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Abstract A continuum-based approach for simulta-

neously controlling the motion and shape of soft

robots and materials (SRM) is proposed. This

approach allows for systematically computing the

actuation forces for arbitrary desired SRM motion and

geometry. In order to control both motion and shape,

the position and position gradients of the absolute

nodal coordinate formulation (ANCF) are used to

formulate rheonomic specified trajectory and shape

constraint equations, used in an inverse dynamics

procedure to define the actuation control forces.

Unlike control of rigid-body systems which requires

a number of independent actuation forces equal to the

number of the joint coordinates, the SRM motion/

shape control leads to generalized control forces

which need to be interpreted differently in order to

properly define the actuation forces. While the defi-

nition of these motion/shape control forces is demon-

strated using air pressure actuation commonly used in

the SRM control, the proposed procedure can be

applied to other SRM actuation types. The approaches

for determining the actuation pressure in the two cases

of space-dependent and constant pressures are

outlined. Effect of the change in the surface geometry

on the actuation pressure is accounted for using

Nanson’s formula. The obtained numerical results

demonstrate that the motion and shape can be

simultaneously controlled using the new actuation

force definitions.

Keywords Motion control � Shape control � Soft

robots � Soft materials � Air pressure actuation �
Absolute nodal coordinate formulation

1 Introduction

Robots, which are among the most important, widely

used, and versatile machines, are critical to the

technological competitiveness in many industry sec-

tors including aerospace, automotive, health care and

rehabilitation, food, and construction and agricultural

machine industries. Because these machines are made

of compliant components with varying degrees of

stiffness, design optimization and weight reduction are

necessary for efficient and economic operations.

Nonetheless, undesirable deviations can negatively

impact the robot performance, precision and accuracy,

and repeatability. These deviations characterize most

robots including material handling, welding, assem-

bly, and dispensing robots, which, respectively,

account for 38%, 29%, 10%, and 4% of the robots

used by the industry [1]. Because robots are designed
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to increase productivity, ensure safety, and extend

capabilities beyond human limitations, accurate robot

mathematical modeling and virtual prototyping is

critical for advancing this technology.

More emphasis has been placed recently on using

robots made of soft materials, which have complex

geometries. Nonetheless, because the mathematical

foundation of such soft-robot systems has not been

adequately established, our knowledge of their

mechanics remains incomplete, making it difficult to

advance this technology at a faster pace. For example,

there are no well-established continuum-based

approaches for the motion/shape control (MSC) of

soft robots and materials (SRM). New mathematical

models are needed to correctly capture the effect of

deformations, allow implementing nonlinear and

nonconventional constitutive models, and accurately

define the control actuation forces using both conven-

tional and nonconventional methods. This is particu-

larly true for soft robots whose stability due to the

large deformation and use of unconventional actua-

tions is a major concern. Furthermore, soft robots may

be designed to squeeze through groves and gaps for

painting, spraying, and debris cleaning, and therefore,

may undergo significant change in geometry. Because

of the lack of a systematic MSC approach, SRM

actuation forces are determined, for the most part,

based on experimentation, which can be time-con-

suming, costly, and less effective. This paper develops

a new approach to address this serious limitation in the

SRM design.

Most robot investigations have been concerned

with rigid link or small-deformation problems [2–12].

In the case of small deformation, the most popular

approach is the floating frame of reference (FFR)

formulation [13, 14]. While use of the FFR formula-

tion creates a local linear problem that can be

exploited to reduce the number of coordinates, use

of such an approach has been limited to small-

deformation problems and is not suited for the SRM

motion/shape control. Furthermore, conventional

structural finite elements (FEs), such as beams and

plates, are based on kinematic description that does

not allow for describing the geometry accurately, is

not invariant under an orthogonal rigid-body transfor-

mation, and is not related by a linear mapping to

computational geometry methods such as B-splines

and NURBS [15–24].

Unlike conventional robots, soft robots are

designed with higher number of degrees of freedom

to provide higher degree of mobility and flexibility,

have lower weight, and provide safe interactions with

environments and objects [25–34]. Conventional

robots are made of materials that have high modulus

of elasticity in the range of 109 � 1012 Pa, and their

motion is controlled using linear actuators and motors.

On the other hand, soft robots are made of soft

materials that have low modulus of elasticity in the

range of 104 � 109 Pa [26].

2 Scope and contributions of this investigation

There is no, in existence today, an agreed-upon

approach for the SRM modeling, design, and actua-

tion, which are based, for the most part, on simplified,

experimental, and/or trial-and-error procedures that

require building costly prototypes. Unlike other robot

types, SRM designs may require use of complex

geometry to enhance performance and strength and to

provide superior dexterity and access to gaps and

grooves. It is the objective of this study to develop a

new continuum-based approach that can be effectively

used to simultaneously control the motion and shape

of soft robots.

In the soft-robot design process, accurate prediction

of the reference configuration geometry, change in the

geometry during the robot functional operation, actu-

ation control forces, and stresses due to elastic

deformations contribute to ensuring precision, dura-

bility, proper load handling, and robustness of the

control design. It is the goal of this study to develop a

new approach for achieving this goal. The contribu-

tions of this investigation are summarized as follows:

1. A new continuum-based approach for SRM mo-

tion and shape control is developed. A review of

SRM literature revealed lack and need of such an

approach to advance the SRM technology.

