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Abstract This paper studies the consensus of leader-
following multiagent systems with nonlinear dynam-
ics. Consider that control protocols for the consensus
work under an intermittent framework due to inevitable
factors; meanwhile, the event-triggered mechanism is
introduced, so as to reduce the update frequency of
the control protocols. In particular, threshold param-
eters in the event-triggered conditions are supposed
to be dynamically changed, and the minimum event-
triggered intervals are set to be positive in advance. Fur-
thermore, according to whether event-triggered condi-
tions depend on combined measurements or a single
measurement, two forms of event-triggered schemes
are designed; then, the corresponding distributed con-
trol protocols are demonstrated. Based on the graph
theory and Lyapunov function method, sufficient con-
ditions and a concrete algorithm for the consensus of
multiagent systems are presented. It is shown that the
intermittent dynamic event-triggered protocols given in
this paper can effectively reduce the update frequency
of control and exclude Zeno behavior. Finally, detailed
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numerical examples are supplied to illustrate the pro-
posed results.
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1 Introduction

A multiagent system is composed of multiple interact-
ing agents, which can complete specific tasks through
information exchange and cooperation among the
agents. There are many real systems that can be mod-
eled as multiagent systems, such as clustered animals,
sensor networks, smart power grids, and so on. During
the past decades, the cooperative control problem of
multiagent systems has been widely addressed [1–4],
wherein the consensus is regarded as an important issue
[5,6]. In general, the consensus of multiagent systems
implies that all the agents can reach a common value by
adopting appropriate control protocols.Multiagent sys-
tems in the study of consensus can be divided into two
main types, that is, leader-following systems and lead-
erless systems [7–10]. Particularly, a leader-following
system includesmultiple followers and one leader, then
all the followers converge to the trajectory of the leader
if the consensus is realized, in other words, the state of
the leader can be used as the target of control. There-
fore, in the leader-following consensus, all the agents
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can achieve a prescribed behavior,which can be applied
to the tracking problem.

In order to achieve the consensus of multiagent sys-
tems, a number of cooperative control strategies have
been reported in the existing results, such as adap-
tive control [11], output feedback control [12], opti-
mal control [13], and so on. It is worth mentioning that
the controller applied to an agent mainly depends on
the information from its neighboring agents via com-
munication links. However, because of the existence
of inevitable factors including cyber-attacks and the
transmission distance greater than the effective sens-
ing range, it is unrealistic for an agent to sense the
information all the time. On the other hand, control
protocols may be disabled due to the sensor or actu-
ator failures. Accordingly, an intermittent framework
is more practical compared with a continuous one. In
the intermittent scheme, protocols are required to work
for a period of time, then rest or recover from failures
for the next interval, which can also extend the service
life of the control equipment. So far, the intermittent
control protocols have been adopted for the consen-
sus. For example, by utilizing the intermittent pinning
control, synchronization of nonlinear coupled networks
was discussed [14]. The consensus of multiagent sys-
tems in a heterogeneous coupling network was realized
through intermittent scheme [15]. In [16], an intermit-
tent pinning strategy on time scales was put forward,
and in [17], the consensus of second-order multiagent
systems with intermittent approach was investigated.

In addition to the intermittent framework described
above, many current works are concerned with eco-
nomic and effective ways for designing control laws,
such as impulsive control, sampled-data control, and so
on [18,19]. In recent years, it has been shown that the
update frequency of control can be reduced by adopt-
ing event-triggered mechanism [20], since the instants
for updating are discrete rather than continuous. Com-
pared with the sampled-data control employing the
time-triggered approach, in the event-triggered strat-
egy, those instants are decidedby thegiven specific con-
ditions, then update intervals are not fixed and unnec-
essary updates can be avoided. To be specific, in the
time-triggered mechanism, updates of control depend
on the time device, therefore, at each new sampling
instant, even if the received information changes a lit-
tle, the control still needs to be updated. Until now,
event-triggered schemes have been used for the consen-
sus of multiagent systems. The consensus in switching

networks via event-triggered control was investigated
[21], the consensus of stochastic multiagent systems
with event-triggered strategy was proposed [22], and
a fully distributed event-triggered method for the con-
sensus was developed [23].

It should be noted that the event-triggered mech-
anism may cause Zeno phenomenon, which implies
that the controlled system will be instable owning to
the existence of infinite switches in finite time. There-
fore, Zeno behavior should be excluded in practical
control protocols with the triggering mechanism, that
is, event-triggered intervals need to be strictly posi-
tive. Some related results demonstrated the design of
event-triggered conditions for avoiding Zeno behav-
ior [24–27]. In particular, in the literature [25–27],
the minimum triggering interval is set to be posi-
tive in advance. In addition, from the perspective of
reducing the update frequency of control, the event-
triggered conditions that can bring about larger trig-
gering intervals are more effective. Recently, dynamic
event-triggered schemes have been put forward and
discussed [28–33]. It is found that if the threshold
parameters in triggering conditions are supposed to be
dynamic, the update frequency can be further reduced.
By introducing a dynamic variable, a new class of
dynamic event-triggered mechanism was presented
[28]. In [29,30], the consensus of linearmultiagent sys-
temsunder dynamic strategieswas investigated, and the
control problem of switched systems under dynamic
event-triggered method was addressed [31,32].

Based on the above discussion, the design of prac-
tical and effective control protocols for the consensus
deserves further investigation. In this work, we put for-
ward intermittent dynamic event-triggered control pro-
tocols, and the main contributions can be summarized
as follows.

1. This paper proposes intermittent dynamic event-
triggered schemes for the consensus of multiagent
systems. To the authors’ knowledge, there exist few
results of the event-triggered mechanism that is
both dynamic and works in the intermittent frame-
work. On the one hand, the cost of updating the
control can be saved in the dynamic strategies. On
the other hand, compared with the available results
on the dynamic event-triggeredmechanism, such as
[29,30], the protocols in this paper can work well
for multiagent systems subject to cyber-attacks or
actuator failures. Moreover, under the intermittent
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framework, the life of the control devices can be
prolonged.

2. As iswell known,Zenobehavior shouldbe excluded
in the event-triggered control protocols, therefore,
the minimum triggering interval is set to be posi-
tive in advance for excluding Zeno behavior, which
is partially motivated by the current results involv-
ing Zeno-free method [26,27]. However, it should
be noted that this paper focuses on the dynamic
triggered mechanism and multiagent systems with
nonlinear dynamics [34,35], then, how todesign the
minimum interval is challenging and innovative.

