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Abstract As a practical tool, visibility graph pro-

vides a different perspective to characterize time

series. In this paper, we present a new visibility

algorithm called directed vector visibility graph and

combine it with the Kullback–Leibler divergence to

measure the irreversibility of multivariable time

series. T directed vector visibility algorithm converts

the time series into a directed network. Subsequently,

the ingoing and outgoing degree distributions of the

directed network can be got to calculate the Kullback–

Leibler divergence, which will be applied to assess the

level of irreversibility of the time series. This is a

simple and effective method without any special

symbolic process. The numerical results from various

types of systems are used to validate that this method

can accurately distinguish reversible time series from

those irreversible ones. Finally, we employ this

method to estimate the irreversibility of financial time

series and the results show that our method is efficient

to analyze the financial time series irreversibility.

Keywords Multivariate time series � Directed vector

visibility graph � Kullback–Leibler divergence �
Multiscale

1 Introduction

For a time series X tð Þ, if the series fXðt1Þ; . . .;XðtNÞg
and fXðtNÞ; . . .;Xðt1Þg possess the identical joint

probability distribution for any N, in other words, if

its statistical properties will not change with the

reversal of time, this time series will be regarded as

reversible time series [1]. Statistically speaking, the

reversible time series has the same probability as its

reversed time series. From the perspective of physics,

the second law of thermodynamics defines the unidi-

rectionality of time for the first time. Time irre-

versibility means that when time is reversed, the

system cannot return to the past state. The stationary

transformations of some nonlinear sequences, Gaus-

sian linear processes and Fourier transform substitu-

tions of Gaussian processes all belong to reversible

processes. On the contrary, the irreversibility of time

series means that the given dynamic system has

nonlinear properties, which is related to dissipative

chaos and non-Gaussian stochastic processes [2, 3].

In the past few decades, many different irreversible

measures have been proposed [4–15]. However, on the

one hand, the reversibility test of time series can

merely analyze the irreversibility of time series

qualitatively rather than quantitatively. On the other

hand, most of the studies mainly focus on the

irreversibility of time series in the low-dimensional

phase space at a single scale. Therefore, researchers

have gradually proposed some statistics which can be

used to quantitatively measure irreversibility and
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extended the irreversible measurement index to high-

dimensional and multiscale analysis [16–22]. At

present, researchers believe that the time series

irreversibility can reflect the dynamic characteristics

of the system and the directionality of time series; they

also find that the irreversibility is related to physical

dissipation [23, 24]. An effective method to charac-

terize it is the Kullback–Leibler divergence

KLDð Þ[25]. Later, some methods, which measure time

series irreversibility by using the difference of prob-

ability distribution between positive and inverse order,

were proposed one after another [26–29]. Lacasa et al.

mapped the time series into a network and applied

KLD to estimate the irreversibility of the univariate

time series [30]. By comparing the degree distribu-

tions of positive and inverse time series, the level of

irreversibility of this time series was reflected. The-

oretically, the visibility graph provides a new method

to characterize time series and this method does not

need to set up the symbolic conditions in advance. It

has been extended and applied to the financial field

[31, 32], fluid dynamics [33, 34] and medical research

[35]. However, this method is not suitable for multi-

variate time series.

Since the algorithm of mapping a time series into a

complex network and using graph theory to explore

the characteristics of time series, most researches have

focused on the analysis of univariate time series. What

is exciting is that Ren et al. [36] proposed the vector

visibility graph VVGð Þ for multivariable time series,

which provides a way to transform the multivariable

time series into a directed complex network. As an

effective method to convert a multivariate time series

into a graph, VVG is a practical tool to analyze

multivariate time series from the perspective of graph

theory. The multivariate time series are mapped into a

directed complex network, while each multidimen-

sional data vector is regarded as one node and the

visibility between the corresponding data vectors

determines the connection of the network. According

to these facts, we propose the directed vector visibility

algorithm. The multivariate time series are mapped

into a graph, and the properties of the association

graph are analyzed. More accurately, we apply the

KLD, which is calculated by the ingoing and outgoing

degree distributions of the time series, to measure the

time series irreversibility. Based on the numerical

results, we confirm that it is a convenient and powerful

method to measure the irreversibility of time series.

The rest of the paper is arranged as follows.

