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Abstract In the present paper, a new (3+1)-
dimensional Schrédinger equation in Quantum Mechan-
icsis derived. Based on the extended (3 + 1)-dimensional
Zero curvature equation, this equation is derived for the
first time via the compatibility condition. Meanwhile,
some soliton solutions are presented. Finally, conser-
vation laws also obtained.
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1 Introduction

Nonlinear evolution equations play a very important
role in many fields, as many nonlinear phenomena can
be described by them. It is well-known that many scien-
tific application fields exist a rich variety of nonlinear
phenomena. Studying the analytical solutions of these
equations becomes a hot research topic. Various sys-
tematic methods have been proposed and developed to
seek analytical solutions of NLEEs. For example, some
of the most important approaches are inverse scattering
transformation [1], Hirotas bilinear direct method [2],
Backlund transformation [3], Darboux transformations
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[4,5], generalized multi-symplectic method [6-9], Lax
pairs [10], symmetry method [11-19], auxiliary func-
tion method [20,21], and other methods. These meth-
ods have powerful features that perform it practical for
dealing with a great many of nonlinear evolution equa-
tions.

The nonlinear Schrodinger equation (NLSE) [1] is
widely considered as a general mathematical model to
describe the evolution of slow wave packets in gen-
eral nonlinear wave systems. It plays an important role
in nonlinear optics, condensed state physics and other
physical sciences. With the development of science and
technology and the continuous deepening of research,
we need to use more complex equations to describe the
nonlinear phenomena in reality. Therefore, equations
have been extended on the basis of standard form of
NLSE, which includes variable coefficients, high order,
multi-dimensional, non-local, fractional order and their
combined forms.

Recently, Wang [22] considered a new (3+1)-
dimensional sine-Gordon and sinh-Gordon equation
from extended (3 + 1)-dimensional zero curvature equa-
tion. Also, Wang et al. [13] studied a new (2+1)-
dimensional sine-Gordon and sinh-Gordon equation.
In paper [23], they get almost-periodic solutions of
the (2+ 1)-dimensional three-wave equation. In paper
[24], they derive Schrodinger equation and give some
analytic solutions. In paper [17], a (2+ 1)-dimensional
KdV and mKdV equation are derived from positive
case. In this paper, we try to derive a (3 + 1)-dimensional
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Schrodinger equation via extended (3 + 1)-dimensional
zero curvature equation. In fact, this paper is a contin-
uous paper of the previous ones [13,17,22].

This paper is mainly divided into the following parts
to carry out research; in the second section, we derived
the (3 + 1)-dimensional Schrodinger equation from the
extended zero curvature equation. In the third sec-
tion, some soliton solutions and analytic solutions are
obtained. In the last section, some conclusions of this
paper are displayed.

2 Derivation of the new (3 + 1)-dimensional
Schrodinger equation

Recently, Wang [22] from the following Lax pairs com-
patibility equation,

{‘pz=¢x+(py+M(p, )

¢ = ¢x + ¢y + No,

where ¢ is function of x,y,z and t. ¢ is an n-
dimensional vector and M and N are n X n matrices.
Wang [22] considered ¢,; = ¢;; and derived the fol-
lowing (3 + 1)-dimensional zero curvature equation

Mt+Nx+Ny_Mx_My_Nz+[M»N]=0’ (2)

where [M, N]= MN — NM,and M, N are [1,13,17,
22,24]

(it q _(AB
(F)o(l)

where A, B, C and D are scalar functions of ¢g(x, y,
z,t),r(x,y,z, t), and their derivatives, and ¢, where
q, r are functions of x, y, z, t, ¢ is the spectral param-
eter. Substituting (3) into (2), one can find D = —A,
and one can have

Ar+Ay— A, =rB—qC,

By, +By—B; =qx+qy—q; +2iB{ +2Aq,

Cy+Cy—Co=ry+ry—r —2iCl —2rA.