3. Two forms of event-triggered conditions are given
in the paper, where combined measurements and a
single measurement are utilized, respectively, fur-
thermore, the characteristics of these two schemes
are compared and illustrated. In addition, in com-
parison with our previous work [36], the event-
triggered protocols in this paper aremore advanced,
since the protocols are dynamic and Zeno-free, and
the leader in the multiagent system is not required
to be static.

Organization In Sect. 2, multiagent systems are
modeled, and intermittent dynamic event-triggered
control protocols for the consensus are formulated. In
Sect. 3, two types of dynamic event-triggered schemes
are put forward. Section 4 shows detailed numerical
examples. Finally, Sect. 5 gives concluding remarks.

Notations Let Rm be the m-dimensional Euclidean
space. ‖·‖ denotes the Euclidean normof a vector or the
spectral norm of a matrix, and | · | indicates the length
of an interval. ⊗ denotes the Kronecker product.

⋃
,

⋂
, and \ represent the union, intersection, and relative

complement in set operations, respectively. diag{· · · }
indicates a diagonal matrix. P > 0 means that the
symmetric matrix P is positive definite. Im is supposed
to be m-dimensional identity matrix.

2 Problem formulation and preliminaries

2.1 Multiagent systems and graph theory

Consider that a leader-following multiagent system is
composed of N followers and one leader labeled by
0, and each agent has nonlinear dynamics, which is
described as

{
ẋi (t) = f (t, xi (t)) + ui (t), i = 1, 2, . . . , N ,

ẋ0(t) = f (t, x0(t)),
(1)

where xi (t) ∈ R
m is the state of the i th follower, and

x0(t) ∈ R
m is the state of the leader. f (t, ·) ∈ R

m

denotes the nonlinear dynamics. ui (t) ∈ R
m indicates

the control protocol applied to the i th follower, which
mainly utilizes the information from neighboring fol-
lowers and the leader. Obviously, the leader is an iso-
lated agent. It shouldbenoted that the nonlinear dynam-
ics is supposed to be the same for all the agents, which
is similar to the existing related results, such as in the
literature [37,38].

Generally, the protocol ui (t) is given as (2) if it
works under a continuous framework:

ui (t)=c
∑

j∈Ni

ai j (x j (t)−xi (t))+cbi (x0(t)−xi (t)),

(2)

where c > 0 represents the coupling strength, Ni

denotes the set of the neighbors for the i th follower.
ai j ≥ 0 and bi ≥ 0 represent the weights of the infor-
mation from the j th follower and the leader, respec-
tively. Moreover, it is usually supposed that bi = 0 for
most of the followers, which means that just a fraction
of the followers are pinned by the leader.

The communication topology of a multiagent sys-
tem can be represented as a graph. Take the N fol-
lowers in (1) for illustration, the graph is described as
G = (W, E, A), whereW is the set of the N followers
or nodes, and E is the set of communication channels
or edges. A = (ai j )N×N is called the adjacencymatrix.
If there is an edge from the j th agent to the i th agent,
then ai j > 0, otherwise, ai j = 0. Furthermore, ai j > 0
implies that the information from the j th agent affects
the state xi (t) through the protocol ui (t), therefore, the
j th agent can be regarded as a neighbor for the i th
agent. Besides the matrix A, the Laplacian matrix L is
an important element for the graph, which is defined
as L = (li j )N×N with lii = ∑N

j=1 ai j and li j = −ai j
(i �= j). In addition, a directed path for two nodes in
a graph refers to a sequence of ordered edges between
them. A graph is called to have a spanning tree if there
is a node owning directed paths to any other node, and
this node can be taken as the root of the graph.
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Fig. 1 Illustration for intermittent control protocols

2.2 Consensus and event-triggered protocols

First, the definition of consensus for themultiagent sys-
tem (1) is presented as follows.

Definition 1 The multiagent system (1) is called to
realize consensus if, for any given initial conditions
xi (0) (i = 1, 2, . . . , N ), limt→∞ ‖xi (t) − x0(t)‖ = 0
holds.

Remark 1 It is obvious that the states of the follow-
ers converge to that of the leader if the consensus is
realized, then the leader-following consensus can be
regarded as the tracking problem [15].

The main objective of this work is to design appro-
priate and effective protocols ui (t) for the consensus
of the system (1). However, it is difficult to require the
protocol to be continuous as (2) due to cyber-attacks,
actuator failures, and so on. Accordingly, intermittent
strategies may be more practical. Suppose that the ini-
tial time is t0, and the protocol fails during the intervals
[Tk, Tk + τk) (k = 1, 2, . . .). Without loss of gener-
ality, assume τk ≥ τ0 > 0 and Tk+1 > Tk + τk .
Figure 1 presents the time intervals for the intermit-
tent protocol. Moreover, let � f (t0, t1) be the set of
all intervals that the protocol ui (t) fails in the period
[t0, t1], then � f (t0, t1) is described as � f (t0, t1) =
⋃

k=1,2,...[Tk, Tk + τk)
⋂[t0, t1]. Instead, �w(t0, t1) =

[t0, t1]\� f (t0, t1) denotes the set of all intervals that
the protocol works.

On the other hand, as described in Sect. 1, so as
to reduce the update frequency of control, the event-
triggered scheme is utilized for the protocol, then the
control protocol ui (t) is given as

ui (t) =

⎧
⎪⎨

⎪⎩

c
∑

j∈Ni
ai j (x̂ j (t) − x̂i (t))

+ cbi (x̂0(t) − x̂i (t)), t ∈ �w(t0, t1),

0, t ∈ � f (t0, t1),

(3)

where i = 1, 2, . . . , N . x̂i (t) and x̂ j (t) denote the
states of the i th and j th agents at certain event-triggered

instants, respectively, which will be discussed later.
Obviously, the event-triggered instants will decide the
updating of the control.

Suppose that event-triggered instants of the i th agent
are t i1, t

i
2, . . . with t

i
1 = t0, furthermore, since we focus

on the intermittent protocols, the event-triggeredmech-
anism is assumed to onlywork during�w(t0, t1). Addi-
tionally, in order to avoid Zeno behavior, which can
induce the instability of the controlled system, Zeno-
free mechanism is utilized, that is, assume that the cur-
rent triggering instant is t iq , then the next triggering

instant t iq+1 satisfies

t iq+1 = t iq + max{δiq , εi }, (4)

where εi > 0, and δiq is obtained through the following
dynamic event-triggered condition:

δiq = inf
t>t iq ,t∈�w(t0,t1)

{t − t iq |gi (t) ≥ ηi (t)} (5)

for i = 1, 2, . . . , N , q = 1, 2, . . ., gi (t) is a specific
function relying on the information from the neigh-
boring agents, and the form of gi (t) will be presented
in Sect. 3. Moreover, the threshold parameter ηi (t) is
dynamic with a law as

η̇i (t) =
{

−αiηi (t), t ∈ �w(t0, t1),

0, t ∈ � f (t0, t1),
(6)

where αi is a positive constant, and ηi (t0) > 0.

