitudes, the response

amplitudes will increase accordingly. Inversely, if

the excitation amplitudes decrease from a relatively

large value, a jump from the upper branch to the lower

branch triggered by SN2 will occur. However, the

dynamic characteristic of the system is relatively

simple when r = 0 (see Fig. 6). There is a nonlinear

relationship between the response amplitudes and the

excitation amplitudes. This may be because the

nonlinear terms in Eqs. (40) and (41) dominates the

motion. Figure 7 shows the force–response curves of

the arch and cables when external detuning parameter

r = 0.6. As seen in the figure, the dynamic behaviors

of the system are considerably complex. There are

three branches of unstable solutions and one stable so-

lution. With the increase in excitation amplitude, the

stable solution is almost linearly increasing and it

losses its stability via HB1, while regain stability via

HB2. Additionally, the dynamic behaviors of the arch

and cables are similar when r = 0 and r = 0.6. The

reason may be that there are many similar terms in the

ODEs of the arch and cables as shown in Eqs. (40) and

(41).

In practical engineering, even if two cables with the

same parameters are symmetrically anchored on the

cable-stayed bridge, the frequencies of the two cables

are not exactly the same due to installation and stress

redistribution. In order to study the influence of

frequency difference on dynamic characteristics of

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

SN

(a)

a 1

f=0.004

f=0.002

HB1(2)
HB3(4)

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(b)

a 2,a
3

f=0.004
f=0.002SN

HB1(2)

HB3(4)

Fig. 4 The frequency–response curves of the arch and cables with different excitation amplitudes when k1 = k2 = k = 1,000,000 and

r1 ¼ r2 ¼ 6:38 � 10�6: a for arch, b for cables
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the system, the detuning parameter of one cable is

changed, which can be achieved by changing the

length, initial force, cross-sectional area, Young’s

modulus and so on. It should be pointed out that the

cable whose detuning parameter keeps invariable is

named as cable 1, while another cable is named as

cable 2. Figures 8, 9 and 10 illustrate the force–

response curves of the arch and cables with different

internal detuning parameters when f = 0.001 and

f = 0.002. It should be noted that SNs are not marked

in these figures, because they are not our focus.

Besides, in order to observe the figures clearly, the

range of r is reduced to [- 0.5, 0.5].

It can be seen that the difference between the two

cables has a great effect on the response of the arch and

cable 1, especially when the response amplitude is

more than 0.01. However, the difference between the

two cables has a slight effect on the response of cable 2

when the response amplitude is less than 0.02 but in

general, the effect is small. In a word, the difference

between the two cables has a larger effect on the

response of the arch and cable 1 than on the cable 2.

This shows that changing the internal detuning

parameter of one cable has a great influence on the

dynamic characteristics of other members, but has

little effect on itself. Additionally, with the reduction

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
0.000

0.005

0.010

0.015

0.020

0.025

0.030
(a)

a 1

f
0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014

0.00
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0.03

0.04

0.05

0.06

0.07
(b)

a 2,a
3

f

Fig. 6 The force–response curves of the arch and cables with k1 = k2 = k = 1,000,000, r1 ¼ r2 ¼ 6:38 � 10�6 and r = 0: a for arch,

b for cables
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Fig. 5 The force–response curves of the arch and cables with k1 = k2 = k = 1,000,000, r1 ¼ r2 ¼ 6:38 � 10�6 and r = - 0.6: a for

arch, b for cables
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of internal detuning parameter r2, the response

amplitudes of the arch and cable 1 increase, but it is

opposite for the response of cable 2. This may be

caused by modal localization and with the increase in

internal detuning parameter r2, more energy is

transferred to cable 1. An interesting phenomenon

can be observed in Figs. (b) that the new branch of

stable solutions remain unchanged with the variation

of r2, both for the arch and cables. This may be related

to the domain of attraction of the branch, which should

attract our attention. It can also be seen that the change

of internal detuning parameter r2 leads to the occur-

rence of more HBs, which indicates that the difference

between the two cables will result in more complex

dynamic behaviors of the system.

