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Abstract Support stiffness is one of important
factors on structure dynamics. Considering the vertical
support stiffness, a multi-cable-stayed shallow-arch
model of the cable-stayed bridge is established. Its
differential equation governing the planar motion of
cables and the shallow arch and the boundary condi-
tions are derived by Hamilton’s principle. Firstly, the
in-plane free vibration of the system is explored in
order to find the modal functions and the possible
internal resonances of nonlinear dynamics. Then, the
1:2:2 internal resonance among the different modes of
the shallow arch and two cables are investigated by the
multiple time scale method and pseudo-arclength
algorithm. Meanwhile, the frequency-/force-response
curves are used to explore the nonlinear behaviors of
the system, especially the influence of vertical support
stiffness, excitation frequency and amplitude on the
internal resonance of the system is considered. To a
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certain extent, the support stiffness can reduce the
response amplitudes of members by absorbing some
energy from excitation.
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resonance

1 Introduction

As one of the popular bridges, cable-stayed bridge is of
the large spanning ability, elegant appearance and
mature method of construction. However, cable-
stayed bridge is sensitive to external load due to its
lower stiffness and the complex environments, which
has been attracting many researchers [1-4]. In order to
understand its internal mechanism of dynamics and
find appropriate method to control its large vibration,
many scholars have been devoted to researches on
dynamics of the cable-stayed bridge.

To study the dynamic properties of cable-stayed
bridge, a simplified model, i.e., a single cable [5-8] or
a cable-stayed beam is utilized by many scholars.
Fujino et al. [9] established a three-degree-of freedom
model of a cable-stayed beam and the one-to-one-to-
two internal resonance was observed from a theoret-
ical and experimental point of view. Fung et al. [10]
studied the nonlinear vibrations of a cable-stayed
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beam with time-varying length and tension in the cable
by using Hamilton’s principle and finite element
method. Zhang et al. [11] investigated one-to-one
main parametric resonance of the cable-stayed beam.
In their study, the ‘beat’ vibration was observed and
they mentioned that the occurrence of amplitude main
parametric excitation resonances can be controlled by
limiting the initial displacement of the beam end.
Lenci and Ruzziconi [12] explored the nonlinear
dynamic of a planar cable-supported beam. They
pointed out that the effects of secondary attractors
cannot be ignored and awakened the designer that the
dynamics of cable-supported beam was complex due
to resonance. Gattulli and co-workers [13—15] inves-
tigated the parametric influence on linear and nonlin-
ear behaviors of the cable-stayed bridge. A
localization factor is proposed to evaluate the local-
ization level of cables and the nonlinear interaction
between global and local modes was investigated by
analytical, finite element and experimental models.
They found that the axial force caused by cable tension
has little influence on the natural frequencies of the
cable-stayed beam even within a wide range of
parameter. Wei et al. [16] studied the bifurcation and
chaos of a cable-stayed beam when internal and
external resonances simultaneously occur. In another
paper, Wei et al. [17] analyzed the nonlinear dynamics
of cable-beam coupled system driven by subharmonic
resonance of the beam and principle parametric
resonance of the cable. Meanwhile, the parametric
analysis aiming to some key parameters of the cable-
stayed beam was carried out systematically. In addi-
tion to the cable-stayed beam, there are also some
models for the overall modeling of the cable-stayed
bridge, such as the model consists of a simply
supported four-cable-stayed deck beam and two rigid
towers [18], the dynamic multi-beam model with
discrete springs [19, 20] and so on.

The above cable-stayed beam model can reveal the
nonlinear coupling between the cable and beam,
whereas the geometric of the beam is not taken into
account. In the practical engineering, a certain pre-
arch value is usually set for long-span cable-stayed
bridge to offset the vertical displacement caused by the
shrinkage or creep of concrete during the working
state of the bridge. Hence, many studies considering
the initial configuration of the beam emerged. Blair
et al. [21] considered the dynamic response of a
shallow arch subjected to harmonic excitation by
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using harmonic balance method and continuation
technique. The results show that a small change in
excitation frequency or amplitude will lead to an
obvious change in the response of the arch. Breslavsky
et al. [22] investigated the stability of the snap-through
of a shallow arch by utilizing a two-degree-of-freedom
nonlinear model. Benedettini et al. [23] studied the
nonlinear coupling and dynamic instability of a non-
shallow arch. By applying theoretical and experimen-
tal methods, the post-critical behavior and two-to-one
internal resonance between the first symmetric and
antisymmetric modes were discussed. Recently, Kang
et al. [24, 25] established a double-cable-stayed
shallow-arch model of the cable-stayed bridge and
studied 1:1:1 the internal resonance analysis among
the shallow arch and two cables.

On the other hand, in previous studies, the boundary
conditions of the model are considered to be hinged—
hinged (H-H) or clamped—clamped (C-C). Actually,
due to the existence of isolation rubber, the bearing
may produce slight deformation, which will lead to an
obvious reduction in the natural frequency of the
system, especially low-order frequency [26]. Leissa
and Qatu [27] considered that even a steel beam that is
completely welded to an infinite constraining block
(that is, an infinite half-space) will rotate at the
clamping end during vibration. Yi et al. [28] proved
that the elastic constraints played a significant role in
the nonlinear dynamics of the elastically constrained
shallow arch, which will affect the frequency and
mode shape of the system. And there was a corre-
spondence between the elastic constraints and the
coefficients in the modulation equation. Hence, it is
more reasonable to treat the boundary condition as
elastic support and consider its stiffness, which has
been adopted in many references, e.g., [28-32] to
name but a few.

This paper aims to establish a more accurate model,
i.e., a multi-cable-stayed shallow-arch model with
vertical elastic supports at both ends, to study the
nonlinear dynamics of the cable-stayed bridge. Since
the initial configuration of the beam and the support
stiffness of the bearing are considered, the model is
closer to the real state of the cable-stayed bridge and
can reflect the nonlinear phenomena in the practical
engineering better. This study will explore the effect
of support stiffness on the nonlinear dynamics of the
cable-stayed bridge. By solving the planar eigenvalue
problems of the proposed model, the mode shapes are
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obtained and taken as the trial functions in Galerkin’s
procedure. In this way, a set of ordinary differential
equations (ODEs) are derived. By utilizing the mul-
tiple time scale method, the ODEs are solved and the
1:2:2 internal resonance among the first modes of the
shallow arch and two cables are explored. Meanwhile,
the frequency-/force-response curves are presented to
investigate the effect of support stiffness on the
dynamic properties of the system.

The paper is organized as follows. In Sect. 2, the
planar eigenvalue problem of the model is solved. In
Sect. 3, the differential equations of the system are
solved by the multiple time scale method. Numerical
analysis of 1:2:2 internal resonance is performed in
Sect. 4. Conclusions are given in Sect. 5.