2. A systematic procedure to determine the actuation

control forces that achieve the desired motion

trajectories and shapes is developed, and its use is

demonstrated using air pressure actuation. A

similar procedure can be used for other actuation

types.

3. The paper describes new inverse dynamics pro-

cedure for the SRM generalized control forces.
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Unlike rigid-body systems, the SRM inverse

dynamics problem may require numerical inte-

gration of nonlinear equations in order to deter-

mine the actuation forces.

4. Generalization of the SRM approach is made by

introducing a procedure for the numerical recon-

struction of the SRM geometry from discrete data

points that can be obtained using measurements

and imaging techniques.

5. A new method for computation of the actual

actuation forces from the generalized control

forces predicted using the inverse dynamics

solution is introduced. The procedure is demon-

strated using air pressure actuation. The two cases

of space-dependent and constant actuation pres-

sures are considered. In the procedure used in this

study, the effect of the change in the surface

geometry on the actuation pressure is accounted

for using Nanson’s formula.

6. Several examples are presented to demonstrate the

use of the new approach in the SRM motion/shape

control. In these examples, different geometry

configurations are considered.

This paper is organized as follows. In Sect. 3, the

concept of motion/shape control is introduced. Sec-

tion 4 explains the formulation of the rheonomic

constraints of the inverse dynamics problem using the

ANCF position gradients. Section 5 discusses the fully

and partially constrained inverse dynamics problem,

while Sect. 6 uses the concept of the equipollent

system of forces to provide explanation of the gener-

alized forces associated with the ANCF position

gradients. In Sect. 7, numerical reconstruction of the

SRM geometry is discussed, and Sect. 8 provides

detailed discussion of the SRM actuation forces.

Numerical examples are presented in Sect. 9, and

summary and conclusions drawn from this investiga-

tion are provided in Sect. 10.

3 Motion and shape control

Development of a systematic procedure for simulta-

neously controlling the motion and geometry is

particularly important for SRM systems, often

designed to work within specified boundaries. Shape

control allows avoiding undesirable contacts that can

cause damage of the SRM surface.

3.1 Problem definition

Figure 1 shows a simple example that demonstrates

the concept used in this study. In this figure, the stress-

free reference configuration is represented by a

tapered beam in the horizontal position. A simple

scenario, considered for the purpose of demonstration,

is to bend the beam centerline to a quarter circle while

changing the tapered beam cross section from varying

linearly along the length to a constant cross section as

shown in the figure. In order to achieve this motion/

shape control, a computational procedure that allows

for local shape manipulations during the motion is

required. Existing FE formulations do not lend

themselves easily for solving this problem as will be

clear from the discussion presented in this section.

3.2 Position gradients and reference configuration

geometry

In the analysis presented in this paper, distinction is

made between the stress-free reference configuration

geometry, an example of which is defined in Fig. 1 by

the initial tapered geometry, and the desired or

undesired change in geometry during the motion. This

distinction is important in developing a motion/shape

control strategy. Accurate description of the stress-

free reference configuration geometry is particularly

important in the SRM systems with surfaces charac-

terized by complex shapes. Furthermore, such a

Fig. 1 Motion/shape

control
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reference configuration geometry serves as the refer-

ence and basis for defining geometry changes that

evolve during the robot functional operation.

To facilitate the development of the FE kinematics,

for the most part, the displacement fields are defined in

a straight configuration in terms of a set of coordinates

or parameters x ¼ x1 x2 x3½ �T , as shown in Fig. 2.

The global position of an arbitrary point on the

element can be defined in terms of these parameters as

r x; tð Þ ¼ S xð Þe tð Þ, where S is the FE shape function

matrix, e is the vector of element nodal coordinates,

and t is time. Having the position gradients as nodal

coordinates allows for conveniently defining the

stress-free initial geometry as well as the geometry

due to the deformation. To this end, the vector of nodal

coordinates used in this investigation consists of

position and position-gradient coordinates. For a node

k of an element j, the nodal coordinates are defined as

ejk ¼ rjkT

rjkT

x1
rjkT

x2
rjkT

x3

h iT

ð1Þ

In this equation, rjk is the global position vector of the

node, and rjk
xl
¼ or=oxl; l ¼ 1; 2; 3, are the position-

gradient vectors defined at the node by differentiation

with respect to the coordinates xl; using this vector of

nodal coordinates, the stress-free reference configura-

tion geometry can be systematically defined using the

equation

X ¼ X1 X2 X3½ �T¼ S xð Þeo ð2Þ

In this equation, eo is the vector of nodal coordinates

that defines the desired stress-free reference configu-

ration geometry. For example, the tapered geometry

shown in Fig. 1 can be systematically obtained by

using a stretch factor ak for the position-gradient

vector rk
x2
; k ¼ 1; 2; . . .; nn, at the nodes such that

rk
x2
¼ ak 0 1 0½ �T , where nn is the number of nodes.

The use of the straight configuration defined by the

coordinates x ¼ x1 x2 x3½ �T is convenient for

carrying out the integrations and differentiations. In

continuum mechanics, this is accomplished using the

matrix of position-gradient vectors

Jo ¼ oX=ox ¼ Xx1
Xx2

Xx3
½ �. Using this matrix,

one can write dVo ¼ JodVs, where Vs and Vo are,

respectively, the volumes in the straight and reference

configurations, and Jo ¼ Joj j is the determinant of the

matrix of position-gradient vectors that accounts for

the stress-free reference configuration. The relation-

ship between the current and straight configurations is

defined by the position-gradient matrix Je ¼ or=ox ¼
rx1

rx2
rx3

½ � ¼ or=oXð Þ oX=oxð Þ ¼ JJo, where

J ¼ or=oX.

