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Abstract The parametric instability of a rotor sys-

tem with electromechanically coupled boundary con-

ditions under periodic axial loads is studied. Based on

the current flowing piezoelectric shunt damping

technique, the detailed rotor model is established by

the finite element (FE) method. In the matrix assembly

procedure, a novel simple process is proposed to make

the equations of shunt circuits more conveniently to be

introduced into the global FE equations. The discrete

state transition matrix method which is used for

determining the influence of circuit parameters on

instability regions in this paper has also been pre-

sented. The numerical simulation shows that only the

combination instability regions exist when the shaft is

rotating. The mechanical damping has different effect

on the simple and combined instability regions. These

two points are consistent with the previous references,

which verifies the obtained FE model. In addition, the

simulated results also reveal that the introduction of

shunt circuits has little influence on the rotor’s original

whirling frequencies. It gives rise to the appearance of

new synchronous whirl modes. The new whirling

frequencies are combined with the original ones to

form the new combination instability regions. Fur-

thermore, the resistance of shunt circuits has the same

performance as the mechanical damping has. That is,

moving up the start points of instability regions and

expanding its width.

Keywords Rotor system � Periodic axial load �
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1 Introduction

The rotating machinery, such as gearboxes, motors,

turbines and generators, is widely used in transporta-

tion like ship, airplane and automobile. Their stable op-

eration plays a vital role in requirement of reliability

and comfortability for such transportations. It is

known that there are always more or less imbalance

induced vibrations existing in rotor system, which will

reduce the reliability and comfortability. To solve this

problem, a novel ring-shaped piezoelectric damper [1]
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has been proposed. This damper, which uses shunted

piezo stack as the fundamental damping element, has

high stiffness and damping performance. It is installed

between bearing and supporting structure. When the

damper’s shunt circuits are closed, the whole system

will become electromechanically coupled and the

piezoelectric shunt damping will be generated,

whereas when the circuits are opened or shorted, the

whole system will become pure mechanical. In

conclusion, this damper may be used to control the

rotor vibrations [2]. The expectation is fine; however,

there are some new problems may be encountered.

One have known that when the rotor system subjected

to time-dependent axial load, it may lead to parametric

resonance or instability. In this case, a small paramet-

ric excitation may produce a large response when the

frequency of the excitation is close to the combination

of the natural frequencies of the system. Then the

problem is: What is the influence of shunt circuits on

the instability characteristics of such rotor system?

About this, there have been very little study to be

reported up to now. Thus, such problem is investigated

in this paper. Before introducing this paper’s work,

some relevant research activities must be reviewed.

As mentioned above, the rotor system will become

pure mechanical if the shunt circuits are opened or

shorted. In this case, actually, many research activities

[3–17] about the dynamic stability analysis of the rotor

system or the similar structure under periodic axial

loads have been reported. When the shaft is not

rotating, the whole system can be seen as a viscoelastic

supported or simply supported column/beam. Iwat-

subo et al. [3] studied the simple and combination

resonances of a column under four typical cases of

boundary conditions. In their research, they found that

the damping has different effect on the simple and

combination resonances. For the simple instability

region, the external/internal damping moves up the

generating points of the regions and reduces the

regions’ width, whereas for the combination instabil-

ity region, such damping moves up the generating

points and expands its width. Saito et al. [4] investi-

gated the stability of viscoelastic beams with an

attached mass and viscoelastic end supports under

axial and tangential periodic loads. Their research

showed that when the beam is subjected to an axial

periodic load, the combination resonance of difference

type does not occur. Furthermore, In the case of

combination resonance, the effect of damping is

greater when the damping exists in the beam than

when it is in the supports. Kang eta al. [5] examined

the parametric instability of a Leipholz column under

four boundary conditions. Their work aimed at

providing a basic understanding of the disc brake

pad instability. Huang et al. [6] presented a method for

assessing the dynamic stability of simply supported

columns with damping under arbitrary periodic axial

loads. These works, which based on the nonrotating

column/beam, have strong ties to the stability analysis

of rotating structures.

To analyze the stability of rotating shaft under

harmonic axial loads, Chen et al. [7] used the

Timoshenko beam theory and FE method to build

the rotor model, and then applied the Bolotin’s method

to construct the instability regions. Their results

showed that due to the Coriolis effect, the boundaries

of the regions of dynamic instability were shifted out

and the sizes of these regions were increased as the

rotational speed increased. However, whether the

Bolotin’s method is applicable to the rotating structure

or not, there seems to have some disputes. Pei [10]

found that using the Bolotin’s method may enlarge the

instability region for the gyroscopic system, which

may contradict the results based upon the Floquet’s

method. Song et al. [13] presented a new method—

discrete singular convolution. In their research, the

external viscous damping and internal material damp-

ing were considered so as to analyze their influence on

the stability of axial loaded rotating shaft. Qaderi et al.

[14] investigated the dynamic responses of a rotating

unbalanced shaft with geometrical nonlinearity under

periodic axial loads. Therein the resonances, bifurca-

tions, and stability of the response were analyzed.