Section 2 shows the methods of the directed vector

visibility graph, the KLD and provides a simple proof

of this method for uncorrelated stochastic series.

Later, we introduce the multiscale method and give the

definition of KLDs. In Sect. 3 , we apply the new

proposed method to analyze several different classes

of processes and verify its validity. Section 4 first

introduces some other statistics and then displays the

practical application of financial time series. Finally,

the conclusions are given in Sect. 5 .

2 Methodology

2.1 2.1 Directed vector visibility graph

Visibility algorithm family is a set of methods which

convert time series into networks on the basis of

geometric criteria [37, 38]. The principle of these

methods is to map the information contained in time

series into another mathematical structure, so that the

effective tools of graph theory can be applied to

describe time series from the different angle.

Here, we use the algorithms of horizontal visibility

graph [38] and vector visibility graph [36] for

reference and introduce the new method, which is

defined as follows:

For a m-dimensional time series Xt ¼ fxitg
m
i¼1 and

the length of each dimension is N, map the multivari-

ate time series into a vector space, then we will gain a

sequence of vectors X~t

� �
, where X~t ¼ ½x1

t ; x
2
t ; . . .x

m
t ].

For any two vectors (X~a and X~b) in the vector

sequence, the projection from X~a to X~b is defined as

follows:

X~
a

b

���
���

���
��� ¼

Pm
i¼1 x

i
ax

i
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1 x
i
ax

i
a

p ð2:1Þ

and X~a

�� ���� �� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pm

i¼1

xiax
i
a

s

. Each vector in the vector

sequence is regarded as one node in the network, and

the visibility criteria for vectors can be shown as

follows:

Any two vectors X~a and X~b will he the directed

visibility from X~a to X~b, if the arbitrary vector X~c

situated between them fulfills:
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X~a

�� ���� ��; X~
a

b

���
���

���
���[ X~

a

c

���
���

���
��� ð2:2Þ

where ta\tc\tb, X~
a

b

���
���

���
��� and X~

a

c

���
���

���
��� is the projection

from X~b and X~c to X~a. Then, we obtain a directed link

from the node standing for X~a to the node standing for

X~b in the network. Therefore, the directed complex

network named directed vector visibility graph

DVVg

� �
can be defined. The number of connections

of node t linked to other past nodes t
0
t0\tð Þ is

expressed by the ingoing degree kin tð Þ. On the

contrary, the number of connections of node t linked

to other future nodes t0 t00 [ tð Þ is expressed by the

outgoing degree kout tð Þ. The degree k tð Þ of the node t

includes these two parts: the ingoing degree kin tð Þ and

the outgoing degree kout tð Þ, that is to say,

k tð Þ ¼ kin tð Þ þ kout tð Þ.
Figure 1 displays the procedures from the multi-

variate time series to its DVVg. The degree distribution

of the DVVg refers to the probability of any node with

degree k. The outgoing and ingoing degree distribu-

tions of a DVVg are, respectively, defined as the

probability distributions of kout and kin, where

Pout kð Þ � P kout ¼ kð Þ and Pin kð Þ � P kin ¼ kð Þ.

2.2 Kullback–Leibler divergence via DVVg

The premise of the work is that the information

contained in the ingoing and outgoing degree distri-

butions can indicate the irreversibility of time series.

More accurately, this can be determined by the

distance between the ingoing and outgoing degree

distributions in the first-order approximation.

The distance between the ingoing and outgoing

degree distributions can be shown by the Kullback–

Leibler divergence KLDð Þ[25]. In information theory,

KLD (or known as relative entropy) is proposed as an

asymmetric measure of the difference between two

probability distributions. Given the random variable x

with two probability distributions p xð Þ and q xð Þ, KLD
with p xð Þ and q xð Þ is given as follows:

KLD pqð Þ ¼
X

x2X
p xð Þ log

p xð Þ
q xð Þ ð2:3Þ

which is equal to zero if and only if the two

probability distributions p xð Þ and q xð Þ are equal.

Otherwise, the KLD is greater than zero.