“)

In general, it is difficult to solve these equations. Since
¢ is the eigenvalue and it is a free parameter, in order
to solve A, B and C, by seeking finite power series
expansions. In this paper, unlike the previous work [22],
we consider positive case for n = 2, one can get

A=a(x,y, 2,0 +ar(x, y, 2, 0)¢ +ao(x, y,2,1)

B=by(x,y,2, 00> +bi(x,y,z, )¢ +bo(x, y, 2, 1),

C=cx, 92,08 +c1(x,y,2,0¢ +co(x, v, 2, 1).
5
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Putting (5) into (4) and from the second and third equa-
tion of Eq. (4), from the coefficients of ¢3 immediately
generates by = ¢ = 0. Thus, we rewrite Eq. (5) as
follows

A=ax,y, 7,00 +a1(x,y, 2,08 +ao(x, y, 2, ),
B =b1(x,y,2,1)¢ +bo(x,y,z,1), (6)
C=ci(x,y,z,0)¢ +colx, y,2,1).

Substituting Eq. (6) into Eq. (4), from the different coef-
ficients of ¢, we can obtain

A:2i§2+iqr, B:—Zq{—‘,—i(qx—i—qy—qz), 7
C=-2r¢ —i(rx +ry —rz).

Finally, let r = ¢*, and then we get the new (3+1)-
dimensional Schrodinger equation as follows

i (9 —qx — qy)
- (‘]xx +qyy + Gz + z%cy —2qx; — 251yz)
+2lqI*q =0. ®)

To eliminate items g, and gy, consider the transforma-
tion g(x,y,z,.1) = U, n.7,2),§ =x+1,n=
y+1t, T =t,Z = z, substitute them into Eq. (8), one
can get
i (Ur) — (Ugs + Upy + Uzz
+2Ugy — 2Usz — 2Uyz) +2lUPU =0. (9
In order to write in a common form, we rewrite Eq. (9)
as follows (3 + 1)-dimensional Schrodinger equation
il/lt - (Mxx + uyy + Uz + 2Mxy - 2uxz - 2“)?2)
+2[ul’u = 0. (10)
In the following Sections, we will study Eq. (10).

3 Symmetries analysis and analytical solutions of
the new (3 +1)-dimensional Schrodinger
equation

3.1 Symmetry analysis for transformation u = p +iq

In order to get the Lie point symmetry of Eq. (10),
assumethatu = p+iq,where p(x, y,z,1t),q(x,y,2,1t)
are real functions. By separating the real and imaginary
parts of this equation, we can obtain the following sys-
tem of equations

Pt — (Clxx + qyy + gz + 2C])cy —2qx; — Z‘Zyz)

+2(p* +¢Hq =0, (11)
q: + (pxx + pPyy + Pz + 2ny —2px; — 2Pyz)
—2(p*+¢Hp=0. (12)
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For the vector fields [11-17,22] Thus, the infinitesimal criterion reads as follows
ad ,
V=§xyztp, 6])5 Pt — (n"” + P T 291
N 9 —2p?** — anyz) (19)
s Vo ’t9 5 N
L P n o (7 P P 2
L)y
ay (13) —2nP¥E —2pPY%) 1)
+§Z(X,y,Z,f,Pvf1)a—Z —6p*nP —4pgn? —2¢*nP = 0. (22)
a
+nP(x,y,2,t, p,q)— where
ap t 1 2 3
3 n?” = Di(n") — pxD(§7) — pyDi(§7) — pi Dy (§7)
+nq(x’yaz’tap’q)£a _Pth(§:4)7
and " = Di(”) = pyDx (") = pyDr(§%) — py Dx(87)
f=1+es'(x,y,2,1,p,q) + 0@, — pDx (&),
F=x+e (. y.2.1.p.q) + 0@, 7’ = Dy() —uxDy(E") —uyDy(§?) —us Dy(5Y)
J=y+eE(x,y, 2,0, p.q) + O(), (14 —u/ Dy (Y,
E=z4 by ntpg) + 0@ 7 = Do) = e Dy (8)) — e Dy (EY) — iy Dy (80
p=pten’x.y.2.6,p.q) + 0@, Dy (EY),
5 — q 2
4=gq+entx.y.onpq)+ 0. Y = Dy(P") = 4y Dy(E) = 1y Dy (61) — 0y Dy 6)
On the basis of the symmetry method (For more details 4
. - szDy(s ),
refer to Refs. [11,12]), applying the second prolonga- . . 3 . )
tion pr®V to (11) and (12), and get N = D) —uy Di(§7) —uxe D (§7) — uy D (§7)
4
prPV (AL, 82)|a=0,4,=0 = 0, (15) — uz Dy (§7),
where (23)

Ay =pr— (qxx +qyy + 4z + 2qxy — 24x:

and so on. D; express the total derivative operator.