4 Shape control during functional operations

The multibody system (MBS) approach, used in this

investigation to achieve the SRM motion/shape con-

trol, allows defining the desired motion trajectory and

geometry using a set of algebraic rheonomic con-

straint equations. These rheonomic constraints are

used in an inverse dynamics procedure to determine

expressions for the actuation forces that can be used

with both conventional and unconventional actuation

methods. If the number of rheonomic constraint

equations eliminate all the degrees of freedom, one

obtains fully constrained inverse dynamics in which an

algebraic system of equations at the acceleration level

can be solved for the system accelerations and the

constraint forces as explained in the following

section. If the rheonomic constraint equations do not

eliminate all the degrees of freedom of the model, one

obtains partially constrained inverse dynamics in

which the solution for the accelerations and constraint

forces requires the numerical integration of the

independent accelerations.

Motion and geometry control constraints can be

defined by specifying positions and position gradients
Fig. 2 Straight, reference, and current configurations
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of arbitrary points. It is more convenient and straight-

forward to use the coordinates at the nodal points of

the FE mesh. For example, one can specify the

following or a subset of the following rheonomic

constraints at a node k of the FE mesh:

rk tð Þ ¼ fp tð Þ; rk
xl

tð Þ ¼ fg tð Þ;
k ¼ 1; 2; . . .; nn; l ¼ 1; 2; 3

ð3Þ

where fp and fg are specified functions that define the

desired SRM motion trajectories and geometry. In

order to ensure accuracy of the inverse dynamics

procedure, the algebraic equations must be satisfied at

the position, velocity, and acceleration levels. That is,

the following velocity and acceleration constraints

must be imposed at the velocity and acceleration

analysis steps:

_rk tð Þ ¼ drk
�

dt ¼ ofp

�
oe

� �
_eþ ofp

�
ot;

_rk
xl

tð Þ ¼ drk
xl

.
dt ¼ ofg

�
oe

� �
_eþ ofg

�
ot:

€rk tð Þ ¼ d _rk
�

dt ¼ d ofp

�
oe

� �
_eþ ofp

�
ot

� ��
dt;

€rk
xl

tð Þ ¼ d _rk
xl

.
dt ¼ d ofg

�
oe

� �
_eþ ofg

�
ot

� ��
dt:

9>>>>>>>=
>>>>>>>;

;

k ¼ 1; 2; . . .; nn; l ¼ 1; 2; 3

ð4Þ

In the case of articulated SRM systems that consist

of components which may have different degrees of

flexibility, it is convenient to distinguish between the

constraint equations imposed on the motion and shape

of the soft components and the constraint equations

that describe other mechanical joints and motion

trajectories of stiffer components [14]. The vector of

constraint equations that describe the motion trajecto-

ries and shape of the soft components can be written in

a vector form as Cs ¼ Cs1 Cs2 � � � Csncs
½ �T ;

where ncs is the number of algebraic constraint

equations imposed on the motion of the soft compo-

nents in the system [14].

The position-gradient constraints, in particular,

allow for the local shape manipulations and for

effectively describing the rotations, stretches, and

shears. Generalized actuation forces associated with

these gradient constraints will be defined, and the

concept of the equipollent system of forces is used to

convert these constraint forces to actual actuation

forces that can be used in practice as described in a

later section of this paper. Furthermore, if ncs ¼ nd;

where nd is the number of system degrees of freedom,

the motion/shape constraints can be determined effi-

ciently by solving a sparse system of algebraic

equations without the need for performing numerical

integration. This is the case of fully constrained

inverse dynamics. If on the other hand, ncs\nd, which

is the case of partially constrained inverse dynamics,

numerical integration of the independent equations is

necessary. More motion/shape constraints may require

more actuation power to achieve the desired trajecto-

ries and geometries.

5 Fully and partially constrained inverse problems

The inverse dynamics problem is widely used for

determining the actuation forces used to control rigid-

body robot manipulators. In this case, the end-effector

motion can be specified using six algebraic equations

that define the kinematics of the six-degree-of-free-

dom robot system. The motion of a rigid-body robot

can be completely controlled using a combination of

six actuators or motors whose forces and moments are

determined using the inverse dynamics problem.

While a similar concept can be used for soft robots,

the soft-robot geometry and actuation introduce new

fundamental issues that need to be considered.

5.1 Specified motion trajectories and shapes

Because the deformable bodies of the SRM systems

have an infinite number of degrees of freedom, the

control and actuation approach used for rigid-body

systems is no longer applicable. In this paper, an

inverse dynamics approach is used in which the

motion and geometry are prescribed using a set of

algebraic constraint equations Cs q; tð Þ ¼ 0; where q is

the vector of the system coordinates that may include

the coordinate vector e that defines the configuration

of the soft components. The constraint equations

Cs q; tð Þ ¼ 0 can be of the rheonomic (explicit func-

tion of time) type and can describe the evolution of the

shape of the soft component during the actuation

process. Other constraint equations that define other

specified motion trajectories and mechanical joints in

the case of articulated robot systems are denoted as

Cm q; tð Þ ¼ 0. Some of the constraint equations in the

vector Cm q; tð Þ ¼ 0 can be of the scleronomic (not

explicit function of time) type. Therefore, the total
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vector of algebraic equations can be written as

C q; tð Þ ¼ CT
s CT

m

� �T¼ 0.