2 Planar eigenvalue problem

The problem model considered is depicted in Fig. 1, in
which n + 1 Cartesian coordinates soy and x;0;y;
(j = 1, 2...n) are established to describe the motions of
the shallow arch (hereinafter referred to as arch) and
cables. According to the number n of cables, the arch is
divided into n 4 1 segments. 0; is the angle between
the cable and the arch. v}, and u, denote transverse and
axial displacements of the arch, while v;; and u;
denote transverse and axial displacements of the cable.
Considering the influence of bearing deformation, the
vertical supports at both ends are replaced by two
springs, the stiffness of which are k} and k3, respec-
tively. Additionally, the arch is subjected to a
harmonic excitation, i.e., f*cos Q*t, which can be
used to simulate wind action [33, 34]. For simplicity,
the following assumptions are made:

(a) the sag-to-span ratio of the cable is small (<
1/10). Hence, the equilibrium configuration for

the inclined cable is described by the parabola
[13];

(b) the initial deflection of the arch is described
through a sinusoidal function and also its rise-
to-span ratio f; is much less than 1/10;

(c) the axial vibration of the arch is neglected,
because it is usually much smaller than trans-
verse vibration and its frequency is far more
than that of transverse vibration;

(d) the displacement of the cable is considered as
the superposition of two parts, i.e., pure modal
displacement and vertical dragging by the
vibration of the arch.

(e) the tower is considered to be rigid, since the
stiffness of the tower is usually larger than that
of the beam, which is also verified by experi-
mental measurements and finite element analy-
sis [18].

According to Hamilton’s principle, the differential
equations governing the planar motion of the arch
segment [35] and cables [13] can be expressed as

1
ok 111 K ok w11
MgV, + Eailuiva,' + UoiVai — l_ (yo
a

n+1 X; 1
+ v Z EpAqp / (o Vap + EvZf)ds* =p;(s*,1)
p=1 Sp1
(1)

o ® ek
MejV; + HeVej —
=0

[Hovy + EgAq (v + v )e; (1)]

(2)

where i=1, 2..n+ 1, s5=0,s;,, =1, and ‘¥’
denotes dimensional parameter. The subscripts a and
c represent the arch and the cable, respectively. m, E, I,
& and A are mass per unit length, Young’s modulus,
moment of inertia of the cross section, damping

parameter and cross-sectional area of the arch and

-
/”
>

U g
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vi(s).0)

Fig. 1 Multi-cable-stayed shallow-arch model with vertical elastic supports of cable-stayed bridge
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cables, respectively. yy and [, are the initial configu-
ration and horizontal length of the arch, respectively.
H, and y,; is the initial force and initial configuration
of the jth cable, respectively. p’(s*, ) is the total load
acting on the arch, which will be given later. The
prime and dot denote the differentiation with respect to

coordinate xj’f and time t. e}‘ denotes the uniform

dynamic elongation of the cable and is given by
* u*'(lcj’ t) 1 lrj s/ % 1 * *
e (1) = CJT + E/O (yq,quf + ivqu)dxj (3)

where [ is the length of the jth cable.

For the convenience of calculation, only two cables
(n = 2) are considered and the model is assumed to be
symmetrical. In this case, i=1, 2, 3 and j=1, 2
(hereinafter inclusive). According to Fig. 1, the
boundary conditions of the model can be written as

vi(0,1) = v (14, 1)=0, v:j(O,t) =0 4)
The continuous conditions at the node s;.‘ are

a(;+l ) ( ,a[)

a(1+1 (Sj*7 1), vy (87,1) = V;/(//'H)(va’)

ujj(lq,t) = ( ,1)sin0;, v ((,,t)
=v,(s7,t)cos0; (j=1,2)

v;:j(s_;'FﬂI) =

(5)

Meanwhile, the left and right side of the node sj’f
should satisfy the following mechanical relationships

Eglav,]'(s7,1) — a(j+l)1a(j+l)vz,(/1‘/+l) (s7,1)

= EAe; () sin 0; + Hvy (L, 1) cos 0; (6)
+ E chej ( )[ c;(lcjﬂ t) + yj]l(lcj)] cos 0]
In addition, the following mechanical boundary

conditions at the elastic supports can be derived
through Hamilton’s principle, i.e.,

Eatlavg'(0, 1) + kiviy (0, 1) = [y (0)

S*

* s/ ok 1 *
+v¥1(0,1) 2EapAap / (Vo vy 2va;,'2)ds
pP= Sp-1

=0
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Eq3la3viy (la 1) = Kavis (la 1) = [g' (1)

+ v (I, 1) Z A / (Y0 Vap + ;VZ;Z)dS*
=0 "
(8)
Substituting Eq. (5) into Eq. (3), we can obtain
vi(st,t)sing; 1 [ld

il = LI L

1
( ;/v*/ V*IZ) l
lcj lcj 0

2 J
)
To render the equations non-dimensional, the

following non-dimensional variables and parameters
are defined:

)Cﬁf y{‘ u*<
J J cj
x':_,‘f:wt’ L= = Y. _Y
] lcj of, Yj lcj cj lcj
v:j E. A v
Vej = =, Aej ; S
¢ lcj G = HCJ ai I,
1, * |
Yei =78 =—,mo= 1.0rad - s~
))CJ lq’ ’ lu 0 s
Fai J* Y .“ij
7d' = 5 = —, U, =
e Mai®0o ’ l‘/ Yo la 'uq me;o
g = Loty Eageokg g malyed
i lgELych s Aj+1 lgEc]Ac] s Pai Eailai s
2 2
2 _ mcjlqwo
¢j ch s
fo _fO M = Aailg D = 2 b = lez
l s Hai Ial' ra mawolz I Eallal 5
k5 l3
ky=— 290 (i=1,2,3)
Ea(ﬂ+l)1u(11+l)

Then Eqgs. (1), (2) and (9) are transformed into non-
dimensional form as

.. 1 1
Vai + 1 ﬁ4 Ztl/ + Iu(llval - ﬁT (yg
1
+v) Z Hap / (Vv + Evg,,)ds
1
= pa(s, ‘c) (10)

1 1
ﬁ—zvé}—ﬂ—ziq‘e]‘()’gﬂrv;) =0 (11)
¢ ¢

Vej + HejVej —
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1
, 1
¢j(t) = =7gvai(sy, ©) sin 0; + /O <y2jvéj + EVz) d;
(12)

To solve the planar eigenvalue problem of the
model, the excitation, nonlinear and damping terms of
Egs. (10) and (11) are commonly ignored, then we can

obtain
Sp
nap /
Sp-1

p—

YoVepds =0 (13)

<
_|_
2|
N
I
S
S
bS]
10~

. 1 1 .
Vi ﬁ—gjvi’l ﬂ_éAL]e]yZ 0 (14)
where
1
éj:vcj(l,r)tanﬂj+/ YejVieidj (15)

The non-dimensional linear forms of Egs. (4)—(8)
can be written as

v (0,7) =vi(1,7) =0, v;(0,7) =0 (16)

Vai(8j: T) = Vagisn) (855 05 Vi (87, T) = Vi) (57, 0),
Vaj(sjvf) = a(;+1)(51’ 7)
Uu(1,7) = Pvai(sj, T ) sin 0}, vi(1,7)
= yqvaj(sj, 7) cos 0
(17)

/(] aj(sﬁ )+X_]'+IVZE]+1)(SJ3 )
cos 0;
é;(1)sin0; + )jj vii(1,7) + ¢(1)y,;(1) cos 0;
(18)

zna,, JaER

Sp—1

v (0,7) 4+ kivar (0, 7)

=0
(19)

Z nap / yovap

Sp—1

Vs (1,7) =

=0

k2 Va3 1 ‘E

(20)

The solutions of Eqs. (13) and (14) can be
expressed as

Vai = d)ai(s)ei(w/wo)r v = d)cj(x)ei(w/wo)r (1)

According to assumptions (a) and (b), the initial
configurations of cables are expressed as

Yei(%) = 4d;(x — x7) (22)

where d; is the sag-to-span ratio of the cable.