_quz) 20 +4)q, (16) Lastly, we get the following results
Ay =gt + (Pxx + Pyy + Pz +2pxy — 2pa; np = —%qu7 +qF — %F3p,
~2py:) = 20" + %), (17

and pr® is the second prolongation

1 1
Ng = EXPF7 —pFu — §F3q,

pr(z)V =

V 4+ Pt (x, y, 1, p. q)% + 0P (x,y,z,t. p, q)% +nP(x,y, 2,1, p, q)a%
AP0y, 21 P g P (Y, 208 P g) g

dpxy
0P, v, 20t ) o + P (Y, 2t P @) g
AP Y 2 P ) gy P @Y 2 1 D ) gy PP (Y 2 P ) g

+nPY(x,y,2,t, p, q)%‘y +nP%(x, y,2,t, p, Q)%

@Y1 P @) g A0 Ly 2t P g 1 (LY. 2 P ) g
H LY, 2 P ) g+ 1Y (LY, 2t P )

1 (Y, 2t Py @) g (0, Y21 Pl )

T Y, 2 P ) g AT Y 2 P @) g 0T (0, Y 2 P )

+ + nqyy(x’y’z,[, p’q)#ayv +anZ(x’ Y.z, 1, p, q)%

(18)
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£ = tFy + Fu, where
1 0 d d d
Y= —tF 4+ —xF3 + Fy, 1% Vo=—,V Va=—,
§ 1+ 5xF 4 Fo N T Sl
1
& = —tF1 4+ -xF3 + Fio, V5=i,V6=2ti+xi+y—
| 2 o ot dx dy (30)
£ = 1Fy = 3xFy+ F, 24) L0 p
0z P’
where Fj(i = 1,2,3---11 are functions of (—x + v—2 ) ) 0 ) d a
=2— 42— +2t—+z—.
Y, X +2). ! dx dy 0z Za¢
From (30), one can get one-parameter groups G,
3.2 Symmetry analysis for transformation u = Pe'? Gi: x+8y.2,1 P, 9),
Gy (x,y+e,2,t, P, @),
First, consider the following hypothesis G3: (x,y,z+¢&,t,P,9),
u(x.y. 2. 1) = P(x, y, 2, el D, @5 G lyniter.e), 31)

where P(x,y,z,t) is the shape of the pulse and
¢(x,y, z,t) represents the phase portion of the solu-
tions [25]. In this way, one separates real and imaginary
parts; one can get
Pz - 2Px¢x - 2Py¢y - 2PZ¢Z
—Pyy — Poyy — Pz — 2Py — 2Py,
_2P¢xy + 2Px¢z + 2Pz¢x + P¢xz + 2Py¢z
+2P.¢y + 2Py, =0, (26)
—P¢ — Py + P — Py + Ps — P
+P¢? — 2Py, — 2Py,
+2sz - 2P¢x¢z + 2Pyz
—2P¢py¢p, + P> =0. (27)

3.3 Symmetry analysis (26) and (27)

In this subsection, once again, we consider (26) and
(27) using symmetry method. Repeat previous steps,
we can get

np = —c1P,ny =c3z+cs,& =2cit + o2,

= Cc1x + 2c3t + ¢4,

&y = c1y + 2c3t + ¢,

&, =c1z — 2c3t + c7, (28)

wherec;(i = 1,2, 3,4, 5, 6,7) are arbitrary constants.
Therefore, we obtain following infinitesimal generators

V=Vi+WV+Vi+Vi+Vs+ Vg+ V7, (29)

@ Springer

Gs: (x,y,z,t, P +¢,¢),
Ge: (egx,egy,egz, eezt,eng,¢>>,
Gr: (x + 2¢et, y + 2¢t, 7+ 2¢t, P, p + ze + 2821‘) .

