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Abstract The main objective of the present paper is
to determine the influence of rub parameters on the
stability of a two-spool rotor system undergoing rub-
impact. The parameters such as rotor–stator contact
stiffness, coefficient of friction and clearance are varied
for understanding their effects on the system response
and stability. Moreover, the analysis is performed for
two modes of rotor operations, namely co-rotation
and counter-rotation, and determines their impacts on
rotor–stator rubbing. A time variational method is
employed to predict the nonlinear response of the sys-
tem with a perturbation function applied at the steady-
state solution points to investigate their stability. Two
types of bifurcations, namely limit point and Neimark–
Sacker bifurcations, are observed in the response by
monitoring the Floquet exponents of the perturbed sys-
tem. As the coefficient of friction is increased, the early
onset of NS bifurcation has happened and the system
enters into the quasi-periodic regime early. However,
when the contact stiffness and clearance values are
increased, the onset of NS bifurcation is delayed. It is
also observed that the response characteristics of the co-
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and counter-rotating systems are entirely different. The
separation between forward andbackwardwhirling fre-
quencies is reduced for the counter-rotating system due
to the cancellation of gyroscopic moments. In addition,
for the same set of parameters, the counter-rotating sys-
tem enters into the quasi-periodic regime quickly once
the disk starts rubbing.

Keywords Time variational method · Multi-harmonic
balance method · Stability analysis · Component mode
synthesis

1 Introduction

Rub-impact is a common fault observed in rotating
machinery, generated as a consequence of tight clear-
ance between rotating and stationary components. It
creates unwanted vibrations in the machinery which
may reduce its performance under different operating
conditions. The aircraft engines are composed ofmulti-
spool rotors that will induce multiple excitations when
they are subjected to unbalanced forces and external
excitations. As a result, the dynamic behavior of such
machines appears to be more complicated in the pres-
ence of rub-impact. In literature, most of the works
related to rub-impact are carried out using single-spool
rotor models [1]. However, the information received
from a single-spool rotor model won’t be sufficient
enough to predict the response behavior of an aircraft
enginemodel since it has a two-spool configuration. For
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the analysis of such machines, a dual-rotor model will
be appropriate which consists of two co-axial rotors
that are connected together using inter-shaft bearings.
Both the rotors spin at different speeds with their ratio
may not be an integer. The presence of inter-shaft bear-
ings makes the behavior of the dual-rotor model unique
and results in the coupling of both rotor vibrations.

The detailed studies on rub-impact in dual-rotor sys-
tems are started recently. Yang et al. [2] constructed an
experimental test-rig and studied the vibration charac-
teristics of a dual-rotor system undergoing rub-impact.
A dynamic model is also developed and obtained the
response behavior under fixed point rubbing. It is
observed that the response of the dual-rotor model
under rub-impact not only contains the excitation fre-
quency components but also includes their linear com-
binations. Later, Wang et al. [3] also observed simi-
lar results when an experimental and numerical anal-
ysis is performed. Moreover, the effects of different
model parameters such as rotational speed ratio, ini-
tial clearance, mass eccentricity and inter-shaft stiff-
ness on the dynamic response are also presented in
detail. Yang et al. [4,5] extended the analysis by incor-
porating multi-unbalances and multi-fixed-point rub-
bing in the dual-rotor model. In this model, the cas-
ing and disks are painted with softer coatings; hence,
a Lankarani–Nikravesh model [6] is used to calcu-
late the impact force between contact points. Multi-
periodic and quasi-periodic motions are observed in
the response due to the multi-fixed point rubbing. Lu
et al. [7] modified the dual-rotor model by incorporat-
ing a ball bearing in place of linear bearing and studied
the effects of bearing clearance on the primary reso-
nance of the system. Using a similar kind of dual-rotor
model, Gao et al. [8] investigated the effects of barrel
roll maneuver on rub-impact phenomenon numerically
and experimentally. Coupled bending and torsional
motions are observed in which the rub-impact stiffness
affected the bending vibration while the friction coef-
ficient influenced the torsional vibration. Meantime,
Wang et al. [9] developed a dual-rotor blade-casing
(DRBC) model by including a thin-walled casing and
rigid blades in a simple dual-rotor model. The vibra-
tion signals are measured from the casing surface, and
certain periodic impact characteristics are noticed in
the signal with its frequency equal to the product of
the rotational frequency and the numbers of blades.
Later, Yang et al. [10] studied the vibration behaviors
of a DRBC system undergoing pedestal looseness and

rub-impact faults simultaneously. It is found that the
pedestal looseness results in a pulsating kind of vibra-
tion with a large amplitude and induces the rub-impact
early.

Generally, the vibration characteristics of a rotor
model undergoing rub-impact are obtainedusingnumer-
ical integration schemes. However, it is very time-
consuming in finding the steady-state response behav-
ior of a large degree of freedom (DOF) model sub-
jected to rub. In such problems, a multi-harmonic bal-
ance method (MHBM) with alternating frequency–
time (AFT) technique is found to be an appropriate
solution procedure. It generates the results at a faster
rate compared to numerical integration schemes and
traces the unstable branches beyond the bifurcation
points with the help of continuation procedures. Sun
et al. [11] developed an 8-DOF model of a dual-rotor
system and investigated the effects of system param-
eters such as rotational speed ratio, mass eccentric-
ity and inter-shaft stiffness. The disks are modeled as
lumped masses with the bearings represented using
the linear springs. Later, Hou et al. [12] continued the
analysis by replacing the linear springs with ball bear-
ings at the inter-shaft location. A resonance hystere-
sis phenomenon is observed in the frequency–response
curve when the clearance of inter-shaft ball bearing
is increased. Bifurcation and stability analysis is also
carried out when the rotor system is subjected to con-
stant excitation and rub-impact [13]. Since theMHBM-
AFT is a frequency domain technique, Hsu’s method
is used to predict the stability and bifurcation nature
of the system. A more improved dual-rotor model
is proposed by Sun et al. [14] in which a sophisti-
cated geometrical structure of the jet engine is con-
sidered by finite solid element modeling. The total size
of the FE model is reduced using an efficient model
reduction technique called component mode synthesis
(CMS). The model provided a better understanding of
the nonlinear dynamical behaviors of the real compli-
cated dual-rotor aero-engine undergoing rub-impact.
Moreover, this research works showed the efficiency
of the MHBM-AFT method compared to numerical
integration. However, this method has some limita-
tions when more than two excitation frequencies are
present in the system. In such problems, the AFT pro-
cedure becomes complex since the formulation of the
multi-dimensional fast Fourier transform (FFT) is very
complicated. Hence, Guskov and Thouverez [15] intro-
duced an adjusted harmonic balance method (AHBM)
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in which the response is expressed in terms of a one-
dimensional Fourier series by taking the greatest com-
mon divisor of the excitation frequencies as the fun-
damental frequency. It is observed that this method
performed the stability analysis at a faster rate and
provided results similar to that of the MHBM-AFT.
However, the method requires a higher number of har-
monics for capturing the complete nonlinear phenom-
ena, which in turn makes the formulation tedious. In
addition, the alternate transformation between the fre-
quency and time domains consumes more time when
the number of state variables in the nonlinear function
is high.