Substituting Eqs. (21) and (22) into Egs. (13) and
(14), we can obtain

d)//// - ﬁ (nbaI = '/’ay / yod)apds (23)

p—1

—2 ) R
Bedej + ¢ = 82cdé; (24)
whete B, = "7, B =" and

1
2 /
&= by, [y 23)

Substituting Eq. (21) into Egs. (16)—(20), the
following can be derived

¢Zl (O) = ¢Zs(1) =0, ¢cj(0) =0 (26)
Byi(sj) = 4’7/(7“)(51‘)7 (ls;j(sj) = ¢;O+1)(Sj)v d)gj(sj)
¢ag+1)(sj)v ¢cj(1) = ch¢aj(sj) cos 0;
(27)
0;
195() + 21 By = G sin b+ 2 ,0)

+¢(r )ycj(1)0080
(28)

G (0) + ki (0 Z Map / Yobapds =0

Sp-1

(29)

Zmp / Yobds =

Sp-1

4)2{5 ( ) kz(,bag

(30)
The general solution of Eq. (24) is
(%) = cji sin Bx + cjp cos Bx + Dje (31)

where
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8A.dé;
Dje = —~ (32)
B.

According to Egs. (25) and (32), we can derive
Djc = njicit + njpcp (33)
where

8.d
M =

ﬁf — 84.dtan 0;

|:Sln B, tan 0; — 4d(sin B, + 200556)}
8Acd L

== -
B, — 8J.dtan 0

_ —_  2sinf,
X {cosﬁctan@- —4d(1+cosf, — Smﬁ‘)}

The general solution of Eq. (23) is

Gui(s) = ain cos B,s + app sin B,s + ag cosh fs
+ a4 sinh s + a;sh (34)

where h belongs to particular solution, which can be
chosen as h = sin 7s.

Obviously, Eq. (34) has to satisfy Eq. (13).
Together with Egs. (26)—(30), we finally obtain the
following equation

[T{X} =0 (35)

where {X}:{cﬂ 1Cj2,0i1 012,013,405 }T. The ele-
ments of the matrix [T] in Eq. (35) are reported in
“Appendix A”. Equation (35) is just so-called char-
acteristic equation of the system, which is the function
of natural frequencies. Using numerical analysis
software, the frequencies and mode shapes can be
obtained.

3 Perturbation technique

In this section, the nonlinear analysis of the model is
performed. Here, there is no need to segment the
shallow arch, because the interaction between the
cable and arch is illustrated by external load (see
Eq. (37)) and excitation (see Eq. (39)). In this case,
the non-dimensional form of the differential equations
governing the planar motion of the arch can be written
as

@ Springer

/Nl

1
Va +ﬁ4 a +:uavfl

a

1
(l // // / ( + y{)v;> dS
0
= pa(s, ) (36)

where p, (s, T) consists of two parts, namely, the action
of the cable and the external load. It can be expressed
by

Z o(s — s;)Kje;(t) sin 0;
ﬂ=fcos Qr G
=1,2) (37)

E,jA, _
where K; = o 202;2, f= ol and Q =
Kronecker delta function. '

Based on the assumption (d), the non-dimensional
forms of the planar transverse displacements of the

arch and cables are expressed as
b4(5)8() (38)

Vej (X5 T) = YeVa(s, T)x; 08 0; + d;(x7)q;(7) (39)

where g(t) and gj(t) are generalized coordinates.
¢,(x) is the modal function of the arch, which is
determined in Sec. 2. ¢(x;) is the pure modal

5() denotes

Va(s,T) =

function of cables and are taken as sinusoidal function
for simplicity. Substituting Eqgs. (38) and (39) into
Egs. (36) and (11) and applying Galerkin’s method,
the following ODEs can be derived

§+ a8+ b11g + biag” + bisg’ + buaqi + bisgq
+ bi6g> + b178G> + b1sq; + b1ogs + bi1g cos(Qt) =0
(40)

q] + .uq'%' + b(/‘+1)1g + b(j+1)2g. + b(/+1)3g
+ binag + biisnsg” + biiin)e84s
+ b(,'+1)7q,2 +bi1887q + b(,'+1)9gf1,2 + b(i+1)loq; =0
(41)
where j = 1,2. b,,, (m=1,2,3 and 0 = 1,2...10) are
Galerkin’s integral coefficients and they are presented
in “Appendix B”. Next, the multiple time scale

method is applied to solve Eqgs. (40) and (41). First, a
small bookkeeping parameter ¢ is introduced, namely
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& fl,=lly, eb12=b12, &b13 = by3, eby = by,
ebis = bys, ebig = big, eb17 = by, ebis = by,
eb1g = byg, e%b119 = by1o
SZﬁq:#qa 521;(/'+|)| =Dbgn1, 825(;41)2 = D11y,
8b~(j+l)3 =Db(11)3,
85(/+1)5 = b(/+1)57 Sl;(/+1)6=b(j+1)e, 8l7~(,‘+1)7 = b(j+1)7

b1y = b(1)s, (1) = b(1)9, DG4 1)10 = b0

To balance the damping, excitation and nonlinear
terms, Eqgs. (40) and (41) are rewritten as

§+ & 1,8 + wig + ebng® + e2b13g + ehiaq
+ ebisgq1 + ebi6qa + eb178q> + eb1sq; + ebiog;
+ &2b119cos(Qr) =0
(42)

G; + & 1gd; + £b(r118 + €2b(ii 108 + 8biii1)3g
+@7q; + 258’ + ebi)e8dj + eb(ir1id;
+ &b 1188745
+ 82b(j+1)9861j2 + 821?(,-+1)1oq,3 =0
(43)

where the wavy symbols on the letters have been
removed for brevity and
wg = bll,w% = b2470)% = b34.