Remark 2 Zeno behavior means that there exist infi-
nite switches in finite time, accordingly, strictly posi-
tive event-triggered intervals t iq+1 − t iq can guarantee
the exclusion of Zeno behavior. Therefore, motivated
by the results in [26,27], this paper adopts Zeno-free
mechanism, that is, t iq+1 − t iq ≥ εi > 0, and the selec-
tion of parameters εi will be given later. Recently, a
different method for designing the parameter ηi (t)was
presented [30], which may play a better role in adjust-
ing ηi (t). However, since the intermittent framework
is introduced in this work, the condition (6) is more
suitable.

It should be noted that t iq+1 may locate in� f (t0, t1)

when t iq+1 = t iq +εi and t iq +εi ∈ � f (t0, t1). However,

the information from the neighboring agents at t iq+1

may be unavailable if t iq+1 ∈ � f (t0, t1) due to the
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intermittent scheme. Accordingly, t iq+1 = t iq + εi is

replaced with t iq+1 = minTk+τk≥t iq+εi
{Tk + τk} if t iq +

εi ∈ � f (t0, t1).

Remark 3 If ηi (t) in the condition (5) equals zero, then
the condition changes into gi (t) ≥ 0, which has been
employed in the existing literature such as our pre-
vious work [36], and this case will be illustrated in
Sect. 4. On the other hand, in order to further increase
event-triggered intervals, dynamic event-triggered con-
trol with time regularization was proposed [39]. How-
ever, it is difficult to apply the time regularization
technique to this work, since the event-triggered time
sequences {t i1, t i2, . . .} can be non-identical for different
agents.

Obviously, ηi (t) > 0 can be guaranteed by the law
(6) and ηi (t0) > 0. Specifically, as described in Fig. 1,
if t ∈ [t0, T1), ηi (t) = ηi (t0) exp{−αi (t − t0)} >

0, and if t ∈ [T1, T1 + τ1), ηi (t) = ηi (T1) =
ηi (t0) exp{−αi (T1 − t0)} > 0, therefore, ηi (t) =
ηi (t0) exp{−αi (t − τk − τk−1 − · · · − τ1 − t0)} > 0
when t ∈ [Tk + τk, Tk+1), and ηi (t) = ηi (Tk+1) > 0
for t ∈ [Tk+1, Tk+1+τk+1). In conclusion, ηi (t) > 0 is
verified. Moreover, the threshold parameter ηi (t) > 0
in the condition gi (t) ≥ ηi (t) brings about larger
event-triggered intervals δiq compared with the case
of ηi (t) ≡ 0 (see Sect. 4 for more details). Conse-
quently, the dynamic event-triggered mechanism can
further reduce the number of control updates. It should
be noted that the condition gi (t) ≥ ηi (t) is detected
continuously when t ∈ �w(t0, t1), while in some exist-
ing results, the corresponding condition can be detected
discretely [20]. However, since the intermittent frame-
work, dynamic parameter, and nonlinear dynamics are
introduced in the model of this paper, it will be difficult
to deal with the discrete event-triggered detector.

In short, as described in Fig. 2, the event-triggered
detector and the controller work under the same inter-
mittent framework, in other words, the failures of sen-
sor and actuator are synchronous. Of course, the fail-
ures can be asynchronous, however, this problem is
more complicated, which will be focused on in our
future work. The control input ui (t) is updated accord-
ing to x̂i (t), and kept a constant through the zero-order
hold (ZOH) until the new event is triggered. It should
be noted that ZOH is usually employed in the event-
triggered scheme [39], in addition, the first-order hold

Fig. 2 Block diagram of the controlled multiagent system

(FOH) is also utilized for the networked control sys-
tems [40].

2.3 Preliminaries

This subsection provides some essential definition,
lemmas, and assumptions.

Definition 2 ([41]) A nonsingular matrix H is called
to be an M-matrix if each off-diagonal element is non-
positive, and all of its eigenvalues have positive real
parts.

Lemma 1 ([42]) For a graph G = (W, E, A) con-
taining N nodes, if there exists a leader node hav-
ing a directed path to every other node in G, then the
matrix L+ B is an M matrix, where L is the Laplacian
matrix of the graph G, and B = diag{b1, b2, . . . , bN },
bi denotes the weight of the edge from the leader node
to the i th node (i = 1, 2, . . . , N).

Lemma 2 ([43]) If H ∈ R
N×N is an M-matrix, then

there is a vector (p1, p2, . . . , pN )T ∈ R
N such that

PH + HT P > 0, where P = diag{p1, p2, . . . , pN }
and pi > 0. In addition, H−1 exists.

Lemma 3 ([41]) For matrices U1, U2, V1 and V2 with
appropriate dimensions, the Kronecker product ⊗ sat-
isfies:

(i) (ρU1) ⊗ U2 = U1 ⊗ (ρU2) = ρ(U1 ⊗ U2), where
ρ is a constant.

(ii) (U1 + U2) ⊗ V1 = U1 ⊗ V1 + U2 ⊗ V1.
(iii) (U1 ⊗ U2)(V1 ⊗ V2) = (U1V1) ⊗ (U2V2).
(iv) (U1 ⊗ U2)

T = UT
1 ⊗ UT

2 .

Assumption 1 There exists γ > 0 such that ‖ f (t, xi ) −
f (t, x j )‖ ≤ γ ‖xi − x j‖ for all xi , x j ∈ R

m .
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Assumption 2 The leader node 0 in the graph G has a
directed path to every follower, where G represents the
topology of the multiagent system (1).

Assumption 3 There exist n0 ≥ 0 and T f > 1 satis-
fying

|� f (t0, t1)| ≤ n0 + t1 − t0
T f

(7)

for all t0 ≥ 0, and t1 > t0, where |� f (t0, t1)| represents
the length of time when the control protocol ui (t) fails
within [t0, t1].

Remark 4 The parameter T f > 1 in Assumption 3
guarantees that the time without control protocols is
less than t1 − t0. In addition, Assumption 3 has been
utilized in current results on cyber-attacks [33,44].