5.2 Constrained dynamic equations

The system equations of motion can be written as

M€q ¼ Qe þQc; where M is the system mass matrix,

Qe is the vector of applied forces, and Qc is the vector

of constraint forces. The vector of constraint forces

can be written as

Qc ¼ �CT
qk ¼ �CT

sqks � CT
mqkm

¼ � CT
sq CT

mq

h i ks

km

� �
: ð5Þ

In this equation, Cq ¼ oC=oq ¼ CT
sq CT

mq

h iT

is the

constraint Jacobian matrix, k ¼ kT
s kT

m

� �T
is the

vector of Lagrange multipliers, Csq ¼ oCs=oq and

Cmq ¼ oCm=oq are, respectively, the Jacobian matri-

ces of the constraint equations Cs and Cm; and ks and

km are Lagrange multipliers associated, respectively,

with the constraint equations Cs and Cm. Differenti-

ation of the constraint equations twice with respect to

time defines the constraint equations at the accelera-

tion level as

Cq €q ¼ Csq

Cmq

� �
€q ¼ Qds

Qdm

� �
ð6Þ

where Qds and Qdm are vectors that result from the

differentiation of the constraint equations twice with

respect to time and absorb terms which are not linear

in the velocities. Using the equations of motion, M€q ¼
Qe þQc and the preceding two equations, one obtains

the following augmented form of the equations of

motion:

M CT
sq CT

mq

Csq 0 0
Cmq 0 0

2
4

3
5

€q
ks

km

2
4

3
5 ¼

Qe

Qds

Qdm

2
4

3
5 ð7Þ

This equation can be solved for the acceleration vector

€q and the vectors of Lagrange multipliers ks and km.

5.3 Fully and partially constrained inverse

dynamics

In the case of the inverse dynamics, there are two

different situations which are encountered in the control

of soft-robot systems. In the first situation, the number

of algebraic constraint equations is equal to the number

of coordinates. This is the case of fully constrained

inverse dynamics, in which the preceding equation

represents a system of algebraic equations which can be

solved for the system accelerations and Lagrange

multipliers. In this case, there is no need to perform

numerical integration since the algebraic constraint

equations and their time derivatives completely define

the system coordinates, velocities, and accelerations.

Because the coefficient matrix in the preceding equa-

tion is sparse, the solution of this system can be efficient

regardless of the number of coordinates. When ANCF

finite elements are used, as it is the case in this

investigation, ANCF Cholesky coordinates can be

used, leading to a generalized identity inertia matrix.

In the second scenario, the number of constraint

equations is less than number of coordinates. This case of

partially constrained inverse dynamics arises when all

degrees of freedom are not specified. The preceding

equation can still be solved using sparse matrix

techniques to determine the accelerations and Lagrange

multipliers. The independent accelerations can be iden-

tified and integrated using direct numerical integration

methods to determine the independent coordinates and

velocities. The dependent coordinates and velocities can

be determined using the constraint equations to ensure

that these constraint equations are satisfied at the

position, velocity, and acceleration level, avoiding

violation of the D’Alembert–Lagrange principle [14].

From the discussion presented above, it is clear that

in the case of the fully constrained inverse dynamics,

there is no need for the numerical integration and the

inverse dynamics problem reduces to solving a system

of algebraic equations for the driving constraint forces.

In the partially constrained inverse dynamics problem,

numerical integration is required in order to determine

the constraint forces that define the actuation forces.

Nonetheless, in both cases, the vectors of Lagrange

multipliers ks and km can be used to determine,

respectively, the generalized constraint forces, includ-

ing the generalized actuation forces Qca ¼ �CT
sqks

associated with the system generalized coordinates.

The generalized actuation forces can be used with

concept of the equipollent system forces to define the

actual actuation forces required to produce the desired

SRM motion shape. The two cases of partially and

fully constrained inverse dynamics are encountered in

the SRM motion/shape control as demonstrated by the

numerical examples.
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6 Equipollent systems of forces

The concept of equipollent systems of forces is

important in the definition of the SRM actuation

forces. In rigid-body dynamics, a force that acts at a

point is equipollent to another system defined at

another point that consists of the same force and a

moment. Furthermore, in rigid-body dynamics, the

force is a sliding vector and the moment is a free

vector. These rigid-body concepts are not applicable to

flexible bodies, particularly when position gradients

are used as coordinates as in the case of the absolute

nodal coordinate formulation (ANCF) [35–66]. In this

section and in the numerical examples, the fully

parameterized ANCF planar beam element is consid-

ered. This element is used to explain the relationship

between the Cartesian forces and the generalized

forces associated with the ANCF gradient coordinates.

The generalized forces associated with the gradient

coordinates are obtained from the solution of the

inverse dynamics problem, while the Cartesian force

representation can be important in the definition of the

actual control forces when certain actuation types are

used.

6.1 Element displacement field

The ANCF planar element, shown in Fig. 3, has two

nodes, and each node has six coordinates: two position

coordinates and four position-gradient coordinates.