A new time-domain technique called the time varia-
tionalmethod (TVM) is introduced byRook [16]which
didn’t require the alternate transformation between the
frequency and time domains during the calculation of
the Jacobian and nonlinear forces. Later, Krishna and
Padmanabhan [17,18] used the same method for inves-
tigating the response behavior of nonlinear, multi-DOF
mechanical systems subjected to external excitations.
In their work, the performance of the TVM is com-
pared with that of the existing numerical techniques,
and a good agreement is obtained. Recently, Prabith
and Krishna [19] extended the TVM in multiple fre-
quency excitation problems by expressing the excita-
tion force in terms of a fundamental frequency which
is the greatest common divisor of the approximated
frequency components. The method is applicable to
all the multi-frequency excitation problems and proved
to be effective in handling the system with more than
two excitation frequencies. Hence, it can be applied
for the analysis of the dual-rotor systems as well. In
this method, the stability of the response is determined
by applying a perturbation at the steady-state solution
point and checking the eigenvalues of the perturbed
dynamical system.

The nature of rotor response and its stability is
highly dependent on the direction of rotor rotations.
There are some studies in the literature that compared
the dynamic characteristics of co- and counter-rotating
rotors. From the studies, it is observed that the criti-
cal speeds of the counter-rotating system are slightly
less than that of the co-rotating system due to the low
gyroscopic effects [20–22]. Wang et al. [20] compared
the responses of the co- and counter-rotating dual-rotor
systems when they are subjected to nonlinear forces of
squeeze film dampers. It is noticed that the frequency
components that are appeared in the response are quite

different for co- and counter-rotating rotors. Later, Ma
et al. [21] noticed that the motion trajectories of the
rotor under rub-impact is influenced by the direction
of rotor rotations. For the same set of model parame-
ters, a petal-like trajectory is observed for the counter-
rotating system whereas multiple circles are obtained
for the co-rotating systems. It indicates that the stability
and bifurcation nature of the dual-rotor model are sig-
nificantly affected by the direction of rotor rotation. In
addition, the effects of rub parameters on the stability
and onset of bifurcation need to be explored in detail
for both modes of rotor rotations. Hence, the objectives
of the present work are highlighted as follows.

– introduce the TVM in predicting the steady-state
response of a two-spool rotor system undergoing
rub-impact.

– perform the stability analysis by applying a pertur-
bation at the steady-state solution point and deter-
mine the bifurcation points by monitoring the Flo-
quet exponents.

– investigate the effects of the direction of rotor rota-
tions (co- and counter-rotation) on the stability of
the rubbing response.

– perform the parametric analysis and obtain the
influence of rub parameters such as the rotor–stator
contact stiffness, coefficient of friction and clear-
ance on the stability and onset of bifurcation points.

The present paper is organized into nine sections.
After introduction, Sect. 2 describes the mechanical
model of the two-spool rotor system. In this section,
the parameters and structure of the dual-rotor model
are provided. Section 3 explains the methodology for-
mulation in which the model reduction technique, the
TVM and the stability theory are described. In Sect. 4,
the finite element (FE) modeling of the two-spool rotor
model is carried out and the unbalance responses are
obtained during co- and counter-rotations. Section 5
provides the validation of the proposed methodology
with the experimental results published in a reference
article. In Sect. 6, the nonlinear dynamic responses of
the two-spool rotor model undergoing rub-impact are
explained during co- and counter-rotations. Sections 7
and 8 describe the stability analysis and the parametric
analysis, respectively. Finally, Sect. 9 presents conclu-
sions.
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Fig. 1 The schematic diagram of a two-spool rotor system [23]

Table 1 Properties of the symmetric bearings used in the model [23]

Properties Bearing
1 2 3 Inter-shaft

Stiffness (N/m) 52×106 36×106 36×106 9×106

Damping (Ns/m) 100 100 100 100

Distance from left end bearing (m) 0 0.508 0.152 0.406

Table 2 Properties of the disks used in the model [23]

Properties Disk
1 2 3 4

Mass (Kg) 10.5 7.0 7.0 3.5

Polar inertia (Kgm2) 0.086 0.068 0.042 0.026

Diametral inertia (Kgm2) 0.043 0.034 0.021 0.013

Distance from left end bearing (m) 0.076 0.457 0.203 0.356

2 Mechanical model of the two-spool rotor system

The two-spool rotor system shown in Fig. 1 is com-
posed of a pair of co-axial rotors that are connected
together using an inter-shaft bearing [23]. The presence
of inter-shaft bearing couples the vibrations of both the
rotors and leads to combined harmonic responses. The
inner rotor is made up of a long and slender shaft which
is supported at the ends using two symmetric bearings,
whereas the outer rotor consists of a hollow shaft whose
one end is connected to the frame through a symmet-
ric bearing and the other end is connected to the inner
rotor through an inter-shaft bearing. The outer rotor is
spinning at a speed that is 1.2 times the speed of the
inner rotor (speed ratio κ = 1.2).

The following assumptions are made to perform the
nonlinear dynamic analysis,

1. All the bearings are modeled using linear springs
and viscous dampers.

2. All the disks are rigid and are represented using
lumped masses with moments of inertias equal in
X and Y directions.

3. No coatings are applied on the casing and disk sur-
faces

4. The axial and torsional vibrations are small, hence
ignored.

Tables 1 and 2 give the details of the bearings and disks
used in the model. The complete rotor model is cycli-
cally symmetric with the elastic modulus as 207 GPa,
the Poisson’s ratio as 0.3 and the mass density as 8300
kg/m3. The geometric properties of the shafts are given
in Table 3. Disk 1 and 3 have mass unbalances of mag-
nitude 0.0001 kgm each that forces the rotors to whirl
during their operation.When the amplitude of whirling
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Table 3 Geometric properties of the shafts used in the model
[23]

Shaft Length (m) Inner dia (m) Outer dia (m)

Outer Shaft 0.254 0.05 0.06

Inner Shaft 0.508 0 0.03

exceeds the clearance δ, disk 2 impacts the stator, and
the system behavior becomes nonlinear. The stator is
assumed as a rigid ring with a rotor–stator contact stiff-
ness kc. The friction at the contact interface is modeled
according to Coulomb’s frictional law, without consid-
ering the thermal effect and the material removal. The
nonlinear forces along X and Y directions due to rub-
impact can be expressed as,

fnx = �kc
[
1 − δ

r

]
(x − μsign(vrel)y)

fny = �kc
[
1 − δ

r

]
(μsign(vrel)x + y)

where vrel = ωrdisk + vtang

(1)

rdisk is the radius of the disk, ω is the angular velocity
of the disk, μ is the coefficient of friction, and vtang
is the instantaneous tangential velocity of whirling at
the contact point. Its direction is depended on the sense
of whirling. x , y and r are the instantaneous positions
along X, Y directions and whirling radius, respectively.
� is a switching function that is equal to one when con-
tact occurs and equal to zero when no contact occurs.