Theoretically, the information contained in the

outgoing degree distribution kout is enough to distin-

guish the reversible time series from the irreversible

ones. The probability corresponding to the outgoing

degree distribution of the time-reversed time series is

equal to the probability corresponding to the ingoing

degree distribution of the actual process, that is to say,

Pkout
ðk X tð Þf gt¼N;...;1Þ
��� ¼ Pkinðk X tð Þf gt¼1;...;NÞ

��� . The

KLD between Pout kð Þ and Pin kð Þ is written as:

D Pout kð ÞPin kð Þ½ � ¼
X

k

Pout kð Þ log
Pout kð Þ
Pin kð Þ ð2:4Þ

KLD is equal to zero, if and only if, the probability

distribution of both the ingoing and the outgoing

degrees of the series is the same, i.e., Pin kð Þ ¼ Pout kð Þ.
Otherwise, it is positive. The time series is

reversible if and only if Pkin
ðk X tð Þf gt¼1;...;NÞ
��� ¼

Pkinðk X tð Þf gt¼N;...;1Þ ¼
��� Pkoutðk X tð Þf gt¼1;...;NÞ

��� :, that

is, the distribution of ingoing degree is the same as

that of outgoing degree. In other words, if the KLD

between the ingoing and outgoing degree distributions

gradually inclines to zero with the increase in series

size, it means that the time series is reversible.

However, if the KLD converges to a finite positive

value, the time series is considered to be irreversible.

Different from other measures applied to evaluate the

irreversibility of time series [27, 39–41], the KLD has

the statistical significance. Concretely, KLD is a

measure of ‘‘distinguishability.’’ The more distin-

guishable Pout kð Þ and Pin kð Þ are from each other, the

more the KLD deviates from 0, which means that the

time series is more irreversible. Therefore, we use the

value of KLD to reflect the degree of irreversibility of

the time series.

Most of the previous methods for estimating the

irreversibility of time series generally started with a

local symbolization of the sequence, and the occur-

rences of word from the forward- and reverse-

symbolized series are statistically analyzed [42, 43].

As a result, the irreversibility of time series is related

to the difference between the word statistics of the

forward- and reverse-symbolized series. If we only

take advantage of the information contained in the

series kout tð Þf gt¼1;...;N and kin tð Þf gt¼1;...;N , KLD can

also be regarded as a symbolization. Nevertheless,

unlike other methods, this method does not need

123

Directed vector visibility graph from multivariate time series 1739



specific parameters and considers the global informa-

tion. From a statistical mechanics point of view, KLD

can not only determine the irreversibility of the time

series obtained from the non-equilibrium processes,

but also can be used to measure its average entropy

production [2, 17, 44–46].

Next, we give a simple proof of our proposed

algorithm. Here, we only show the ingoing and

outgoing degree distributions obtained from the

uncorrelated stochastic series and confirm that they

are equal under the condition of infinite size series.

Fig. 1 Procedures from the multivariate time series

(m ¼ 3;N ¼ 5) to a directed vector visibility graph. a Each

vector corresponds to a node after mapping the time series into

the vector space. b The link from a node to others is determined

on the basis of the visibility criteria between vectors. c The

corresponding directed vector visibility graph
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Theorem Let Xt ¼ fxitg
m
i¼1;t¼�1;...;1 be a bi-infinite

vector sequence of independent and identically dis-

tributed random variables obtained from the contin-

uous probability density f x1; x2; . . .; xmð Þ. Then, the
distribution of both the ingoing and the outgoing

degrees of its DVVg are.

Pin kð Þ ¼ Pout kð Þ ¼ 1=2ð Þk; k ¼ 1; 2; 3; . . . ð2:5Þ

Proof For the convenience of proof, we choose m ¼
3: Let X0 be an arbitrary datum. The probability that

the vector visibility of X0 is interrupted by the datum

X1 on its right is independent of f x1; x2; x3ð Þ;

U1 ¼
Z Z Z1

�1

f x1
0; x

2
0; x

3
0

� �
dx0

Z Z Z1

x1
0
x1

1
þx2

0
x2

1
þx3

0
x3

1
[
P3

i¼1

xi
0ð Þ2

f x1
1; x

2
1; x

3
1

� �
dx1

¼
Z Z Z1

�1

f x1
0; x

2
0; x

3
0

� �
1 � F x1

0; x
2
0; x

3
0

� �� 	
dx0 ¼ 1

2
;