For a node k of an element j, the vector of nodal

coordinates is defined as

ejk ¼ rjkT
rjkT

x1
rjkT

x2

h iT

; j ¼ 1; 2, where rjk is the

global position of the node, rjk
xl
¼ orjk

�
oxl; l ¼ 1; 2, is

the position-gradient vector evaluated at node k, as

shown in Fig. 3, and x ¼ x1 x2½ �T is the element

spatial coordinates. The displacement field of the

element is defined as r j x; tð Þ ¼ S j xð Þe j tð Þ, where r j is

the position of an arbitrary point on the element, S j is

the element shape function matrix,

e j ¼ ej1T
ej2T

� �T
, and t is time. The shape function

matrix can be written as

S j xð Þ ¼ s1I s2I s3I s4I s5I s6I½ �, where the

shape functions si; i ¼ 1; 2; . . .; 6, are defined as [54]

s1 ¼ 1� 3n2 þ 2n3; s2 ¼ l n� 2n2 þ n3
� �

; s3 ¼ lg 1� nð Þ
s4 ¼ 3n2 � 2n3; s5 ¼ lð�n2 þ n3Þ; s6 ¼ lng

	

ð8Þ

where n ¼ x1=l, g ¼ x2=l, and l is the length of the

beam element.

6.2 Equipollent systems

The virtual work of a force vector F acting at an

arbitrary point P of the element, as shown in Fig. 3,

can be written as

dWe ¼ FTdr xPð Þ ¼ FTS xPð Þde ð9Þ

where xP is the vector that defines the coordinates of

point P in the element coordinate system. Using the

shape function matrix of the element, one can write

dWe ¼ FTS xPð Þde
¼ s1F

Tdrj1 þ s2F
Tdrj1

x1
þ s3F

Tdrj1
x2
þ s4F

Tdrj2

þ s5F
Tdrj2

x1
þ s6F

Tdrj2
x2

ð10Þ

where in this equation the shape functions si are

evaluated at the point of application of the force vector

F, that is, si ¼ si nP; gPð Þ; i ¼ 1; 2; . . .; 6, and nP and

gP are the dimensionless parameters defined at point P.

The preceding equation demonstrates that a force

vector F acting at an arbitrary point on a flexible beam

Fig. 3 Planar ANCF shear-deformable beam element

123

Motion and shape control of soft robots and materials 171



is equipollent to system forces associated with the

position and gradient coordinates and defined as

Qt1 ¼ s1F; Qg11 ¼ s2F; Qg12 ¼ s3F;

Qt2 ¼ s4F; Qg21 ¼ s5F; Qg22 ¼ s6F

)
: ð11Þ

The vectors Qt1 and Qt2 are associated with the

translational coordinates rj1 and rj2 of the two nodes of

the element, while the forces Qg11; Qg12; Qg21, and

Qg22 are associated with the position-gradient coordi-

nates at the two nodes. It is clear that the forces Qt1 and

Qt2 have the unit of forces and Qt1 þQt2 ¼ F, while

Qg11; Qg12; Qg21, and Qg22 have the units of

moments. One can always convert the forces of the

preceding equations defined at a point to linear

actuator force and motor moment. For example, if

one selects coordinates defined by the translation R ¼
R1 R2½ �T of the first node and the rotation h (rigid-

body displacement), one has

rj1 ¼
R1

R2

� �
; rj1

x1
¼

cosh

sinh

� �
; rj1

x2
¼

�sinh

cosh

� �

rj2 ¼
R1 þ lcosh

R2 þ lsinh

� �
; rj2

x1
¼

cosh

sinh

� �
; rj2

x2
¼

�sinh

cosh

� �

9>>>=
>>>;
:

ð12Þ

The virtual change in these vectors leads to

Using these equations, one can show that in the case of

rigid-body coordinates, one has

dWe ¼ QT
t1dr

j1 þQT
g11dr

j1
x1
þQT

g12dr
j1
x2

þQT
t2dr

j2 þQT
g21dr

j2
x1
þQT

g22dr
j2
x2

¼ FT s1 þ s4ð Þ
dR1

dR2

� �

þ FT s2 þ s4l þ s5ð Þ
�sinh

cosh

� ��

� s3 þ s6ð Þ
cosh

sinh

� ��
dh

: ð14Þ

From the definitions of the shape functions, it is clear

that s1 þ s4 ¼ 1, s2 þ s4l þ s5 ¼ nl, and s3 þ s6 ¼ gl.

With the use of these identities, the preceding equation

reduces to

dWe ¼ FT dR1

dR2

� �
þ FT �sinh �cosh

cosh �sinh

� �
nl
gl

� �
dh

ð15Þ

which shows that a force at a point is equipollent to a

force and a moment at another point.

7 Numerical reconstruction of geometry

For the development of a systematic procedure for

SRM actuations, it is important to describe accurately

the desired SRM configurations and geometry during

the functional operation. In applications, in which the

SRM geometry at different configurations is specified,

the ANCF nodal coordinates, including the position

gradients, need to be determined in order to define the

rheonomic motion/shape constraint equations required

to obtain the desired motion trajectories and geome-

tries. This section proposes a procedure for describing

numerically the SRM geometry assuming that this

geometry is defined in terms of discrete data points,

which can be determined from assumed desired shapes

or can be obtained using scanning, measurements, or

imaging techniques. It is explained how to determine

the ANCF nodal coordinates if a desired shape defined

by discrete points is provided.