Figures 11, 12 and 13 present the force–response

curves of the arch and cables with different internal

detuning parameters. Different from the frequency–

response curves, the difference between cables has an

obvious effect on not only the force–response curves

of the arch and cable 1, but also those of cable 2 when

the external detuning parameter r = - 0.4 and 0. As

seen in Fig. 10a, with the reduction of r2, the SNs

located at the lower branches gradually shifts outward,

which means the range of unstable solutions becomes

larger. On the other hand, the SNs located at the upper

branches gradually move upward for the arch and
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cable 1, while for cable 2, these SNs hardly move.

What’s more, with the reduction of r2, the stable so-

lutions of the branches when r = 0 and the stable so-

lutions of the upper branches when r = - 0.4 receive

an evident increase for the arch and cable 1. However,

it is opposite for cable 2. These phenomena are similar

to those in the frequency–response curves. When

r = 0.4, the difference between cables has a greater

influence on the response amplitude of cable 2 itself,

while the responses of the arch and cable 1 are almost

unaffected, which can also be verified by the lower

branches when r[ 0.25 in Figs. 8b, 9b and 10b.

Next, in order to further explore the effect of the

support stiffness on the nonlinear behaviors of the

system, we change the support stiffness to k1 = k2-

= k = 10,000, which is close to the support stiffness

of the bearing in practical engineering. f0 is set to

0.0643 so that 2xa � xb � xc. Figure 14 shows the

frequency–response curves of the arch and cables with

k = 10,000. The similar phenomena to those in the

case when k = 1,000,000, such as softening charac-

teristic and double-jumping phenomenon, can also be

observed and they will not be mentioned, as the new

dynamic behaviors are our focus.
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Comparing Fig. 14 with Fig. 4, an interesting

phenomenon can be found. In Fig. 4, when f = 0.004

and r\ 0, there are three branches of stable solutions

in total and one of the branch is much larger than the

other two. Meanwhile, the double-jumping phe-

nomenon disappears. However, when k1 = k2-

= k = 10,000 (see Fig. 14), none of the

aforementioned phenomena take place. The reason

for these phenomena may be that with the decrease of

support stiffness at both ends, the displacement of the

support increases, and a part of energy is absorbed by

the support, which leads to the decrease in response

amplitudes of the arch and cables. However, only

when the response amplitudes and energy of the arch

and cables reach a certain threshold, new

stable branches will appear and double-jumping

phenomenon will vanish. In order to verify our

conjecture, the excitation amplitude is increased to

0.01 and the corresponding frequency–response

curves of the arch and cables are shown in Fig. 15.

As can be seen, the new branch of stable solutions

appear with no double-jumping phenomenon

occurring.

Figure 16 gives the comparison of the frequency–

response curves of the arch and cables with different

support stiffness when f = 0.001. Obviously, the
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Fig. 11 The force–response curves of the arch with different r1 and r2 when k1 = k2 = k = 1,000,000: a for r = - 0.4 and 0, b for

r = 0.4
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response amplitudes of the arch and cables become

smaller with the reduction of the support stiffness as a

part of energy is absorbed by the support. The

maximum amplitude of the arch decreases by 15%

and that of cable by 39% due to the reduction of the

support stiffness. This means that the reduction of the

support stiffness has a larger influence on the response

of cables than that of the arch. Due to the fact that the

mass of the cable is much smaller than that of the arch,

therefore the same energy input can only provide a

small vibration of the arch, but can provide a large

vibration of the cable. When k = 10,000, the distance

between two SNs is narrowed and unstable solutions

caused by HBs move forward.

Figures 17, 18 and 19 are the force–response curves

of the arch and cables with different support stiffness.

By and large, the response amplitudes of the arch and

cables exhibit a consistent trend with the variation of

excitation amplitude, namely, the response amplitude

of the arch and cables become smaller when

k = 10,000 compared with k = 1,000,000. Similarly

to frequency–response curves, the response ampli-

tudes of cables decrease more than those of the arch.

With the reduction of the support stiffness, SNs
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located at the lower branches move outward, which

leads to the increase of unstable area between SNs (see

Fig. 17). Whereas, when the support stiffness is

decreased, HBs move backward (far from the origin,

see Fig. 19), which is different from Fig. 16 and may

be caused by different energy transfer mechanism.