3 Main results

3.1 Protocol with combined measurements

This subsection presents the consensus under the inter-
mittent dynamic event-triggered protocol with com-
bined measurements. First, let x̂i (t), x̂ j (t), and x̂0(t)
in (3) be xi (t iq), x j (t

i
q), and x0(t iq), respectively, where

t iq ≤ t indicates the latest triggering instant of the i th
agent. Accordingly, the protocol (3) for t ∈ �w(t0, t1)
is rewritten as

ui (t) = c
∑

j∈Ni

ai j (x j (t
i
q ) − xi (t

i
q )) + cbi (x0(t

i
q ) − xi (t

i
q )),

(8)

then the protocol ui (t) is updated only at each dis-
crete event-triggered instant t iq (q = 1, 2, . . .) of the i th
agent, which reduces the number of updates. Accord-
ing to the definition of the Laplacian matrix L , ui (t) as
(8) can be described as

ui (t) =

⎧
⎪⎨

⎪⎩

−c
∑N

j=1 li j x j (t
i
q)

+cbi (x0(t iq) − xi (t iq)), t ∈ �w(t0, t1),

0, t ∈ � f (t0, t1).

(9)

Furthermore, t iq is decided by the event-triggeredmech-
anism introduced inSect. 2,where gi (t) in (5) is defined
as

gi (t) = ‖βi (t
i
q) − βi (t)‖2 − σi‖βi (t)‖2, (10)

where i = 1, 2, . . . , N , βi (t) = ∑N
j=1 li j x j (t) −

bi (x0(t) − xi (t)), and βi (t iq) = ∑N
j=1 li j x j (t

i
q) −

bi (x0(t iq) − xi (t iq)). The parameter σi > 0. βi (t iq) −
βi (t) � ϑi (t) denotes combined measurement rely-
ing on the information from neighbors at the triggering
instant t iq and the current time t .

Remark 5 Obviously, the condition gi (t) ≥ ηi (t) in
(5) changes into ‖ϑi (t)‖2 ≥ σi‖βi (t)‖2 + ηi (t). Then,
if ‖ϑi (t)‖2 ≥ σi‖βi (t)‖2 +ηi (t), an event is triggered.

Denote the consensus error to be ei (t) = xi (t) −
x0(t) (i = 1, 2, . . . , N ), based on the multiagent sys-
tem (1) and the control protocol (9), one has

ėi (t) =

⎧
⎪⎨

⎪⎩

f (t, xi (t)) − f (t, x0(t))

−c(ϑi (t) + βi (t)), t ∈ �w(t0, t1),

f (t, xi (t)) − f (t, x0(t)), t ∈ � f (t0, t1).

(11)

Next, conditions guaranteeing the consensus are given
in Theorem 1.

Theorem 1 The leader-following multiagent system
(1) under the intermittent control protocol (9) with the
dynamic event-triggered mechanism, i.e., described as
(4)–(6) and (10), will realize the consensus if Assump-
tions 1–3 and the following conditions hold.

(i) The coupling strength c >
2γ p̄

2κ1−θ p̄2
, where 0 <

θ < 2κ1
p̄2

, p̄ = max{p1, p2, . . . , pN }, κ1 =
mini=1,2,...,N {λi ( PH+HT P

2 )}.
(ii) The parameter σi in (10) satisfies 0 < σi ≤

σ̄1 < σ̄ for i = 1, 2, . . . , N, where σ̄ <
2θcκ1−2θγ p̄−cθ2 p̄2

cκ2
, and κ2 = maxi=1,2,...,N

{λi (HT H)}.
(iii) The parameter αi in (6) satisfies αi > c

2θ for
i = 1, 2, . . . , N.

(iv) The parameter T f in Assumption 3 satisfies
T f >

ρ1+ρ2
ρ1

, where ρ1 = −maxi=1,2,...,N { c
2θ −

αi ,
2γ p̄+cθ p̄2−2cκ1+ c

θ
σ̄ κ2

p̄ }, and ρ2 = 2γ .
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(v) The parameter εi in (4) satisfies 0 < εi ≤ 1
�

× ln

(√
σ̄2
N + 1

)

, where � = γ ‖H‖‖H−1‖ +
c‖H‖ × √

σ̄2N + c‖H‖, and σ̄2 = σ̄ − σ̄1.

Proof According to Assumption 2 and Lemma 1, the
matrix H = L + B is an M-matrix, where L is the
Laplacian matrix and B = diag{b1, b2, . . . , bN }, then
there is a matrix P = diag{p1, p2, . . . , pN } satisfying
PH + HT P > 0 due to Lemma 2. Therefore, select
the Lyapunov function as

V (t) = 1

2

N∑

i=1

pi e
T
i (t)ei (t) +

N∑

i=1

ηi (t). (12)

When t ∈ �w(t0, t1), based on the error system (11),
the law (6), and Assumption 1, one can get

V̇ (t) =
N∑

i=1

pi e
T
i (t)( f (t, xi (t)) − f (t, x0(t))

− c(ϑi (t) + βi (t))) +
N∑

i=1

(−αiηi (t))

≤ γ

N∑

i=1

pi e
T
i (t)ei (t) − c

N∑

i=1

pi e
T
i (t)ϑi (t)

− c
N∑

i=1

pi e
T
i (t)βi (t) −

N∑

i=1

αiηi (t),

(13)

moreover, for any θ > 0,

− c
N∑

i=1

pi e
T
i (t)ϑi (t)

≤ c

2
[θ

N∑

i=1

p2i e
T
i (t)ei (t) + 1

θ

N∑

i=1

ϑT
i (t)ϑi (t)],

(14)

and according to the event-triggered conditions (4), (5)
and (10), we assume that

N∑

i=1

ϑT
i (t)ϑi (t) ≤

N∑

i=1

(σ̄βT
i (t)βi (t) + ηi (t)), (15)

whereσi in (10) satisfiesσi ≤ σ̄1 < σ̄ . It isworth point-
ing out that

∑N
i=1 ϑT

i (t)ϑi (t) ≤ ∑N
i=1(σ̄βT

i (t)βi (t)+
ηi (t)) is employed, instead of

∑N
i=1 ϑT

i (t)ϑi (t) ≤

∑N
i=1 (σiβ

T
i (t)βi (t) + ηi (t)), since the triggering

mechanism is given as t iq+1 = t iq + max{δiq , εi } rather
than t iq+1 = t iq + δiq for avoiding Zeno behavior.