where

F x1
0; x

2
0; x

3
0

� �
¼
Z Z Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P3

i¼1

xi
0ð Þ2

r

�1

f x1; x2; x3
� �

dx

The probability P kð Þ of the datum X0 being able to

see k data accurately can be established as

P kð Þ ¼ Q kð ÞU1 ¼ 1

2
Q kð Þ; ð2:6Þ

where Q kð Þ is the probability of X0 at least seeing k

data. Q kð Þ can be recurrently computed by

Q kð Þ ¼ Q k � 1ð Þ 1 � U1ð Þ ¼ 1

2
Q k � 1ð Þ; ð2:7Þ

Because the arbitrary datum X0 can see at least the

first adjacent node to its right, Q 1ð Þ ¼ 1. The follow-

ing expression can be got

Q kð Þ ¼ 1

2


 �k�1

; ð2:8Þ

which together with Eq. (2.6) derives the proof. A

similar derivation makes available for the ingoing

case.

It is worth noting that the above result is not

affected by the probability density f x1; x2; . . .; xmð Þ. It

holds not only for Gaussian or uniform distribution

time series, but also for arbitrary independent and

identically distributed random variables with a con-

tinuous distribution f x1; x2; . . .; xmð Þ.

2.3 KLDsof multivariate multiscale time series

In order to better understand the intrinsic character-

istics of multivariate system, we introduce the multi-

scale method. Given a m-dimensional time series Xt ¼
with the length of each dimension equaling to N, we

define KLDs as follows:

Step 1 For the scale factor s, the original time series

is divided into non-overlapping windows of length

s[14]. We gain the coarse-grained m-dimensional time

series Ys
k ¼ ysmi;ki¼1 as

ysj;k ¼
1

s

Xks

t¼ k�1ð Þsþ1

xit; 1� k� N

s
ð2:9Þ

Step 2 Get the DVVg transformed from the coarse-

grained m-dimensional time series Ys
k .

Step 3 Compute the KLDs by the ingoing and

outgoing degree distributions corresponding to the

DVVg.

3 Analyses and results of synthetic data

In this section, we choose several types of systems:

uncorrelated stochastic series, correlated stochastic

series, dissipative chaotic systems and conservative

chaotic systems, to evaluate the degree of irreversibil-

ity of their multivariate time series by our new

proposed method and Table 1 contains the numerical

results.

(a) Uncorrelated stochastic series

(b) Three-dimensional random series

Here, we generate a trivariate time series, where all the

data channels are observations of mutually indepen-

dent time series extracted from the uniform distribu-

tion U 0; 1½ �.
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(b) Correlated stochastic series

(c) Two-dimensional time series generated by nor-

mal distribution

In order to obtain the correlated stochastic series,

we consider the bivariate normal distribution

N 0; 0; 1; 2; 0:8ð Þ as an example of linearly correlated

stochastic processes.

(c) Dissipative Chaotic systems

(3) Chen system [47]

x0 ¼ a y� xð Þ
y0 ¼ c� að Þx� xzþ cy

z0 ¼ xy� bz

2

64 ð3:1Þ

Parameter values: a ¼ 35; b ¼ 3 and c ¼ 28;

initial conditions: x0 ¼ 0; y0 ¼ 1:001 and z0 ¼ 0.

(4) Duffing system [48]

x0 ¼ y

y0 ¼ �x� x3 � kyþ f cos z

z0 ¼ 1

2

64 ð3:2Þ

Parameter values: k ¼ 0:1 and f ¼ 80;

initial conditions: x0 ¼ 0; y0 ¼ 0 and z0 ¼ 1.

(5) Holmes–Duffing system [48]

x0 ¼ y

y0 ¼ x� x3 � kyþ f cos z

z0 ¼ 1

2

64 ð3:3Þ

Parameter values: k ¼ 0:1 and f ¼ 80;

initial conditions: x0 ¼ 0; y0 ¼ 0 and z0 ¼ 1.

(6) Lorenz system [49]

x0 ¼ s y� xð Þ
y0 ¼ rx� y� xz

z0 ¼ xy� bz

2

64 ð3:4Þ

Parameter values: s ¼ 10; r ¼ 28 and b ¼ 8=3;

initial conditions: x0 ¼ 10; y0 ¼ 1 and z0 ¼ 0.

(7) L €u system [50]

x0 ¼ a y� xð Þ
y0 ¼ �xzþ cy

z0 ¼ xy� bz

2

64 ð3:5Þ

Parameter values: a ¼ 36; b ¼ 3 and c ¼ 20;

initial conditions: x0 ¼ 0; y0 ¼ 1:001 and z0 ¼ 0.