5 Conclusions

Considering the initial configuration of the beam and

vertical elastic supports in cable-stayed bridge, a

multi-cable-stayed shallow-arch model is established.

Compared with other models, this model is closer to

the real cable-stayed bridge in practical engineering.

Based on the differential equations governing the

planar motion of the arch and cables, the planar

eigenvalue problem of the model is solved. In this

way, the modal function of the arch is obtained. Then,

the 1:2:2 internal resonance among the arch and cables

is investigated when the external primary resonance

occur. To discretize the differential equations, the

Galerkin’s method is utilized and a set of ODEs are

derived. By using the multiple time scale method, the

ODEs are solved and corresponding modulation

equations are obtained. The stable solutions of the
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modulation equations are determined by Newton–

Raphson method and continued by pseudo-arclength

algorithm. Meanwhile, frequency-/force–response

curves are provided to explore the nonlinear behaviors

of the system, especially the influence of the support

stiffness on the internal resonance of the system.

Finally, some interesting conclusions are drawn as

follows.

(1) The frequency–response curves of the arch

exhibit a softening characteristic, while those

of cables exhibit a softening characteristic when

r\ 0 and a hardening characteristic when

r[ 0. Therefore, the double-jumping phe-

nomenon triggered by two SNs is observed in

the frequency–response curves of cables.

(2) When the excitation amplitude reaches a certain

threshold, the double-jumping phenomenon will

vanish and a new branch of stable solutions

appear and its value is obviously larger than

other branches. The support stiffness is one of

the key factors that affect the value of threshold.

(3) Changing the internal detuning parameter of one

cable has a great influence on the frequency–

response curves of other members, but has little
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effect on itself. With the reduction of internal

detuning parameter, the frequency–response

amplitudes of the cable whose internal detuning

parameter changes are decreased, but it is

opposite for the response of the arch and another

cable. Moreover, the difference between cables

will lead to more complicated dynamic behav-

iors of the system.

(4) With the reduction of the support stiffness, the

response amplitudes of the arch and cables will

become smaller as the supports absorb a part of

energy. The support stiffness has a greater

influence on the response curves of cables than

on those of the arch. Due to the existence of

elastic supports, the threshold of the excitation

amplitude making the double-jumping phe-

nomenon disappear becomes larger.
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Appendix A

This paper considers a model with two cables the

model is assumed to be symmetrical. Since the

parameters of the two cables are identical, the

subscripts ‘i’ and ‘j’ of some variables are dropped

in the following expressions. For the sake of conve-

nience, the following variables are introduced.

W1 ¼ baf
2
0 gap

2

b2
a þ p2

;W2 ¼ baf
2
0 gap

2

b2
a � p2

; d11 ¼ cosðbas1Þ;

d12 ¼ sinðbas1Þ; d21 ¼ cosðbas2Þ; d22 ¼ sinðbas2Þ;
d31 ¼ cosðps1Þ; d32 ¼ sinðps1Þ;
d41 ¼ cosðps2Þ; d42 ¼ sinðps2Þ;
d51 ¼ coshðbas1Þ; d52 ¼ sinhðbas1Þ;

d61 ¼ coshðbas2Þ; d62 ¼ sinhðbas2Þ

In this way, the elements of the matrix ½T� in

Eq. (35) can be expressed as.
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t1;1 ¼ g11; t1;2 ¼ 1 þ g12; t2;3 ¼ g21; t2;4 ¼ 1 þ g22;

t3;1 ¼ g11 þ sin bc; t3;2 ¼ g12 þ cos bc; t3;5
¼ �cc1d11 cos h;

t3;6 ¼ �cc1d12 cos h; t3;7 ¼ �cc1d51 cos h; t3;8
¼ �cc1d52 cos h; t3;9

t4;3 ¼ g21 þ sin bc;

t4;4 ¼ g22 þ cos bc;

t4;10 ¼ �cc2d21 cos h;

t4;11 ¼ �cc2d22 cos h; t4;12 ¼ �cc2d61 cos h; t4;13

¼ �cc2d62 cos h;

t4;14 ¼ �cc2d42 cos h; t5;5
¼ k1 þW2ðba � bad11d31 � pd12d32Þ;