In addition, it can be verified that βi (t) = ∑N
j=1 hi j

×e j (t) with hi j being the element of matrix H , there-
fore,

−c
N∑

i=1

pi e
T
i (t)βi (t) = −ceT (t)(PH ⊗ Im)e(t), (16)

where e(t) = (eT1 (t), eT2 (t), . . . , eTN (t))T ∈ R
Nm .

Based on (13)–(16), one can get

V̇ (t) ≤ (γ p̄ + c

2
θ p̄2 − cκ1)e

T (t)e(t)

+ c

2θ

N∑

i=1

(σ̄βT
i (t)βi (t) + ηi (t)) −

N∑

i=1

αiηi (t),

(17)

where p̄ = max{p1, p2, . . . , pN }, and the parameter

κ1 = mini=1,2,...,N {λi ( PH+HT P
2 )}, which denotes the

minimum eigenvalue of PH+HT P
2 . Obviously, if the

coupling strength c >
2γ p̄

2κ1−θ p̄2
, where 0 < θ < 2κ1

p̄2
,

i.e., the condition (i) in Theorem 1 is satisfied, γ p̄ +
c
2θ p̄

2 − cκ1 < 0 holds.

Furthermore, due to
∑N

i=1 βT
i (t)βi (t)=eT (t)(HT H

⊗ Im)e(t), then

V̇ (t) ≤(γ p̄ + c

2
θ p̄2 − cκ1 + c

2θ
σ̄ κ2)e

T (t)e(t)

+
N∑

i=1

(
c

2θ
− αi )ηi (t),

(18)

where κ2 = maxi=1,2,...,N {λi (HT H)}. Therefore, if
the conditions (ii) and (iii) inTheorem1are guaranteed,
γ p̄ + c

2θ p̄
2 − cκ1 + c

2θ σ̄ κ2 < 0, and c
2θ − αi < 0.

Obviously, one has

V̇ (t) ≤ −ρ1V (t), (19)

where−ρ1 = maxi=1,2,...,N

{
2γ p̄+cθ p̄2−2cκ1+ c

θ
σ̄ κ2

p̄ , c
2θ −

αi

}

< 0.
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When t ∈ � f (t0, t1), according to (11) and (6), one
has

V̇ (t)=
N∑

i=1

pi e
T
i (t)( f (t, xi (t)) − f (t, x0(t))≤ρ2V (t),

(20)

where ρ2 = 2γ > 0.
Therefore, V̇ (t) ≤ −ρ1V (t) holds when t ∈

�w(t0, t1), while V̇ (t) ≤ ρ2V (t) holds for t ∈
� f (t0, t1), moreover, V (t) is a continuous function,
then for any t ≤ t1,

V (t) ≤ V (t0) exp{−ρ1|�w(t0, t1)|} exp{ρ2|� f (t0, t1)|},
(21)

where |�w(t0, t1)| and |� f (t0, t1)| indicate the length
of time with or without control protocols, respectively.
It is obvious that if−ρ1|�w(t0, t1)|+ρ2|� f (t0, t1)| <

−ε(t1 − t0) with ε being a small positive con-
stant, then limt→∞ V (t) = 0. On the other hand,
−ρ1|�w(t0, t1)| + ρ2|� f (t0, t1)| < −ε(t1 − t0) is
ensured by |� f (t0, t1)| <

ρ1
ρ1+ρ2

(t1 − t0) due to

|�w(t0, t1)| = t1 − t0 − |� f (t0, t1)|. Furthermore, if
Assumption 3 is satisfied, then T f >

ρ1+ρ2
ρ1

, i.e., the

condition (iv) in Theorem 1, can ensure |� f (t0, t1)| <
ρ1

ρ1+ρ2
(t1 − t0).

On the other hand, limt→∞ V (t) = 0 implies that
limt→∞ ‖ei (t)‖ = 0 and limt→∞ ηi (t) = 0, more-
over, limt→∞ ‖ei (t)‖ = 0means that limt→∞ ‖xi (t)−
x0(t)‖ = 0, in other words, the consensus of the mul-
tiagent system (1) is realized.

It should be noted that
∑N

i=1 ϑT
i (t)ϑi (t) ≤ ∑N

i=1
(σ̄βT

i (t)βi (t) + ηi (t)) as (15) plays an essential role.
As described above, the event-triggered instant satisfies
t iq+1 = t iq + max{δiq , εi }, where δiq is defined as δiq =
inf t>t iq ,t∈�w(t0,t1){t−t iq |‖ϑi (t)‖2 ≥ σi‖βi (t)‖2+ηi (t)}
based on (5) and (10). Accordingly, divide the N fol-
lowers into two non-overlapping parts�1(t) and�2(t)
at time t ,which satisfy that t iq+1 = t iq+δiq for i ∈ �1(t),

and t iq+1 = t iq + εi for i ∈ �2(t).

Moreover, for i ∈ �1(t), as soon as ‖ϑi (t)‖2 ≥ σi
×‖βi (t)‖2 +ηi (t) holds, a new event is triggered, then
ϑi (t) is set to be a zero vector, which implies that

∑

i∈�1(t)

‖ϑi (t)‖2 ≤
∑

i∈�1(t)

(σi‖βi (t)‖2 + ηi (t))

≤
N∑

i=1

(σ̄1‖βi (t)‖2 + ηi (t))

(22)

due to σi ≤ σ̄1. Then, if the following (23) holds for
i ∈ �2(t), (15) can be guaranteed.

∑

i∈�2(t)

‖ϑi (t)‖2 ≤
N∑

i=1

σ̄2‖βi (t)‖2, (23)

where σ̄2 = σ̄ − σ̄1. For each i ∈ �2(t), ‖ϑi (t)‖ ≤√
σ̄2
N ‖β(t)‖ is a sufficient condition for (23), where

β(t) = (βT
1 (t), βT

2 (t), . . . , βT
N (t))T . Therefore, the

parameter εi corresponds to the time interval from 0

to
√

σ̄2
N for ‖ϑi (t)‖/‖β(t)‖. Analysis of the time inter-

val is given as follows.
Due to β(t) = (H ⊗ Im)e(t), based on Lemma 2,

one gets e(t) = (H−1 ⊗ Im)β(t), then from (11),

‖β̇(t)‖ ≤ ‖H ⊗ Im‖‖ė(t)‖
≤ ‖H‖(γ ‖H−1‖‖β(t)‖ + cN‖ϑi (t)‖ + c‖β(t)‖).

