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Abstract In this paper, we propose a new class non-
linear hybrid controller (NHC) for swinging-up and
stabilizing the (under-actuated) rotary inverted pen-
dulum system. First, the swing-up controller, which
drives the pendulum up towards the desired upright
position, is designed based on the feedback lineariza-
tion and energy control methods. Then, the modi-
fied super-twisting sliding mode control is proposed
based on the new sliding surface to stabilize both
the fully-actuated (the rotary arm) and under-actuated
(the pendulum) state variables. In the proposed NHC,
around the upright position, the stabilization controller
is applied, and in different circumstances aside from
the upright position, the swing-up controller is used.
We show that with the proposed NHC: (i) in the swing-
up stage, the pendulum is able to reach the desired
upright position; and (ii) in the stabilization stage, the
closed-loop rotary inverted pendulum is asymptotically
stable. We demonstrate the effectiveness of the pro-
posed NHC through extensive experiments. In partic-
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ular, (i) the faster swing-up under the similar control
effort is obtained, compared with the existing fuzzy
logic swing-up controller; (ii) the better stabilization
control performance for the convergence of the angular
positions of the rotary armandpendulum is attained and
the chattering is alleviated, compared with the existing
sliding mode stabilization controllers; (iii) the better
stabilization control accuracy with the faster conver-
gence time and lower peak overshoot is accomplished,
compared with the existing Fuzzy-LQR controller; and
(iv) the good robustness against sudden external distur-
bances is achieved.

Keywords Energy control · Feedback linearization
control · Modified super-twisting control · Rotary
inverted pendulum · Stabilization control · Swing-up
control

1 Introduction

For decades, the control problem of the rotary inverted
pendulum system has been regarded as one of the most
important practical examples in various control appli-
cations, including robotics systems, aerospace systems,
and industrial crane systems [1,2]. Furthermore, the
analysis of controlling the rotary inverted pendulum
plays a crucial role in Segways systems, marine sys-
tems, and vibration removing apparatus [1,2].

The rotary inverted pendulum control procedure
consists of two stages: (i) swinging up the pendulum to
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the neighborhood of the upright position; and (ii) sta-
bilizing both the pendulum in its upright position and
the rotary arm at its zero position. These two stages
can be combined together by a certain switching crite-
rion to achieve the overall control objective [1,2]. The
main control challenge is the under-actuated structure,
since only the rotary arm is linked to the control input
torque of the system. The contribution of this paper
is to propose a new class nonlinear hybrid controller
(NHC) for the rotary inverted pendulum system, which
guarantees the faster swing-up and better stabilization
performances, compared with the existing approaches.

Below, we mention several swing-up and stabiliza-
tion control schemes of the (under-actuated) rotary
inverted pendulum that are relevant to our paper.

1.1 Swing-up control

There are three main approaches for swinging-up the
pendulum to the upright position: (i) the intelligent
controller [3–5]; (ii) the nonlinear trajectory follow-
ing technique [6,7]; (iii) the energy-based controller
[8–11].

The intelligent control approach focuses on using
the fuzzy logic controller (FLC) for swinging-up the
inverted pendulum to the small region around the
upright position [3–5]. Regarding the second cate-
gory in (ii), the nonlinear trajectory following control
method is used for swinging-up the pendulum to the
upright unstable position [6,7]. The idea behind the first
and second techniques is that the rotary arm is driven
back and forth along the proper trajectory, making the
pendulum to get an appropriate speed to approach the
upright position region. Although the approaches of
(i) and (ii) in [3–7] were demonstrated to work well
by simulations and experiments, there is no theoretical
guarantee for the stability of the closed-loop system.
Besides, to perform a successful swing-up procedure
with [3–7], designer’s experience and trial and error
method are essential [2,7].

As for the energy-based control method in (iii), the
main idea is to design the control law such that the
energy of the pendulum is generated until reaching
the upright position. This approach was originally pro-
posed by Åström and Furuta [8]. Based on [8], various
applications of energy-based controllers for swinging-
up pendulumwere obtained in [9–11]. By means of the
Lyapunov method, the stability of the system during

the swing-up stage with the controllers in [8–11] were
shown. However, in [8–11], the swing-up controller
was proposed based on the simplified dynamic model
of the rotary inverted pendulum system, in which the
arm acceleration is considered as the control input and
its relationshipwith the control torquewas ignored. For
practical systems, it might not be possible to design the
arm acceleration input directly.

1.2 Stabilization control

The stabilization control problem of the rotary inverted
pendulum system, although it seems simple, is chal-
lenging, since we need to stabilize the fully-actuated
and unstable under-actuated state variables simultane-
ously.

Various kinds of stabilization controllers have been
proposed, including linear control approaches [12–16],
generic nonlinear control methods [17–19], intelligent
control frameworks [20–24], adaptive control methods
[25–27], and sliding mode control (SMC) approaches
[4,28–30]. The interested readers are referred to [1,2]
for a comprehensive review of the linear and nonlinear
controllers for the rotary inverted pendulum system.

Among the existing stabilization approaches men-
tioned above, the SMC features an ease of implemen-
tation in practice and offers a rapid transient response
[31,32]. We should mention that two main challenging
issues, preventing the application of the SMC method
to the rotary inverted pendulum system, are how to
construct an appropriate sliding surface and prove the
stability of the closed-loop system during the slid-
ing phase. In particular, since the system is under-
actuated, one has to incorporate multiple state vari-
ables, i.e., fully-actuated and under-actuated state vari-
ables, into one sliding surface. Hence, unlike fully-
actuated systems, different sliding surface and stabil-
ity proof technique are essentially required to show
the stabilizing performance of the SMC approach for
the (under-actuated) rotary inverted pendulum system.
We note that different kinds of SMC stabilization con-
trollers have been considered for the (under-actuated)
rotary inverted pendulum in [4,28–30]. In these SMC
approaches, various forms of sliding surfaces were
designed in order to achieve the closed-loop system
stability during the sliding phase. However, there are
two main drawbacks in [4,28–30]:
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(a) The SMC stabilization approaches in [4,28–30]
were related to the traditional SMC. Hence, they
suffer from the chattering phenomenon owing
to the discontinuous control inputs, which may
cause actuator damage and stabilization control
performance degradation; and

(b) The stability of the closed-loop system in the slid-
ing phase had not been addressed in [4,28–30].
Specifically, there is no theoretical guarantee for
the stability of the closed-loop system in the slid-
ing surface. It isworthwhile to point out that prov-
ing the stability of under-actuated systems during
the sliding phase is challenging, since both the
full-actuated and under-actuated state variables
have to be stabilized simultaneously.

1.3 Main contributions and comparison

In this paper, we propose a new class nonlinear
hybrid controller (NHC) for swinging-up and stabiliz-
ing the rotary inverted pendulum. In the proposedNHC,
around the upright position, the stabilization controller
is applied, and in different circumstances aside from the
upright position, the swing-up controller is used. We
now state the main contributions of this paper. Then,
we provide a detailed comparison of the proposedNHC
with the existing control approaches.