To obtain a second order approximation, a fast time
scale Ty = &7 and a slow time scale T, = &t are
introduced, respectively. In this way, the solutions of g
and g; are uniformly expanded in power series of ¢ as

eiflgi(To,Tz) + 0(83),

3
g:
=1

i

(44)

3

qj = Z &'l;lqji(T()7 Tz) —|- 0(%‘3)
i=1

Substituting Eq. (44) into Egs. (42) and (43) and
equating the terms of like order in &, we can obtain.
order &9,
(D5 + ;)81 =0 (45)
(D5 + @,2)%‘1 =0

order &',

(D§ + w3)g2 =
— (b2g} + buaqu + bisg1q11 + bieqa1 + bi7g1ga1 + bisqty + brogs)
(D5 + &} ) =
= (b11381 + b41)58T + banegidn + byriyds)
(46)
order &2,
(DG + @7)83 =
— (uaDyg1 + 2DyDig1 + 2b12g182 + birg)
+ buaqiz2 + bisg1912 + bisg2q11 + bisqn
+ b1781922 + b1782921 + 2b13q11q12 + 2b19g21922
+ b110 cos(QTp))
(Dg+ @ )gp =
- (b(i+1)1D(l)g1 + b(j+l)2Dégl + MqD(l)CIjl
+ 2D(1)Déqﬂ + b(41)382 + 2b(j11)58182
+ b1 10681912 + b+ 1682951 + 2b(11)7911952
+ by 1)s81di + b(j+1)98161]21 + b(j+1)10‘1]31)
(47)
where D/ is a differential operator and it is defined as

D), =98/ /oT, (j = 1,2 and w = 0,2).
The solutions of Eq. (45) is

81 = Al(Tz)exp(icoaTo)—i—cc (48)

qgin = Aj+1 (Tz)exp(iijo)—i—cc (49)

where cc denotes the complex conjugates of the
preceding terms. A, (7>) are the complex amplitudes,
which will be determined by eliminating the secular
terms in the following. Substituting Egs. (48) and (49)
into Eq. (46), and ignoring the homogenous solutions,
we can obtain the solutions of Eq. (46). In order to
study one-to-two-to-two internal resonance of the
system, substituting the solutions of Eq. (46) into
Eq. (47) together with Eqgs. (48) and (49), the follow-
ing can be derived

@ Springer
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(Df + o7)gs
= — %blm exp(i7oQ) — ip, A1 exp(iTow,)
- Ziqu;Al exp(iTow,) + F('IA%Bl exp(iTow,)
+ FZ‘;A. exp(iTow,) + FZAlAsz exp(iTow,)
+ F3A1A3B3 exp(iTow,) + FZAzBl expiTy(wp — w,)
+ T%A3B) exp(w, — 0,)
+ FZAIAng expiTy(w, — wp + @)
+T8A1A,B; expiTy(w, + wp — ) + NST| + cc
(50)

(D§ + })q13
= —ipt 0pAz exp(iTowy) — 2iwpDiAs exp(iTowy)
+ l"éAlAzBl exp(iTowy) + FiA%Bz exp(iTowp)
+ F,S,Ag exp(iTowp) + F;‘,AZA3B3 exp(iTowp)
+ F,S,A% exp(2iTyw,) + F,6,A3 exp(iTow,)
+ FZA1A3Bl exp(iTow,)
+ T8A3B, exp(iTo(2w, — wp)) + NSTs + cc
(s1)

(D + )23
= —ip,wAz exp(iTom.) — 2ich;A3 exp(iTow,.)
+ l"iA]AgBl exp(iTow.) + FfA§B3 exp(iTow,)
+ F§A3 exp(iTow,) + FfA2A3Bz exp(iTow,)
+ T3AY exp(2iTym,) + T8A; exp(iTowy)

(52)

where ®; = wp, and w; = @.. B,,(T,) are complex
conjugates of A,,(T»). NST,, denotes non-secular terms
and I, T35 and I%(z=1,2..8) are reported in
“Appendix C”. The nearness of the three in-plane
frequencies involved in a one-to-two-to-two internal
resonance is described by introducing internal and
external detuning parameters o}, ¢, and g, namely

Q= w, + 0,0, =20, + 61,0, = 20, + 0,
(53)

To solve Egs. (50)—(52), the polar forms of A,,(T>)
are utilized, i.e.,

1 .
An(Ty) = Eam(rz)e%w (54)

@ Springer

where a,,(T,) and ), (T>) are amplitude and phase
angle of A,,(T»). Substituting Eq. (54) into Egs. (50)-
(52), letting the secular terms equal to zero and
separating the real and imaginary parts, the following
autonomous modulation equations can be derived
8wad = —4u,waa1 — 4byjosinoy + Zl"f,alaz sin o

— F2a1a2a3 sin(or, — o3)

+ Fgalaza_g sin(o, — o3) + 2F2a1a3 sin o3

(55)

8wyaro; = 8wya0 + 41"3a1 + l"(lla? + FZalag + Fialag
— 4b1 10CosS oy + 2F2a1a2 COS 0l
+ I"Zalazag cos(oy — a3)
+ Fgalazag cos(op — o3) + 2F2a|a3 cos o3

(56)

8wpdy = —4pu, wpar — 21",5)51% sin o
— Fgazag sin2(o, — o3) — 4F2a3 sin(op — o3)
—Talassin(oy — o3)
(57)

8w, wpaiaron = 8w, wpaiaro; + 8F5a1a2wb
+ 2l alay o + 2T aya3 0
+ 2F2a1a2a§wb — 8arbi19wp, cOs oy
+ 41"2(11 agwb COS 0y
+ 2FZa1a§a3wb cos(ap — o3)
+ 2F§a1a§a3wb cos(op — a3)
+ 4F2a1a2a3wb COS 3
— 4F2a1a2wu — Fll)a‘;’@wa
— Fialagwa — Fialazagwa
— 21“157(1‘?(1)“ COS 0y
— Fﬁalagagwa cos 2(op — 03)
— 4% a3, cos(on — o3)
- l"Zafa_ga)a cos(ap — 03)
(58)
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8w dz = —4u,m.a3 + F§a§a3 sin2(op — 03)
+ 41"?612 sin(ap — o3) + FZa%az sin(op — a3)
—2Ia% sin oy
(59)

8w,w.a1a303 = 8w,w.a1a30, + 8F2a1a3a)c
+ ZF;a?agwc + 2F2a1a§a3wc
+ 2F3a1a§wc — 8aszby1pw, cos o
+ 4F2a1a2a3wc COS 0y
+ 2F2a1a2a§wc cos(ap — o3)
—2I%a; cos a3
+ 2F§a1a2a§wc cos(ap — o3)
+ 4F2a2a§wc COS 03 — 4F3a1a3a)a
— Fia?%wa — Fialagagwa
- Ffalagwa
- l"f,ala%agwa cos 2(op — 03)
- 4F5a1a2 cos(op — a3)
—~Taayw, cos(ay — a3)

(60)
where o) = Tho — Y (Ta), 00 = Thoy — 24, (T2)+
U, (Ta), 03 = Taoa — 21 (T2) + Y53(T2).

Letting dy =dy=d3=0d; =da, =03 =0, the
steady-state equilibrium solutions of Egs. (55)—(60)

can be obtained by Newton—Raphson method and
pseudo-arclength algorithm [36]. The stability of the

Table 1 Key parameters of the arch and cables

Arch Cables
Ba Ma K; Aej B
5.69801 149,694 0.332659 1317.33 0.37238

equilibrium solutions can be determined by checking
the eigenvalues of Jacobian matrix of the system and
evaluating whether the real part of each eigenvalue is
negative or not [37].