Phadatare et al. [16] studied the vibration and bifur-

cation analysis of a spinning rotor-disk-bearing system

so as to reveal the effect of unbalance eccentricity and

pulsating axial load on the dynamic stability. All of

these papers are based on the rotor system. In addition,

some research activities based on the rotating struc-

tures like cylindrical shell model also have great

reference value. For instance, Han et al. [11] inves-

tigated the parametric instability of a rotating cylin-

drical shell under periodic axial loads. By using the

multiple scale method, the analytical expressions of

instability boundaries for various modes were

obtained. Their theoretical analysis demonstrated that

as long as rotation is considered, only combination

instability regions exist for such rotating shell.
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All of above-mentioned works have enlightened us

and given us many inspiration. In this paper, the

parametric stability of rotor system with electrome-

chanically coupled boundary conditions under peri-

odic axial load is further studied. The content of this

paper can be listed as follows: In Sect. 2, the structure

of proposed piezo damper and its shunt circuits are

presented. Here, the current flowing shunt circuits [18]

are used. In Sect. 3, FE model of the rotor system

under periodic axial load at the end of the shaft has

been derived. In this section, a novel simple process is

proposed to make the equations of shunt circuits more

conveniently to be assembled into the global FE

equations. To be clear, the process is addressed in

Appendix A. In Sect. 4, the free vibration and stability

analysis are carried out so as to obtain the rotor’s

whirling frequencies and instability regions. Specifi-

cally, Ref. [12] has shown that the DSTM method is

very suitable for the stability analysis of rotor-bearing

system under time-periodic base angular motions. In

this paper, therefore, the DSTM method is also used.

In Sect. 5, the numerical simulation is carried out and

the discussion is given. Here, the rotor system with

open-circuit condition is studied to verify the obtained

FEmodel. Moreover, the influence of shunt circuits on

the instability regions is stated. Finally, in Sect. 6, the

conclusion is presented.

2 The vibration ring and shunt circuits

Before this study, a ring-shaped piezoelectric damper,

called vibration ring, which may be used to control the

rotor vibrations has been developed [1]. This damper

uses the piezoelectric stack shunted with external

shunt circuits as the fundamental element. As shown in

Fig. 1a, the damper is installed between bearing house

and supporting structure. When the shunt circuits are

closed, the damper-bearing system becomes an elec-

tromechanical coupling system and its equivalent

mechanical model is shown in Fig. 1b. Where g
represents the mechanical damping, the mass mb

represents the equivalent mass of ball bearing and

vibration ring, which can be easily derived from the

kinetic energy of bearings and vibration rings, ~q ¼
q=hp is generalized coordinate related to the electric

charge q, keq is the stiffness related to damper’s

mechanical structure and bearing house, keq1 is the

stiffness related to piezoelectric stack, keq2 is the

electromechanical coupling stiffness and f represents
the shunt damping. Their expressions are given as

keq ¼
2k1kb cos

2 b
kb þ 2k1 cos2 b

; keq1 ¼ 2k2 cot
2 b; keq2

¼ 2 cot2 b
h2p
CS
p

; f ¼ 2 cot2 bZeh
2
p ð1Þ

where k1 is the stiffness of damper’s mechanical

structure, kb is the stiffness of isotropic bearing, k2 is

the compression stiffness of piezoelectric stack, b is a

constant related to the damper’s mechanical configu-

ration, hp is the generalized electromechanical cou-

pling coefficient of piezo stack, CS
p is the piezo stack

capacitor under constant strain and Ze is the impedance

of external shunt circuit. More detail about the

parameters can be found in Ref. [1].

From a general perspective, consider that each

piezo stack in vibration ring is connected with multi-

resonant shunts, as shown in Fig. 2. Each branch can

be seen as if it were formed by an inductor Lfi (i = 1,

2,…,N) and a capacitor Cfi and by an inductor Lti and a

resistor Rti connected in series. The inductor Lfi and

capacitor Cfi produce a band-pass filtering effect with

center frequency

Fig. 1 Vibration ring: a the

prototype and b equivalent

mechanical model
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xfi ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

LfiCfi

p ð2Þ

This effect is also called the current flowing effect

[18, 19]. On the one hand, in this way, each branch

works in a given narrow frequency band without

interfering with the other branches. On the other hand,

the inductor Lti combines with the piezo stack

capacitor CT
p (under constant stress) to produce the

shunt vibration absorption effect at the tuning

frequency

xti ¼
1
ffiffiffiffiffiffiffiffiffiffiffi

LtiCT
p

q ð3Þ

The resistor Rti is used to dissipate the vibration

energy absorbed by the shunted piezo stack at

frequencies close to the tuning frequency xti. Since

two inductors Lti and Lfi are connected in series, they

can be seen as a single inductor Li = Lti ? Lfi.

According to Ref. [18, 19], if the given center

frequency xfi and tuning frequency xti equal to the

vibrating structure’s specific modal frequency xi, i.e.,

xfi = xti = xi, the structure’s vibration at the modal

frequency xi will be suppressed considerably. Once

the filtering capacitance Cfi is given, the inductance

value in each branch Li can be calculated by [18].

L1 ¼
CT
p þCf1

x2
1C

T
p Cf1

;L2 ¼
CT
p þCf2

x2
2C

T
p Cf2

; ::::::;LN ¼
CT
p þCfN

x2
NC

T
p CfN

ð4Þ

where x1, x2,…, xN are the modal frequencies of

rotor system, i.e., the whirling frequencies of rotor

system, respectively.

3 Finite element modelling of the rotor-vibration

ring system

A rotor model with an offset rigid disk, which

supported on ball bearings with vibration rings at

two ends, is investigated. The finite element (FE)

model is established as shown in Fig. 3, where the

shaft is divided into n elements with n ? 1 points and

4(n ? 1) degrees of freedom (DOFs). Each shaft

section is described by a Rayleigh beam element with

8 DOFs, and four of which are shared with the

neighbor element. Assume that the disk locates at node

i. Here, by using the Rayleigh beam theory, the disk is

simplified as a lumped mass, and the polar moment of

inertia and the radial moment of inertia can be taken

into consideration. It is known that the FE model of

rotor system can be divided into three parts, that is, the

FE model of rotating shaft, the disk and the boundary

conditions. Because there have been many studies [20]

focused on FE modelling of rotor system, in this

section, the equations of motion for the axial loaded

rotating shaft and disk are given directly, whereas the

equations of motion for the specific boundary condi-

tions are derived in detail.