t5;6 ¼ �b3
a �W2ðbad31d12 � pd11d32Þ;

t5;7 ¼ k1 þW1ðba � bad31d51 � pd32d52Þ;
t5;8 ¼ b3

a �W1ðpd32d51 þ bad31d52Þ;

t5;9 ¼ �p3 � 1

2
f 2
0 gap

3s1 �
1

4
f 2
0 gap

2 sinð2ps1Þ;

t5;10 ¼ W2ðbad11d31 � bad21d41 þ pd12d32 � pd22d42Þ; t5;11

¼ W2ðbad12d31 � pd11d32 � bad22d41 þ pd21d42Þ;
t5;12 ¼ W1ðbad51d31 � bad61d41 þ pd52d32 � pd62d42Þ;
t5;13 ¼ W1ðpd51d32 � pd61d42 þ bad52d31 � bad62d41Þ;

t5;14 ¼ 1

2
f 2
0 gap

3s1 �
1

2
f 2
0 gap

3s2 þ
1

4
f 2
0 gap

2 sinð2ps1Þ

� 1

4
f 2
0 gap

2 sinð2ps2Þ;

t5;15 ¼ W2ðba cos ba þ bad21d41 þ pd22d42Þ;
t5;16 ¼ W2ðba sin ba þ bad22d41 � pd21d42Þ;
t5;17 ¼ W1ðba cosh ba þ bad61d41 þ pd62d42Þ;
t5;18 ¼ W1ðpd61d42 þ ba sinh ba þ d62d41Þ;

t5;19 ¼ � 1

2
f 2
0 gap

3 þ 1

2
f 2
0 gap

3s2 þ
1

4
f 2
0 gap

2 sinð2ps2Þ;

t6;5 ¼ k1 � t5;5; t6;6 ¼ �b3
a � t5;6;6;7

t6;9 ¼ �p3 � t5;9; t6;10 ¼ �t5;10;

t6;11 ¼ �t5;11; t6;12 ¼ �t5;12; t6;13 ¼ �t5;13; t6;14 ¼ �t5;14;

t6;15 ¼ b3
a sin ba � k2 cos ba � t5;15;

t6;16 ¼ �b3
a cos ba � k2 sin ba � t5;16;

t6;17 ¼ b3
a sinh ba � k2 cosh ba � t5;17;

t6;18 ¼ b3
a cosh ba � k2 sinh ba � t5;18; t6;19 ¼ p3 � t5;19;

t7;5 ¼ �1; t7;7 ¼ 1; t8;15 ¼ � cos ba;

t8;16 ¼ � sin ba; t8;17 ¼ cosh ba; t8;18 ¼ sinh ba; t9;5 ¼ d11;

t9;6 ¼ d12; t9;7 ¼ d51; t9;8 ¼ d52;

t9;9 ¼ d32; t9;10 ¼ �d11; t9;11 ¼ �d12;

t9;12 ¼ �d51; t9;13 ¼ �d52;

t9;14 ¼ �d32; t10;5 ¼ �bad12;

t10;6 ¼ bad11; t10;7 ¼ bad52; t10;8 ¼ bad51;

t10;9 ¼ pd31; t10;10 ¼ bad12; t10;11 ¼ �bad11;

t10;12 ¼ �bad52; t10;13 ¼ �bad51; t10;14 ¼ �pd31;

t11;5 ¼ �b2
ad11; t11;6 ¼ �b2

ad12; t11;7 ¼ b2
ad51;

t11;8 ¼ b2
ad52; t11;9 ¼ �p2d32; t11;10 ¼ b2

ad11;

t11;11 ¼ b2
ad12; t11;12 ¼ �b2

ad51;

t11;13 ¼ �b2
ad52; t11;14 ¼ p2d32; t12;10 ¼ d21;

t12;11 ¼ d22; t12;12 ¼ d61; t12;13 ¼ d62; t12;14 ¼ d42;

t12;15 ¼ �d21; t12;16 ¼ �d22; t12;17 ¼ �d61;

t12;18 ¼ �d62; t12;19 ¼ �d42; t13;10 ¼ �bad22;