In order to ensure the existence of a solution to the

computational geometry problem, the displacement

field of the element r j x; tð Þ ¼ S j xð Þe j tð Þ is multiplied

by SjT xð Þ and the result of the multiplication is

integrated over the volume to yield

drj1 ¼ dR1

dR2

� �
; drj1

x1
¼ �sinh

cosh

� �
dh; drj1

x2
¼ � cosh

sinh

� �
dh

drj2 ¼ dR1

dR2

� �
þ �lsinh

lcosh

� �
dh; drj2

x1
¼ �sinh

cosh

� �
dh; drj2

x2
¼ � cosh

sinh

� �
dh

9>>=
>>;
: ð13Þ
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Z

V j

q jSjT xð Þr j x; tð ÞdV j ¼
Z

V j

q jSjT xð ÞS j xð ÞdV j

� �
e j tð Þ:

ð16Þ

In this equation, q j and V j are, respectively, the mass

density and volume of the element. The integral on the

right-hand side of the preceding equation is recog-

nized as the element mass matrix

M j ¼
R

V j q jSjT xð ÞS j xð ÞdV j, which is a constant, sym-

metric, nonsingular matrix for all ANCF finite

elements. Therefore, its inverse M j
� ��1

exists, and

Eq. 16 can be used to write

e j tð Þ ¼ M j
� ��1

Z

V j

q jSjT xð Þr j x; tð ÞdV j

¼ M j
� ��1

Z

V j

q jH j x; tð ÞdV j ð17Þ

where H j x; tð Þ ¼ SjT xð Þr j x; tð Þ. Given the coordinates

of a set of p points, the integral on the right-hand side

of the preceding equation can be approximated using a

summation as

e j tð Þ ¼ M j
� ��1

Z

V j

q jH j x; tð ÞdV j

¼ M j
� ��1

Xm

p¼1
m j

pH
j xp; t
� �

: ð18Þ

In this equation, m j
p is a mass coefficient which can be

the same for all the points in the case of even

distributions, xp is the vector of spatial coordinates of

point p, and H j xp; t
� �

¼ SjT xp

� �
r j xp; t
� �

; p ¼ 1;

2; . . .;m. Because the mass matrix M j is nonsingular,

a solution of the preceding equation exists. The

accuracy of this solution depends on the number of

points used to approximate the integralR
V j q jH j x; tð ÞdV j. For the single planar beam element

considered, full integration (exact) requires the use of

six points. Using standard FE assembly, Eq. 18 can be

used to define the nodal coordinates, including the

position gradients, for a given geometry defined by

discrete data points. These nodal coordinates can be

used to define the element displacement field

r j x; tð Þ ¼ S j xð Þe j tð Þ at an arbitrary point x, ensuring

a continuum representation of the SRM kinematics

and the position and position gradients that enter into

the definition of the inverse dynamics rheonomic

constraint equations.

8 Actuation forces

For SRM systems, unconventional actuation forces,

such as pressurized air, are used to obtain the desired

motion trajectories and geometry. The generalized

actuation forces obtained from the solution of the

inverse dynamics problem can be used to develop a

systematic procedure for the evaluation of the actua-

tion forces, including air pressure, required to achieve

the specified motion trajectories and the desired

geometry. In this section, a brief discussion of SRM

actuation is first presented, the inverse dynamics

generalized actuation forces associated with the

degrees of freedom are defined, and the more general

case of a space-dependent pressure is considered

followed by the simpler case of a constant pressure.

8.1 SRM actuation: background

SRM actuation can be classified into three categories:

variable length tendon, electroactive polymers

(EAPs), and fluidic elastomer actuators (FEAs)

[25, 26, 67]. The variable length tendon actuators

can be divided into two groups: tension cables and

shape memory alloy (SMA). Soft-robot arm inspired

by an octopus is a common application in which

tension cables are used [68, 69]. These cables are

embedded inside the octopus silicon arm, and they are

actuated by electric motors placed on an external

platform. SMA actuators are used in the soft caterpil-

lar and mesh worm robots [70–75]. They are actuated

electrically, and they can return to their original

undeformed shape at certain temperatures. SMA

actuators have the advantage of applying large actu-

ation forces in short time intervals.

Electroactive polymer (EAPs) actuators have the

ionic and electronic forms, and their size and shape can

be changed using electric field. The electronic EAP has

the advantage of high energy density and can produce

large actuation force in short time, while the ionic EAP

has the advantage of low voltage actuation and large

bending displacement [25]. New viscoelastic ANCF

solid element was proposed recently for studying the

dynamic behavior of dielectric elastomers [76].

Fluidic actuators (FEAs), which are highly

deformable and adaptable, consist of synthetic elas-

tomers layers. These actuators are deformed by

applying pressurized fluid inside the embedded cham-

bers or channels [32, 77–93]. They are commonly

123

Motion and shape control of soft robots and materials 173



called PneuNet (PN) actuators, and they are actuated

either hydraulically or pneumatically. Pneumatic

actuators are preferred more than the hydraulic

actuators because of the properties of air which is

lighter, less inviscid, and omnipresence. However,

hydraulic actuators can produce larger forces than the

pneumatic actuators and they can be used in water soft

robots [25, 84].