1.3.1 Main contributions

(i) For the swing-up stage, the proposed swing-
up controller is designed by incorporating
the feedback linearization and energy con-
trol approaches. The swing-up control law is
developed based on the non-simplified dynamic
model of the rotary inverted pendulum system,
in which the relationship between the rotary
arm acceleration and control input torque is
incorporated. With the swing-up controller in
the proposed NHC, we show that the pendulum
is able to reach the desired upright position;

(ii) For the stabilization stage, our main goal is to
address the above-mentioned drawbacks in the
existing SMCs stabilization controllers [see (a)
and (b) in Sect. 1.2]. We first introduce the new
sliding surface, which is designed to resolve
the under-actuated problem. The proposed slid-
ing surface is constructed by incorporating the

rotary arm and pendulum dynamics into one
equation. Subsequently, the stabilization con-
troller is developed by means of the designed
sliding surface and the modified super-twisting
sliding mode algorithm. We emphasize that
the stabilization control signal in the proposed
NHC is continuous, which provides the better
control performance for the convergence of the
angular positions of the rotary arm and pendu-
lum and alleviates the chattering phenomenon.
We also provide the detailed analysis to show
the finite-time and asymptotic stabilities of the
sliding variable and the closed-loop system in
reaching and sliding phases, respectively; and

(iii) Various experimental results are provided to
illustrate the effectiveness of the proposed
NHC.

To the best of the authors’ knowledge, (i) and (ii)
in our main contributions have not been considered in
the existing literature mentioned above. Moreover, the
stability proof of (ii) relies on constructing new sliding
surface and Lyapunov function, which has not been
studied in the existing literature.

1.3.2 Comparison

(i) For the swing-up control problem, our paper can
be viewed as an extension of [3–11]. Note that
our paper is different from [8–11], since we pro-
pose the swing-up controller based on the feed-
back linearization and energy control methods, in
which the relationship between the arm accelera-
tion and the control torque is considered. Besides,
compared with [3–7], we can prove theoretically
that the pendulum is able to reach the desired
upright position with the swing-up controller in
the proposed NHC;

(ii) For the stabilization control problem, our paper
can be viewed as a generalization of [4,28–30].
Specifically, compared with [4,28–30], our paper
proves the stability of the closed-loop system in
the reaching phase as well as the sliding phase.
Besides, we consider the continuous modified
super-twisting control law, whereas [4,28–30]
used the traditional SMC method, which is dis-
continuous. We also generalize the results of
Moreno and Osorio [33] to the case of under-
actuated systems. These generalizations turn out
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Table 1 Characteristics of SMCs, STA, and the proposed stabilization controller

Control signal Stability in reaching phase Stability in sliding phase

SMCs [4,28–30] Discontinuous Finite-time N/A

STA [33] Continuous Finite-time N/A

Proposed controller Continuous Finite-time Asymptotic

to be not straightforward due to the complicat-
edness of the modified super-twisting control
approach and the under-actuated structure of the
rotary inverted pendulum. The features of the
proposed stabilization controller and SMCs in
[4,28–30,33] are given in Table 1;

(iii) For the experimental results,

(a) in case of swing-up control, the faster swing-
up times with the same control effort is
obtained, compared with the FLC swing-up
controller [5];

(b) in case of stabilization control,
– the better control performance for the con-
vergence of the angular positions of the
rotary arm and pendulum is attained and
the chattering is alleviated, compared with
the existing SMC stabilization controllers
in [28,29];

– the better stabilization control accuracy
with the faster convergence time and lower
peak overshoot is accomplished, compared
with the existing Fuzzy-LQR controller
[23]; and

(c) with the stabilization controller in the pro-
posedNHC, the robustness of the closed-loop
system is guaranteed under the effect of sud-
den external disturbances.

The rest of paper is organized as follows. In Sect. 2,
the nonlinear hybrid controller (NHC) is proposed,
and the system stability is analyzed. The experimen-
tal results are provided in Sect. 3. Concluding remarks
are given in Sect. 4.

2 Design of the proposed NHC

In this section, we propose a new class nonlinear hybrid
controller (NHC) for the rotary inverted pendulum. The
dynamic model of the rotary inverted pendulum is first

described. Then, the swing-up and stabilization con-
trollers are developed. Finally, the NHC is designed
by integrating the proposed swing-up and stabilization
controllers with the switching criterion. The pendulum
angle is used to determine the switching condition.

2.1 Dynamic model of the rotary inverted pendulum

In this paper, we use theQuanser rotary inverted pendu-
lum module. As shown in Fig. 1, the pendulum section
is attached at the end of the rotary arm section. The
schematic of the rotary inverted pendulum system is
displayed in Fig. 2. In the figure, the masses of the
rotary arm and pendulum are mr and mp, respectively.
The arm and pendulum have total lengths of Lr and
L p. Let Jr be the moment of inertia of the rotary arm
and Jp be the moment of inertia of the pendulum about
its center of mass. The control torque τ is applied to
the rotary arm. Besides, the rotary arm and pendulum
angles, θ and α, increase positively when they rotate
counter-clockwise (CCW).

The system has two controlled outputs: the angular
position of the arm of θ and the angular position of the
pendulum of α. The system is under-actuated, since
only the rotary arm is subjected to the control input
torque of τ . By means of the Lagrangian formulation,
the equations ofmotion of the rotary inverted pendulum
can be derived as follows [16]:

(
Jr + 1

4
mpL

2
psin

2(α)
)
θ̈ − 1

2
mpL pLrcos(α)α̈

+ 1

2
mpL

2
psin(α)cos(α)θ̇ α̇ + 1

2
mpL pLr sin(α)α̇2 = τ

(
Jp + 1

4
mpL

2
p

)
α̈ − 1

2
mpL pLrcos(α)θ̈

− 1

4
mpL

2
psin(α)cos(α)θ̇2 − 1

2
mpL pgsin(α) = 0,

(1)
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Fig. 1 The single inverted pendulum mounted on the SRV02
base unit. Image courtesy of Quanser Inc. [16]

where Jr := mpL2
r + Jr and the system variables are

introduced in Table 2.

2.2 Swing-up controller

In this subsection, we design the swing-up controller in
the proposed NHC by means of the feedback lineariza-
tion and energy control schemes.