t13;11 ¼ bad21; t13;12 ¼ bad62;

t13;13 ¼ bad61; t13;14 ¼ pd41; t13;15 ¼ bad22;

t13;16 ¼ �bad21; t13;17 ¼ �bad62; t13;18 ¼ �bad61;

t13;19 ¼ �pd41; t14;10 ¼ �b2
ad21; t14;11 ¼ �b2

ad22;

t14;12 ¼ b2
ad61; t14;13 ¼ b2

ad62; t14;14 ¼ �p2d42;

t14;15 ¼ b2
ad21; t14;16 ¼ b2

ad22; t14;17 ¼ �b2
ad61;

t14;18 ¼ �b2
ad62; t15;1 ¼ � bc cos bc cos h

lc

þ 4d cos h� sin hð Þð8d
bc

� 8d cos bc
bc

� 4d sin bc þ g11 tan hþ sin bc tan hÞ;
t14;19 ¼ p2d42; t15;2

¼ bc sin bc cos h
lc

þ 4d cos h� sin hð Þ

ð�4d � 4d cos bc þ
8d sin bc

bc
þ g12 tan hþ cos bc tan hÞ;

t15;5 ¼ b3
avd12; t15;6 ¼ �b3

avd11; t15;7 ¼ b3
avd52;

t15;8 ¼ b3
avd51; t15;9 ¼ �p3vd31;

t15;10 ¼ �b3
avd12; t15;11 ¼ b3

avd11;

t15;12 ¼ �b3
avd52; t15;13 ¼ �b3

avd51; t15;14 ¼ p3vd31;
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t16;3 ¼ � bc cos bc cos h
kc

þ 4d cos h� sin hð Þ

� ð8d
bc

� 8d cos bc
bc

� 4d sin bc

þ g21 tan hþ sin bc tan hÞ;

t16;4 ¼ bc sin bc cos h
lc

þ 4d cos h� sin hð Þ

� ð�4d � 4d cos bc þ
8dc sin bc

bc
þ g22 tan hþ cos bc tan hÞ;

t16;10 ¼ b3
avd22; t16;11 ¼ �b3

avd21; t16;12 ¼ b3
avd62;

t16;13 ¼ b3
avd61; t16;14 ¼ �p3vd41;

t16;15 ¼ �b3
avd22; t16;16 ¼ b3

avd21;

t16;17 ¼ �b3
avd62; t16;18 ¼ �b3

avd61;

t16;19 ¼ p3vd41; t17;5 ¼ t18;5 ¼ t19;5

¼ W2pð�ba þ bad31d11 þ pd32d12Þ;
t17;6 ¼ t18;6 ¼ t19;6 ¼ W2pðbad31d12 � pd32d11Þ;
t17;7 ¼ t18;7 ¼ t19;7 ¼ W1pð�ba þ bad31d51 þ pd32d52Þ;
t17;8 ¼ t18;8 ¼ t19;8 ¼ W1pðpd32d51 þ bad31d52Þ;
t17;9 ¼ �4b4

a þ 2p4ð2 þ f 2
0 s1gaÞ þ f 2

0 p
3ga sin 2ps1;

t19;9 ¼ t18;9 ¼ f 2
0 p

3gað2ps1 þ sin 2ps1Þ;
t17;10 ¼ t18;10 ¼ t19;10

¼ W2pðbad41d21 � bad31d11 � pd32d12 þ pd42d22Þ;
t17;11 ¼ t18;11 ¼ t19;11

¼ W2pðpd11d32 � bad31d12 þ bad41d22 � pd21d42Þ;
t17;12 ¼ t18;12 ¼ t19;12

¼ W1pðbad41d61 � bad31d51 � pd32d52 þ pd42d62Þ;
t17;13 ¼ t18;13 ¼ t19;13

¼ W1pð�pd51d32 þ pd61d42 � bad31d52 þ bad41d62Þ;
t19;14 ¼ t17;14 ¼ f 2

0 p
3gað2pð�s1 þ s2Þ � sin 2ps1 þ sin 2ps2Þ;