3 Methodology formulation

The governing equations of a two-spool rotor system
having N DOF can be expressed in FE formulation as,

Mẍ + Cẋ + G(ω1, ω2)ẋ + Kx + Fnl(x, t)

= F(ω1, ω2, t) (2)

where M, C, G and K constitute the mass, damp-
ing, gyroscopic and stiffnessmatrices respectively. The
mass matrix M is symmetric with its elements includ-
ing the translatory and rotary inertia components of the
shafts as well as the disks. The damping matrix Cmay
be symmetric or non-symmetric, decided by the nature
of the bearings and the internal damping of the shafts.
The gyroscopic matrix G is a skew-symmetric matrix,
involving the gyroscopic effects of both the shafts and
the disks. The stiffness matrixK is symmetric in nature

with its elements containing the stiffnesses of shaft and
bearings (assuming no cross-coupled terms). The vec-
tor x is of size N×1, representing the physical DOFs of
the complete FE model. Fnl and F are the correspond-
ing nonlinear and external force vectors respectively.
ω1 and ω2 are the angular velocities of the inner and
outer rotors respectively with their ratio need not be
an integer. As a result, the response of the two-spool
rotor system may not be periodic with respect to the
external excitations. However, it can be made periodic
by expressing the external excitations in terms of a fre-
quency ω0 which is the greatest common divisor of the
approximated frequency components [19] as given,

ω0 = ω̃ j

p j
, j = 1, 2 p j ∈ N (3)

where ω̃ j is the approximated value of ω j obtained
by approximating the irrational excitation frequencies
to rational ones. Now, by using the relation τ = ω0t ,
Eq. (2) is transformed into a new time scale as expressed
below,

ω2
0Mx′′ + ω0Cx

′ + ω2
0G̃x′ + Kx + Fnl (x, τ ) = F(τ ) (4)

where x′ and x′′ are the first and second derivatives of
x with respect to τ . G̃ is a constant matrix such that it
is no longer a function of ω1 and ω2.

3.1 Model reduction

Since the rubbing happens at disk position only, it
won’t be advisable to use the nonlinear solution tech-
nique to all the DOFs, as it increases the computa-
tional expense. Hence, a model reduction technique
based on component mode synthesis is employed to
lower the size of the FE model [17]. In this technique,
the complete FE model is partitioned into two com-
ponents, namely primary and secondary components.
All the nonlinear nodes with their boundary nodes are
assembled in the primary component and the remain-
ing nodes are included in the secondary component.
The primary component is retained in its physical coor-
dinates, whereas the secondary component is reduced
using the Craig–Bampton sub-structuring. The equa-
tion of motion for the secondary component is written
as,

ω2
0Msx′′

s + ω0Csx′
s + ω2

0G̃sx′
s + Ksxs = Fs (5)
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where ‘s’ stands for the secondary component. The
coordinate vector xs is partitioned into boundary and
interior coordinates as,

xs =
{
xis
xbs

}
(6)

where xis are the interior coordinates and xbs are the
boundary coordinates including the DOFs correspond-
ing to the disks and the interface node. Now, Eq. (5) is
rewritten as

ω2
0

[
Mi i

s Mib
s

Mbi
s Mbb

s

] {
xis
xbs

}′′
+ ω0

[
Ci i
s Cib

s
Cbi
s Cbb

s

] {
xis
xbs

}′

+ω2
0

[
G̃

i i
s G̃

ib
s

G̃
bi
s G̃

bb
s

] {
xis
xbs

}′
+

[
Ki i

s Kib
s

Kbi
s Kbb

s

]{
xis
xbs

}
=

{
0
Fb
s

}

(7)

By using the Craig–Bampton sub-structuring, the inte-
rior DOFs are transformed into a set of modal coordi-
nates as given below,
{
xis
xbs

}
=

[
� �

0 I

]{
qs
xbs

}
= Ts x̄s (8)

where qs represents the modal coordinates and Ts con-
stitutes the transformationmatrix including the retained
normal modes � and constraint mode � such that,

�TMi i
s � = M̄

i i
s

�TCi i
s � = C̄

i i
s

�T G̃
i i
s � = Ḡ

i i
s

�TKi i
s � = K̄

i i
s

� = −(Ki i
s )−1Kib

s

(9)

The number of retained modes is chosen based on a
convergence study and it is verymuch less than the total
DOFs of the FE model. Now, Eq. (8) is substituted in
Eq. (7) and is pre-multiplied with the transpose ofTs to
get the reduced equations of motion of the secondary
component as,

ω2
0M̄sx̄′′

s + ω0C̄sx̄′
s + ω2

0Ḡsx̄′
s + K̄sx̄s = F̄s (10)

where M̄s, C̄s, Ḡs and K̄s are the reduced mass, damp-
ing, gyroscopic and stiffness matrices of the secondary
component, respectively. F̄s is the reduced force vector.
Now, the equation ofmotion for the primary component
is written as,

ω2
0Mpx′′

p + ω0Cpx′
p + ω2

0G̃px′
p + Kpxp + Fnlp = Fp

(11)

The primary component is retained in physical coor-
dinates. However, an identity matrix transformation is
performed to keep the procedure the same as that of
the secondary component. The transformed equation
of motion is written as,

ω2
0M̄px̄′′

p + ω0C̄px̄′
p + ω2

0Ḡpx̄′
p + K̄px̄p + F̄nlp = F̄p

(12)

Finally, Eqs. (10) and (12) are assembled together to
get the reduced equations of motion of the two-spool
rotor model as,

ω2
0M̄x̄′′ + ω0C̄x̄′ + ω2

0Ḡx̄′ + K̄x̄ + F̄nl(x̄) = F̄ (13)

where M̄, C̄, Ḡ and K̄ are the reduced mass, damp-
ing, gyroscopic and stiffness matrices of the two-spool
rotor model. The size of these matrices is Nsize×Nsize,
where Nsize = (n p + m + nbs − n), n p is the size of
the primary component, n is the nodal DOF, nbs is the
number of boundary coordinates in the secondary com-
ponent andm is the number of retained modes. F̄nl and
F̄ are the corresponding nonlinear and external force
vectors, respectively, of size Nsize × 1.

3.2 Time variational method

The time variational method (TVM) is a semi-analytic
technique that is generally employed for solving
periodic and single excitation problems. Fortunately,
Eq. (13) is equivalent to a periodic, single excitation
problem with a fundamental frequency ω0. A detailed
description of the TVM is available in the paper by
Rook [16]. According to this method, the response,
nonlinear function and external force are approximated
using the basis function as given below,

x̄(τ ) = X̂.χ(τ ) F̄nl(τ ) = F̂nl .χ(τ )

F̄(τ ) = F̂.χ(τ ) (14)

where χ(τ) maybe a wavelet scaling function or a
finite element shape function. In this paper, a cubic
spline function is used as the basis function that has a
good convergence rate compared to the other functions
due to the narrow banded structure of the differentia-
tion matrices [16]. In Eq. (14), X̂ represents a matrix
whose i th row denotes the i th DOF value calculated
at discrete time points. Its column size is equal to the
number of discrete time points Np taken for the anal-
ysis. Similarly, F̂ and F̂nl are the external and nonlin-
ear force matrices calculated at discrete time points,
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respectively. The substitution of Eq. (14) in Eq. (13)
and then, applying the Galerkin method, a weak resid-
ual form of Eq. (13) is obtained as

R(x̂) = [
ω2
0

(
M̄ ⊗ D(2)) + ω0

(
C̄ ⊗ D(1))

+ω2
0

(
Ḡ ⊗ D(1)) + (

K̄ ⊗ D(0))]x̂
+(

I ⊗ D(0))(f̂nl(x̂) − f̂
) = 0 (15)

where x̂ = vec(X̂
T
), f̂nl = vec(F̂

T
nl) and f̂ = vec(F̂

T
).