(24)

On the other hand,

d

dt

(‖ϑi (t)‖
‖β(t)‖

)

= d

dt

[
(ϑT

i (t)ϑi (t))1/2

(βT (t)β(t))1/2

]

= (ϑT
i ϑi )

−1/2ϑT
i ϑ̇i (β

Tβ)1/2

‖β(t)‖2

− (ϑT
i ϑi )

1/2(βTβ)−1/2βT β̇

‖β(t)‖2

≤ ‖ϑ̇i (t)‖
‖β(t)‖ + ‖ϑi (t)‖‖β̇(t)‖

‖β(t)‖2 ,

(25)

where ‖ϑ̇i (t)‖ = ‖β̇i (t)‖ ≤ ‖β̇(t)‖. Owning to

‖ϑi (t)‖ ≤
√

σ̄2
N ‖β(t)‖ and (24), one can obtain

d

dt

(‖ϑi (t)‖
‖β(t)‖

)

≤ �

(

1 + ‖ϑi (t)‖
‖β(t)‖

)

, (26)

where � = γ ‖H‖‖H−1‖ + c‖H‖√σ̄2N + c‖H‖.
Consequently, ‖ϑi (t)‖‖β(t)‖ satisfies the bound of ‖ϑi (t)‖‖β(t)‖ ≤
ϕ(t), where ϕ(t) denotes the solution of ϕ̇ = �(1 +
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ϕ) with ϕ(0) = 0, then t = 1
�

ln

(√
σ̄2
N + 1

)

is the

value for ϕ(t) =
√

σ̄2
N . Accordingly, if the parameter εi

satisfies the condition (v) in Theorem 1, i.e., 0 < εi ≤
1
�

ln

(√
σ̄2
N + 1

)

, then (23) holds, which means that

(15) can be ensured. This completes the proof. �
Remark 6 In the proof of Theorem 1, there are two
main steps, one is stability analysis of the error sys-
tem, and the other is selection of the time interval for
excluding Zeno behavior. The conditions proposed in
Theorem 1 include the coupling strength c in control
protocol, the parametersσi ,αi , and εi in dynamic event-
triggered mechanism, and the requirement of T f for
intermittent framework.

In order to illustrate the protocols clearly, Algorithm
1 is provided.

3.2 Protocol with a single measurement

It should be noted that in the previous subsection,
ϑi (t) in the event-triggered condition is defined as
βi (t iq) − βi (t), which is taken as combined measure-
ments, and the control protocol ui (t) is given as (9),
consequently, at the triggering instant t iq of the i th
agent, the states of all the agents should be available.
This subsection presents another scheme, where the
protocol is described as

ui (t) =

⎧
⎪⎨

⎪⎩

−c
∑N

j=1 li j x j (t
j
q ′)

+cbi (x0 − xi (t iq)), t ∈ �w(t0, t1),

0, t ∈ � f (t0, t1),

(27)

where t jq ′ ≤ t and t iq ≤ t denote the latest event-
triggered instant of the j th and i th agents, respec-
tively. Moreover, the leader is supposed to satisfy
f (t, x0(t)) = 0, that is, the state x0 is an equilibrium
point. If the consensus is realized, then limt→∞ ‖xi (t)−
x0‖ = 0 holds, which was also investigated in [45] by
utilizing continuous feedback control.

Remark 7 Compared with (9), the control protocol
ui (t) as (27) requires the information x j (t

j
q ′) of the j th

agent at the latest event-triggered instant t jq ′ rather than

t iq , where t
j
q ′ and t iq can be non-identical. Consequently,

for the i th agent, ui (t) will be updated at t
j
q ′ besides t iq .

Algorithm 1 Intermittent dynamic event-triggered
control protocol for the consensus

1: Initialize: t0, t1, c, σi , αi , εi , T f , ηi (t0), xi (t0), x0(t0), t i1 = t0,
q = 1, �w(t0, t1).

2: if t ∈ �w(t0, t1) then
3: for each i ∈ {1, 2, . . . , N } do
4: Update ui (t): ui (t) = c

∑
j∈Ni

ai j (x̂ j (t) − x̂i (t)) +
cbi (x̂0(t) − x̂i (t));

5: Calculate xi (t): ẋi (t) = f (t, xi (t)) + ui (t);
6: Calculate ηi (t): η̇i (t) = −αiηi (t);
7: end for
8: Calculate x0(t): ẋ0(t) = f (t, x0(t));
9: for each i ∈ {1, 2, . . . , N } do
10: Calculate βi (t): βi (t) = ∑N

j=1 li j x j (t) − bi (x0(t) −
xi (t));

11: Calculate ϑi (t): ϑi (t) = βi (t iq ) − βi (t);

12: if t > t iq and ‖ϑi (t)‖2 − σi‖βi (t)‖2 ≥ ηi (t) then
13: δiq = t − t iq ;

14: if δiq ≥ εi then
15: t iq+1 = t iq + δiq ;
16: else
17: t iq+1 = t iq + εi ;

18: if t iq + εi /∈ �w(t0, t1) then
19: t iq+1 = minTk+τk≥t iq+εi

{Tk + τk};
20: end if
21: end if
22: q = q + 1;
23: end if
24: for each i ∈ {0, 1, 2, . . . , N } do
25: Update x̂i (t) based on t iq ;
26: end for
27: end for
28: else
29: for each i ∈ {0, 1, 2, . . . , N } do
30: Calculate xi (t): ẋi (t) = f (t, xi (t));
31: end for
32: end if

Furthermore, let ϑi (t) = xi (t iq) − xi (t), which is a
measurement depending on its own information for the
i th agent, and the function gi (t) is given as

gi (t) = ‖xi (t iq) − xi (t)‖2 − σi‖βi (t)‖2, (28)

where i = 1, 2, . . . , N , βi (t) is defined the same as in
(10).

Similarly, denote the consensus error to be ei (t) =
xi (t) − x0 (i = 1, 2, . . . , N ), based on the multia-
gent system (1), the control protocol (27), and ϑi (t) =
xi (t iq) − xi (t), one has
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ėi (t) =

⎧
⎪⎨

⎪⎩

f (t, xi (t)) − f (t, x0(t))

−c
∑N

j=1 hi j (ϑ j (t) + e j (t)), t ∈ �w(t0, t1),

f (t, xi (t)) − f (t, x0(t)), t ∈ � f (t0, t1).

(29)

It should be noted that if the leader is not supposed
to be static, then the item cbi (x0 − xi (t iq)) in Eq. (27)
should be changed into cbi (x0(t iq) − xi (t iq)). Corre-
spondingly, we cannot get the consensus error system
(29). Therefore, the leader is supposed to be static. Con-
ditions guaranteeing the consensus are given in Theo-
rem 2, which is similar to Theorem 1.