Assume that the homogeneous shaft’s internal

damping is ignored. Then the governing equations of

periodic axial loaded rotating shaft can be given as [5]:

Ms €uvs þGs _uws þ Ks � P tð ÞSs½ �uvs ¼ 0

Ms €uws �Gs _uvs þ Ks � P tð ÞSs½ �uws ¼ 0
ð5Þ

where Ms, Gs, Ks and Ss represent the global mass

matrix, global gyroscopic matrix, global stiffness

matrix and global axial stiffness matrix, respectively.

uvs and uws are the global displacement vectors, which

have the form

Cf1 Cf2
Lf1 Lf2

Lt1 Lt2

Rt1 Rt2

Band-pass 
Filter

Shunts

CfN
LfN

LtN

RtN

Cf1 Cf2

L1 L2

Rt1 Rt2

LN

RtN

CfN

ω1 ω2 ωN ω1 ω2 ωN

Fig. 2 Current flowing shunt circuit
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uvs ¼ v1; hw;1; v2; hw;2; . . .; vnþ1; hw;nþ1

� �T
; uws

¼ w1;�hv;1;w2;�hv;2; . . .;wnþ1;�hv;nþ1

� �T

Note that the first subscript ‘v’ or ‘w’ of all of

displacement vectors in this paper represents Y or Z

direction, respectively. P(t) is the periodic axial load

which has the form

P tð Þ ¼ Pcr aþ b cos/tð Þ

Here Pcr, a, b and / are the fundamental static

buckling load, static load coefficient, dynamic load

coefficient and excitation frequency.

The governing equations for this eccentric disk are

given as [20]:

Md €uvd þGd _uwd ¼ Qvd

Md €uwd �Gd _uvd ¼ Qwd

ð6Þ

where uvd = [vi, hw,i]
T, uwd = [wi, - hv,i]

T are the

nodal displacement vector of disk. In above expression

Md ¼
m 0

0 Jd

� �

;Gd ¼ X
0 0

0 Jp

� �

Qvd ¼ mX2 e cos c

0

� �

cosXt þ
�e sin c

0

� �

sinXt

	 


Qwd ¼ mX2 e sin c

0

� �

cosXt þ
e cos c

0

� �

sinXt

	 


are the mass matrix, gyroscopic matrix and mass

unbalance force of the eccentric disk. m, Jd and Jp are

the mass, diametral and polar moment of inertia of

disk, respectively. e and c are the eccentricity and

phase of eccentric mass.

3.1 Vibration ring and bearing support

In this subsection, the FE model of vibration ring and

bearing support is derived. As shown in Fig. 3, the

equations of motion for the boundary conditions can

be easily derived by applying the Newton’s Second

Law, which are given as

mb €alzþg _alzþ keqþ keq1þ keq2
� �

alz� keq2 ~qlz ¼ keqw1þg _w1

keq2 alz� ~qlz
� �

¼ f _~qlz

ð7Þ

mb €arz þ g _arz þ keq þ keq1 þ keq2
� �

arz

� keq2 ~qrz ¼ keqwnþ1 þ g _wnþ1

keq2 arz � ~qrz
� �

¼ f _~qrz

ð8Þ

along z direction at x = 0 or L, and

Fig. 3 The finite element model of the offset rotor with vibration rings
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mb €aly þ g _aly þ keq þ keq1 þ keq2
� �

aly

� keq2 ~qly ¼ keqv1 þ g _v1

keq2 aly � ~qly
� �

¼ f _~qly

ð9Þ

mb €ary þ g _ary þ keq þ keq1 þ keq2
� �

ary � keq2 ~qry

¼ keqvnþ1 þ g _vnþ1

keq2 ary � ~qry
� �

¼ f _~qry

ð10Þ

along y direction at x = 0 or L, where v1, w1 represent

the vertical and horizontal displacement of shaft at the

left side and vn?1, wn?1 represent that at the right side,

i.e., v1 = v(0,t), w1 = w(0,t), vn?1 = v(L,t), wn?1-

= w(L,t). Here, the bearings are assumed to be

isotropic, in which case the cross-coupling stiffness

and damping are neglected.

When the piezo stack is shunted with two mode

current flowing circuit, as shown in Fig. 4, the

boundary conditions Eqs. (7)–(10) can be written in

the following matrix form

Mc €ulzc þ Cc _ulzc þKculzc ¼ f lzc

Mc €urzc þ Cc _urzc þKcurzc ¼ frzc

Mc €ulyc þ Cc _ulyc þKculyc ¼ f lyc

Mc €uryc þ Cc _uryc þKcuryc ¼ fryc

ð11Þ

where

Mc ¼
mb 0 0

0 2 cot2 bh2pL1 0

0 0 2 cot2 bh2pL2

2

6

4

3

7

5

;

Cc ¼
g 0 0

0 2 cot2 bh2pRt1 0

0 0 2 cot2 bh2pRt2

2

6

4

3

7

5

Kc ¼

ksum �keq2 �keq2

�keq2
2 cot2 bh2p

Cf1
þ keq2 keq2

�keq2 keq2
2 cot2 bh2p

Cf2
þ keq2

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and the displacement vectors ulzc = [alz, ~qlz1, ~qlz2]
T,

ulyc = [aly, ~qly1, ~qly2]
T, urzc = [arz, ~qrz1, ~qrz2]

T, uryc-
= [ary, ~qry1, ~qry2]

T. The subscript 1 or 2 represents

the generalized charge in the first or the second

branch circuit. flzc = [keqw1 þ g _w1; 0; 0], flyc =

[keqv1 þ g _v1; 0; 0], frzc = [keqwnþ1 þ g _wnþ1; 0; 0] and

fryc = [keqvnþ1 þ g _vnþ1; 0; 0]. The readers can refer to

Appendix A to see the procedure of constructing

matrices Mc, Cc and Kc. Note that due to the

introduction of these boundary conditions, the addi-

tional 12 DOFs are introduced. Therefore, the total

DOFs for this rotor system are 4(n ? 1) ? 12.