4 Numerical analysis of 1:2:2 internal resonance

The following parameters are chosen for numerical
analysis. For the arch, the length of each segment is
100 m and the total length is 300 m; mass per unit
length is 4.4 x 10* kg/m; Young’s modulus is
34.5Gpa; moment of inertia of the cross section is
9.8m*; damping parameter is 0.003 and cross-sec-
tional area is 16.3 m>. For cables, the total length is
115.5 m; mass per unit length is 10.4 kg/m; Young’s
modulus is 210Gpa; damping parameter is 0.003;
cross-sectional area is 6.3 x 107>m?; the initial force
is IMN; the angle between the cable and arch is 30°.
Additionally, the initial configuration of the arch is
yo(s) = fosin(zns) and f; is sag-to-span ratio of the
arch, which can be used to adjust the frequencies of the
arch to satisfy different internal resonance relation-
ships. According to the above parameters, the values
of some key variables are given in Table 1. Figure 2
shows the mode shapes of the arch with different
support stiffness when the 1:2:2 internal resonance
occurs. It can be seen that when the support stiffness is
different, the mode shapes of the arch under 1:2:2
internal resonance are fundamentally changed, which
indicates that the support stiffness affects the mode
shapes of the arch and further affects the nonlinear
behaviors of the system. Hence, in order to explore the
effect of the elastic support on the nonlinear dynamics
of the system, different cases of the support stiffness
are considered in the following analysis. It should be
noted that in the following figures, SN and HB denote
saddle-node bifurcation and Hopf bifurcation, respec-
tively. Stable solutions are represented by solid lines,

k=k=k=1000000

k1=kz=k:10000

Fig. 2 The mode shapes of the arch with different support stiffness when the 1:2:2 internal resonance occurs
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Fig. 3 The frequency—response curves of the arch and cables with k; = k, = k = 1,000,000, 6, = ¢, = 6.38 x 107° and excitation

amplitude f = 0.001: a for arch, b for cables

while unstable solutions are represented by dashed
lines.

Firstly, in order to study the nonlinear dynamics of
the system and compare it with the earlier work,
relatively large support stiffness is chosen, namely,
ki = ky = k = 1,000,000. In this case, the boundary
conditions are close to H-H ends. Adjust f; to 0.0492
so that 2w, ~ w, ~ w.. Figure 3 presents the fre-
quency-response curves of the arch and cables when
excitation amplitude f = 0.001 and internal detuning
parameters o) = g, = 6.38 x 107°.  Runge—Kutta
method is also used to directly integrate Eqs. (40)
and (41) in Fig. 3 and a satisfactory agreement
between the two methods can be observed. It should
be pointed out that the numerical results, especially the
large response amplitudes, are very sensitive to the
initial conditions of the system and they are relatively
hard to obtain unless the initial condition is chosen
precisely [38]. It can be seen from Fig. 3a that the
curve of the arch (i.e., a;) bends to the left and exhibits
softening characteristic. When the excitation fre-
quency (i.e., o) increases from a relatively small
value, the response amplitude of the arch increases
slowly until SN1 is reached. If we continually increase
g, a jump from the lower branch to the upper branch
will occur, as shown by the arrows in Fig. 3. After
SN1, the response amplitude will decrease with the
increase in ¢ and losses its stability via HB1, while
regain stability via HB2. When ¢ > 0.245, there are
two close branches in the response curve of the arch,
which corresponds to the upper and lower branches of
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the response curve of the cable, respectively. This is
actually related to double-jumping phenomenon
[24, 25] and also confirmed in Fig. 3b. As seen in
Fig. 3b, there are two peaks in the response curves and
they bend to the left and right, respectively. Nayfeh
et al. [39] firstly observed the double-jumping phe-
nomenon in pitch and roll coupling vibration of a ship
by a two-degree-of-freedom nonlinear model and
since then, this phenomenon has been found in many
other nonlinear systems.

Comparing Fig. 3(a) with Fig. 3(b), we can see that
the response amplitude of the arch is smaller than that
of the cable. The reason may be that the mass of the
cable is much less than that of the arch and the arch
provides a parametric and forced excitation at the
lower end of the cable, which is consistent with the
large amplitude vibration of the cable in practical
engineering. Due to the existence of the double-
jumping phenomenon, there are two stable solutions
when o < 0.241 or o > 0.43 and they belong to upper
and lower branches, respectively. This means that
cables may exhibit different dynamic characteristics
even they are subjected to the same excitation, which
depends on initial conditions. This may be caused by
different energy transfer mechanism, namely, the
energy transferred from the arch into two cables is
different at this time. Additionally, it can be found that
when o decreases from a larger value, the jumping
phenomenon of the arch is different from that of the
cable. The response amplitude of the cable jumps from
the lower branch to the upper branch at SN2, while it is
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opposite for the arch. The above phenomena are
similar to those in references [24, 25], which further
verifies the present model.

Figure 4 is the frequency-response curves of the
arch and cables when f = 0.002 and f = 0.004. It can
be seen that Fig. 4 differs a lot from Fig. 3. Compared
with Fig. 3a, SN and unstable solutions of the lower
branch when ¢ > 0 disappear in Fig. 4a. Instead, a
new stable branch appears, the amplitude of which is
much larger than that of the other branches. Due to the
disappearance of SN on the right, the double-jumping
phenomenon also vanished. This indicates that when
the excitation amplitude increases to a certain value,
the dynamic characteristics of the arch and cables will
change. When ¢ < 0.25, the amplitude of the new
stable branch decreases rapidly with the increase of the
excitation frequency, while it is almost unchanged for
cables (see Fig. 4b). This is related to the energy
transfer between the arch and cables. When ¢ < 0.25,
the arch requires a great deal of energy to maintain its
large amplitude vibration, with no excess energy
transferred to the cable. Hence, the response amplitude
of cables is small and almost invariable for the new
stable branch. This new phenomenon may exist in the
earlier work but it is firstly observed in the present
work.

Figure 5 illustrates the force-response curves of the
arch and cables when external detuning parameter
0= —0.6. It can be seen that the jumping phe-
nomenon occurs again. With the increase in excitation
amplitudes, the response amplitudes increase rapidly

\

~ HBI(2)]
e — |

1.5

02,03

until SN1 is reached. At this time, a jump from the
lower branch to the upper branch will occur. If we go
on increasing excitation amplitudes, the response
amplitudes will increase accordingly. Inversely, if
the excitation amplitudes decrease from a relatively
large value, a jump from the upper branch to the lower
branch triggered by SN2 will occur. However, the
dynamic characteristic of the system is relatively
simple when ¢ = 0 (see Fig. 6). There is a nonlinear
relationship between the response amplitudes and the
excitation amplitudes. This may be because the
nonlinear terms in Egs. (40) and (41) dominates the
motion. Figure 7 shows the force—response curves of
the arch and cables when external detuning parameter
o = 0.6. As seen in the figure, the dynamic behaviors
of the system are considerably complex. There are
three branches of unstable solutions and one stable so-
Iution. With the increase in excitation amplitude, the
stable solution is almost linearly increasing and it
losses its stability via HB1, while regain stability via
HB2. Additionally, the dynamic behaviors of the arch
and cables are similar when ¢ = 0 and ¢ = 0.6. The
reason may be that there are many similar terms in the
ODE:s of the arch and cables as shown in Egs. (40) and
41).