(8) R €o ssler system [51]

x0 ¼ �y� z

y0 ¼ xþ ay

z0 ¼ bþ z x� cð Þ

2

64 ð3:6Þ

Parameter values: a ¼ 0:2; b ¼ 0:4 and c ¼ 5:7;

initial conditions: x0 ¼ 1; y0 ¼ 0 and z0 ¼ 0

(d) Conservative Chaotic systems

(9) Sprott-A system [52]

x0 ¼ y

y0 ¼ �xþ yz

z0 ¼ 1 � y2

2

64 ð3:7Þ

initial conditions: x0 ¼ 0:1; y0 ¼ 0:1 and z0 ¼ 0:1.

Figure 2 shows the ingoing and outgoing degree

distributions of the DVVg corresponding to the mul-

tivariate time series with the size N ¼ 0:7 � 105. We

can discover that expect the time series from the

Lorenz system, their ingoing and outgoing degree

distributions are almost indistinguishable. And their

specific numerical values of KLD are given in Table 1

Table 1 Values of the KLD corresponding to time series of

0.7 9 105 data generated by reversible and irreversible

processes

Series description KLD[Pout(k)\\Pintk)]

Reversible stochastic processes

i/[0pl] uncorrected 1.8517 9 10‘‘4

A/{0,0,1,2,0.8) 2.3214 9 10’’4

Dissipative chaos

Chen system 0.1463

Duffing system 0.3217

Holmes–Duffing system 0.4983

Lorenz system 0.6162

L €usystem 0.4217

R €ossler system 1.0711

Conservative chaos

Sprott-A system 2.2723 9 10‘‘4
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and each of them is very close to 0. It indicates that

these time series, which are generated from uncorre-

lated stochastic series, correlated stochastic series and

conservative chaotic systems, respectively, are all

reversible time series. And those time series generated

from dissipative chaotic systems are irreversible.

The change of KLD corresponding to different

multivariate time series with gradually increasing

series size N is plotted in Fig. 3. With the increase in

series size, the KLD of reversible time series tends to

zero, while the KLD of irreversible time series

converges to a positive value. Therefore, we can say

that the deviation between KLD of reversible time

series and zero is caused by the finite size effect.

In fact, the research on the influence of series length

to KLD is similar to the multiscale analysis of time

series, but the structure of the coarse-grained time

series may be different from that of the original time

series. Therefore, the KLDs of coarse-grained

sequence obtained from the original sequence on a

large scale is different from that of a short sequence

segment of the real original sequence. Figure 4

exhibits the KLDs of nine simulation series with the

length of N ¼ 104 on scale s 2 1; 20½ �. For uncorre-

lated stochastic series, correlated stochastic series and

conservative chaotic systems, their KLDs increases

slightly with the increase in scale s; respectively, but

each of them is still very close to 0 on any scale. For

dissipative chaotic systems, their KLDs; respectively,

shows the downward trend with the increase in scale s
and tends to 0. However, the change trend of KLDs

with the increase in scale s is different from that

obtained from simply shortening the length of time

series. Therefore, we can consider that the coarse-

grained process changes the internal structure of the

system, which may have an influence on the degree of

its internal irreversibility. Nevertheless, for the

reversible time series, even if the coarse-grained

process changes the internal structure of the system,

the coarse-grained sequence is still in a random state,

so it is still reversible.

0 5 10 15
k

10-4

10-2

100

P
(k

)
U[0,1]

Pout(k)
Pin(k)

0 5 10 15

k

100

P
(k

)

N(0,0,1,2,0.8)

Pout(k)
Pin(k)

0 2 4 6 8 10

k

10-5

100

P
(k

)

Lorenz system

Pout(k)
Pin(k)

0 2 4 6 8 10 12

k

10-5

100

P
(k

)

Sprott-A system

Pout(k)
Pin(k)

(a) (b)

(c) (d)

Fig. 2 The ingoing and outgoing degree distributions of the

DVVg corresponding to the multivariate time series of 0:7 �
105 data points from: a the uniform distribution U 0; 1½ �; b the

two-dimensional normal distribution N 0; 0; 1; 2; 0:8ð Þ; c the

Lorenz system; d the Sprott-A system :
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4 Analyses and results of financial time series

Stock markets reflect the development of the national

economy and also display the economic development

and social stability of countries. The commonly used

parameters to reflect the fluctuation of stock market

are stock trading price and stock trading volume. Here,

we use the proposed new irreversible method to

analyze the financial time series. The daily closing

price and volume of twenty-one stock indices from

2005 to 2019 are gathered from the Web site https://

finance.yahoo.com/, and these stock indices are divi-

ded into three different regions: Americas, Europe and

Asia & Pacific. The exact information of 21 stock

indices is shown in Table 2.