Few investigations have been devoted to developing

analytical models for explaining the actuation theory of

soft actuators. A rod-based model was used to develop

constitutive relation that depends on five parameters

for PneuNet soft actuators. This simple model is

developed based on the assumption of the elastica

Euler beam theory. The flexural rigidity and intrinsic

curvature were found to depend linearly on the

pressure and the actuator length [78, 79]. The bending

angle of the soft pneumatic actuators was evaluated as

a function of the pressure by other researchers who

developed PneuNet analytical models with multiple

soft pneumatic chambers separated by a distance to

increase the bending angle. Because the nonlinear

deflection cannot be evaluated accurately using the

classical beam theory, the material behavior was

assumed as a linear relationship between the tensile

stress and strain [80]. A discrete elastic rod formulation

was developed and used to study different models for

soft-robot locomotion. The use of the formulation was

demonstrated using a caterpillar-inspired soft robot

that is actuated by SMA actuators [70].

The assumption of constant curvature has been used

in some investigations to apply rigid-body modeling

techniques to soft robotics. Computational methods

have been also used to predict the soft-robot motion

using finite element (FE) analysis. The soft-robot

control is achieved using both model-based and model-

free approaches. Two new algorithms were proposed

for control of soft robotic arm by trajectory tracking

and surface following. Using these algorithms, closed-

loop controllers were developed [94]. Two models for

actuators and continuum rods were recently proposed:

general reduced-order model and discretized model

with absolute states and Euler–Bernoulli beam seg-

ments. The two models were implemented in the

MATLAB software and used to perform simulation

and visualization of continuum manipulators [95].

Three-dimensional printed pneumatic toolkit was

developed in another investigation, and its use was

demonstrated by considering soft robotics examples

for crawling and gripping [96]. Recently, different

motion profiles were achieved using mechanically

programed actuators, based on various textile combi-

nations. Two main classes of versatile fabric-based soft

pneumatic actuators were introduced. The simulation

of various types of soft pneumatic actuators was

performed using the FE method, and the results were

verified experimentally [97].

8.2 Actuation forces and degrees of freedom

The solution of the inverse dynamics problem defines

the generalized actuation forces associated with the

system generalized coordinates q. These forces are

defined by the vector Qca ¼ �CT
sqks which has

dimension n equal to the number of system general-

ized coordinates. In order to define the actuation forces

and the pressure that produces these forces, it is

necessary to determine the actuation forces associated

with the system-controlled degrees of freedom whose

number in the inverse problem is equal to the number

of SRM control constraint equations. If qi is the vector

of the system degrees of freedom with dimension nd,

one can write the virtual change in q in terms of the

virtual change of qi as dq ¼ Bdidqi, where Bdi is a

velocity transformation matrix [14]. Therefore, the

virtual work of the actuation forces can be written as

dWca ¼ �CT
sqks


 �T

dq ¼ �CT
sqks


 �T

Bdidqi

¼ QT
sddqi: ð19Þ

In this equation, Qsd ¼ BT
di �CT

sqks


 �
is the nd-

dimensional vector of actuation forces associated with

the degrees of freedom specified in the inverse

dynamics problem.

8.3 Actuation pressure

In the case of using pressurized air, the SRM actuation

forces are the result of pressure distribution that

requires integration over areas. The SRM actuation

pressure, ps ¼ ps x; tð Þ, is assumed to depend on the

spatial element coordinates x and time t. Because the

pressure is assumed to apply in the direction normal to

the surface defined by the unit normal n, a pressure

vector ps ¼ ps x; tð Þ ¼ psn can be defined. In the case

of three-dimensional surfaces, the position vector of

the material points can be written as r ¼ r a1; a2ð Þ,
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where a1 and a2 are the parameters that define the

surface geometry.

The ANCF fully parameterized beam element

considered in this investigation defines a planar

surface; this is despite the fact that the nodal coordi-

nates of the element are associated with the beam

centerline, defined by the dimensionless coordinate

g ¼ 0. In this case, the actuation force is assumed to

apply at arbitrary points n and g along the normal to

the curve, which can be defined using the curve

curvature vector expressed in terms of the curve arc-

length parameter s ¼ s a1; a2ð Þ to allow using arbitrary

direction for the actuation pressure. The curvature

vector of the curve r ¼ r s a1; a2ð Þð Þ can be written

using the derivatives of the position gradients at a

point as

d2r

ds2
¼ d

ds

or

oa1

oa1

os
þ or

oa2

oa2

os

� 
: ð20Þ

The curve curvature j is j ¼ d2r
�

ds2
�� ��. The unit

normal to the curve is then defined as

n ¼ 1=jð Þ d2r
�

ds2
� �

. Knowing the width of the

beam,w xð Þ, at the area of the pressure application,

one can write the virtual work of the pressure forces

for an element j as

dW j
p ¼

Z

A j

pjT

s x; tð Þdr jdA j ¼
Z

s j

pjT

s x; tð Þw j xð Þdr jds j

ð21Þ

where dA j ¼ w j xð Þds j is an infinitesimal area and

superscript j refers to the element number. This

equation can be written according to the definition of

the pressure vector as

dW j
p ¼

Z
s j

pjT

s x; tð Þw j xð Þdr jds j

¼
Z

s j

p j
s x; tð ÞnjT x; tð Þw j xð Þdr jds j: ð22Þ

The goal is to use the actuation force vector Qsd ¼
BT

di �CT
sqks


 �
associated with the nd degrees of

freedom of the system to determine the value of the

pressure p j
s on the surface. This allows for computing

the desired actuation pressure distribution.