First, the dynamics in (1) can be rewritten as

α̈ = 1

Jα

[1
2
mpL pLrcos(α)θ̈

+ 1

4
mpL

2
psin(α)cos(α)θ̇2 + 1

2
mpL pgsin(α)

]
,

(2)

where Jα := Jp + 1
4mpL2

p. Then, let us define

fθ (α, α̇, θ̇ ) := 4Jα
Jθ (α)

[
θ̇
( − 1

2
mpL

2
psin(α)cos(α)α̇

Fig. 2 The rotary inverted pendulum conventions [16]

+ 1

8Jα
m2

pL
3
pLr sin(α)cos2(α)θ̇

)

− 1

2
mpL pLr sin(α)α̇2

+ 1

4Jα
m2

pL
2
pLr gsin(α)cos(α)

]

gθ (α) := 4Jα
Jθ (α)

Jθ (α) := 4Jα Jr + JαmpL
2
psin

2(α)

− m2
pL

2
pL

2
r cos

2α.

Next, by substituting (2) into (1), we have

θ̈ = fθ
(
α, α̇, θ̇

) + gθ (α)τ. (3)

Now, by applying the feedback linearization method,
we propose the following control law1:

τ := τsw = 1

gθ

(
τ1 − fθ

)
, (4)

1 For the sake of readability, we denote fθ := fθ
(
α, α̇, θ̇

)
, gθ :=

gθ (α).

123



1122 N. P. Nguyen et al.

Table 2 The Quanser rotary inverted pendulum system defini-
tions

Parameters Description Unit

mp Mass of pendulum section kg

L p Total length of pendulum section m

Jp Moment of inertia of pendulum section kgm2

mr Mass of arm section kg

Lr Total length of arm section m

Jr Moment of inertia of arm section kgm2

g Gravitational acceleration m/s2

where gθ and fθ are given in (3) and τ1 is a new control
input. Note that gθ (α) > 0,∀α ∈ [−π, π ] (rad) (see
Remark 2). From (3) and (4), we have

θ̈ = τ1. (5)

For the swing-up control objective, the pendulum
is assumed to be the planar pendulum and the fric-
tion is neglected (see Remark 3). Under these assump-
tions, the equation of motion for the pendulum can be
obtained as follows [8]:

Jαα̈ = 1

2
mpL pLrcos(α)θ̈ + 1

2
mpL pgsin(α), (6)

where the acceleration of the rotary arm θ̈ = τ1 is
considered as the control input.

The energy of the uncontrolled pendulum is given
as follows:

E = 1

2
Jαα̇2 + 1

2
mpgL pcos(α). (7)

From (5) to (7), the derivative of E can be obtained as

Ė = 1

2
mpL pLrcos(α)α̇τ1. (8)

On the other hand, when the pendulum is at the upright
position, i.e., α̇ = 0, it has only the potential energy
Ed :

Ed := 1

2
mpgL p.

Then if the criterion is chosen as

Vp = 1

2

(
E − Ed

)2
, (9)

then, the pendulum is at the upright positionwith α̇ = 0
as long as Vp keeps Vp = 0.

To achieve Vp = 0, from (8) and (9),

V̇p = 1

2

(
E − Ed

)
mpL pLrcos(α)α̇τ1. (10)

Now, by selecting

τ1 = − 2

mpL pLr
K sign

((
E − Ed

)
α̇cos(α)

)
, (11)

(10) can be rewritten as

V̇p = −K
∣∣(E − Ed

)
α̇cos(α)

∣∣ ≤ 0, (12)

where K is a positive constant. Since the pendu-
lum cannot maintain a stationary position with α =
±π/2 (rad), the control law τ1 drives Vp towards zero.
This shows that under (11), Vp → 0 as t → ∞, which
implies that the pendulum is fully swung up to the
upright position.

2.3 Stabilization controller

In this subsection, we design the modified super-
twisting-based stabilization controller in the proposed
NHC.We first introduce the new sliding surface, which
is designed to resolve the under-actuated problem. It is
worthwhile to emphasize that it is not straightforward to
construct a proper sliding surface for the under-actuated
system as the rotary inverted pendulum. Besides, to
enhance control performance and reduce the chattering
phenomenon, the stabilization controller is design by
means of the modified continuous super-twisting slid-
ing mode control. We show that with the proposed sta-
bilization controller, both the finite-time convergence
of the sliding surface and the asymptotic stability of the
closed-loop system are obtained.

2.3.1 Control law design

First, by using (2) and (3),

α̈ = fα
(
α, α̇, θ̇

) + gα(α)τ, (13)
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where

fα(α, α̇, θ̇ ) := 1

Jθ (α)
mpL pLrcos(α)

( − mpL pLr sin(α)α̇2

− mpL
2
psin(α)cos(α)θ̇ α̇

)

+ (
4Jr + mpL

2
psin

2(α)
)

×
[

1

4Jθ (α)
mpL

2
psin(α)cos(α)θ̇2

+ 1

2Jθ (α)
mpL pgsin(α)

]

gα(α) := 2

Jθ (α)
mpL pLrcos(α).

To resolve the under-actuated problemof system (1),
we propose a new sliding surface by incorporating the
rotary arm and pendulum dynamics into one equation
as follows:

s = kθ θ̇ + kαα̇ + λθθ + λαα, (14)

where kθ , kα, λθ , and λα are sliding surface gains. We
mention that (14) is different from the existing SMC
approaches due to the under-actuated structure (see
Remarks 4 and 5).

Then, themodified super-twisting stabilization algo-
rithm in this paper is proposed as follows:

τ := τst = − 1

kθgθ (α) + kαgα(α)

[
kθ fθ

(
α, α̇, θ̇

)

+ kα fα
(
α, α̇, θ̇

) + λθ θ̇ + λαα̇

+ k1|s|1/2sign(s) + k2s − z
]

ż = −k3sign(s) − k4s, (15)

where ki > 0, i = 1, . . . , 4 is a design constant. We
note that the sliding surface gains, kθ and kα , are chosen
appropriately to guarantee that kθgθ (α)+kαgα(α) �= 0
during the stabilization stage (see Remark 2).

2.3.2 Stability analysis

This subsection provides a completed stability analy-
sis of the stabilization controller in (15) for the rotary
inverted pendulum system in (1). We first prove the
finite-time convergence of the sliding function s to zero.

Subsequently, the closed-loop system asymptotic sta-
bility during the sliding phase is achieved through the
proper selection of sliding surface gains.

The time derivative of (14) can be obtained as

ṡ = kθ θ̈ + kαα̈ + λθ θ̇ + λαα̇. (16)

Substituting of (3), (13), and (15) into (16) yields

ṡ = −k1
∣∣s

∣∣1/2sign(s) − k2s + z

ż = −k3sign(s) − k4s. (17)

Theorem 1 Consider the rotary inverted pendulum
system (1) with the proposed stabilization controller
(15). The convergence to zero of the sliding variable s
is established in finite time, then the system states, θ , θ̇ ,
α, and α̇, converge to zero asymptotically, if the control
switching and sliding surface gains satisfy

ki > 0, i = 1, . . . , 4

4k3k4 > (8k3 + 9k21)k
2
2,

and

λθ , kθ < 0, λα, kα > 0

λα

kα

>
λθ

kθ

, 2kθ Jα + kαmpL pLr > 0.