It is clear that all of them are symmetry group; this
implies thatif P = f(x,y,z,t),g(x,y,2,t) = @ are
solutions of the new Schrodinger equation, the follow-
ing functions also are solutions of (10)

P] =f(x_5ay,z,t,)a¢l :g(x_87y7zat)’
P2=f(x,y—8,z,t,),¢2 =g(X,y—8,Z,f),
Py=f(x,y,z—&t),p3=¢8(x,y,2—¢,1),
P4=f(x’y7zaf_8,)a¢4=g(X,y7Z,T_8),

Ps=e+ f(x,y.2,1,), s =8 (x,y,2,1),

Po=e“f (e_sx, e ‘y, ez, e_Szt) , (32)
b6 =g (e’sx, 6%y, ez, e*52t> ,

P; = f (x +2et,y +2et, 7 +2et),
¢ = (g +ze + 282t> (x +2¢t, y + 2et, z + 2¢t) .

From above analysis, one can see that if we choose
different transformation, we get different vector fields.

3.4 Soliton solutions of the new (3 + 1)-dimensional
Schrodinger equation

3.4.1 Soliton solutions

In general, the wave number of the solution should be
constant quantity, that is to say, ¢xx, @yy, Pxy, Pxz, Py;
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and ¢, should be equal to zero. Therefore, Eqs. (26),
(27) reduced to

Pz - 2Px¢x - 2Py¢y - 2Pz¢z - 2Px¢y - 2Py¢x
+2P ¢, +2P¢y + 2Py, +2P,¢p, =0, (33)
—P¢; = Pux + Po; — Py + Py
—P..+ P¢? — 2Py — 2Py
+2sz - 2P¢x¢z + 2Pyz
—2P¢py¢, + P = 0. (34)

3.4.2 Bright solutions

In order to get solutions, let us consider the following
hypothesis [25,26]

P = Asech? T, (35)
where
T = Bix + By + B3z — vt, (36)

and the phase of solutions is given by
¢ =—kix —kyy —kzz+wt +06, (37)
A is the amplitude, B; (i = 1, 2, 3) is the inverse width
and v is the velocity of the solutions, respectively, the
wave number are given by ki, ky and k3, w is the fre-
quency, the center of the phase represents 6, for more
details see [25,26].

Substituting (35) into (33) and (34), one can get
pvAsech? T tanh t — 2k pABj sech? T tanh T

— 2kypABj sech? T tanh T

— 2k3pABs sech? T tanh t

— 2kopABj sech? T tanh T

— 2k pABj sech? T tanh T (38)

+ 2k3pABj sech? T tanh T

+ 2k; pABj3sech? ttanh t

+ 2k3pABj sech? T tanh T

+ 2k pABj3sech? Ttanh T = 0,
and

—wAsech? t — p>AB? sech? t

+p(p 4+ 1)AB? sech?™ ¢ + kI pAsech” ©

—p?AB3sech? T + p(p + 1)AB3 sech? 2 ¢

+k3pAsech? T — p2AB32 sech? ¢

+p(p+ 1)AB3 sech?™ ¢

+k§pA sech” T — 2p>AB, B; sech” t

+2p(p + 1)ABy By sech?*? © — 2k ky A sech? t

+2p*AB3 By sech” T

—2p(p + 1)AB3 By sech?™? —2k k3 A sech? T

+2p?AB) B3 sech” ©

—2p(p + 1)ABy B3 sech?*? ¢

—2kok3 A sech? T + A®sech®” © = 0. (39)
From Eq. (38), one can derive
v = 2ki By + 2k> B> + 2k3 B3 + 2k» B,

+ 2k1 By — 2k3 By — 2k1 B3 — 2k3 B — 2k, B3.

(40)

Now, consider Eq. (39), we find that the exponents 3 p

and p + 2 should be equal. Thus, one can have p = 1.
Therefore, from Eq. (39) we derive

w=—B} +k? — B3 +k3— B} +k3-2B\B,
—2kiky + 2B, B3 — 2kiks + 2B2 By — 2ksks,
A= [AByBs + 4B By — 4B\ By — 2B} — 2B} — 2B].
(41

Thus, from the condition it requires that (4B, B3+
4B B3 — 4B B, — 2B — 2B — 2B}) > 0. Finally,
the bright soliton solution of (10) is given by

u(x,y,z,1)
= Asech(Bix + Byy + B3y — vi)e! Thix—hay—ksz—oi+0)
(42)

the relation the amplitude A and width B, the frequency
w are presented by (41). The velocity v is decided by
(40). Only when these conditions are satisfied, the solu-
tions can exist.