t18;14 ¼ 4p4 � 4b4
a

þ f 2
0 p

3gað2pð�s1 þ s2Þ � sin 2ps1 þ sin 2ps2Þ;
t17;15 ¼ t18;15 ¼ t19;15

¼ �W2pðba cos ba þ bad41d21 þ pd42d22Þ;
t17;16 ¼ t18;16 ¼ t19;16

¼ �W2pðba sin ba þ bad41d22 � pd21d42Þ;
t17;17 ¼ t18;17 ¼ t19;17

¼ �W1pðba cosh ba þ bad41d61 þ pd62d42Þ;
t17;18 ¼ t18;18 ¼ t19;18

¼ �W1pðpd61d42 þ ba sinh ba þ bad41d62Þ;
t18;19 ¼ t17;19 ¼ �f 2

0 p
3gað2pð�1 þ s2Þ þ sin 2ps2Þ;

t19;19 ¼ �ð4b4
a þ 2p4ð�2 þ f 2

0 ð�1 þ s2Þga þ f 2
0 p

3ga sin 2ps2Þ:

Appendix B

First, the following integrals are introduced.

dmm ¼
Z 1

0

y0mu
0
mdxm; d33 ¼

Z 1

0

y00ðxÞ/
0
aðxÞdx;

d0m ¼
Z 1

0

u0
mdxm; dm0 ¼

Z 1

0

y0mdxm;

fmm ¼
Z 1

0

y00mumdxm; ;

hmm ¼
Z 1

0

umu
00
mdxm; lmm ¼

Z 1

0

u0
mu

0
mdxm;

smm ¼
Z 1

0

xmumdxm; r33 ¼
Z 1

0

/0000
a /adx;

Cmm ¼ 1


Z 1

0

umumdxm; ðm ¼ 0; 1; 2; 3Þ:;

where m = 0 represents there is no corresponding

term, um and ym are the modal functions and initial

configurations of the arch and cables, respectively, and

u3 ¼ /a, y3 ¼ y0. Then, Galerkin’s integral coeffi-

cients in Eqs. (40) and (41) can be expressed as
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b11 ¼ x2
a ¼ C33ðr33 � gd33f33Þ=b4

a

� 1

2
C33

X2

j¼1

dj0Kj/
2ðsjÞ sin 2hj

þ C33

X2

j¼1

ccjKj/
2ðsjÞ sin2 hj;

b12 ¼ � 1

2
gC33d03f33=b

4
a � gC33d33h33=b

4
a

� 1

2
C33

X2

j¼1

Kj/
3ðsjÞ cos2 hj sin hj;

b13 ¼ � 1

2
gC33d03h33=b

4
a; b14

¼ �C33K1d11/aðs1Þ sin h1; b15

¼ � 1

2
C33K1/

2ðs1Þ sin 2h1d01;

b16 ¼ �C33K2/aðs2Þ sin h2d22; b17

¼ � 1

2
C33K2/

2ðs2Þ sin 2h2d02; b18

¼ � 1

2
C33K1/aðs1Þ sin h1;

b19 ¼ � 1

2
C33K2/aðs2Þ/aðs2Þ sin h2l22; b110

¼ �C33fh30; bðjþ1Þ1

¼ Cðjþ1Þðjþ1Þlcj cos hj/aðsjÞsjj;
bðjþ1Þ2 ¼ Cðjþ1Þðjþ1Þ cos hj/aðsjÞsjj;
bðjþ1Þ3 ¼ �Cðjþ1Þðjþ1Þkcj cos hj/aðsjÞdj0fjj=b2

cj

þ Cðjþ1Þðjþ1Þkcjccj sin hj/aðsjÞfjj;
bðjþ1Þ4 ¼ x2

b ¼ �Cðjþ1Þðjþ1Þkcjdjjfjj=b
2
cj

� Cðjþ1Þðjþ1Þhjj=b
2
cj; bðjþ1Þ5

¼ � 1

2
Cðjþ1Þðjþ1Þkcj cos2 hj/

2
aðsjÞfjj=b2

cj;

bðjþ1Þ6 ¼ �Cðjþ1Þðjþ1Þkcj cos hj/aðsjÞðd0jfjj

þ dj0hjjÞ=b2
cj þ Cðjþ1Þðjþ1Þccjkcj sin hj/aðsjÞhjj=b2

cj;