⊗ is the Kronecker product and vec ( ) is the vectorize
operator that stacks the columns of the matrix oper-
ated upon. Equation (15) is a set of nonlinear alge-
braic equations of size NpNsize and are solved using
the Newton–Raphson method. In order to obtain the
frequency response of the system, a suitable continua-
tion procedure can be adopted for tracing the unstable
branches beyond the bifurcation. This is achieved by
incorporating a tracing equation in Eq. (15) as given
below,

R1(x̂, ω0) =
{
R(x̂, ω0)

R̄(x̂, ω0)

}
= 0 (16)

In this paper, a hyper-sphere-based continuation algo-
rithm is used for getting a future solution. It is per-
formed by predicting and correcting the assumed solu-
tion along the surface of a hyper-sphere of radius r̄
with its center at x̂c which is the previous steady-state
point. The tracing equation of the hyper-sphere based
continuation algorithm is written as,

R̄(x̂, ω0) = (x̂2 − x̂2c) + (ω2
0 − ω2

0c) − r̄2 = 0 (17)

As explained earlier, the TVM has certain advantages
and disadvantages over existing solution techniques.
A comparison of the proposed methodology with the
existing techniques is provided in Table 4.

3.3 Stability theory

In this paper, the local stability of the solution points
is determined by introducing a small perturbation ε(τ )

around the steady-state solution point x̄∗. As a result,
Eq. (13) is modified as,

ω2
0M̄(x̄∗ + ε)′′ + ω0C̄(x̄∗ + ε)′ + ω2

0Ḡ(x̄∗ + ε)′

+K̄(x̄∗ + ε) + F̄nl(x̄∗ + ε) = F̄ (18)

By linearizing the nonlinear force F̄nl around x̄∗ using
the Taylor series expansion, Eq. (18) is changed as,

ω2
0M̄(x̄∗ + ε)′′ + ω0C̄(x̄∗ + ε)′ + ω2

0Ḡ(x̄∗ + ε)′

+K̄(x̄∗ + ε) + F̄nl(x̄∗) + ∂F̄nl(x̄∗)
∂ x̄

ε = F̄ (19)

Since x̄∗ is an equilibrium point,

ω2
0M̄x̄∗′′ + ω0C̄x̄∗′ + ω2

0Ḡx̄∗′ + K̄x̄∗ + F̄nl (x̄∗) − F̄ = 0 (20)

Hence, the remaining perturbation equation is written
as,

ω2
0M̄ε′′ + ω0C̄ε′ + ω2

0Ḡε′ + K̄ε + ∂F̄nl(x̄∗)
∂ x̄

ε = 0

(21)

According to the Floquet theory, ε(τ ) = eλτφ(τ),
where λ is the eigenvalue and φ(τ) is a periodic func-
tion. By substituting this expression and its derivatives
into Eq. (21), the modified equation is written as,

{
[ω2

0M̄φ]λ2 + [2ω2
0M̄φ′ + ω0C̄φ + ω2

0Ḡφ]λ

+[ω2
0M̄φ′′ + ω0C̄φ′ + ω2

0Ḡφ′ + K̄φ + ∂F̄nl(x̄∗)
∂ x̄

φ]
}

eλτ = 0 (22)

Now, the periodic function φ(τ) is expressed in terms
of the basis function asφ(τ) = �̂.χ(τ ). Substitution of
this expression into Eq. (22) and following theGalerkin
procedure, a quadratic eigenvalue equation is obtained
as,

(λ2�2 + λ�1 + �0)�̂ = 0 where

�2 = ω2
0

(
M̄ ⊗ D(0))

�1 = 2ω2
0

(
M̄ ⊗ D(1)) + ω0

(
C̄ ⊗ D(0))

+ ω2
0

(
Ḡ ⊗ D(0))

�0 = ω2
0

(
M̄ ⊗ D(2)) + ω0

(
C̄ ⊗ D(1))

+ ω2
0

(
Ḡ ⊗ D(1)) + (

K̄ ⊗ D(0)) + (
I ⊗ D(0))∂ f̂nl

∂ x̂

(23)

Even though Eq. (23) provides 2NpNsize eigenvalues,
only 2Nsize eigenvalues have physicalmeaning.Hence,
the first 2Nsize eigenvalues with the smallest imaginary
part can be calculated instead of determining the com-
plete set of eigenvalues. The system is stable when real
parts of the first 2Nsize eigenvalues are negative, while
it is unstable when at least one of them is positive. The
advantage of this method is that all the terms in Eq. (23)
are determined during each iteration of the continua-
tion procedure, and hence, the stability analysis can be
performed along with the continuation procedure that
saves a lot of time.
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Table 4 Comparison of the proposed methodology with the existing techniques [1]

Solution method Description Pros. Cons.

Explicit
integration
scheme
[4,8,10]

Determines the future of a
system from the current
state. E.g., Runge–Kutta
fourth-order method

Easy to implement.
Accurate.

Loses stability for small
time steps. More
computational time.
Difficult to solve stiff
differential equations

Implicit
integration
scheme [9,20]

Utilizes the current and
future states of a system
for determining the state
at a future time. E.g.,
Newmark-beta method

Appropriate for solving stiff
differential equations.
Less computational time.

Lacks control on the
numerical damping at
high-frequency limits.
Possesses an undesirable
numerical dissipation in
the low-frequency range

Multi-Harmonic
Balance
Method
[11–14]

An extended version of the
HBM in which a
multi-dimensional Fourier
series is used

Appropriate for quasi-
periodic and multi-
frequency excitations

Difficult to program when
more than two-frequency
excitation comes into
picture.
Multi-dimensional FFT
calculation is complex

Adjusted
harmonic
balance method
[15]

A special form of the HBM
in which
multi-dimensional Fourier
series is approximated as
one-dimensional

Computationally efficient.
Takes less solution time.
Quick stability analysis

Large number of harmonics
required. Need to alternate
between frequency and
time. Programming is
cumbersome

Time variational
method [18,19]

A semi-analytic technique
that is based on compactly
supported basis functions
such as cubic splines

Easy to formulate since the
whole analysis is done in
time domain alone

Takes long solution time for
multi-DOF, highly
nonlinear systems

4 Rotor FE modeling and dynamic analysis

In this study, the two-spool rotor system is com-
pletelymodeled using one-dimensional finite elements.
Mainly, Timoshenko beam elements are used for dis-
cretizing the shafts with rotary inertia, shearing and
gyroscopic effects are taking into account. Each node
is having 4 DOFs: two translational and two rotational
displacements. The complete model is discretized into
13 elements with a total of 52 DOFs. Later, its size
is reduced using the model reduction technique as
explained in the previous section. The componentmode
partition of the dual-rotor model is shown in Fig. 2, and
its details are given in Table 5.