3.4.3 Dark solutions

Let us assume the following hypothesis [25,26]
P = Atanh? 7, (43)

where t also is Eq. (36).
Inserting (43) into (10), one can derive

—pvA (tanh"’_1 7 — tanh? ! r)
+2ki pAB, (tanhp*1 7 — tanh? ! ‘L’)
+2kypAB; (tanhf”_1 7 — tanh?*! r)
+2k3pABs3 (tanh”_l 7 — tanh?*! t)
( )

+2kopAB; (tanh”~' v — tanh?*! ¢
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+2k; PAB, (tanh”~! v — tanh”*! ¢
—2k3PAB (tanh?~! 7 — tanh?*! ¢

—2k| PAB; (tanh” !

)
)
— tanh? ™! r)
)
)

—2k3PAB; (tanh” ' r — tanh?*! ¢
2k, PAB; (tanhl’” T —tanh?t17) =0, (44)
and
— (pAB}? + pAB3 + pAB} +2pAB B>
—2pAB1Bz —2pAB2B3)
{ (p— Dtanh?~%2 7 — 2ptanh” 7
(45)

+ (p + 1) tanh?*? r}

+ (—o+ k% + k% + k% — 2kky — 2kik3 — 2kok3)
Atanh” T 4+ A3 tanh®” ¢ = 0.
For v, we also get the same value as the dark solutions,
v = 2k1B1 + 2ky By + 2k3 B3 + 2ko By
+ 2k By — 2k3 By — 2k1 B3 — 2k3 By — 2k> B3.
(46)
Balancing the exponents 3p and p + 2, one can also
arrive at p = 1. If we repeat the previous steps, we can
get,
w=—B} +k} — B3 +k3 — B} + k3 — 2B\ B,
—2k1ky + 2B B3 — 2k1ks + 2By B3 — 2k3k3,
A= [~4BBs — 4B\ By + 4B\ By +2B] + 2B} — 2B},
(47)
For A, itis easy to see that this is just a minus sign from
the previous one. Therefore, condition (47) requires

—4B)B3 — 4B B3+ 4B B, +2B; +2B3 —2B? > 0.
Finally, we get the dark solution of (10)
u(x,y,z,1)
= Atanh(Bx + Byy + B3z — vt)e! Thix—key—ksz—wi+0)
(48)

the amplitude A and width B;(i = 1, 2, 3) are linked
by (47), the frequency w is shown (47). The velocity v
is decided by (46).

3.4.4 Complexitons

By employing the following assumption [25,26]
ux, y,z,1)
= f(lhx + by +1z— vt + 91)ei(alx+a2y+ot3z+ﬁf+9o)’
(49)
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where f(§) = f(lix + by + 13z — vt + 61) is areal
function. Putting (49) into (10), we have

Zif"+ Zof + Z3f +217 =0, (50)
where Z| = —I3 — 13 — 13 — 2lj, + 21115 + 2bl3,
Z3=—pf +0[% —|—0l% —|—Ol§ + 2aj00 + 2013 — 20003,
Zy = —iv — 2ialy — 2iagly — 2iasls — 2ianl; —
2ialy +2iazly + 2y ls +2iasly + 2ianl3. Since f is
areal value function, therefore Z, = 0. In other words,
v =201l —2a2lp —2a3l3 — 20201 — 200112 + 20311 +
20113 + 2031y + 2a213. So, Eq. (50) reduced to

Zif'+ Zsf +2f7 =0, 1)
this equation has many solutions, such as
F(&) = Asn(ug, b) = £k |22 sn
1+k2
(52)

Z3 k
m(é —&). k],

if k —> 1, one can get f(§) = i@
tanh( 22731(5—5;'0)>,and

—73
f®) = Adn(ug. k) = £,/ >

2
7 (53)
<‘/ m@ &0), k)

if k —> 1, one can get f(§) = =+/—Z3sech
( _Z* & - EO)) We have get many other forms of

solutlons we do not list all of them. Finally, we can get
analytic solutions of Eq. (10)

| =23
e
Z .
— (& — &), k| @rtaytatpiri)
(1+k%)7,

(54)
_ Z3

dn

u(x,y,z,t) =

if k — 1, we have u(x,y,z,t) = =+

tanh ( 22731(5 — 50)) ei(a1X+ozzy+ozsz+ﬂt+9o)’ and

_Z3
u(x,y,z,t) =+ e dn
(\/I(% 50) k ei(“'x+“2}‘+a3z+ﬁt+90)
Q2—-kHzZ ’ ,

(55)
if k —> 1, one obtains u(x, y, z,t) = £+/—Z3sech
( *Z% (& — gO)) i(a1x+a2y+a3z+ﬂt+60).
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4 Conservation laws