3.2 Assembly of the finite element model

of rotating shaft, disk, vibration ring

and bearing

After assembling all the FE equations Eqs. 5, 6, and 11

for the rotating shaft, disk, vibration ring and bearing

house, the final equations of motion for the whole

system can be given as

M€uv þG _uw þ K� P tð ÞS½ �uv ¼ Qv

M€uw �G _uv þ K� P tð ÞS½ �uw ¼ Qw

ð12Þ

where M = Ms ? Md ? diag(Mc, Mc, Mc, Mc),

G = Gs ? Gd ? diag(Cc, Cc, Cc, Cc), K = Ks-

? diag(Kc, Kc, Kc, Kc), S = Ss, the displacement

vectors uv = [v1, hw,1,…, vn?1, hw,n?1, aly,
�
q ly1

,�q ly2
,

ary,
�
q ry1

,�q ry2
]T, uw = [w1, - hv,1,…, wn?1, - hv,n?1,

alz,
�
q lz1

,�q lz2
, arz,

�
q rz1

,�q rz2
]T. It can be seen from

Eq. (12) that the dimensions of all matrices appeared

in that two equations are [2(n ? 1) ? 6] 9 [2(n ?

1) ? 6]. The generalized forces Qv and Qw have the

form

Qv ¼ 0; 0; � � � ; mX2e cos c cosXt � sin c sinXtð Þ; 0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

node i

; � � � ; 0; 0

2

4

3

5

T

;

Qw ¼ 0; 0; � � � ; mX2e cos c sinXt þ sin c cosXtð Þ; 0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

node i

; � � � ; 0; 0

2

4

3

5

T

Fig. 4 The two mode current flowing shunt circuit
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.
In order to reduce the order of matrix equation and

simplify it, note that

hw;k ¼
ovk
ox

; hv;k ¼ � owk

ox
k ¼ 1; 2; � � � ; nþ 1ð Þ

By introducing the following definition

uk ¼ vk þ jwk; hk ¼ hw;k � jhv;k; al ¼ aly

þ jalz; ar ¼ ary þ jarz

~ql1 ¼ ~qly1 þ j~qlz1; ~ql2 ¼ ~qly2 þ j~qlz2; ~qr1 ¼ ~qry1

þ j~qrz1; ~qr2 ¼ ~qry2 þ j~qrz2

ð13Þ

Then Eq. (12) can be simplified into the complex

form

M€uþG _uþ K� P tð ÞS½ �u ¼ Q ð14Þ

where u = uv ? juw, Q = Qv ? jQw and –jG is sub-

stituted by G for simplicity. Note that the simplifica-

tion is only suitable to the system with isotropic

boundary conditions.

4 Free vibration and stability analysis

In order to obtain the forward and backward whirling

frequencies, the free vibration analysis is carried out.

Note that the periodic axial force has the constant

component which may affect the rotor’s dynamic

characteristics. Hence, Eq. (14) should be reduced

into the following homogenous time-invariant system

M€uþG _uþ K� aPcrS½ �u ¼ 0 ð15Þ

The solution of Eq. (15) has the form u(t) = uekt,
where u is a vector of complex numbers and the k
eigenvalue is also complex. Substituting this solution

form into Eq. (15) gives the characteristic equation of

form

k2Mþ kGþK� aPcrS
� �

u ¼ 0 ð16Þ

Note that owing to the definition Eq. (13), all of

matrices in Eq. (16) are Hermitian symmetry, in

which case the right eigenvalues equal to left eigen-

value and the right-hand eigenvectors are same with

the left-hand ones. If the mass matrix M is not

singular, one can convert Eq. (16) into the linear

eigenvalue problem

AV ¼ kV ð17Þ

where

A ¼ �M�1G �M�1 K� aPcrSð Þ
I O

" #

;

V ¼
w

u

� �

;w ¼ ku

By solving Eq. (17), the forward and backward

whirling frequencies and the complex form of ampli-

tude of the shaft will be obtained. However, the mass

matrix M is not always positive definite, for example,

as the shunt circuits are shorted or opened (L1 = L2-
= 0). Therefore, in this singular case, the spectral

transformation method [21] should be used to solve

this special quadratic eigenvalue problem. By intro-

ducing an appropriate eigenvalue shift as

l ¼ k� k0 ð18Þ

Equation (16) can be transformed into the follow-

ing form

�G� k0M �Kþ aPcrS
I �k0I

� �

_u
u

� �

¼ l
M O
O I

� �

_u
u

� �

ð19Þ

Subsequently, through defining r = 1/l, Eq. (19)
can be simplified as

�G� k0M �Kþ aPcrS
I �k0I

� ��1
M O
O I

� �

_u
u

� �

¼ r
_u
u

� �

ð20Þ

Equation (20) is namely the standard linear eigen-

value problem. Then solving Eq. (20) and note that

k ¼ 1

r
þ k0 ð21Þ

The eigenvalues and eigenvectors of this singular

case will finally be determined.

For the purpose of determining the parametric

instability regions of this rotor system, the discrete

state transition matrix (DSTM) method which was

developed by Friedmann et al. [22] is used. According

to the characteristic of DSTM method, it is not

appropriate to directly using the large FE matrices

because there are so many matrix operations which
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may reduce the computational efficiency. To deal with

this problem, the mode superposition method should

be applied to reduce the order of matrices. Note that

the above-mentioned vector u is namely the mode

shape. To obtain the mode shape of the nonrotating

rotor model, the shaft’s rotating speed X should be set

to 0 and the periodic axial force should be removed.