In practical engineering, even if two cables with the
same parameters are symmetrically anchored on the
cable-stayed bridge, the frequencies of the two cables
are not exactly the same due to installation and stress
redistribution. In order to study the influence of
frequency difference on dynamic characteristics of

0.12 4

—

T HB3®4)

0.10 4

0.08 4

0.06 4

0.04 - \

£20.004
7 7=0.002

0.02

0.00 T T T T T

1.5

Fig. 4 The frequency-response curves of the arch and cables with different excitation amplitudes when k; = k, = k = 1,000,000 and

o) = 0, = 6.38 x 107%: a for arch, b for cables
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Fig. 5 The force-response curves of the arch and cables with k; = k, = k = 1,000,000, 6, = g, = 6.38 X 10°ando = — 0.6: a for

arch, b for cables
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Fig. 6 The force—response curves of the arch and cables with k; = k, = k = 1,000,000, 6; = 0, = 6.38 X 107 and ¢ = 0: a for arch,

b for cables

the system, the detuning parameter of one cable is
changed, which can be achieved by changing the
length, initial force, cross-sectional area, Young’s
modulus and so on. It should be pointed out that the
cable whose detuning parameter keeps invariable is
named as cable 1, while another cable is named as
cable 2. Figures 8, 9 and 10 illustrate the force—
response curves of the arch and cables with different
internal detuning parameters when f = 0.001 and
f=0.002. It should be noted that SNs are not marked
in these figures, because they are not our focus.
Besides, in order to observe the figures clearly, the
range of ¢ is reduced to [— 0.5, 0.5].
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It can be seen that the difference between the two
cables has a great effect on the response of the arch and
cable 1, especially when the response amplitude is
more than 0.01. However, the difference between the
two cables has a slight effect on the response of cable 2
when the response amplitude is less than 0.02 but in
general, the effect is small. In a word, the difference
between the two cables has a larger effect on the
response of the arch and cable 1 than on the cable 2.
This shows that changing the internal detuning
parameter of one cable has a great influence on the
dynamic characteristics of other members, but has
little effect on itself. Additionally, with the reduction
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Fig. 8 The frequency-response curves of the arch with different o; and o, when &k, = k, = k = 1,000,000: a for f= 0.001, b for

f=0.002

of internal detuning parameter o, the response
amplitudes of the arch and cable 1 increase, but it is
opposite for the response of cable 2. This may be
caused by modal localization and with the increase in
internal detuning parameter o¢,, more energy is
transferred to cable 1. An interesting phenomenon
can be observed in Figs. (b) that the new branch of
stable solutions remain unchanged with the variation
of a,, both for the arch and cables. This may be related
to the domain of attraction of the branch, which should
attract our attention. It can also be seen that the change
of internal detuning parameter ¢, leads to the occur-
rence of more HBs, which indicates that the difference

between the two cables will result in more complex
dynamic behaviors of the system.

Figures 11, 12 and 13 present the force-response
curves of the arch and cables with different internal
detuning parameters. Different from the frequency—
response curves, the difference between cables has an
obvious effect on not only the force—response curves
of the arch and cable 1, but also those of cable 2 when
the external detuning parameter ¢ = — 0.4 and 0. As
seen in Fig. 10a, with the reduction of 0;, the SNs
located at the lower branches gradually shifts outward,
which means the range of unstable solutions becomes
larger. On the other hand, the SNs located at the upper
branches gradually move upward for the arch and
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Fig. 9 The frequency-response curves of cable 1 with different o, and o, when k; = k, = k = 1,000,000: a for f= 0.001, b for

f=0.002
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Fig. 10 The frequency-response curves of cable 2 with different ¢; and ¢, when k; = k> = k = 1,000,000: a for f = 0.001, b for

f=0.002

cable 1, while for cable 2, these SNs hardly move.
What’s more, with the reduction of g5, the stable so-
lutions of the branches when ¢ = 0 and the stable so-
lutions of the upper branches when ¢ = — 0.4 receive
an evident increase for the arch and cable 1. However,
it is opposite for cable 2. These phenomena are similar
to those in the frequency-response curves. When
o = 0.4, the difference between cables has a greater
influence on the response amplitude of cable 2 itself,
while the responses of the arch and cable 1 are almost
unaffected, which can also be verified by the lower
branches when ¢ > 0.25 in Figs. 8b, 9b and 10b.
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Next, in order to further explore the effect of the
support stiffness on the nonlinear behaviors of the
system, we change the support stiffness to k; = k.
= k = 10,000, which is close to the support stiffness
of the bearing in practical engineering. f; is set to
0.0643 so that 2w, ~ w, =~ .. Figure 14 shows the
frequency-response curves of the arch and cables with
k = 10,000. The similar phenomena to those in the
case when k = 1,000,000, such as softening charac-
teristic and double-jumping phenomenon, can also be
observed and they will not be mentioned, as the new
dynamic behaviors are our focus.
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Fig. 12 The force-response curves of cable 1 with different o, and o, when k; = k, = k = 1,000,000: a for 0 = — 0.4 and 0, b for
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Comparing Fig. 14 with Fig. 4, an interesting
phenomenon can be found. In Fig. 4, when f = 0.004
and o < 0, there are three branches of stable solutions
in total and one of the branch is much larger than the
other two. Meanwhile, the double-jumping phe-
nomenon disappears. However, when k; =k,

=k=10,000 (see Fig.14), none of the
aforementioned phenomena take place. The reason
for these phenomena may be that with the decrease of
support stiffness at both ends, the displacement of the
support increases, and a part of energy is absorbed by
the support, which leads to the decrease in response
amplitudes of the arch and cables. However, only

when the response amplitudes and energy of the arch
and cables reach a certain threshold, new
stable branches will appear and double-jumping
phenomenon will vanish. In order to verify our
conjecture, the excitation amplitude is increased to
0.01 and the corresponding frequency-response
curves of the arch and cables are shown in Fig. 15.
As can be seen, the new branch of stable solutions
appear with no double-jumping phenomenon
occurring.

Figure 16 gives the comparison of the frequency—
response curves of the arch and cables with different
support stiffness when f=0.001. Obviously, the
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Fig. 14 The frequency—response curves of the arch and cables with k; = k, = k = 10,000, 6| = 0, = —5.24 x 107% and f = 0.004:

a for arch, b for cables

response amplitudes of the arch and cables become
smaller with the reduction of the support stiffness as a
part of energy is absorbed by the support. The
maximum amplitude of the arch decreases by 15%
and that of cable by 39% due to the reduction of the
support stiffness. This means that the reduction of the
support stiffness has a larger influence on the response
of cables than that of the arch. Due to the fact that the
mass of the cable is much smaller than that of the arch,
therefore the same energy input can only provide a
small vibration of the arch, but can provide a large
vibration of the cable. When k£ = 10,000, the distance
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between two SNs is narrowed and unstable solutions
caused by HBs move forward.

Figures 17, 18 and 19 are the force—response curves
of the arch and cables with different support stiffness.
By and large, the response amplitudes of the arch and
cables exhibit a consistent trend with the variation of
excitation amplitude, namely, the response amplitude
of the arch and cables become smaller when
k = 10,000 compared with k£ = 1,000,000. Similarly
to frequency-response curves, the response ampli-
tudes of cables decrease more than those of the arch.
With the reduction of the support stiffness, SNs
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Fig. 16 The frequency-response curves of the arch and cables with different support stiffness when f= 0.001 and

01 = 0 = —5.24 x 107%: a for arch, b for cables

located at the lower branches move outward, which
leads to the increase of unstable area between SN (see
Fig. 17). Whereas, when the support stiffness is
decreased, HBs move backward (far from the origin,
see Fig. 19), which is different from Fig. 16 and may
be caused by different energy transfer mechanism.