In two-spool rotors, there are two modes of rotor
operations possible: co-rotation in which both the
rotors spin in the same direction and counter-rotation
in which one rotor spins in the opposite direction to the
other. In this paper, both the modes of rotor operations
are analyzed.

4.1 Co-rotation

In this mode of rotor operation, the rotors are co-
rotating with a speed ratio of κ = 1.2; hence, the
approximated excitation frequency components and
their common divisor ω0 can be determined as,

ω̃2

ω̃1
= 6

5
= 1.2 ω0 = ω̃1

5
= ω̃2

6
(24)

Now, by expressing the external excitations in terms of
ω0, the TVM can be utilized for finding the responses.
At first, the modal analysis is performed to determine
the natural frequencies of the system. The first five nat-
ural frequencies of the system under the non-rotating
condition are given in Table 6. However, for a rotat-
ing system, the natural frequencies vary with the rotor
speed due to the presence of the gyroscopic effect. This
variation is displayed through the Campbell diagram.
Figure 3a, b shows the Campbell diagrams of the two-
spool rotor system when excited by the inner and outer
rotors, respectively. Due to the presence of gyroscopic
effects, the whirl frequencies split into forward and
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Fig. 2 Component mode partition of the rotor

Table 5 The details of the model reduction of dual-rotor model

System No. of nodes Actual DOF Retained modes Physical DOF Total DOF

Complete model 13 52 0 52 52

Primary 3 12 0 12 12

Secondary 11 44 2 16 18

Assembled model After component mode synthesis 26

Table 6 Natural frequencies of the two-spool rotor model under non-rotating condition

Two-spool rotor Order
1st 2nd 3rd 4th 5th

Frequency(Hz) 91.807 197.485 318.329 403.455 421.738

backward whirls. The critical speeds of the system are
obtained by noting the rotational speeds at the crossing
points of the frequency curves with the synchronous
excitation line (1x). They are listed in Table 7. For
each mode of vibration, there are two critical speeds
corresponding to the forward and the backward whirl
motions as listed in Table 7.

4.2 Counter-rotation

In this mode of rotor operation, one rotor rotates in
the opposite direction to the other with a speed ratio
of κ = −1.2. The approximated excitation frequency
components and their common divisorω0 can be deter-
mined as,

ω̃2

ω̃1
= −6

5
= −1.2 ω0 = ω̃1

5
= − ω̃2

6
(25)

The Campbell diagrams for this mode of operation
are shown in Fig. 4, and the corresponding critical
speeds are listed in Table 8. While comparing the criti-
cal speeds of the co- and counter-rotating systems, it is
observed that the forward speeds are smaller and back-
ward speeds are larger for the counter-rotating system.
It means that the separation between the forward and
backward speeds are reduced. This behavior can be
seen in the Campbell diagrams as well where the for-
ward and backward speeds are close to each other for
the counter-rotating systemcompared to the co-rotating
system. This happens mainly due to the cancellation of
the gyroscopic moments of the two rotors during the
counter-rotation.
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Fig. 3 Campbell diagram of the two-spool rotor model (co-rotation)

Table 7 Critical speeds of
the two-spool rotor model
(co-rotation)

Order Excited by inner rotor (rpm) Excited by outer rotor (rpm)

Backward Forward Backward Forward

1 4346 7872 4493 7363

2 10,003 13,350 10,300 13,150

3 14,020 21,060 14,650 20,960

Figures 3 and 4 also give a comparison of the Camp-
bell diagrams of the complete and the reduced mod-
els. It shows the effectiveness of the model reduction
technique. A perfect matching is observed between the
results of both models.

4.3 Unbalance response

The presence of mass unbalances in disks 1 and 3 pro-
duces centrifugal forces in the rotors that will lead
to rotor whirling during their operation. Initially, by
assuming no stationary components in the system, it
is possible to study the nature of whirling and the
frequency contents in it. Since both the rotors are
excited together, the system response will contain both
of the frequency components. In this paper, the TVM
is used for determining the unbalance responses under
two-frequency excitation. The number of discrete-time
points Np is taken as 200. In order to validate its perfor-
mance, the system response is comparedwith that of the
MHBM-AFT. Figure 5 shows the unbalance responses

of the inner rotor at disk 2 position under two-frequency
excitations. A good agreement is observed between the
results of the TVM and MHBM.

Figure 5a, b shows the unbalance responses dur-
ing co-rotation and counter-rotation, respectively. Only
forward whirling modes are excited since all the bear-
ings used in the model are symmetric in nature. The
peaks A and C represent the resonance when the rotat-
ing speed is equal to 1

1.2 times the critical speeds of the
model with respect to the outer rotor excitations. The
peaks B and D correspond to the resonance when the
rotating speed becomes equal to the critical speeds of
the model with respect to the inner rotor excitation.

In order to analyze the whirling nature and the fre-
quency content, the orbit plot and the FFT diagrams are
constructed for different rotating speeds of the rotors.
Due to the lack of space, the responses at some of the
rotating speeds are discussed. Figures 6 and 7 show the
orbit plots and the FFT diagrams during the co- and
counter-rotation of the rotors, respectively. In Figs. 6
and 7, the FFTs are plotted for the vertical responses
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Fig. 4 Campbell diagram of the dual-rotor model (counter-rotation)

Table 8 Critical speeds of
the dual-rotor model
(counter-rotation)

Order Excited by inner rotor (rpm) Excited by outer rotor (rpm)

Backward Forward Backward Forward

1 4533 6815 6609 4667

2 10,860 12,190 12,110 11,120

3 15,320 20,410 20,590 15,610

Fig. 5 The response of the inner rotor at disk 2 position when mass unbalances are at disk 1 and 3
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Fig. 6 Orbit plot and the FFT of the rotor displacements during co-rotation of rotors

measured at disk 2 position. It is observed that the
rotor response contains the combinations of the inner
and outer rotor excitations. Generally, the linear com-
binations of the inner and outer rotor excitations are
expressed as iω1+ jω2. For simplicity, it canbedenoted
using (i, j), where i and j are integers. Since the unbal-
ance response is linear, (1,0) and (0,1) components
are observed in the rotor displacements as shown in
Figs. 6 and 7. The direction of the rotor whirl can be
obtained from the orbit plot. It is seen that during co-
rotation, the inner and outer rotors (disk 2 and disk
4) whirls in the same direction as the rotor rotation
(in an anti-clockwise direction) for all the values of
rotating speeds. However, during counter-rotation, the
whirling nature of the rotors is different at different
rotating speeds. It can be observed from Fig. 7a, c that
when the rotating speed lies in the region of resonance
with respect to the outer rotor excitation, both rotors
whirl in the same spin direction as the outer rotor, i.e.,
in the clockwise direction. But, when the rotor speed is
in the region of resonancewith respect to the inner rotor

excitation, both rotors whirl in the same spin direction
as the inner rotor, i.e., in an anti-clockwise direction,
as shown in Fig. 7b. It indicates that the direction of
whirling is dependent on the value of rotating speed
when the rotors are counter-rotating.