Then by solving the eigenvalue problem, the mode

shapes um (m = 1, 2, …,M) will be derived, where M

is the number of mode shapes. They can be combined

to construct the modal matrix U = [u1, u2, …, uM].

Assume that the displacement response u(t) has the

form

u tð Þ ¼ Uq tð Þ ð22Þ

Substituting Eq. (22) into Eq. (14) and premultiply

each side by UT, one can obtain

~M€q tð Þ þ ~G _q tð Þ þ ~K� P tð Þ~S
� �

q tð Þ ¼ ~Q ð23Þ

where ~M¼UTMU, ~G¼UTGU, ~K¼UTKU, ~S¼UTSU

and ~Q¼UTQ. Note that Eq. (23) is a series of linear

Mathieu equations, and therefore, it may be enough to

determine the unstable regions only by using the

DSTM method.

To apply the DSTM method, the homogenous form

of Eq. (23) is considered. By converting it into the

state-space form as

_y tð Þ ¼ B tð Þy tð Þ ð24Þ

where the coefficient matrix B(t) is given as

B tð Þ ¼ � ~M
�1 ~G � ~M

�1 ~K� P tð Þ~S
� �

I O

� �

ð25Þ

and y(t) = [ _q, q]. Here,O is anM 9 M zero matrix. In

this method, the evaluation time should be divided into

a series of small intervals and the following integration

should be calculated

Ck ¼
1

Dk

Z tk

tk�1

B tð Þdt k ¼ 1; 2; . . . ð26Þ

where Dk = tk – tk-1. Then the approximate state

transition matrix can be obtained as

N ¼
Y

1

k¼1

exp DkCkð Þ ð27Þ

The eigenvalues of the matrix N, which are often

called the Floquet multipliers, can be used to

determine the instability regions. When the absolute

values of all the eigenvalues are smaller than 1, the

system is stable, whereas if at least one of the absolute

values of the Floquet multipliers is larger than 1, the

system is unstable. Therefore, the instability criteria is

given as

max kij jð Þ[ 1 ð28Þ

in which ki represents the ith eigenvalue of the matrix

N. It should be mentioned that due to the unavoidable

roundoff errors in the numerical computations, the

instability criteria are relaxed and chosen to be

max(|ki|)[ 1.0001.

5 Numerical results and discussion

In this section, the content is mainly divided into two

parts. The first part is about verifying obtained rotor

model. From Fig. 3 one can see that the obtained

model can be reduced to a simpler one. For example, if

the shunt circuits are opened, the electrical damping

will tend to infinity and the boundary condition will be

simplified as Fig. 5 shown.

In this case, if the shaft’s rotating speed X = 0, this

rotor model can be seen as a column with an attached

mass which is supported by the spring-mass-damping

system under periodic axial load. A similar model has

been studied in Refs. [8, 9]. Thus, to verify the

obtained rotor model, the reduced model is investi-

gated through comparison with the results reported in

these references. In the numerical simulation, specif-

ically, the shaft is divided into 64 elements, i.e.,

n = 64. Assume that the disk locates at a quarter of

shaft length, then i = 17.

The second part is about analyzing the influence of

circuit parameters on the instability regions. The FE

model is remain unchanged except its boundary

Fig. 5 The simplified

boundary condition of the

obtained rotor model
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condition. In general, the circuit parameters, i.e., the

inductance and capacitance, should be combined to

form the electrical resonance and the resonant fre-

quency should be tuned to the rotor system’s modal

frequency. In this paper, however, the electrical

resonant frequencies are set to the frequencies which

distinguish from all of the rotor system’s modal

frequency. This behavior will help the readers know

more clearly about the effect of shunt circuits. Here,

two mode current flowing shunt circuit is considered.

If the electrical resonant frequencies of the first and

second branch circuit are designated to be 900 rad/s

and 2600 rad/s, respectively, assume that the filtering

capacitance Cf1 and Cf2 equal to 5 9 10-6 F and

1 9 10-7 F, then the inductance value in each branch

can be calculated by Eq. (4), which yields L1 = 0.9328

H and L2 = 1.5615 H.

Before carrying out the numerical simulation, the

whirling frequencies under the conditions of open-

circuit and closed-circuit should be analyzed firstly.

The model parameters used in the numerical simula-

tion are given in Table 1. According to Eq. (1), the

values of keq, keq1, keq2 can be determined: keq-
= 2.635 9 107 N/m, keq1 = 7.333 9 107 N/m, keq2-
= 2.444 9 107 N/m. Section 4 has mentioned that

the constant component of the periodic axial load may

affect the rotor’s dynamic characteristics. Hence, the

static load coefficient a used in this numerical

simulation is equal to 0.5. The Campbell diagrams

are shown in Fig. 6 and Fig. 7. By the way, it should

be clarified that the specific values of static load

coefficient a and rotating speed X which are used in

the following analysis have no special meaning. The

static load coefficient and rotating speed can affect the

rotor’s whirling frequencies, and hence, the different

values of a and X will lead to the different start points

of instability regions. Thus, it is necessary to set their

values before carrying out analysis so that the

instability regions can be determined. The readers

can refer to Refs. [7, 11, 15] to justify this description.

It can be seen from Fig. 7 that there are four additional

modes of forward/backward synchronous whirl exist-

ing due to the closed shunt circuit. This phenomenon

can be explained by the transfer function method. Ref.

[23] has shown that when a vibrating system has the

piezoelectric shunts, for each single resonant RL

shunt, it adds additional two poles to such system.