5 Conclusions
Considering the initial configuration of the beam and

vertical elastic supports in cable-stayed bridge, a
multi-cable-stayed shallow-arch model is established.

Compared with other models, this model is closer to
the real cable-stayed bridge in practical engineering.
Based on the differential equations governing the
planar motion of the arch and cables, the planar
eigenvalue problem of the model is solved. In this
way, the modal function of the arch is obtained. Then,
the 1:2:2 internal resonance among the arch and cables
is investigated when the external primary resonance
occur. To discretize the differential equations, the
Galerkin’s method is utilized and a set of ODEs are
derived. By using the multiple time scale method, the
ODEs are solved and corresponding modulation
equations are obtained. The stable solutions of the
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Fig. 17 The force—response curves of the arch and cables with different support stiffness when ¢ = 0.5 and 6; = 0, = —5.24 x 107%:
a for arch, b for cables
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Fig. 18 The force—response curves of the arch and cables with different support stiffness when ¢ = 0 and 6 = g, = —5.24 x 1076:
a for arch, b for cables
modulation equations are determined by Newton— o > 0. Therefore, the double-jumping phe-
Raphson method and continued by pseudo-arclength nomenon triggered by two SNs is observed in
algorithm. Meanwhile, frequency-/force-response the frequency-response curves of cables.
curves are provided to explore the nonlinear behaviors (2) When the excitation amplitude reaches a certain
of the system, especially the influence of the support threshold, the double-jumping phenomenon will
stiffness on the internal resonance of the system. vanish and a new branch of stable solutions
Finally, some interesting conclusions are drawn as appear and its value is obviously larger than
follows. other branches. The support stiffness is one of
the key factors that affect the value of threshold.
(1) The frequency-response curves of the arch J . .
(3) Changing the internal detuning parameter of one

exhibit a softening characteristic, while those
of cables exhibit a softening characteristic when
0 <0 and a hardening characteristic when

@ Springer

cable has a great influence on the frequency—
response curves of other members, but has little
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Fig. 19 The force-response curves of the arch and cables with different support stiffness when ¢ = 0.5 and 6; = 6, = —5.24 x 1076:
a for arch, b for cables
effect on itself. With the reduction of internal Appendix A

detuning parameter, the frequency-response
amplitudes of the cable whose internal detuning
parameter changes are decreased, but it is
opposite for the response of the arch and another
cable. Moreover, the difference between cables
will lead to more complicated dynamic behav-
iors of the system.

With the reduction of the support stiffness, the
response amplitudes of the arch and cables will
become smaller as the supports absorb a part of
energy. The support stiffness has a greater
influence on the response curves of cables than
on those of the arch. Due to the existence of
elastic supports, the threshold of the excitation
amplitude making the double-jumping phe-
nomenon disappear becomes larger.
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This paper considers a model with two cables the
model is assumed to be symmetrical. Since the
parameters of the two cables are identical, the
subscripts ‘i’ and ‘j° of some variables are dropped
in the following expressions. For the sake of conve-
nience, the following variables are introduced.

W, — ﬁ{oznanz W, = ﬁ{&nanz 51 = cos(Bus1).
[ -

012 = sin(f,s1), 021 = cos(f,52), 022 = sin(f,s2),

031 = cos(msy), 03, = sin(7sy),

041 = cos(7s2), dgp = sin(7ms,),

051 = cosh(f,s1), 052 = sinh(f,s1),

061 = cosh(f,s2), 062 = sinh(f,s2)

In this way, the elements of the matrix [T] in
Eq. (35) can be expressed as.
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hi=mpha=14n,0b3=n,0s=1~+1yn, tog = 012,197 = Os1,l98 = 052,
131 =My +sinf, 32 =1y +cos B, 135 tog = 032,19,10 = —011,%9,11 = —012,
—Y¢1011 cos 0, ty 12 = —0s1,1913 = —052,
B = —7.1012€080,137 = =y, 651 cos 0,138 to14 = —032,t105 = —P,012,
= —7.052c08 0,139 tine = Ba011,t10,7 = Ba052,t108 = B,051,
143 = Ny + sin B, ti09 = m031,t10,10 = P12, o1 = —Pud11,
t44 = Ny +cos f, to,12 = —B,052, 1013 = —B,051, to,14 = —7d31,
_ 2 2 2
1410 = —7021 cos 0, tis = —P.011, e = =012, t11,7 = B0s1,
fa11 = —72022€08 0, 14,12 = —7e2061 €08 0, 14,13 ting = Badsa, tirg = —m3,ti1 10 = Booun,
= —7,.,0¢ cos 0 2 2
m;z 9’ tin = B012, ti,12 = — 051,
th1s = —), cos 0,1t
i X y_‘:‘;/z T 7;’55 5 S1202) 1,13 = *ﬁ§5527111,14 = 7125327712,10 = 61,
= K1 2 - 11031 — 7012032 N
X a ’ tiz 11 = 022, 112,12 = O61, 112,13 = 062, H2,14 = 042,
56 = —Fo = WalPa031012 = 701103), ha1s = =021, 2,16 = — 022, t12,17 = — 061,
ts7 = ki + Wi(B, — B,031051 — m032052), ti2,18 = —062, 112,19 = —042, 11310 = —f,022,
s ) :
tsg = P, — Wi(n032051 + f,031952), ti311 = Buda1s 11312 = Budeas
1 1 . _ps _ _
tsg = —T° — Efoz%n%l — ZfozﬂaﬂZ sin(27s)), 113,13 = PuSe1, 113,14 = T41, 113,15 = P02,
tizi6 = —By021, 11317 = —Bu062, 113,18 = —P,J61,
ts10 = Wa(f,011031 — B4021041 + 112030 — TO20042), 5 11 s £ £
113,19 = —T041, 1410 = —P,021, 11411 = —P,022
= Wz(ﬁ 5]2531 - 7'56]15%2 - ﬁ 022041 +ﬂ52]542), ’ ) » M4, , a®21, 414, ) a )
t = B¢ .t = B0, t = —7°0
ts12 = Wi(B,051031 — Bad61641 + 052030 — MO62042), 1412 ﬂ; 615 F14,13 BZ 62, 714,14 R o
ts13 = Wi (nds5103 — mde1042 + ﬁ0552531 — B.S62041), fas = Ba021, hane = By022, 11417 = — P, 061,
1 > f.cos ff.cosf
Is14 = Efozﬂ s — fo NaTs2 + fo N7 sin(27s)) fais = —f,062, 1151 = T
(4
. 8d 8dcos
Zfoznanz sin(27s,), + (4d cos 0 — sin 6)(/3 5 8d cos fe
c c
1515 = Wa (B, cos B, + B,021041 + m022042), — 4dsin f§, + i, tan 0 + sin . tan 0),
ts,16 = Wa(P,sin B, 4 022041 — m21042), fiato = 1204, 1152
ts17 = Wi(p, cosh B, + B,061041 + T62042), B, sin . cos O
. == ¢ + (4dcosO —sinf
1513 = Wi(nd61042 + P, sinh f§, + d62041), e + )
Lo, 5 1, 34 L, 5. 8dsin f3..
Is19 = — Efo H T+ ifo Na7s2 + Zlfo T sin(2ms2), (—4d — 4dcos f. + ﬁ—ﬁ‘
c
3
tos =k — 155,66 = —f, — 156567 + 1715 tan 0 4 cos f, tan 0),
3
R E— 3 3 3
f6.9 T =159, 16,10 f5,10, tiss = Bx012,tis6 = —BLxd11, 1157 = B,1052,
lein = 511,612 = —I512, 1613 = —1513, 16,14 = —1514, fiss = 151, fise = — 7031
3 ” a ? » L ’
1615 = P, s;n[ia kycos B, — 1515, fis.10 = 7ﬁl31X5127,15‘11 _ ﬁixéu,
te16 = —fp cosf, —kysinff, — ¢t 3 3 3
616 f" Ba = ko sin B = 15,16, tisg2 = —Poxds2, 15,13 = —BLx0s1, tis,14 = T (031,
t617 = P, sinh f, — ko cosh i, — t5 17,
3 . 3
te,18 = B, cosh B, — kysinh B, — 1518, 7610 = ©° — 1519,
t15=—1,t17 =1,1315 = —cos f3,,
t3.16 = —sin f,, 1517 = cosh B, 15 13 = sinh f§,,, 1o 5 = 11,
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.cos f3.cos 0
ecos focost