The finite reaching time to the sliding surface can be
estimated by

T = 2

ϑ2
ln

(
ϑ2

ϑ1
V 1/2(s(0), z(0)) + 1

)
, (18)

where V (s, z) is defined in (19) and ϑ1 and ϑ2 can be
found in (24).

Proof The proof consists of two parts: (i) we first prove
that the convergence to zero of the sliding variable s can
be established in finite time, where an explicit finite
time is characterized; (ii) we show that the asymptotic
stability of the system states, θ , θ̇ , α, and α̇, can be
achieved on the designed sliding surface.

In the first part, we prove that the sliding variable
s converges to zero in finite time by constructing an
appropriate Lyapunov function.
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In view of Moreno and Osorio [33], we consider the
following Lyapunov candidate function:

V (s, z) = 2k3|s| + k4s
2 + 1

2
z2

+ 1

2

(
k1|s|1/2sign(s) + k2s − z

)2
. (19)

We define the subspace s := {(s, z) ∈ R
2 : s = 0}.

Note that V (s, z) is continuous everywhere, and con-
tinuously differentiable everywhere except on the sub-
space s. Besides, it can be shown that V (s, z) is positive
definite and radially unbounded.

We note that any point in the subspace s, before
reaching the origin, takes the form (0, z) with z �= 0.
From the first equation of (17), it implies that ṡ = z �=
0. In other words, the system trajectory (17) cannot stay
on the subspace s before reaching the origin. Hence,
V̇ (s, z) can be obtained in the usual way, except when
the trajectory intersects the subspace s. The set of time
instantswhen this happens, before the origin is reached,
is of zero measure, as discussed in [34].

Now, differentiating the expression in (19) yields

V̇ (s, z) =
(
2k3 + k21

2

)
s

|s| ṡ + 2

(
k22
2

+ k4

)
sṡ

+ 2zż + 3

2
k1k2

s

|s|1/2 ṡ − k2(ṡz + sż)

− k1

(
z

2|s|1/2 ṡ + s

|s|1/2 ż
)

. (20)

Then, by substituting for (17) into (20), we obtain

V̇ (s, z) = −
(
k1k3 + k31

2

)
|s|1/2 − (

k2k4 + k32
)|s|2

−
(
k4k1 + 5

2
k1k

2
2

)
|s|3/2 + k21

sz

|s| + 2k22sz

+ 3k1k2
sz

|s|1/2 − k2z
2 − k1

2

z2

|s|1/2
− (

k3k2 + 2k21k2
)|s|. (21)

Introducing a new vector

ζ = [|s|1/2sign(s) s z
]�

.

Then from (21),

V̇ (s, z) = − 1

|s|1/2 ζ��1ζ − ζ��2ζ , (22)

where

�1 =
⎡

⎣
1
2k

3
1 + k1k3 0 − 1

2k
2
1

0 k4k1 + 5
2k

2
2k1 − 3

2k1k2
− 1

2k
2
1 − 3

2k1k2
1
2k1

⎤

⎦

and

�2 =
⎡

⎣
k2k3 + 2k21k2 0 0

0 k4k2 + k32 −k22
0 −k22 k2

⎤

⎦ .

We can see that V̇ (s, z) in (22) is negative definite
if �1 > 0 and �2 > 0 hold simultaneously. This con-
dition can be satisfied if

ki > 0, i = 1, . . . , 4

4k3k4 > (8k3 + 9k21)k
2
2 .

We should note that it is always possible to select
ki > 0, i = 1, . . . , 4 such that the above conditions
are satisfied. Hence, from (22), by using Rayleigh’s
inequality, we can obtain

V̇ (s, z) ≤ − 1

|s|1/2 λmin{�1}
∥∥ζ

∥∥2
2 − λmin{�2}

∥∥ζ
∥∥2
2,

(23)

where
∥
∥ζ

∥
∥2
2 := |s| + s2 + z2.

Note that the Lyapunov function in (19) can be
rewritten as a quadratic form V (s, z) = ζ��ζ with
an appropriate symmetric positive definite matrix

� = 1

2

⎡

⎣
4k3 + k21 k1k2 −k1
k1k2 2k4 + k22 −k2
−k1 −k2 2

⎤

⎦

and from Rayleigh’s inequality, we have

λmin{�}∥∥ζ
∥∥2
2 ≤ V (s, z) ≤ λmax{�}∥∥ζ

∥∥2
2.
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Therefore, from (23) and the fact

∣
∣s

∣
∣1/2 ≤ ∥

∥ζ
∥
∥
2 ≤ V 1/2(s, z)

λ
1/2
min

{
�

} ,

we can conclude that

V̇ (s, z) ≤ −ϑ1V
1/2(s, z) − ϑ2V (s, z), (24)

where

ϑ1 = λ
1/2
min

{
�

}
λmin

{
�1

}

λmax
{
�

}

and

ϑ2 = λmin
{
�2

}

λmax
{
�

} .

Since the solution of the comparison equation

v̇ = −ϑ1v
1/2 − ϑ2v, v(0) = v0 ≥ 0

can be obtained as

v(t) = exp(−ϑ2t)

[
v
1/2
0 + ϑ1

ϑ2

(
1 − exp

(
ϑ2

2
t

))]2
,

then invoking the comparison lemma [35], it can be
verified that V (s, z), and therefore, the sliding variable
in (14) converge to zero at most after some finite time
given in (18).

This completes the proof of finite-time convergence
part of the theorem.

In the second part, we show that as the sliding func-
tion s converges to zero in finite time, the asymptotic
stability of the system states, θ , θ̇ , α, and α̇, can be
achieved on the designed sliding surface.

From (14), we can obtain the following expression
after some finite time:

θ̇ = −λθ

kθ

θ − λα

kθ

α − kα

kθ

α̇. (25)

We note that the dynamic in (25) is well established,
since kθ can always be chosen properly, i.e., kθ �= 0
(see Remark 2).

In the sliding phase, the rotary inverted pendulum
system dynamics is represented by

α̈ = fα(θ, α, α̇)

− gα(α)

kθgθ (α) + kαgα(α)

[
kθ fθ (θ, α, α̇)

+ kα fα(θ, α, α̇)

+ λθ

(
− λθ

kθ

θ − λα

kθ

α − kα

kθ

α̇
)

+ λαα̇
]

kθ θ̇ + kαα̇ + λθθ + λαα = 0, (26)

where the first equation is obtained by substituting (25)
and the control input from (15) into (13) and the second
equation is given by letting s = 0.