Here, two resonant RL shunts are used and four poles

are introduced for the rotor system. Each pole

corresponding to the specific synchronous whirl and

Table 1 Model parameters used in the numerical simulation

Stiffness of damper’s mechanical structure k1 1.575 9 108 N/m

Vibration ring Compression stiffness of piezoelectric stack k2 1.1 9 108 N/m

Mechanical structure parameter b 60�
Generalized electromechanical coupling coefficient hp 7.0356

Capacitance of piezo stack CT
p 1.8 9 10-6 F

Inductance in the first and second branch L1 and L2 0.9328 H and 1.5615 H

Shunt circuit Capacitance in the first and second branch Cf1 and Cf2 5 9 10-6 F and 1 9 10-7 F

Resistance in the first and second branch Rt1 and Rt2 vary from 0 to 50 ohms

Young’s modulus of disk and shaft E 206 9 109 Pa

Rotor system Equivalent mass of bearing and damper mb 0.15 kg

Radial stiffness of bearing kb 3.96 9 107 N/m

Mass density q 7900 kg/m3

Disk mass m 4.85 kg

Eccentricity of eccentric mass e 0.001 m

Phase of eccentric mass c 0

Polar moment of inertia of disk Jp 0.0248 kg m2

Radius of shaft r 0.015 m

Length of shaft L 0.7 m
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thus four additional synchronous whirl are introduced.

To classify these additional synchronous whirl modes,

the first two modes which are resulted from the first

branch circuit are numbered by r1 and r2, whereas the

last two modes which corresponding to the second

branch circuit are numbered by s1 and s2. When the

rotating speed X = 0 rad/s and 2000 rad/s, respec-

tively, the first four forward/backward whirling fre-

quencies under open-circuit condition are collected in

Table 2, whereas when X = 2000 rad/s, the first eight

forward/backward whirling frequencies under closed-

circuit condition are collected in Table 3. Note that

when the rotating speed X = 0 rad/s, the whirling

frequencies, which are denoted by xn(�), are namely

the natural frequencies of the nonrotating rotor system.

These data will be used in the following analysis.

5.1 Verification of obtained model

As mentioned before, the rotor system can be seen as a

column with an attached mass when it is not rotating.

In this case, if the column suffered from parametric

instability, then according to the parametric instability

theory [24], the starting points of instability regions on

the frequency axis could be expressed as: (2/i)xp and

(1/i)(xp ? xq) (i = 1, 2,…), in which xp, xq are two

different natural frequencies of the time-invariant

system. The former groups of instability region are

called the simple instability regions, and the latter

groups are called the combination instability regions.

The simple instability region with i = 1 is also called

the primary instability region. By using four mode

shapes to reduce the FE matrices, i.e., making M = 4,

Fig. 6 The Campbell

diagram of the rotor system

for the open-circuit

condition

Fig. 7 The Campbell diagram of the rotor system for the closed-circuit condition
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and then use the DSTM method, the stability diagram

of the nonrotating case under the open-circuit condi-

tion is analyzed and plotted in Fig. 8. Here, shaded

areas denote unstable regions. From this figure one can

see that only the simple instability region and sum type

combination instability region appear. This result is

consistent with the conclusion which were obtained

from Ref. [3, 5]. It can also be concluded that the

external damping has different effect on the simple

and combined instability region. For the simple

instability region, the external damping degenerates

the region as a whole, whereas for the combined one, it

moves up the start points of instability region and

expands the region’s width. In addition, such effect is

more evident in high-order instability region, no

matter for the simple or combined type. This phe-

nomenon has been reported by the Ref. [3].

The above analysis is about the nonrotating case.

For the rotating case, the stability diagram under open-

circuit condition is shown in Fig. 9. It can be seen from

this figure that only the sum type combination

instability region exists when the shaft is rotating.

The similar phenomenon has also been reported in

Ref. [11]. Therein a rotating cylindrical shell subjected

to periodic axial loads was considered and the detailed

theoretical analysis had been carried out. Although the

rotating shell is different from the rotor system, the

form of governing equations which were analyzed in

Ref. [11] is same with Eq. (23) in this paper. Thus, it is

easily to summarize that the rotating effect remove the

simple instability region, no matter it is a rotating shell

or a rotor system.

Furthermore, to verify the DSTM method, the time

responses of modal displacement are calculated. One

can transform Eq. (24) into state space form as

_y tð Þ ¼ B tð Þy tð Þ þ R tð Þ; R tð Þ ¼ ~M
�1 ~Q
0

� �

ð29Þ

Note that the expression of B(t) has been given in

Eq. (25) and the real and imaginary part of column

vector y(t), respectively, represent the modal displace-

ment response along vertical and horizontal direction.

Here, the case of b = 0.25 is studied. The top view of

stability chart is marked in Fig. 9, as the red rectangle

highlighted. The front view of that is shown in Fig. 10

and four points, C1, C2, C3, C4 are selected for

verification. Wherein ‘NaN’ in the coordinates of

these points represents that the maximum absolute

value of all of eigenvalues is smaller than 1.0001 at the

specific excitation frequency. Specifically, the time

responses for the first variable q1 of y(t) in Eq. (29) are

plotted. It can be seen from Fig. 10 that the time

responses are stable for points C1, C4 which are

outside the unstable regions and they are divergent for

points C2, C3 which are inside unstable regions. Then

the DSTM is verified. Overall, this rotor model is

effective.