ties = — (4d cos 0 — sin 0)
Ao
8d 8dcosf .
X (- —————F<—4dsin
A
+ 1, tan 0 + sin .. tan 0),
inf 0
tes = B sin . cos 0 + (4d cos 0 — sin 0)
He

8d. sin f8,

Be
+ 1y tan 0 + cos fi, tan 0),

X (—4d — 4d cos i, +

tie,10 = /32}{5227f16,11 = _ﬁZX52l7t16,12 = ﬁZX(Sez,
te,13 = [33%5617%,14 = *ﬂ315417
16,15 = _ﬁ?;X(SZZ’[lQIG = ﬁf,%(;zl,
16,17 = *ﬁi%5627116,18 = *ﬁg"/ﬁel,
fi6.19 = T 1041, 1175 = tigs = 1195

= Wan(—p, + f,031011 + 132012),
176 = 1186 = 1196 = Wan(f,031012 — md32011),
ti77 = tisg = tiog = Win(—p, + 031951 + nd30s2),
ti7g = tigg = tog = Win(nd3dsi + f,031952),
ti79 = —4ﬁ3 + 21t (2 + fIsin,) + finn, sin 27sy
ti99 = tig9 =f027r311a(2ns1 + sin 27sy),
117,10 = 118,10 = 119,10

= Want(f,041021 — P,031011 — 1032012 + M42022),
h7,1 = hig11 = 19,11

= WzTC(TE511532 - ﬂa531512 + ﬂa541522 - 7'5521542)7
H7,12 = hig,12 = 19,12

= Win(B,041061 — P,031051 — TO32052 + M42062),
117,13 = 118,13 = 119,13

= Win(—nds163; 4 161042 — B,031052 + B,041062),
11914 = 17,14 =f027'r311a(27'[(751 + 52) — sin27ns; + sin27sy),
gy = 4n* — 4!

+ 2y, (2n(—s1 + s2) — sin27sy + sin 27sy),

117,15 = 118,15 = 119,15

= —Wan(f, cos B, + B041021 + T042022),
117,16 = 118,16 = 119,16

= —Wyn(f,sin 8, + f,04102 — m021042),
117,17 = 118,17 = 119,17

= —Win(f,cosh B, + B,041061 + 7062042,
117,18 = 118,18 = 119,18

= —Wn(nd¢1042 + B, sinh B, + B,41062),

l137|9 =719 = — 0277531’]“(271'(—1 + Sz) -+ sin 27&&’2),

tig19 = *(4/32 + 278 (=2+ f5 (=1 + s2)n, + f3 7', sin 27s,).

Appendix B

First, the following integrals are introduced.
1 1
don = [ bhimsdss = [ 5000,
0 0
1 1
dOm:/ (P:,,dxm,dmoz/ y:ndxma
0 0
1
f;nm = / yxlqomdxm,,
0
1 1
hmm:/ q)m(P::ldxm;lmm :/ (pl/n(/):ndxm,
0 0
1 1
smm:/ Xin @ @Xm , 733 :/ d);/”(z)adxa
0 0

1
1—‘mm = 1// QDm(Pmdxm’ (m = 07 17273)-7
0

where m = 0 represents there is no corresponding
term, ¢,, and y,, are the modal functions and initial
configurations of the arch and cables, respectively, and
@3 = ¢, y3 = yo. Then, Galerkin’s integral coeffi-
cients in Egs. (40) and (41) can be expressed as
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by =} = 1"23(73% — ndsafsa)/ Ba

——Fg3z oKd) (s7) sin 206;

+ r33 Z yc/l<j¢2 (sj) Sinz gja

j=1

1
by = 757]1"3307031633/53 — nsadsshss/ B,
1 2
5l :j::l: Kj¢ (s;) cos® 0 sin 0,

1
bz = _§’7F33d03h33/ﬁ3’b14

—I'33K1di1p,(s1)sin 01, bys
1 .
— §F33K1¢2(S1) sin 29161’01,

bis = ~TuKagy (s2) sin Oz, by

1 .

= K (52) i 20s, b
1 .

=-3 ['33K1¢,(s1) sin 0y,

1 .
b9 = — §F33K2¢H(S2)¢a(82) sin 0512, b110

—T33/h30, b1y
L (1)1 e €08 0004 (57) 8354
b2 = Lanygien) cos 0¢,(s7)si,
b3 = —T(s1)(41) e 08 056, (5))djof/ B
+ L 11) (1) Ve SN 0;, (57)f
b = 0 = =Tgnganadif/ By
= Tgengenhi/ B bgins
= — % L)1) Aej €OS” ;05 (5))fsi/ Boy»
b1y = =T (11)(+1)Aej €08 09, (57) (doifiy
+ djoh,y)/ﬁﬁj + L 1)(j1)Veje Sin 0j¢a(sj)hjj/ﬁgja

b1y = —%F(,'H)(Hl)/lcjljjﬁj/ﬁij
= T Zeidihii /By by
- 7%r(i+1)<f+1>/1c/ cos® Ojcbg () / B
b(j1)9 = =L (j11)(+1)4ej cOS Qj‘lﬁa(“j)dofhﬁ/ﬁ‘z?’bU+1>10

1 .
= *Er(ﬁl)(ﬁl)icjlﬂhﬁ/ﬁgj (1 = 1’2)'
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Appendix C

The coefficients in Eqgs. (50)—(52) are defined as

2bisbys  bisbos 2by7b3s
o 40?2 — w} o?
__bibss 1003, , _ bubos bisb33
402 — @2 3wk 0 —w} o2 —w?’
2b1sby;  2bighys  2bighag
} 02 = 2w,05 02+ 20,0,
2b12bis N b2 b
w? 20,05 — 0F  2wa0p + 02
a a b a b
_ 2bizby;  2biobss 2b19b3e
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