Now, by introducing,

x1 = θ, x2 = α, x3 = α̇,

and

x = [
x1 x2 x3

]�
,

the dynamical system in (26) can be rewritten as

ẋ = f(x) =
⎡

⎣
f1(x)
f2(x)
f3(x)

⎤

⎦ , (27)

where

f1(x) := −λθ

kθ

x1 − λα

kθ

x2 − kα

kθ

x3

f2(x) := x3

f3(x) := fα(x1, x2, x3) − gα(x2)

kθgθ (x2) + kαgα(x2)

×
[
kθ fθ (x1, x2, x3) + kα fα(x1, x2, x3)

+ λθ

(
− λθ

kθ

x1 − λα

kθ

x2 − kα

kθ

x3
)

+ λαx3
]
,

where the definition of fθ (x1, x2, x3), fα(x1, x2, x3),
and gθ (x2), gα(x2) are given in (28).
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fθ (x1, x2, x3) := 4Jα
Jθ (x2)

[(
− λθ

kθ
x1 − λα

kθ
x2

− kα
kθ

x3
)(

− 1

2
mpL

2
psin(x2)cos(x2)x3

)

+
(

− λθ

kθ
x1 − λα

kθ
x2 − kα

kθ
x3

)2

( 1

8Jα
m2

pL
3
pLr sin(x2)cos

2(x2)
)

− 1

2
mpL pLr sin(x2)x

2
3

+ 1

4Jα
m2

pL
2
pLr gsin(x2)cos(x2)

]

fα(x1, x2, x3) := 1

Jθ (x2)
mpL pLr cos(x2)

[

− mpL
2
psin(x2)cos(x2)x3

(
− λθ

kθ
x1 − λα

kθ
x2

− kα
kθ

x3
)

− mpL pLr sin(x2)x
2
3

]

+ 1

4Jθ (x2)
mpL

2
psin(x2)cos(x2)

(
− λθ

kθ
x1

− λα

kθ
x2 − kα

kθ
x3

)2(
4Jr + mpL

2
psin

2(x2)
)

+ 1

2Jθ (x2)
mpL pgsin(x2)

(
4Jr + mpL

2
psin

2(x2)
)

gθ (x2) := 4Jα
Jθ (x2)

, gα(x2) := 2

Jθ (x2)
mpL pLr cos(x2),

Jθ (x2) := 4Jα Jr + JαmpL
2
psin

2(x2)

− m2
pL

2
pL

2
r cos

2(x2). (28)

Now, we are interested in the stability of the dynam-
ical system described in (27). First, as we can observe
from (27), the origin is the equilibrium point, i.e.,
xe = 0. Subsequently, in a small neighborhood of the
origin, we can approximate the nonlinear system (27)
by its linearization about the origin

ẋ = Ax, (29)

where

A = ∂f(x)
∂x

∣∣∣
x=xe

=
⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦

with elements defined by

A11 := −λθ

kθ

, A12 := −λα

kθ

, A13 := −kα

kθ

A21 := 0, A22 := 0, A23 := 1

A31 := λ2θ

kθ

mpL pLr

2kθ Jα + kαmpL pLr

A32 := 1

kθ

mpL pgk2θ + mpL pLrλθλα

2kθ Jα + kαmpL pLr

A33 := − mpL pLr

2kθ Jα + kαmpL pLr

(
− λθkα

kθ

+ λα

)
.

It can be clearly observed that the origin of (29) is
asymptotically stable if the real part for all eigenvalues
of A is negative. By letting

� := ρI − A,

where ρ is a complex variable, I ∈ R3×3 is the unit
matrix, we have the following:

� =
⎡

⎣
Ξ11 Ξ12 Ξ13

Ξ21 Ξ22 Ξ23

Ξ31 Ξ32 Ξ33

⎤

⎦

with elements defined by

Ξ11 := ρ + λθ

kθ

, Ξ12 := λα

kθ

, Ξ13 := kα

kθ

Ξ21 := 0, Ξ22 := ρ, Ξ23 := −1

Ξ31 := −λ2θ

kθ

mpL pLr

2kθ Jα + kαmpL pLr

Ξ32 := − 1

kθ

mpL pgk2θ + mpL pLrλθλα

2kθ Jα + kαmpL pLr

Ξ33 := ρ + mpL pLr

2kθ Jα + kαmpL pLr

(
− λθkα

kθ

+ λα

)
.

Subsequently, the characteristic polynomial of the
linearized system (29) is given by

ρ3 + ρ2
[

λθ

kθ
+ mpL pLr

2kθ Jα + kαmpL pLr

(
− λθ kα

kθ
+ λα

)]

+ ρ

[
− mpL pgkθ

2kθ Jα + kαmpL pLr

]

+
[

− mpL pgλθ

2kθ Jα + kαmpL pLr

]
= 0. (30)

From (30), we can check that the real part for all
eigenvalues ofA is negative, if the sliding surface gains,
kθ , kα, λθ , and λα , fulfil the following circumstances:

λθ , kθ < 0, λα, kα > 0

λα

kα

>
λθ

kθ

, 2kθ Jα + kαmpL pLr > 0. (31)
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Hence, by choosing the sliding surfacegains kθ , kα, λθ ,

andλα satisfied the circumstances in (31) (seeRemark2),
the real part for all eigenvalues ofA is negative. In other
words, the origin of (29) is asymptotically stable,which
implies that the angular position of the rotary arm, θ ,
and the angular position of the pendulum, α, and its
derivative, α̇, converge to zero asymptotically. From
(25), we can observe that θ̇ is also driven to zero asymp-
totically. Hence, it can be concluded that the origin of
the nonlinear system given by (27) is asymptotically
stable [35,36].

To conclude the proof, the proposedmodified super-
twisting stabilization controller in (15) guarantees:

(i) thefinite-time convergenceof the sliding function
s to zero;

(ii) the asymptotic convergence of the system states
θ , θ̇ , α, and α̇ to the origin.

This completes the proof of the theorem. 
�

2.4 Switching criteria of swing-up and stabilization
controllers

The swing-up and stabilization control are realized by
switching the above two controllers in Sects. 2.2 and
2.3 depending on the pendulum angle. The switching
criteria is set as

τ =
{

τsw |α| > αsw

τst otherwise,
(32)

where αsw is the switching angle. For the experiment
in Sect. 3, we set the switching angle as αsw :=
π/15 (rad) [16].

Then, the proposed nonlinear hybrid controller can
be designed by combining the swing-up and stabiliza-
tion controllerswith the switching criterion in (32). The
block diagram of the overall control system is shown
in Fig. 3.

Before moving to the next section, we present
numerous remarks on the proposed control structure.

Remark 1 Regarding the hybrid (switching)mode con-
trol, we use the pendulum angle threshold method; see
[1,2,16] and the references therein. The effectiveness
and robustness of the proposed NHC will be verified
through various experiments in Sect. 3.