5.2 The effects of circuit parameters

upon parametric instability

Note that when the shunt circuits are closed, the

whirling frequencies of r1 and r2 mode or that of s1
and s2 mode are very close to each other. Thus, the

first and second additional groups of whirling

frequencies are, respectively, denoted by r and

s for simplicity. In this subsection, the mechanical

damping g is eliminated. If the rotating speed X is

Table 3 The whirling frequencies (rad/s) in the case of

rotating speed 2000 rad/s under closed-circuit condition

Number xf (Forward) xb (Backward)

1 398.5 300.1

r1 879.1 877.9

r2 880.9 879.8

2 1903.8 1654.5

s1 2605.9 2601.1

s2 2607.4 2607.3

3 4901.8 2815.3

4 6856.4 6094.7

Table 2 The whirling frequencies (rad/s) in the cases of

rotating speed X = 0 rad/s and 2000 rad/s under open-circuit

condition

X = 0 X = 2000

xn (Natural frequency) xf (Forward) xb (Backward)

1 350.5 399.0 300.2

2 1817.1 1903.5 1653.1

3 3723.4 4899.6 2808.5

4 6277.1 6854.3 6092.3
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Fig. 8 The effect of

external damping on the

stability diagram of

nonrotating case under the

open-circuit condition:

a g = 0 and b g = 200 and

c g = 4000
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still equal to 2000 rad/s, the readers can find from

Tables 2 and 3 that there is little difference between

the whirling frequencies under open-circuit condi-

tion and that under closed-circuit condition. To

demonstrate the influence of circuit parameters on

the instability regions, the stability diagrams under

these two conditions are plotted together for com-

parison, as shown in Fig. 11. In this figure, all of

resistance values are all set to zero, i.e., Rt1 = Rt2-

= 0 ohms. Here, eight modes are included in this

case, i.e., M = 8. The 3D plots of Fig. 11 are also

plotted for distinguishing the instability regions

more clearly, as shown in Fig. 12. It can be found

from Fig. 9, 10, Fig. 11 that apart from the original

instability regions under open-circuit condition,

when the shunt circuits are closed, the additional

whirling frequencies are combined with the original

whirling frequencies under open-circuit condition to

form the new combination instability regions (The

pure red region in Fig. 11). This phenomenon

further demonstrates that there is no primary insta-

bility region as long as the rotation is considered for

this rotor system. Now, the readers may understand

why the electrical resonant frequencies are set to

900 rad/s and 2600 rad/s, which distinguish from all

of the rotor system’s whirling frequencies. This

behavior is aimed at separating the new instability

regions from the original regions more clearly.

Fig. 9 The effect of rotating

speed on the instability

regions under the open-

circuit condition. The

mechanical damping and

resistance value are all set to

zero

Fig. 10 The stability

chart at the case of b = 0.25

and the modal displacement

responses of q1. Here, NaN
represents that the

maximum absolute value of

all the eigenvalues is smaller

than 1.0001 at the specific

excitation frequency
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In Sect. 2, we have introduced that the resistors of

shunt circuits are used to dissipate the vibration

energy. It just like playing the role of mechanical

damping. Therefore, to understand the influence of

resistance on the instability regions, the cases of

Rt1 = Rt2 = 10 and 50 ohms are investigated. For

comparison, the stability diagrams are also plotted in

the same figure, as shown in Fig. 13. It can be

observed from Figs. 11, 12, 13 that when the shunt

circuit is closed, the performance of resistance is

similar with that of mechanical damping, as subsection

5.1 discussed. In addition, one can see that the

resistance only has the similar effect on the new

combination instability regions. This means that we

can enlarge or regulate the stability regions by tuning

the parameters of the shunt circuits.

6 Conclusion

Based on the piezoelectric shunt damping technology,

the effects of circuit parameters on the parametric

instability of an electromechanical coupled rotor

system under periodic axial load are studied using

the DSTM method. After the two mode current

flowing shunt circuits are connected, the rotor model

is established by the FEmethod. Herein a novel simple

process is proposed to help us more conveniently to

put the equations of electric circuits into the global FE

equations. This process is not only suitable for the

current flowing circuit but also for the other kinds of

circuits. One can directly use the circuit theory to

Fig. 11 The influence of

circuit condition on the

instability regions under

open-circuit condition and

closed-circuit condition,

where Rt1 = Rt2 = 0 ohms.

The blue regions represent

the case of open-circuit

condition and the red ones

represent that of closed-

circuit condition

Fig. 12 The 3D plots of Fig. 11. Wherein the z coordinate

represents the amplitude growth rate of the unstable responses
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derive the shunt circuits’ equations and assemble them

into FE equations. To verify the obtained model, the

special cases under open-circuit condition are inves-

tigated for comparison with the former references.

The numerical simulation shows that the rotation

effect erases the primary instability region. As long as

the shaft starts to rotate, only the combination

instability region which is located by the combined

whirling frequencies can be observed. The external

shunt circuits introduce the additional synchronous

whirl modes. These additional whirling frequencies

xej (j = 1, 2,…) are combined with the original

frequencies xfi/xbi (i = 1, 2,…) to form the new

combination instability regions. Their start points can

be written as: xfi ? xej and xbi ? xej. Furthermore,

the resistance plays the same role of mechanical

damping, that is, moving up the start points of new

instability regions and expanding its width.
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Appendix

Note that the second equation in Eq. (7)–(10) are

similar and compact. What their final forms like

depends on what shunted circuit the vibration ring

connected. Hence, it is necessary to derive their

specific forms in the case of using current flowing

shunt circuits. Before giving the general FE model

using N branch shunt circuits, the case of using single

Fig. 13 The influence of

resistance on the instability

region. Herein the

resistances used in the first

and second branch circuit

Rt1 and Rt2 are all varying

from 10 to 50 ohms:

a Rt1 = Rt2 = 10 ohms and

b Rt1 = Rt2 = 50 ohms
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branch is discussed as follows. In which case, the

second equation in Eq. (7) is analyzed here.

For a shunted piezo stack, it is equivalent to an ideal

voltage source Up in series with a capacitor CS
p or an

ideal current source in parallel with such capacitor.