Based on the conservation law multiplier method [12],
using the transformation u(x, y, z,t) = p(x, y, z, 1)+
iqg(x,y,z,t), we get

Rlul = pr — (qxx + qyy + G2z + 20xy — 20z — 24yz)
+2(p* +¢5q
+ G + (Prx + Pyy + Pzz + 2Pxy — 2Pxz — 2Py2)
—2(p* +4°)p.
(56)

Therefore, for the following multiplier, we should
get

A= -0 +2)gx + Fa(—=x+y,y +2)p,

(57)
A=y +2)pe+ Fa(—x+y,y+2)q,

where F4(—x + y, y + z) is arbitrary function (—x +
v, ¥+2), F3(y+z) is arbitrary function (y +z). There-
fore, we get the following statement

Theorem 1 Equation (56) possess a conservation law
Sfor multiplier A1 = —F3qy, Ay = F3py,

1 1
T= <—5pF3qx + EqFSI)x) ,
__1 4 2 2 4 _ _
X = 2F3 P +2p°q” +q" —2ppxy + 2ppxz — PPyy

+2pPy: — PPzz — P4t + Ped — PE = 2pi Py
+2pxpz — 2q9qxy +299x: — qqyy

+29qy: — 49z — 47 — 24xqy + quqz>,
1 1
Y=\ —qF3qxx — ED(FS)ppx - EqFaqu
1 1
+ EQX‘IyFS — F3qxq; — F3ppxx — ED(F3)ppx

1 1
) 3PPxy + §F3Pxpy - F3le7z)’

1 1
Z= <F3q6hx + ED(FS)QQX + F3qqxy — 5F3quZ

1 1
+ §F3q2’,q/\’ + F3ppxx + ED(F3)]7P,\7

1 1
+ F3ppxy — EF.?IJPXZ + EF.%PZPX)-

(58)

Equation (56) has a conservation law for multiplier
Ay = Fyp, Ay = Fyq,

T = 12F+12F
=z Fat5a7Fa),

X:(—%pﬂ—ﬂ%p+&%z
+ﬂmq+ﬂmq—ﬂm0,

Y=(—H%p—&%ﬁ+ﬂ%p (59)
+ Fupxq + Fapyq — F4Pz61)’

Z:(ﬂ%p+ﬂ%P—ﬂ%P

—ﬂmq—ﬂmq+ﬂm0-

5 Conclusions

In the present paper, based on the (3 + 1)-dimensional
zero curvature equation, we have derived a new (3+1)-
dimensional Schrodinger equation. Moreover, from
compatibility conditions, we obtained that (3+1)-
dimensional zero curvature equation and then derived
this equation from the positive case. Subsequently, we
get two systems of partial differential equations with
two different types of transformations. Meanwhile, we
studied these two systems by the Lie group method, and
we obtained their symmetries and infinitesimal opera-
tors. Simultaneously, we find that if we choose different
transformations, we get different symmetries. Accord-
ing to different infinitesimal operators, this equation
can be reduced to the (2 + 1)-dimensional Schrodinger
equation in literature [24], and of course it can be
further reduced to the classical (1+1)-dimensional
Schrodinger equation by using Lie groups again. Fur-
thermore, some soliton solutions and analytic solutions
are derived, including bright solutions and dark solu-
tions, Jacobi elliptic function solutions, and so on. In
addition, some conservation laws are also given based
on the multiplier method.

This paper only derived the equation and shows
some analytical solutions, but there are still many issues
to be reported, such as using Hirota bilinear method to
study more soliton solutions, studying the Bdacklund
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transformation and Darboux transformation of the new
(3 +1)-dimensional Schrodinger equation. In addition,
the fractional order version, the discretization as well
as variable coefficients cases of the equation will be
presented in future research papers.
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