Remark 2 (i) From the values of the system param-
eters [16], it can be easily check that Jθ (α) > 0,
∀α ∈ [−π, π ] (rad). Hence, we have

gθ (α) := 4Jα
Jθ (α)

> 0, ∀α ∈ [−π, π ] (rad),

which results in the effectiveness of the proposed
swing-up controller in (4).

(ii) The parameters for the sliding function s in (14)
may be selected as kθ = −0.1, λθ = −0.1, kα =
0.2, and λα = 3.1. With these surface parameters,
the following holds:

• The circumstances described in (31) are ful-
filled;
• The proposed stabilization controller in (15)
is triggered when α ∈ [−π/15, π/15] (rad).
Hence, by selecting kθ = −0.1 and kα = 0.2,
the proposed stabilization controller in (15) is
always well defined, since we have

kθ gθ (α) + kαgα(α) �= 0, ∀α ∈ [−π/15, π/15].

(iii) With the proposed NHC, less computational
effort and fewer sensing information are required.
In fact, (a) in the swing-up stage, the proposed
swing-up controller consumes a small compu-
tational resources owing to its simple structure
[8,37]; (b) in the stabilization stage, the proposed
modified super-twisting algorithm does not require
the higher-order derivatives of the sliding variable
and the system state, which reduces the computa-
tional effort and simplifies the control design, as
discussed in [32,38]. Note also that in view of the
switching criterion in (32), the swing-up or stabi-
lization controllers is executed only when needed,
thus the computation complexity is also reduced.

In the next remarks, we state the main contributions
of our work and provide a comprehensive comparison
with the existing swing-up and stabilization controllers
(see also Sect. 1.3):

Remark 3 For the swing-up stage:

(i) As mentioned in Sect. 1.3, the main difference
between our proposed swing-up approach and [8] is
that the relationship between the arm acceleration
of θ̈ and the control input torque of τ given in (1)
is realized by the feedback linearization through
(3) and (5). It should be noted that for practical

123



1128 N. P. Nguyen et al.

Fig. 3 Block diagram of the proposed nonlinear hybrid controller (NHC)

systems, it might not be possible to design the arm
acceleration input directly; and

(ii) During the swing-up control design in Sect. 2.2,
we imposed the planar pendulum and the friction-
less motion. We state below that these assumptions
are valid for practical pendulum systems.

• Regarding the planar pendulum, the third term
of the left-hand side of the second equation in
(1) can be neglected, which is,

1

4
mpL

2
psin(α)cos(α)θ̇2 � 0.

This assumption is valid, since the pendulum
is light enough to be swung up with the small
value of θ̇ [8,11,16,39–41].

• As for the frictionless motion during the swing-
up stage, note that we can choose the appropri-
ate control gain K in (11) such that the energy
provided to the pendulum system ismuch larger
than the energy loss of the system by the influ-
ence of the friction. This implies that the pen-
dulum can be driven to the neighborhood of
the vertical upright position [8,11,16,39–41].
Hence, this assumption is also valid.

Based on the above discussions, we note that the
assumptions in Sect. 2.2 are not restrictive. In fact,
these assumptions have been used widely for vari-
ous swing-up control problems of rotary inverted
pendulum systems; see [8,11,16,39–41] and the
references therein. Besides, in the next section,
we show that the swing-up controller in the pro-
posed NHC can fully swing the pendulum to the
upright position under various experimental sce-
narios, which also show the validity of the assump-
tions.

Remark 4 For the stabilization stage:

(i) Although extensive SMC methods have been
proposed for nonlinear fully-actuated systems (see
[33,42–49] and the references therein), it is not
straightforward to apply these approaches for under-
actuated systems, in particular for stabilizing the
rotary inverted pendulum system (1) in the verti-
cal upright position. For fully-actuated systems, the
sliding surface can be constructed by means of dif-
ferent stable linear or nonlinear equations, which
includes all the system state variables. Then, as
soon as the slidingphase is realized, the systemstate
variables converge to zero asymptotically. Never-
theless, this method is not possible to be applied
directly for the stabilization control purpose of the
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rotary inverted pendulum system in (1). In particu-
lar, although the system state variables are driven to
the sliding surface in finite time, the systemmotion
is also described by the inherent under-actuated
dynamics. To tackle this issue,we construct the new
sliding surface in (14) by incorporating the rotary
arm and pendulum dynamics into one equation.

(ii) We should note that the stability proof for Theo-
rem 1 is different from that of [4,28–30]. Specially,

• In the reaching phase, the more complex analy-
sis than that of the traditional SMC approaches
in [4,28–30] is applied to show the finite-time
convergence of the sliding variable to zero. In
particular, recall that the standard Lyapunov
theorem requires a continuously differentiable
Lyapunov function. Note that the Lyapunov
function V (s, z) in (19) is continuously dif-
ferentiable everywhere except on the subspace
s := {(s, z) ∈ R

2 : s = 0}, whereas the Lya-
punov functions in [4,28–30] are continuously
differentiable. This seems that the standardLya-
punov analysis cannot be applied to Theorem 1.
To overcome this technical limitation, in the
proof of Theorem 1, we show that the system
trajectory (17) cannot stay on the subspace s

before reaching the origin. Then, we are able to
obtain V̇ , except when the trajectory of system
(17) intersects with the subspace s. We should
mention that the set of time when the system
trajectory (17) intersects with the subspace s,
before the origin is reached, is of measure zero,
as discussed in [34]. Hence, the standard Lya-
punov analysis can be applied to Theorem 1 to
show the finite-time convergence of the sliding
variable.

• In the sliding phase, we provide several con-
ditions on the selection of the sliding surface
coefficients, which ensure the asymptotic sta-
bility of the closed-loop system. As mentioned
in Sect. 1.3, there is no theoretical guarantee
for the stability of the closed-loop system on
the sliding surface with the works [4,28–30].

(iii) Besides, we mention that the proposed stabiliza-
tion controller is continuous by means of the modi-
fied super-twisting algorithmwhile the SMC-based
stabilization approaches in [4,28–30] used the tra-
ditional SMC method, which is discontinuous.

Hence, Theorem 1 resolves two main drawbacks men-
tioned in Sect. 1.2 when applying the SMC to the rotary
inverted pendulum system in (1).

The following remark first presents a comprehensive
comparison between the continuous SMC-based stabi-
lization controller in the proposedNHCwith other non-
linear control approaches in [46–49]. Then, we provide
a detailed explanation why we employ the modified
continuous super-twisting algorithm for the stabiliza-
tion stage in the proposed NHC.