When the stack is shunted with a single resonant

circuit, its circuit diagram is shown in Fig. 14. In this

case, the electrical impedance Ze is equal to 1/

sCf1 ? sL1 ? Rt1, where s is the Laplace transform

variable. According to Eq. (1), the second equation in

Eq. (7) can be written as

2cot2b
h2p
CS
p

alz�
qlz
hp

	 


¼2h2pcot
2b

1

sCf1
þsL1þRt1

	 


_qlz
hp

ðA1Þ

Equation (A1) can be straightforwardly trans-

formed into the following time domain expression:

L1 €qlz þ Rt1 _qlz þ
1

CS
p

þ 1

Cf1

 !

qlz �
hp
CS
p

alz ¼ 0 ðA2Þ

Actually Eq. (A2) can be directly derived using

Kirchhoff’s Voltage Law (KVL) through Fig. 14. It is

obvious that the voltage generated by the piezo stack

due to the electromechanical effect is equal to

ðhp=CS
pÞalz. This inspired us that for the multi-resonant

shunts, its circuit diagram can be drawn as Fig. 15.

From Fig. 15 the following equations can be obtained

using KVL

_~qlz¼ _~qlz1þ _~qlz2þ���þ _~qlzN) ~qlz¼ ~qlz1þ ~qlz2þ���þ ~qlzN

L1€~qlz1þRt1
_~qlz1þ

~qlz1
Cf1

þ ~qlz
CS
p

�alz
CS
p

¼0

L2€~qlz2þRt2
_~qlz2þ

~qlz2
Cf2

þ ~qlz
CS
p

�alz
CS
p

¼0

..

.

LN €~qlzNþRtN
_~qlzNþ

~qlzN
CfN

þ ~qlz
CS
p

�alz
CS
p

¼0

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ðA3Þ

where the charge in each branch shunt has been

transformed into generalized charge through dividing

it by the generalized electromechanical coupling

factor hp. Note that the first equation of Eq. (A3) is

only valid under the zero initial condition. Combining

Eq. (A3) and the first equation in Eq. (7), the following

matrix equation can be obtained

Mc €ulzc þ Cc _ulzc þKculzc ¼ f lzc ðA4Þ

where

Mc¼diag mb; L1; L2; ���; LN½ �; Cc¼diag g;Rt1; Rt2; ���;RtN½ �

Kc¼

ksum �keq2 �keq2 ��� �keq2

� 1

CS
p

1

Cf1
þ 1

CS
p

1

CS
p

��� 1

CS
p

� 1

CS
p

1

CS
p

1

Cf2
þ 1

CS
p

. .
. ..

.

..

. ..
. . .

. . .
. 1

CS
p

� 1

CS
p

1

CS
p

��� 1

CS
p

1

CfN
þ 1

CS
p

2
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6

6

6

6
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3
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7

7

7

7

7

7

7

7

7

7

7

5

f lzc¼ keqw 0;tð Þþg _w 0;tð Þ; 0; ���; 0
� �T¼ keqw1þg _w1; 0; ���; 0

� �T

ulzc¼ alz; ~qlz1; ~qlz2; ���; ~qlzN
� �T

ðA5Þ

Fig. 14 The circuit diagram for a piezo stack shunted with a

single resonant circuit

Fig. 15 The circuit diagram of multi-resonant shunt circuit
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In the same manner, the matrix equation of Eq. (8)–

(10) for the other boundary conditions can be derived,

which are given as

Mc €urzc þ Cc _urzc þKcurzc ¼ frzc

Mc €ulyc þ Cc _ulyc þKculyc ¼ f lyc

Mc €uryc þ Cc _uryc þKcuryc ¼ fryc

ðA6Þ

where

frzc ¼ keqw L; tð Þ þ g _w L; tð Þ; 0; . . .; 0
� �T¼ keqwnþ1 þ g _wnþ1; 0; . . .; 0

� �T

f lyc ¼ keqv 0; tð Þ þ g _v 0; tð Þ; 0; . . .; 0
� �T¼ keqv1 þ g _v1; 0; . . .; 0

� �T

fryc ¼ keqv L; tð Þ þ g _v L; tð Þ; 0; . . .; 0
� �T¼ keqvnþ1 þ g _vnþ1; 0; . . .; 0

� �T

urzc ¼ arz; ~qrz1; ~qrz2; . . .; ~qrzN
� �T

ulyc ¼ aly; ~qly1; ~qly2; . . .; ~qlyN
� �T

uryc ¼ ary; ~qry1; ~qry2; . . .; ~qryN
� �T

ðA7Þ

Note that the stiffness matrix Kc in Eq. (A5) is

asymmetric. To symmetrize it, enlightened by the

designation: keq2 = 2cot2b �h2p=CS
p , multiply each row

which corresponding to the generalized charge ~qlzi by

2cot2b �h2p, one can obtain the following symmetric

expression:

Mc ¼ diag mb; 2 cot
2 bh2pL1; 2 cot

2 bh2pL2; � � � ; 2 cot2 bh2pLN
h i

Cc ¼ diag g; 2 cot2 bh2pRt1; 2 cot
2 bh2pRt2; � � � ; 2 cot2 bh2pRtN

h i

Kc ¼

ksum �keq2 �keq2 � � � �keq2

�keq2
2 cot2 bh2p

Cf 1
þ keq2 keq2 � � � keq2

�keq2 keq2
2 cot2 bh2p

Cf 2
þ keq2

. .
. ..

.

..

. ..
. . .

. . .
.

keq2

�keq2 keq2 � � � keq2
2 cot2 bh2p

CfN
þ keq2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

ðA8Þ

From above description, one can see that this

process is not only applicable to the current flowing

shunt circuits, but also for the other kinds of shunt

circuits. One can directly use the circuit theory to

derive the shunt circuits’ governing equations and

assemble them into the global FE equations. The key

point is that substituting the voltage source which

generated from the piezo stack by the term ðhp=CS
pÞalz.

This is namely the representative of electromechanical

coupling.
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