5 Validation of the methodology using
experimental results

In order to verify the proposed methodology in non-
linear rub analysis, a dual-rotor system from ref. [2]
is analyzed. Using the proposed technique, a dynamic
model of the given rotor system is developed and its
results are compared with that of the numerical and
experimental investigations from Ref. [2]. The details
of model parameters are given in Ref. [2]. The Timo-
shenko beam elements are utilized for developing the
FE models of the low pressure (LP) and high pres-
sure (HP) shafts. A fixed elastic limiter is used as the
stator representing the convex protuberance on the cas-
ing. The disk and the fixed limiter are applied with
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Fig. 7 Orbit plot and the FFT of the rotor displacements during counter-rotation of rotors

softer coatings and several local contacts happen dur-
ing the orbital motion. Hence, a Lankarani–Nikravesh
model is employed to obtain the contact force gener-
ated between the compressor disk and the fixed limiter.
In ref. [2], the numerical integration technique is used
to acquire the rubbing response, whereas, in the present
study, the TVM is utilized. As a result, the computation
time is significantly reduced since the TVM provides
the steady-state response directly.

Initially, the linear response of the system without a
rub-impact is studied. Figures 8 and 9 show the compar-
ison of the results of the present study with the numeri-
cal and experimental results from ref. [2]. From Figs. 8
and 9, it is clear that the numerical results of the present
study are well matched with numerical and experimen-
tal results from ref. [2].

Once rub-impact happens, the system response
becomes nonlinear and different combinations of exci-
tation frequencies can be seen in the frequency spec-
trum. Figure 10 shows the comparison of the frequency
spectra obtained from the present study and ref. [2].

A clear agreement is obtained between the numeri-
cal results of the present study and ref. [2]. However,
a slight variation is observed with the experimental
results. The frequency dispersion that is observed in
the experimental result is not obtained in the numerical
results. Still, the amplitudes and frequencies of both
results have good matching.

The comparison study in this section clearly ensures
the validity of the proposed methodology. Hence, it is
employed for the nonlinear dynamic analysis of the
two-spool rotor system undergoing rub-impact. It is
explained in the following section.

6 Rub-impact in the two-spool rotor system

As thewhirling amplitudeof the rotor exceeds the clear-
ance at disk 2 position, it contacts the stator during a
rotor orbit. As a result, the nature of the rotor response
changes significantly. In order to study this nonlinear
behavior, The TVM is employed by taking the num-
ber of discrete time points Np as 300. Figures 11 and
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Fig. 8 Vertical vibration of the LP compressor disk at ω1 = 216.8 rad/s and κ = 1.2 a present study b numerical study from ref. [2]

Fig. 9 Vertical vibration of the LP compressor disk at ω1 = 252.6 rad/s and ω2 = 301.2 rad/s a present study b experiment from
ref. [2]

12 show the rubbing responses of the rotor at disk 2
position when it is undergoing co-rotation and counter-
rotation, respectively. The system parameters are taken
as kc = 5 × 106 N/m, δ = 0.1 mm and μ = 0.01. As the
rotor touches the stator, a rightward bending is observed
alongwith a resonance shift which is happeningmainly
due to the addition of contact stiffness. In a speed range
of [0,15000] rpm, four contact regions are noticed in the
response which are zoomed in Figs. 11 and 12. When
rotors are co-rotating, the initial contact happened atω1

= 6096.3 rpm, whereas for the counter-rotation, it hap-
pened at ω1 = 3882 rpm. It indicates that for the same

set of system parameters, the counter-rotating system
undergoes early rub-impact. This is due to the lower
critical speeds of the counter-rotating system compared
to the co-rotating system. The validation of the TVM
with the MHBM-AFT is also displayed in Figs. 11 and
12. The MHBM-AFT technique is utilized by taking
the number of harmonics as 5. A good agreement is
obtained between the results of both methods.

In order to verify the coupling of the inner and outer
rotor vibrations, the responses are determined at the
disk 4 position as well. They are shown in Figs. 13
and 14. It is observed that the outer rotor also experi-
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Fig. 10 Frequency spectra of the LP compressor disk displacement at ω1 = 184.1 rad/s after rub-impact a present study b numerical
study from ref. [2] c experimental study from ref. [2]

Fig. 11 Response at disk 2 position when rotors are co-rotating

Fig. 12 Response at disk 2 position when rotors are counter-rotating
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Fig. 13 Response at disk 4 position when rotors are co-rotating

Fig. 14 Response at disk 4 position when rotors are counter-rotating

ences a similar kind of rightward bending as the inner
rotor, even though it doesn’t undergo any rub-impact. It
shows the coupling of the inner and outer rotor vibra-
tions which is mainly occurring due to the presence
of the inter-shaft bearing. Moreover, it is also noticed
that the amplitude of the outer rotor response is slightly
larger than that of the inner rotor.

Figures 15 and 16 show the orbit plots and FFT dia-
grams of the co- and counter-rotating systems during
rub-impact. They are determined at certain rotational
speeds that are marked as points a, b and c in Figs. 11
and 12. These diagrams will help to understand the
motion types and frequency contents in the response

during rub-impact. It is observed that both the rotors
are orbiting in a circular path and are exceeding the
clearance space, indicating the synchronous full annu-
lar rub at disk 2. While noticing the FFT diagrams, it
is found that in addition to (1,0) and (0,1) components,
other components such as (1,-2), (2,-1), (2,-3) and (3,-
2) are also seen in the response. However, their ampli-
tudes are very small compared to that of the excitation
frequency components (1,0) and (0,1). The additional
components are appearing mainly due to the presence
of nonlinearities, induced as a result of rub.Moredetails
of the post-rub effects will be obtained after perform-
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Fig. 15 Orbit plot and the FFT of the rotor displacements during co-rotation of rotors (after rub-impact)

ing the stability analysis and parametric analysis. They
are discussed in the next sections.

7 Stability analysis

The stability analysis of the synchronous full annular
rub response is performed using the theory as described
in Sect. 3.3. In this analysis, the system is slightly
perturbed from the steady-state solution point and the
eigenvalues of the perturbed system are determined.
The system is said to be stable when the real parts of the
first 2Nsize eigenvalues are negative. Figure 17 shows
the stability diagrams of the rub-impact regions during
co-rotation. Since the non-contact region is always sta-
ble, it isn’t displayed in the stability diagram. In Fig. 17,
the stable part is represented using the continuous line,
whereas the unstable part is represented using the dot-
ted line. The bifurcations appearing in the system are
determined by monitoring the Floquet exponents. The
first 2Nsize eigenvalues of the perturbed systembecome
equal to the Floquet exponents when a sufficient num-

ber of time points Np are taken for the TVM during the
stability analysis. Two types of bifurcations, namely
limit point (LP) and Neimark–Sacker (NS) bifurca-
tions, are observed in the response and are denoted
using circle and triangle markers, respectively. An LP
bifurcation is detected when at least one of the Floquet
exponents crosses the imaginary axis of the complex
plane along the real axis, whereas the NS bifurcation is
identified when a pair of Floquet exponents crosses the
imaginary axis as a pair of complex conjugates [24,25].
The NS bifurcation indicates a transition from periodic
to the quasi-periodic regime, whereas the LP bifurca-
tion points out a sudden jump phenomenon.