Remark 5 For stabilizing the rotary inverted pendulum
in the vertical upright position, we have employed the
modified continuous super-twisting algorithm, which
provides several remarkable features, compared with
other nonlinear controllers in the works [46–49], as
below:

(i) The proposed modified super-twisting algorithm
in the NHC is continuous, whereas the corre-
sponding SMC control law in [46] is discontinu-
ous. Fromapractical perspective, adiscontinuous
control signal results in a chatteringphenomenon,
which may cause potential damage to the actua-
tors and degrade the overall control performance;

(ii) Theproposedmodified continuous super-twisting
algorithm in the NHC only requires the measure-
ment of the sliding variable, whereas the contin-
uous SMC approaches in [47,48] also need the
value of the time derivative of the sliding variable.
In practice, it might not be possible to obtain the
derivative of the sliding variable directly. In the
same aspect, the nonlinear controller [49] relies
on the complete information of the system state
up to the second-order derivative, whereas the
proposed controller only needs the knowledge
of the system state up to the first-order deriva-
tive. Hence, the controllers in [47–49] lead to an
increased complexity of the control algorithmand
require more computational effort; and

(iii) The controllers in [46–49] are designed for the
fully-actuated systems while the proposed mod-
ified super-twisting algorithm is developed for
the case of under-actuated systems. We note that
the designed control laws in [46–49] cannot be
applied directly to a class of under-actuated sys-
tems such as the rotary inverted pendulum sys-
tem.

In summary, based the above discussion, we choose to
employ the modified continuous super-twisting algo-
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rithm in the proposed NHC for stabilizing the rotary
inverted pendulum due to the following aspects:

(i) The proposed stabilization controller in the NHC
generates a continuous control signal, which can
reduce a chattering phenomenon and enhance the
control performance of the closed-loop system;

(ii) The proposed stabilization controller in the NHC
reduces the design as well as the computa-
tional complexities. It relaxes the requirement
on the knowledge about the values of higher-
order derivatives of the sliding variable and sys-
tem state; and

(iii) The proposed stabilization controller in the NHC
is suitable for a wide range of practical appli-
cations, including both the fully-actuated and
under-actuated systems.

The following remark provides a procedure how to
apply the theoretical results proposed in Sect. 2.3 to
other classes of under-actuated systems.

Remark 6 The proposed stabilization controller in
Sect. 2.3 can be implemented into several nonlinear
under-actuated systems, including container or over-
head crane systems, aerospace systems, and ball and
beamsystems. In particular, the sliding surface for these
under-actuated systems can be defined as in (14) such
that the fully-actuated and under-actuated variables are
combined together into one equation. Then, the pro-
posed control law in (15) can be modified properly
based on the dynamics of these systems to ensure the
finite-time convergence of the sliding variable to zero in
the reaching phase. Next, several conditions for the sta-
bility of systems during the sliding phase can be found
by following the same procedure as in Theorem 1. We
finally note that the overall stability for these closed-
loop systems can be analyzed as in Theorem 1.

The following remark introduces several potential
research directions for our future work:

Remark 7 (i) In this work, the influences of the
additive matched and mismatched disturbances
on the performance of the closed-loop system
have not been explicitly considered. This problem
will be studied and tackled in our future work.
Interesting methods are introduced in [50–52] to
address the stabilization control of fully-actuated
systems under mismatched disturbances. It should

be pointed out that we cannot applied these meth-
ods directly for the rotary inverted pendulum sys-
tem owing the under-actuated nature of the con-
sidered system. In other words, a different control
design procedure and stability proof technique are
essentially required to show the stabilizing perfor-
mance of theSMCapproach for the disturbed rotary
inverted pendulum system; and

(ii) In this paper, we have not analyzed the effect on
the region of attraction. In fact, the region of attrac-
tion in the stabilization stage is verified through
extensive experimental scenarios. As illustrated in
the next section, the stabilization controller is able
to stabilize the rotary inverted pendulum in various
control situations. It would be interesting to apply
the sums-of-squares optimization methods in [53–
55] to estimate the region of convergence of the
origin. In particular, the methods in [53–55] pro-
vide the ability to search for a certain region of
attraction by solving a series of convex optimiza-
tion problems.

3 Experimental results

The experimental validation has been conducted for
the rotary inverted pendulum built by Quanser Inc.
[16]. The experiment configuration is shown in Fig. 4.
The hardware includes the single inverted pendu-
lum mounted on the Quanser SRV02 based unit, the
VoltPAQ—X2 amplifier, and the Q8—USB DAQ con-
trol board. The apparatus is also equipped with two
optical shaft encoders to measure the angular positions
of the rotary arm and pendulum. The QUARC con-
trol environment inMATLAB/Simulink is provided by
Quanser for real-time implementation. The output volt-
age range to the load is between ±5 (V). A diagram
of the experimental investigation is displayed in Fig. 5.
The starting voltage for the swing-up controller in the
proposed NHCwas−1 (V) that was applied for 0.1 (s).
Finally, we note that the values of the system parame-
ters can be found in [16].

For verification, we conduct four different experi-
ment groups:

Group 1: we demonstrate the superiority of the
swing-up controller in the proposed NHC by com-
paring it with the fuzzy logic swing-up controller
(FLC) [5];
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Fig. 4 Experimental configuration

Group 2: we show the superior performance of
the stabilization controller in the proposed NHC
by comparing it with the decoupled SMC (DSMC)
[28] and SMC [29] stabilization methods;
Group 3: we illustrate the better stabilization con-
trol performance under the proposed NHC with
regard to the convergence of the angular positions

of the rotary arm and pendulum, compared with the
Fuzzy-LQR controller [23]; and
Group 4: We evaluate the good robustness of the
proposed controller against sudden external dis-
turbances. The external disturbances are added to
the pendulum twice, as illustrated from the marked
places in Fig. 9. The sudden external disturbance
could for instance represents sudden collisions dur-
ing the operation of the system.

It is worthwhile to point out that all the experiments
appears as a movie at https://drive.google.com/file/d/
1UhKIVLicHaclpRv3T7ZtWOj87ozG4s6c/view.

3.1 Group 1

In Group 1, we compare the swing-up control perfor-
mance of the swing-up controller in the proposed NHC
with the FLC in [5].

For the proposed swing-up controller, we note that
the control parameter K has been tuned carefully such
that the desired swing-up performance is obtained and
the experiment system is maintained in the safe condi-
tions. According to that, the value of the parameter K is
set as K = 0.08. Besides, the FLC swing-up controller

Fig. 5 Scheme of experimental investigation
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Fig. 6 Experimental
results—Group 1. The
proposed NHC (blue, solid)
and FLC (red, dashed)
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Table 3 Performance comparison—Group 1

FLC [5] Proposed NHC

Swing-up time (s) 12.852 3.022

Average control efforts (V) 1.9 2.0

is designed properly as in [5]. In the stabilization stage,
we use the proposed stabilization controller in (15).

As illustrated in Fig. 6, both swing-up controllers
successfully bring the pendulum within ± π/15 (rad)
region to trigger the stabilization controller. However,
as shown in Table 3, the swing-up time of the proposed
NHC takes around 3 (s), which is around four times
faster than the FLC. Note that for a fair comparison, the
average control efforts for both controllers are the same.
This is because, in the FLC control scheme, the arm is
driven backward and forward several times until the
pendulum approaches the upright position. In contrast,
with the proposedNHC, the faster swing-up time can be
obtained due to the efficient utilization of the feedback
linearization and energy control methods.