Because of the non-stationarity of financial time

series, we remove the unwanted data firstly and then

use logarithmic price difference as proxies for volatil-

ity of stock indices, which is given by

xn ¼ logðSnÞ � logðSn�1Þ ð4:1Þ

where Sn is the closing price of n th trading day.

For volume, we firstly standardize the data to

maintain data consistency. Next, we also select the

logarithmic volume difference to handle the standard-

ized data for the sake of weakening the diversity

between them.

103 104 105

N

0

2

4

6

8

K
LD

10-3 U[0,1]

103 104 105

N

0

0.002

0.004

0.006

0.008

0.01

K
LD

N(0,0,1,2,0.8)

103 104 105

N

0

0.2

0.4

0.6

K
LD

Lorenz system

103 104 105

N

0

0.002

0.004

0.006

0.008

0.01

K
LD

Sprott-A  system

(a) (b)

(c) (d)

Fig. 3 Semi-log plot of KLD of the graph corresponding to the

multivariate time series as a function of the series size N (points

are the average of several realizations). a the uniform

distributionU 0; 1½ �; b the two-dimensional normal distribution

N 0; 0; 1; 2; 0:8ð Þ;c the Lorenz system; d the Sprott-A system :
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Table 2 World stock indices

Region Country Symbol Company Number Score rank

Americas 1.Brazil BVSP Bovespa Index 3704 11

2. Canada GSPTSE S&P Composite Index 3765 7

3. Mexico MXX IPC Mexico Index 3759 8

4.USA DJ1 Dow 30 Index 3775 13

5.USA GSPC S&P 500 Index 3775 20

6.USA IXIC Nasdaq Index 3775 4

7.USA RUT Russell 2000 Index 3775 12

Europe 8.Austria ATX ATX Index 3709 2

9. Spain IBEX IBEX 35 Index 3828 17

10. France Kill CAC 40 Index 3833 I

11.Germany GDAX1 DAX Index 3803 21

12. England LSI: LSE Index 3783 15

13.Switzerland SSMI SMI Index 3784 5

Asia & Pacific 14.Australia AORD ASX All Ordinaries Index 3788 18

15.India BSESN BSE Sensex Index 3676 10

16.Indonesia JKSE Jakarta Composite Index 3650 9

17.Korea K.S11 KOSPI Composite Index 3693 19

18.Japan N225 Nikkei 225 Index 3671 6

19.China Mainland SSE Shanghai Composite Index 3644 16

20.China Hong Kong HS1 Hang Seng Index 3690 14

21.China Taiwan TSM TSMCL Index 3775 3
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Fig. 4 Irreversibility measures KLDs of nine simulated series as a function of s with s 2 1; 20½ �:
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So as to precisely measure the time irreversibility,

we provide Score [s], which is the average of the

annual irreversibility value to assess the time irre-

versibility of a given stock index s[53].