Figure 18 shows the real parts of the eigenvalues
during the first two rub-impact regions. The speed at
which the real parts became positive is indicated in
Fig. 18 with its amplitude. It actually happened at ω1

= 6263.3 rpm and the response is stable until this par-
ticular speed. An NS bifurcation is detected at ω1 =
6263.3 rpm by monitoring the Floquet exponents of
the system. Figure 19a shows the Floquet exponents of
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Fig. 16 Orbit plot and the FFT of the rotor displacements during counter-rotation of rotors (after rub-impact)

the system before and after NS bifurcation. It is seen
that a pair of Floquet exponents crossed the imaginary
axis as a pair of complex conjugates that confirms the
occurrence of NS bifurcation at ω1 = 6263.3 rpm. As
a result, a quasi-periodic regime can be initiated from
this bifurcation point. However, the proposed method-
ology is unable to capture the quasi-periodic regime,
since the quasi-periodicity contains the irrational fre-
quency components that are unknown. As the speed is
increased, the periodic response becomes unstable and
it is shown by the dotted line in Fig. 17. At ω1 = 6596
rpm, an LP bifurcation is identified which indicates the
presence of a sudden jump phenomenon. In order to
verify this, the Floquet exponents are determined and
displayed in Fig. 19b. It is observed that one of the Flo-
quet exponents crossed the imaginary axis along the
real axis. It confirms the occurrence of LP bifurcation
at ω1 = 6596 rpm. At this speed, the quasi-periodic
regime also coexists, that is the reason for seeing a pair
of Floquet exponents crossing the imaginary axis as a
pair of complex conjugates in Fig. 19b. Similar to the

first peak, the NS and LP bifurcations are observed for
the other peaks as well. It should also be noted that the
orbit plots and FFT diagrams that are shown in Fig. 15
are stable, periodic responses.

The stability analysis is performed for the counter-
rotating system as well. It is shown in Fig. 20. The
periodic response became unstable when the rotational
speed reached ω1 = 3883.3 rpm. It is visible from
Fig. 21 in which the real parts of the eigenvalues
are plotted against the rotor speed. An NS bifurca-
tion is detected at ω1 = 3883.3 rpm and the response
becameunstable during the remaining contact period. It
should be noted that the orbit plots and FFT diagrams
displayed in Fig. 16 represent the unstable, periodic
response. As the speed is increased, an LP bifurcation
is identified at ω1 = 4130.6 rpm and a sudden jump
phenomenon can happen at this speed. The Floquet
exponents in the vicinity of the NS and LP bifurca-
tions are shown in Fig. 22 and it verifies the occurrence
of the NS and LP bifurcations. For the other peaks as
well, the system became unstable immediately after the
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Fig. 17 Stability analysis of the synchronous rub response when rotors are co-rotating

contact. Hence it can be stated that for the same set of
system parameters, the NS bifurcation and the onset of
the quasi-periodic regime are happening early for the
counter-rotation.

During co-rotation, two additional small peaks are
observed in the response between 10885-10892 rpm
and 11038-11043 rpm. They are analyzed using the sta-
bility diagrams, FFT spectra and orbit plots. In Fig. 23,
the orbit plots and FFT diagrams are determined at the
stable regions of the response,marked as points a and b.
While observing the frequency components, it is seen
that an additional (2,-1) component is also present in
the response besides (1,0) and (0,1) components. Due

to the presence of this frequency component, two addi-
tional peaks are appearing in the response. Since the
damping in themodel is very low, the (2,-1) component
also dominates in the response along with the exci-
tation frequency components. Some other frequency
components are also existing in the frequency spec-
trum; however, their effects are not visible due to their
low amplitudes. From the orbit plots, it is seen that the
rotors are whirling in multiple orbits and they are mov-
ing in and out of the clearance space. It also indicates
the presence of multiple frequency components in the
response. During this motion, the rub-impact happens
occasionally, indicating the partial rub.
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Fig. 18 Real parts of the eigenvalues during the first two rub-impact regions (co-rotation)

Fig. 19 Floquet exponents in the vicinity of NS and LP bifurcations (co-rotation)

In order to understandmore about these small peaks,
they are analyzed by varying the coefficient of friction
and contact stiffness, as shown in Fig. 24. The coeffi-
cient of friction is varied between 0.1 and 0.5, while
the contact stiffness is varied between 1×106 N/m and
10 × 106 N/m. It is observed that when the coefficient
of friction is increased, the amplitudes of the peaks are
diminishing. It indicates that the magnitude of (2,-1)

component is reducing as the value of μ is increased.
However, when the contact stiffness is increased, the
peaks are becoming more visible and they diminish for
smaller values of the contact stiffness. As a result, it can
be stated that the small peaks are appearing due to the
(2,-1) frequency component and are more visible when
the coefficient of friction is low and contact stiffness is
high.
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Fig. 20 Stability analysis of the synchronous rub response when rotors are counter-rotating

8 Parametric analysis

In order to understand the effect of different rub param-
eters such as coefficient of friction, rotor–stator con-
tact stiffness and clearance on the stability of the rub-
bing responses, a parametric analysis is conducted. The
response curves are plotted for different values of a
parameter by keeping the others constant. The bifurca-
tion points are detected for each set of rub parameters
and are compared in this section. It is also noted that the
damping values of all the bearings are increased to 1000
Ns/m in order to get visible variations in the stability.
This is due to the fact that for the small damping values

such as 100 Ns/m, the rubbing responses were mostly
unstable during counter-rotation, even for small values
of the friction coefficient as seen in Fig. 20. Hence, it
won’t be possible to understand the variations in the
stability with respect to the parameters.

8.1 Effect of coefficient of friction

The influence of rotor–stator interface friction on the
rubbing response is investigated by varying the coeffi-
cient of friction. Other parameters such as contact stiff-
ness (kc = 5× 106 N/m) and clearance (δ = 0.1 mm) are
kept as constants during the analysis. Figure 25 shows
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Fig. 21 Real parts of the eigenvalues during the first two rub-impact regions (counter-rotation)

Fig. 22 Floquet exponents in the vicinity of NS and LP bifurcations (counter-rotation)

the variations in the onset of NS bifurcations when
rotors are co-rotating. The first two resonant peaks are
only displayed because the other peaks occupy within
the clearance space due to the increased damping. It is
observed that the range of rightward bending is short-
ened as the coefficient of friction is increased. This
may due to the increased friction losses happening due
to the increased resistance. Significant variations are
observed in the stability whenμ is increased from 0.05
to 0.2. For μ = 0.05 and 0.08, the NS bifurcation is
not at all occurring in the first peak, however, it is hap-

pened to occur as theμ is increased. TheNSbifurcation
is detected at ω1= 6171 rpm for μ = 0.1, whereas it is
identified at ω1= 6113 rpm for μ = 0.2. It indicates
that the onset points of NS bifurcation are happening
early as the coefficient of friction is increased. It is rep-
resented using an arrow mark in Fig. 25, pointing the
direction of NS bifurcation as μ is increased.