Theorem 2 The leader-following multiagent system
(1) under the intermittent control protocol (27) with the
dynamic event-triggered mechanism, i.e., described as
(4)–(6) and (28), will realize the consensus if Assump-
tions 1–3 and the following conditions hold.

(i) The coupling strength c >
2γ p̄

2κ1−θκ3
, where 0 <

θ < 2κ1
κ3

, p̄ = max{p1, p2, . . . , pN }, κ1 =
mini=1,2,...,N {λi ( PH+HT P

2 )},κ3 = maxi=1,2,...,N

{λi (PHHT P)}.
(ii) The parameter σi in (28) satisfies 0 < σi ≤

σ̄1 < σ̄ for i = 1, 2, . . . , N, where σ̄ <
2θcκ1−2θγ p̄−cθ2κ3

cκ2
, and κ2 = maxi=1,2,...,N

{λi (HT H)}.
(iii) The parameter αi in (6) satisfies αi > c

2θ for i =
1, 2, . . . , N.

(iv) The parameter T f in Assumption 3 satisfies T f >
ρ1+ρ2

ρ1
, where ρ1 = −maxi=1,2,...,N { c

2θ − αi ,

2γ p̄+cθκ3−2cκ1+ c
θ
σ̄ κ2

p̄ }, and ρ2 = 2γ .

(v) The parameter εi in (4) satisfies 0 < εi ≤ 1
�

× ln

(
1

‖H−1‖
√

σ̄2
N + 1

)

, where � =
γ ‖H‖‖H−1‖+ c‖H‖2√σ̄2N + c‖H‖, and σ̄2 =
σ̄ − σ̄1.

Proof Choose the Lyapunov function the same as (12),
when t ∈ �w(t0, t1), based on the error system (29),
one can get

V̇ (t) =
N∑

i=1

pi e
T
i (t)( f (t, xi (t)) − f (t, x0(t))

− c
N∑

j=1

hi j (ϑ j (t) + e j (t))) +
N∑

i=1

(−αiηi (t))

≤ γ

N∑

i=1

pi e
T
i (t)ei (t) − c

N∑

i=1

pi e
T
i (t)

N∑

j=1

hi jϑ j (t)

− c
N∑

i=1

pi e
T
i (t)βi (t) −

N∑

i=1

αiηi (t),

(30)

moreover, for any θ > 0,

− c
N∑

i=1

pi e
T
i (t)

N∑

j=1

hi jϑ j (t)

= −ceT (t)(PH ⊗ Im)ϑ(t)

≤ c

2
[θκ3

N∑

i=1

eTi (t)ei (t) + 1

θ

N∑

i=1

ϑT
i (t)ϑi (t)],

(31)

where ϑ(t) = (ϑT
1 (t), ϑT

2 (t), . . . , ϑT
N (t))T , and the

parameter κ3 = maxi=1,2,...,N {λi (PHHT P)}. The
following proof is similar to that of Theorem 1, then
the conditions (i)–(iv) of Theorem 2 can be obtained.

Next, since ϑi (t) is changed in the event-triggered
mechanism, the parameter εi in (4) needs to be rese-
lected. Based on (25) in Theorem 1, one can get that

d

dt

(‖ϑi (t)‖
‖β(t)‖

)

≤ ‖ϑ̇i (t)‖
‖β(t)‖ + ‖ϑi (t)‖‖β̇(t)‖

‖β(t)‖2

still holds. Meanwhile, owning to ϑi (t) = xi (t iq) −
xi (t), one has ‖ϑ̇i (t)‖ = ‖ẋi (t)‖ = ‖ėi (t)‖ ≤
‖H−1‖‖β(t)‖, and

‖β̇(t)‖ ≤ ‖H ⊗ Im‖‖ė(t)‖
≤ ‖H‖(γ ‖H−1‖‖β(t)‖ + cN‖H‖‖ϑi (t)‖

+ c‖β(t)‖).
(32)

Then, we have

d

dt

(‖ϑi (t)‖
‖β(t)‖

)

≤ �

(

‖H−1‖ + ‖ϑi (t)‖
‖β(t)‖

)

, (33)

where � = γ ‖H‖‖H−1‖ + c‖H‖2√σ̄2N + c‖H‖.
Consequently, ‖ϑi (t)‖‖β(t)‖ satisfies the bound of ‖ϑi (t)‖‖β(t)‖ ≤
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Fig. 3 The graph for communication topology of the multiagent
system

ϕ(t),whereϕ(t)denotes the solutionof ϕ̇ = �(‖H−1‖+
ϕ) with ϕ(0) = 0, then the value for ϕ(t) =

√
σ̄2
N is

t = 1
�

ln

(
1

‖H−1‖
√

σ̄2
N + 1

)

. Therefore, the parameter

εi should satisfy the condition (v) in Theorem 2, i.e.,

0 < εi ≤ 1
�

ln

(
1

‖H−1‖
√

σ̄2
N + 1

)

. This completes the

proof. �

Remark 8 ϑi (t) depends on the single measurement as
xi (t iq)−xi (t), then it is not required to save the informa-
tion x j (t iq). However, the control protocol ui (t) as (27)
may be updated more frequently than that as (9). The
corresponding algorithm can be obtained according to
Algorithm 1, thus the detail is omitted here.

4 Numerical simulations

This section demonstrates specific numerical examples
for illustrating the consensus of multiagent systems via
intermittent dynamic event-triggered control protocols.

Consider that a multiagent system consists of five
followers (N = 5) and one leader, where the com-
munication topology is shown in Fig. 3, obviously, the
leader 0 has a directed path to every follower.Moreover,
suppose that f (t, xi (t)) = 0.05 sin(xi (t)), the weights
of edges equal one and xi (t) ∈ R for simplicity, where
i = 0, 1, . . . , 5.

According to Fig. 3, the matrix H is represented

as H =

⎛

⎜
⎜
⎜
⎝

1 0 0 0 0
−1 1 0 0 0
0 0 1 0 0
0 0 −1 1 0
0 0 −1 0 1

⎞

⎟
⎟
⎟
⎠
, then we have the matrix P =

diag{0.5, 0.25, 0.75, 0.25, 0.25} based on Lemma 2.