Score s½ � ¼ 1

15

X2019

year¼2005

KLDs
year ð4:2Þ

Furthermore, we calculate several other statistics of

the irreversibility. The standard deviation sd is estab-

lished as

sd ¼ 1

14

X2019

year¼2005

ðKLDyear � KLDÞ2

 !1
2

ð4:3Þ

where

KLD ¼ 1

15

X2019

year¼2005

KLDyear ð4:4Þ

And the coefficient of variation Cv is given by

Cv ¼
sd

KLD
ð4:5Þ

the third central moment v3 is defined as

v3 ¼ 1

15

X2019

year¼2005

ðKLDyear � KLDÞ3 ð4:6Þ

the skewness bs is expressed as

bs ¼
v3

sd3
ð4:7Þ

In the synthetic data analysis, we find that KLD can

distinguish the irreversible multivariate time series

from the reversible ones. However, it can be realized

that in the process of financial time series analysis, it

cannot well reflect the irreversibility of these multi-

variate time series as shown in Fig. 5. Here, we only

give three different stock markets, respectively, from

Americas, Europe and Asia & Pacific. The difference

between the distribution of their ingoing and outgoing

degree is not very obvious. Therefore, we consider

using KLDs to analyze the irreversibility of stock

indices on different scales. Figure 6 illustrates the

volatility of KLDs of each stock index on scale

s 2 1; 10½ �. As the scale increases, the coarse-grained

time series becomes shorter, and the KLDs; respec-

tively, shows the increasing trend. However, from the

results of synthetic data, we know that the KLDs of

irreversible time series decreases with the increase in

scale and tends to 0, while the KLDs of reversible

time series is very close to 0 on any scale. By

comparing the results of KLDs of the simulated series

given in Fig. 4, we can obtain that the value of KLDs

of each stock index series is relatively small, but it is

not strictly close to 0, which is different from that of

reversible time series. Therefore, we believe that

financial time series are multiscale irreversibility.

As we can see from Fig. 6, the stock indices from

Americas fluctuate sharply at s ¼ 6&8, while the

stock indices from Europe fluctuate greatly at s ¼ 7.

However, the stock indices from Asia & Pacific are

scattered and it does not fluctuate particularly vio-

lently on any scale. These facts are a little different

from the situation in Fig. 7, which exhibits the

volatility of KLDs averaged for all stock indices

from each region on scale s 2 1; 10½ �. The curve of

world reaches its maximum at s ¼ 7 and has a

significant drop at s ¼ 8. Except for the curve from

(a) (b) (c)

Fig. 5 The ingoing and outgoing degree distributions of the DVVg corresponding to the multivariate time series of data points from

each region: Americas, Europe and Asia & Pacific
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Americas, the curves from Europe and Asia & Pacific

reach the maximum at s ¼ 7 and decrease at s ¼ 8.

Curve of Americas shows a downward trend at

s ¼ 7&8. Because the statistical characteristics of

time series irreversibility can reflect the dynamic

characteristics of the system, these facts make us

consider periodicity. When we handle the time series

with scale factor s ¼ 7, we regard the information of

7 days as a whole, and the information of the next

trading day may be identical with that of the first day.

Similarly, the scale factor s ¼ 8 can also be the

periodic signal. Owing to the effect of uncertain

factors such as the level of development and system

mechanism, the periodicity of different stock markets

tends to be distinguishing.

These points obtained from the score and its

average annual volatility of the irreversibility corre-

sponding to each stock index are shown in Fig. 8. And

the standard deviation of the price log-returns of one

year is regarded as the proxy for volatility of stock

indices. As is known to all, the degree of stability of

financial stock indices is generally reflected by its

annual volatility. If the two statistics are related, the

points in the scatter plot will tend to a smooth curve

rather than being as scattered as the plot showing here.

Therefore, we can come to a conclusion from Fig. 8

Fig. 6 Irreversibility measures KLDs of 21 stock indices as a function of s with s 2 1; 10½ �:

Fig. 7 Irreversibility

measures KLDs CMMJS

CMMJS averaged over all the

stock indices from each

region: Americas, Europe

and Asia & Pacific
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that there is no correlation between the irreversibility

and volatility, which implies that we take the time

irreversibility as a new statistical measure to research

the properties of financial time series is reasonable. In

order to further explore the irreversibility of financial

time series, some other statistics, such as the standard

deviation sd, the coefficient of variation Cv, the third

central moment v3 and the skewness bs are computed.

Figure 9 presents the relation between the coeffi-

cient of variation Cv and its standard deviation sd of

the irreversibility of each stock index. The coefficient

of variation is a statistic to measure the variation

degree of variables, which is not only impacted by the

level of dispersion of variables, but also under the

influence of the average of variables. As Fig. 9 shows,

the standard deviation of irreversibility approxima-

tively tends to be proportional to the coefficient of

variation. It indicates that the average of variables,

which is displayed by the average of the annual

irreversibility, may have a negligible effect on its

coefficient of variation. Consequently, we can replace

the standard deviation with the coefficient of variation

to explore the potential qualities of financial time

series.