The variations in the onset of NS bifurcation during
counter-rotation are shown in Fig. 26. In the case of
counter-rotation, the values of the coefficient of friction
are taken smaller compared to the co-rotation, because
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Fig. 23 Stability diagram,
FFT spectrum and orbit plot
of the two additional small
peaks

the rubbing responses are mostly unstable for larger
values of the coefficient of friction. Hence, there won’t
be any visible variations in the stabilitywhen the coeffi-
cient of friction is changed.As a result, theμ is varied in
the range of 0.001 and 0.05.While analyzing Fig. 26, it
is noticed that the system response shows similar nature
as the co-rotation. The onset points of NS bifurcation
are happening early when μ is increased.

In order to verify whether any changes are happen-
ing in the frequency contents during the variation of
coefficient of friction, the FFT diagrams are plotted.

Figure 27 shows the comparison of frequency compo-
nents for the two different values of μ. By observing
Fig. 27, it is seen that the same frequency components
are present in the responses for both values of μ.

8.2 Effect of rotor–stator contact stiffness

The effect of contact stiffness on the response is ana-
lyzed by varying the value of kc. Figures 28 and 29
show the variations in the rubbing responses for differ-
ent values of contact stiffness. From Figs. 28 and 29,
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Fig. 24 Variations in the small peaks when the coefficient of friction and contact stiffness are changed

it is observed that the extent of rightward bending is
increased as the value of kc is increased. It indicates
that the stator with hard surfaces is suppressing the
whirling amplitude. Moreover, the onset of NS bifur-
cation points is getting delayed as the contact stiffness
is increased. It is shown by the direction of arrow in
Figs. 28 and 29. This nature is the same for both co-
and counter-rotations.

The frequency contents in the responses for different
values of kc are compared using the FFT diagrams. Fig-
ure 30 shows the comparison plot for kc = 3×106 N/m
and kc = 10 × 106 N/m at different rotating speeds.
It is observed that the responses contain similar fre-

quency components for both values of kc with a slight
difference in their amplitudes.

8.3 Effect of clearance

The clearance between disk 2 and its stator is var-
ied and the corresponding response behavior is plotted
as shown in Figs. 31 and 32. It is observed that the
range of rightward bending is shortened as the clear-
ance is increased. Moreover, for both co-rotation and
counter-rotation, the onset of NS bifurcation points is
delayed when the clearance between rotor and stator is
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Fig. 25 Variations in the onset of NS bifurcation when the coefficient of friction is increased (co-rotation)

Fig. 26 Variations in the onset of NS bifurcation when the coefficient of friction is increased (counter-rotation)

increased. Major portion of the rubbing responses are
stable for large clearances as seen in Figs. 31 and 32.

9 Conclusion

In this paper, the stability analysis of a two-spool rotor
system undergoing rub-impact is performed. The TVM
is used to obtain the steady-state, periodic responses of
the system. The main advantage of the TVM is that
it doesn’t require alternate transformations between
the frequency and time domains during the calcula-

tion of the nonlinear Jacobian matrix, as compared
to the MHBM-AFT method. It helped in determining
the nonlinear force and the Jacobian matrix directly
from the displacement vector since all the variables are
expressed in the time domain.

The analysis is carried out by developing a one
dimensional FE model of a dual-rotor system using
the Timoshenko beam elements. Later, its size is
reduced using an efficient model reduction technique
based on component mode synthesis. In this tech-
nique, thewhole system is categorized into two compo-
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Fig. 27 Comparison of the FFT’s of the rotor responses for two different values of μ

Fig. 28 Variations in the onset of NS bifurcation when the contact stiffness is increased (co-rotation)

nents, namely primary and secondary components. All
the nonlinear DOFs along with their boundary DOFs
are included in the primary component whereas the
remaining linear DOFs are assembled in the secondary
component. This technique helped to reduce the com-
putational time by executing the analysis only on the
nonlinear DOFs. The accuracy of the reduced model is
checked with that of the complete model by compar-
ing the Campbell diagrams. Goodmatching is obtained
which indicates that the reduced model is accurate
enough.

Two modes of rotor operations, namely co-rotation
and counter-rotation, are included in the analysis to
study their effects on the response behavior. TheCamp-
bell diagrams and the unbalance responses of the
dual-rotor model are determined for both modes of
rotor operations. From the Campbell diagrams, it is
observed that the critical speeds are different for both
co- and counter-rotations. For counter-rotation, the for-
ward critical speeds are smaller, and backward critical
speeds are larger compared to that of co-rotation. This
is mainly due to the cancellation of the gyroscopic
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Fig. 29 Variations in the onset of NS bifurcation when the contact stiffness is increased (counter-rotation)

Fig. 30 Comparison of the FFT’s of the rotor responses for kc = 3 × 106 N/m and kc = 10 × 106 N/m

moments in the case of counter-rotation. Moreover,
during the counter-rotation, the direction of whirling
is dependent on the value of rotating speed. When the
rotating speed is in the range of resonance with respect
to the outer rotor excitation, both the rotors whirled in
the same spin direction as the outer rotor, whereaswhen
the speed is in the range of resonance with respect to
the inner rotor excitation, both the rotors whirled in the
same spin direction as the inner rotor. However, dur-
ing the co-rotation, the whirling always happens in one
direction irrespective of the rotating speed.

When contact is initiated, a rightward bending of
the response curve is observed as it touches the sta-
tor. Due to the presence of inter-shaft bearing, the cou-
pling of the inner and outer rotor vibrations have hap-
pened. As a result, the outer rotor also showed a similar
rightward bending, although it didn’t undergo any rub-
impact. The stability of each solution point is assessed
using a technique based on the Floquet theory. A hyper-
sphere based continuation algorithm is used to obtain
the response beyond the bifurcation points. TheFloquet
exponents are monitored during the continuation pro-
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Fig. 31 Variations in the onset of NS bifurcation when the clearance is increased (co-rotation)

Fig. 32 Variations in the onset of NS bifurcation when the clearance is increased (counter-rotation)

cedure in order to detect the bifurcation points. Mainly,
LP and NS bifurcations are observed in the responses
when the rotor touched the stator. It is observed that
the direction of rotor rotation has a significant effect on
the onset of NS bifurcation. For the same set of sys-
tem parameters, the onset of NS bifurcation happened
early for the counter-rotating system compared to the
co-rotating system.

Finally, a parametric analysis is conducted to inves-
tigate the effect of different rub parameters on the rub-
bing response. The parameters such as the coefficient of

friction, rotor–stator contact stiffness and clearance are
varied individually by keeping the others constant. It is
found that when the coefficient of friction is increased,
the range of rightward leaning is shortened. In addi-
tion, the early onset of NS bifurcation is observed as
the co-efficient of friction is increased. However, when
the contact stiffness is increased, the rightward bend-
ing of the response is increased and the onset of NS
bifurcation is delayed. For clearance as well, the onset
of NS bifurcation is delayed as the gap between rotor
and stator is increased.
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