Fig. 4 States xi (t) of the agents in Example 1

Example 1 First, the event-triggered mechanism is
designed as (4)–(6) and (10), where ϑi (t) = βi (t iq) −
βi (t) denotes combined measurements. The control
protocol ui (t) is given as (9). Correspondingly, the
parameters can be obtained through calculation, where
p̄ = 0.75, κ1 = 0.1938, κ2 = 3.7321. Therefore,
in order to satisfy the conditions (i)–(v) of Theorem
1, for i = 1, 2, . . . , 5, choose θ = 0.1, the coupling
strength c = 0.5 in the control protocol, σ̄ = 0.004
and σi = 0.0035 in the event-triggered condition,
αi = 2.6 for ηi (t), T f = 5.7 (ρ1 = 0.0214 and
ρ2 = 0.1) in Assumption 3 for intermittent frame-
work, and εi = 0.008 (� = 1.2009) for Zeno-free
scheme. Additionally, assume that t0 = 0, t1 = 20s,
the initial conditions xi (0) are randomly generated, and
ηi (0) = 100. By employing Algorithm 1, the numeri-
cal results are presented in Figs. 4, 5, and 6 and Table 1.

In Fig. 4, the states of the followers and leader are
provided. Obviously, the followers track the trajec-
tory of the leader, which shows that the consensus is
achieved based on Definition 1. Additionally, the time
intervals without control protocol are also given, where
the length of the time intervals |� f (0, 20)| = 3.0191,
then Assumption 3 is satisfied.

Figure 5 demonstrates the intermittent control pro-
tocols ui (t), where ui (t) = 0 during � f (0, 20). Fur-
thermore, as the consensus realizes, all the protocols
converge to zero. Particularly, the protocols are updated
discretely owning to the event-triggered mechanism.

In order to display the discrete instantswhen the pro-
tocols are updated, Fig. 6 supplies the event-triggered
instants, i.e., t iq (q = 1, 2, . . . ; i = 1, 2, . . . , 5), which
implies that the mechanism greatly reduces the num-
ber of the control updates. On the other hand, the
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Fig. 5 Intermittent control protocols ui (t) in Example 1

Fig. 6 Event-triggered instants t iq in Example 1

Table 1 Event-triggered times in the static and dynamic strate-
gies

Agent i 1 2 3 4 5

Static strategy 139 466 138 300 103

Dynamic strategy 64 100 81 54 58

event-triggered instants of different agents can be non-
identical, and Zeno behavior is excluded due to the
minimum time interval εi > 0.

Moreover, for the event-triggered times during
[0, 20s), Table 1 provides a comparison between two
cases, i.e., in the condition (5), ηi (t) ≡ 0 and ηi (t)
is updated with the law (6), which correspond to the
static and dynamic event-triggered strategies, respec-
tively. Clearly, the times in the dynamic strategy are
much less than those in the static situation.

Example 2: Second, the event-triggered mechanism
is designed as (4)–(6) and (28), where ϑi (t) = xi (t iq)−
xi (t) denotes a single measurement. The control pro-

Fig. 7 States xi (t) of the agents in Example 2

Fig. 8 Intermittent control protocols ui (t) in Example 2

tocol ui (t) is given as (27). The parameters p̄ = 0.75,
κ1 = 0.1938, κ2 = 3.7321, and κ3 = 0.6998, then if
select c = 0.5, σ̄ = 0.004, σi = 0.0035, and αi = 2.6,
which are the same as in Example 1, the conditions (i)–
(iii) of Theorem 2 are also satisfied. Besides, the condi-
tions (iv) and (v) can be guaranteed by T f = 9.2 (ρ1 =
0.0122, ρ2 = 0.1) and εi = 0.004 (� = 1.2459). The
initial conditions xi (0) except x0(0) are randomly gen-
erated, while x0(0) = 2π , and ηi (0) = 100. t0 = 0,
and t1 = 15s. The corresponding results for illustrating
Theorem 2 are given in Figs. 7, 8, and 9 and Table 2. On
the other hand, since the parameter T f in this exam-
ple is larger than that in Example 1, the length without
control |� f (0, 15)| = 0.9712.

Figure 7 presents the states of the followers and
leader, which implies that the consensus is realized.
Compared with Fig. 4 in Example 1, the state of the
leader in Fig. 7 is a constant for ensuring f (t, x0(t)) =
0. In Fig. 8, the control protocols as (27) are given,
and it can be seen that the protocols are updated more
frequently than those in Fig. 5, since for the i th agent,

123



Consensus of nonlinear multiagent systems 1311

Fig. 9 Event-triggered instants t iq in Example 2

Table 2 Event-triggered times in the static and dynamic strate-
gies

Agent i 1 2 3 4 5

Static strategy 138 136 138 146 138

Dynamic strategy 86 105 74 100 102

besides its own triggering instants t iq , ui (t) is updated

at the triggering instants of its neighbors t jq ′ , which is
different from the protocols in Example 1.

Figure 9 shows the event-triggered instants pro-
duced by the mechanism (4)–(6) and (28). Further-
more, as presented inTable 2, during [0, 15s), the event-
triggered times of the agents with dynamic strategy are
86, 105, 74, 100, and 102, respectively, which implies
that the dynamic event-triggered approach reduces the
update frequency more effectively compared with the
static scheme.

In the two examples above, for simplicity, the agents
are assumed to move on the one-dimensional space,
i.e., xi (t) ∈ R. It should be noted that for the phys-
ical systems moving on higher-dimensional space, if
the conditions in the theorems can be guaranteed, the
designed control algorithm should also be applicable.

5 Conclusion and discussion

In order to realize the consensus of nonlinear mul-
tiagent systems, this paper has investigated how to
improve control protocols. On the one hand, suppose
that the protocols are intermittent. On the other hand,
event-triggered scheme has been utilized and devel-
oped for reducing the update frequency of control. In

particular, the event-triggered strategies under intermit-
tent framework are not only dynamic but also Zeno-
free. Two forms of the event-triggered protocols have
been provided and discussed, where combined mea-
surements and a singlemeasurement have been adopted
in the event-triggered conditions. Correspondingly, we
put forward the sufficient conditions for the consen-
sus via the proposed schemes, and designed the con-
crete algorithm. It can be found that the conditions
are related to the coupling strength, parameters in the
event-triggered mechanism, and the length of time
without control.However,we focusedon thefixed com-
munication topology rather than switching topologies,
since both the event-triggered mechanism and inter-
mittent framework have been considered, then if the
topologies are supposed to be switching, the exclusion
of Zeno behavior needs further analysis. Furthermore,
the consensus conditions depend on the communica-
tion topology, i.e., the matrix H . Therefore, only the
fixed communication topology has been studied, and
the case under switching topologies is a problem to be
solved.
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