bðjþ1Þ7 ¼ � 1

2
Cðjþ1Þðjþ1Þkcjljjfjj=b

2
cj

� Cðjþ1Þðjþ1Þkcjdjjhjj=b
2
cj; bðjþ1Þ8

¼ � 1

2
Cðjþ1Þðjþ1Þkcj cos2 hj/

2
aðsjÞhjj=b

2
cj;

bðjþ1Þ9 ¼ �Cðjþ1Þðjþ1Þkcj cos hj/aðsjÞd0jhjj=b
2
cj; bðjþ1Þ10

¼ � 1

2
Cðjþ1Þðjþ1Þkcjljjhjj=b

2
cj ðj ¼ 1; 2Þ:

Appendix C

The coefficients in Eqs. (50)–(52) are defined as

C1
a ¼ �3b13 þ

2b15b25

x2
b

� b15b25

4x2
a � x2

b

þ 2b17b35

x2
c

� b17b35

4x2
a � x2

c

þ 10b2
12

3x2
a

;C2
a ¼ � b14b23

x2
a � x2

b

� b16b33

x2
a � x2

c

;

C3
a ¼

2b15b27

x2
b

� 2b18b26

x2
a � 2xaxb

� 2b18b26

x2
a þ 2xaxb

þ 2b12b18

x2
a

þ b2
15

2xaxb � x2
b

� b2
15

2xaxb þ x2
b

;

C4
a ¼

2b17b37

x2
c

� 2b19b36

x2
a � 2xaxc

þ 2b19b36

x2
a þ 2xaxc

þ 4b12b19

x2
a

þ b2
17

2xaxc � x2
c

� b2
17

2xaxc þ x2
c

;

C5
a ¼ � b14b26

x2
a � 2xaxb

� 2b18b23

x2
a � x2

b

� 2b12b14

�x2
a þ x2

b

;

C6
a ¼ � b16b36

x2
a � 2xaxc

� 2b19b33

x2
a � x2

c

� 2b12b16

�x2
a þ x2

c

;

C7
a ¼ � b15b17

2xaxc þ x2
c

þ b15b17

2xaxb � x2
b

;

C8
a ¼

b15b17

2xaxc � x2
c

� b15b17

2xaxb þ x2
b

;

C1
b ¼ �2b28 �

b2
26

x2
a � 2xaxb

� b2
26

x2
a þ 2xaxb

þ 4b25b27

x2
b

þ 2b15b25

2xaxb � x2
b

� 2b15b25

2xaxb þ x2
b

þ 2b12b26

x2
a

C2
b ¼ �3b210 þ

10b2
27

3x2
b

þ 2b18b26

x2
a

þ b18b26

x2
a � 4x2

b

;

C3
b ¼ � b14b23

�x2
a þ x2

b

;C4
b ¼

2b19b26

x2
a

;

C5
b ¼ � b23b26

x2
a � x2

b

� b12b23

3x2
a

;

C6
b ¼ � b16b23

�x2
a þ x2

c

;C7
b ¼

2b17b25

2xaxc � x2
c

� 2b17b25

2xaxc þ x2
c

;

C8
b ¼

b19b26

x2
a � 4x2

c

;

C1
c ¼ �2b38 �

b2
36

x2
a � 2xaxc

� b2
36

x2
a þ 2xaxc

þ 4b35b37

x2
c

þ 2b17b35

2xaxc � x2
c

� 2b17b35

2xaxc þ x2
c

þ 2b12b36

x2
a

;

C2
c ¼ �3b310 þ

10b2
37

3x2
c

þ 2b19b36

x2
a

þ b19b36

x2
a � 4x2

c

;

C3
c ¼ � b16b33

�x2
a þ x2

c

;C4
c ¼

2b18b36

x2
a

;

C5
b ¼ � b33b36

x2
a � x2

c

� b12b33

3x2
a

;

C6
c ¼ � b14b33

�x2
a þ x2

b

;C7
c ¼

2b15b35

2xaxb � x2
b

� 2b15b35

2xaxb þ x2
b

;

C8
b ¼

b18b36

x2
a � 4x2

b

:
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