Figure 10 manifests the points plotted by the

skewness bs and its third central moment v3 of the

irreversibility of 21 stock indices, respectively. Skew-

ness is the statistic, which reflects the asymmetry of

the probability distribution of a random variable with

respect to its mean value. By viewing Fig. 10, it can be

realized that the skewness values of most points are

between - 0.6 and 1. Besides, the third central

moment corresponding to them is less than others

and all close to 0. It suggests that the skewness can

express the irreversibility alone. Ranking each stock

index according to its score, we can discover that the

distributions of the points corresponding to the top two

stock indices and the bottom one are all outstanding.

To better analyze the financial time series, we

investigate the irreversibility of all stock indices in

different years and plot the points generated by the

skewness bs and its third central moment v3 of the

irreversibility of each year in Fig. 11. Due to the

essential difference between financial crisis period and

Fig. 10 The plot of points generated by the skewness bs. and its

third central moment v3. of the irreversibility of each stock index

Fig. 9 The plot of points generated by the coefficient of

variation Cv and its standard deviation sd of the irreversibility

of each stock index

Fig. 8 The plot of points generated by the score and its average

annual volatility of the irreversibility of each stock index
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economic stable period, we try to make use of the new

proposed method to distinguish them. As we all know,

one of the most serious financial crises in the history

was triggered by the American subprime mortgage

crisis in 2007 and the financial crisis broke out in 2008.

The global economy began to recover gradually in

2011. As shown in Fig. 11, it is obvious that the two

points corresponding to 2007 and 2008 are deviated

from most points, but the points of other two years are

also distinguished from most of them. In order to make

a more detailed analysis, the location of points given

by the skewness bs and its third central moment v3 of

each year from three different regions is displayed in

Fig. 12.

From Fig. 12, we realize that 2015 is a special year

for Americas and Asia & Pacific, while for Europe,

2012 presents different characteristics from other

years. As a matter of fact, the stock indices from

Americas, such as BVSP,GSPTSE and RUT , did show

greater volatility in 2015 than in other years, while DJI

and GSPC from Americas did not show significant

fluctuations in the whole year, but both had pretty

large fluctuations in several months. And the stock

indices from Asia & Pacific, such as N225,

BSESN,SSE and HSI, all fluctuated sharply from

2014 to 2015. For the whole stock indices from

Europe, they were basically in a sustained upward

phase in 2012.

5 Conclusions

In this paper, we introduce a new method to measure

the irreversibility of multivariate time series. By

mapping multivariate time series into the directed

vector visibility graph DVVg

� �
, we measure the level

of irreversibility of the time series by using the value

of Kullback–Leibler divergence KLDð Þ, which is

calculated by the ingoing and outgoing degree distri-

butions corresponding to the DVVg.

In order to validate the effectiveness of this method,

we select uncorrelated stochastic series, correlated

stochastic series, dissipative chaotic systems and

conservative chaotic systems, and evaluate the degree

of irreversibility of their multivariate time series. The

results show that when the time series is reversible,

their ingoing and outgoing degree distributions are

almost indistinguishable and their specific numerical

values of KLD are all very close to 0. The deviation

between the KLD of reversible time series and zero is

caused by the finite size effect, while the irreversible

time series converges to an asymptotical nonzero

positive value with the increase in series size.

Later, to further investigate the internal structure of

the system, we utilize the multiscale method to

analyze the irreversibility of time series. For the

reversible time series, their KLDs are close to 0 at all

scales, while the KLDs of irreversible time series

decreases and tends to 0 with the increase in scale.
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Fig. 12 The plots of points generated by the skewness bs and its

third central moment v3 of the irreversibility of different years

from each region: Americas, Europe and Asia & Pacific

Fig. 11 The plot of points generated by the skewness bs and its

third central moment v3 of the irreversibility of different years
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Therefore, we consider that the coarse-grained process

changes the internal structure of the system, which

may have an influence on the degree of its internal

irreversibility. However, for the reversible time series,

even if the coarse-grained process changes the internal

structure of the system, the coarse-grained time series

is still in a random state and its irreversibility is low.

Finally, this method is applied to stock markets. We

choose 21 stock indices and, respectively, divide them

into three groups on account of different regions.

Through experimental analysis, we believe that the

financial time series are multiscale irreversibility. To

better evaluate the irreversibility of financial time

series, we introduce some other statistics and recog-

nize that the new method can be used to identify the

special financial periods.

On the whole, the new irreversible method is an

effective way to measure the irreversibility of multi-

variate time series.
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