From the experimental results in Fig. 6 and Table 3,
we can conclude that the faster swing-up with the rea-

sonable control effort is obtained by the proposedNHC,
compared with the FLC [5].

3.2 Group 2

For Group 2, we compare the stabilization control per-
formance of the stabilization controller in the proposed
NHC with the DSMC [28] and SMC [29]. For the pro-
posed stabilization controller, the values of the control
parameters are set as k1 = 5.5, k2 = 0.8, k3 = 8.0,
and k4 = 8.0 and the sliding surface parameters are
selected as in Remark 2. For the DSMC [28], the value
of the control switching gain is selected as K = 18, and
the sliding surface parameters are chosen as c1 = 10
and c2 = 0.9. For the SMC [29], the values of the
control parameters are selected as K = 3.2 and λ1 =
−0.1, λ2 = 0.2, λ3 = −0.1, λ4 = 3.1. For a fair com-
parison, the control parameters of all three approaches
are selected such that themagnitude of control inputs at
the starting point of the stabilization stage is similar and
the chattering phenomenon is reduced as small as pos-
sible, which enhances the control performance of the
closed-loop system and protects the system actuators.

As shown in Fig. 7, all three stabilization controllers
can simultaneously stabilize both the fully-actuated and
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under-actuated state variables. However, it should be
pointed out that the proposed NHC displays the bet-
ter stabilization control performance with regard to the
control accuracy and convergence rate characteristics.

Besides, to provide a quantitative measure for the
performance of the proposed controller and the com-
parative methods, the root-mean-square error (RMSE)
value for the angular positions of the rotary arm and
pendulum in the steady-state phase from 7 (s) to 14 (s)
are considered. We also use the convergence time as
the comparison index. In this paper, the convergence
time (CT) is the time after which |α| ≤ π/60 (rad)
and |θ | ≤ π/15 (rad) fulfil. Table 4 demonstrates the
RMSE of rotary arm and pendulum angles and the CT
of all three approaches. It can be clearly observe that
the proposed controller has the lowest RMSE with the
fastest CT, compared with [28,29].

The corresponding control inputs for the rotary
inverted pendulum under the proposed NHC, DSMC,
and SMC are also illustrated in Fig. 7. We can clearly
see the existence of the chattering phenomenon with
the DSMC and SMC due to the discontinuous control
structures, which reduce the control accuracy of the
closed-loop system and even may cause damages to
the actuator. In contrast, the proposed NHC provides
the continuous control input by means of the modi-
fied super-twisting algorithm, which enhances the sta-
bilization control performance and reduces the chatter-
ing phenomenon.

The experimental results in this subsection show that
the better control performance for the convergence of
the angular positions of the rotary arm and pendulum
is attained and the chattering is alleviated, compared
with the existing sliding mode stabilization controllers
[28,29].

3.3 Group 3

In Group 3, we compare the stabilization control per-
formance in terms of the convergence of the angular
positions of the rotary arm and pendulum between the
proposed NHC and the Fuzzy-LQR [23].

We note that the corresponding gain of the LQR
control in [23] is designed based on the linearization
model of the rotary inverted pendulum in the upright
position. Hence, the control parameters of the Fuzzy-
LQR approach are selected properly as in the work
[23] to ensure that the stabilization control objective is

attained within αsw := π/15 (rad). Besides, for a fair
comparison, the control parameters of both methods
are chosen such that the magnitude of control inputs at
the starting point of the stabilization stage is similar.
The control parameters of the proposed NHC are set as
in experiment Group 2. We also use the RMSE and CT
as the comparative performance indexes as in previous
experiment scenario.

As displayed in Fig. 8 and Table 5, the proposed
NHC and the Fuzzy-LQR approach can drive the rotary
arm to its zero position and stabilize the pendulum in
the upright position at the same time. However, we can
clearly see that the proposed NHC provides the better
control accuracywith the faster convergence time to the
desired region. Furthermore, as illustrated in Fig. 8, the
proposed NHC produces the smaller peak overshoot in
both the rotary arm and pendulum responses. Hence,
it can be concluded that the proposed NHC shows the
superior stabilization performance, compared with the
existing Fuzzy-LQR controller in [23].

3.4 Group 4

In this Group, we evaluate the good robustness of the
proposed stabilization controller against sudden exter-
nal disturbances. The external disturbances are added to
the pendulum twice at about 28 (s) and 42 (s), as illus-
trated from themarked places in Fig. 9. It can be clearly
observed that the proposed control scheme behaves
swiftly to keep the pendulum in its vertical upright
position and drive the arm to the desired position. This
indicates that the proposed NHC ensures robustness of
the system against external disturbances.

Finally, we note that all the experiment results are
available as a movie clip on the website.2 The experi-
ment results in the movie clip also show the superiority
performance of the proposed NHC, compared with the
existing approaches.

4 Conclusions

In this paper, we have proposed a new class nonlinear
hybrid controller (NHC) for swinging-up and stabiliz-
ing the rotary inverted pendulum. First, a control strat-
egy for swinging-up the pendulum is designed based on

2 https://drive.google.com/file/d/1UhKIVLicHaclpRv3T7ZtW
Oj87ozG4s6c/view.
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Fig. 7 Experimental
results—Group 2. The
proposed NHC (blue, solid),
DSMC (black, dashdot),
and SMC (red, dashed)

Table 4 Performance comparison—Group 2

DSMC [28] SMC [29] Proposed NHC

RMSE of the angular position of the arm (rad) 0.0893 0.1756 0.0533

RMSE of the angular position of the pendulum (rad) 0.0327 0.0063 0.0020

CT (s) 13.166 7.428 3.828

Fig. 8 Experimental
results–Group 3. The
proposed NHC (blue, solid)
and Fuzzy-LQR (red,
dashed)
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Table 5 Performance comparison—Group 3

Fuzzy-LQR [23] Proposed NHC

RMSE of the angular position of the arm (rad) 0.1368 0.0533

RMSE of the angular position of the pendulum (rad) 0.0086 0.0020

CT (s) 6.654 3.828

Fig. 9 Experimental
results–Group 4
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the feedback linearization and energy control methods.
Then, the stabilization controller is developed based
on the new sliding surface and modified continuous
super-twisting algorithm. Finally, the NHC is designed
by integrating the proposed swing-up and stabilization
controllers with the switching criterion. We show that
with the NHC: (i) the pendulum is able to reach the
desired upright position; and (ii) the closed-loop sys-
temachieves the asymptotic stability in the stabilization
stage. Various experimental results have been provided
to show the effectiveness of the proposed NHC, com-
pared with the existing control approaches.
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