8.4 Element pressure equations

The vector Qsd ¼ BT
di �CT

sqks


 �
, which has dimension

equal to the number of degrees of freedom nd, can be

computed at different time points using the inverse

dynamics problem previously described. In order to

use this vector to determine the pressure p j
s , Eq. 22 can

be written for each ANCF element j; j ¼ 1; 2; . . .; ne,

where ne is the total number of elements. Using the

virtual displacement dr j ¼ S j xð Þde j, one can write

dW j
p ¼

Z
s j

p j
s x; tð ÞnjT x; tð Þw j xð ÞS j xð Þds j

� �
de j:

ð23Þ

Furthermore, the virtual change in the vector of

element coordinates e j can be expressed in terms of

the virtual change in the system coordinates q as

de j ¼ B j
edq, where B j

e is the matrix that maps the

element coordinates e j to the system coordinates q.

Furthermore, one can write the virtual change in the

element coordinates in terms of the virtual change of

the system degrees of freedom as

de j ¼ B j
eBdidqi ¼ B jdqi, where B j ¼ B j

eBdi. Substi-

tuting the equation of the virtual change de j ¼ B jdqi

in the preceding equation, one obtains

dW j
p ¼

Z

s j

p j
s x; tð ÞnjT x; tð Þw j xð ÞS j xð Þds j

� 
B j

� �
dqi

¼ QjT

cadqi:

ð24Þ

In this equation,

Q j
ca ¼ BjT

Z

s j

p j
s x; tð ÞSjT xð Þn j x; tð Þw j xð Þds j

� 
ð25Þ

is a vector which has dimension nd, which is the same

dimension as the dimension of the vector of the system

degrees of freedom that need to be controlled.

8.5 Pressure distribution

The integral Q j
ca of Eq. 25 can be converted to

summation by considering discrete points

k j; k j ¼ 1; 2; . . .;m j, as
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Q j
ca ¼ BjT

Xm j

k j¼1
p j

s xk j ; tð ÞSjT xk jð Þn j xk j ; tð ÞdA j xk jð Þ
h i

¼ b j
sp

j
s

ð26Þ

where dA j xk jð Þ ¼ w j xk jð Þds j is an area that depends

on the number of points selected; b j
s is an nd � m j

matrix whose columns are the vectors

b j
k j xk j ; tð Þ ¼ BjTSjT xk jð Þn j xk j ; tð ÞdA j xk jð Þ, where nd

is the dimension of the vector of system degrees of

freedom qi; and p j
s is the vector of the unknown

pressures. The vector p j
s and the matrix b j

s are defined

as

p j
s ¼ p j

s x1; tð Þ p j
s x2; tð Þ � � � p j

s xm j ; tð Þ
� �T

;

b j
s ¼ b j

1 b j
2 � � � b j

m j

h i
:

ð27Þ

The vector of the system pressure forces can be

obtained by assembling the element vectors as

Qsd ¼
Xne

j¼1
Q j

ca ¼
Xne

j¼1
b j

sp
j
s : ð28Þ

The dimension of the pressure vector p j
s is the number

of selected points m j, while the dimension of Qsd is the

number of degrees of freedom nd. The preceding

equation can be written as

Qsd ¼
Xne

j¼1
b j

sp
j
s ¼ bsps ð29Þ

where bs is an nd � np matrix, np ¼ ne � m jð Þ� nd,

and ps ¼ ps;1 ps;2 � � � ps;np

� �T
is the vector of

unknown pressures. If the number of pressure points is

equal to the degrees of freedom, that is, nd ¼ np, the

preceding equation can be solved for the pressure

vector ps since the vector Qsd is assumed to be known

at different time points from the inverse dynamics

solution. If, on the other hand, the number of pressure

points is less than the number of degrees of freedom,

that is, nd [ np, the pressure vector ps can be

determined by multiplying Eq. 29 by the transpose

of the matrix bs to obtain the system

bT
s Qsd ¼ bT

s bs

� �
ps. This set of equations can be solved

for the vector ps.

8.6 Constant air pressure

The air pressure equations can be specialized to the

case of constant pressure. The soft PneuNet actuator,

shown in Fig. 4, consists of discrete pneumatic

chambers with hollow sections as shown in Fig. 5.

In general, the construction of each chamber is not

regular shape such as circle, rectangular, or sphere

centered around the neutral axis. If the shape of the

chamber is symmetric around the neutral axis, the

resultant of the pressure force will pass through the

neutral axis, producing uniform expansion in all

directions. Therefore, the chamber is designed to have

Fig. 4 Soft PneuNet

actuator
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an offset e between the pressure center and the neutral

axis to create actuation forces that produce bending

moment required to achieve the desired motion

trajectories and shape. The distributed air pressure

forces acting on the internal surfaces of the chambers

can be used to determine the generalized control forces

using Nanson’s formula. The vector of generalized

continuum-based air pressure forces that is applied at

the internal surfaces of the ANCF pressurized cham-

bers j can be written as [54]

Q j
p ¼

Z

S j
o

ðS jÞT J jptn
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn jÞTJ jðJ jÞTn j

q

0
B@

1
CAdS j

o ð30Þ

where S j is the element shape function matrix, J j is the

determinant of the matrix of position-gradient vectors

J j, pt is the magnitude of the pressure that changes

with time, S j
o is the area of the chamber in the reference

configuration, and n j is the unit normal to the surface

that can be evaluated using the equation

n ¼ ra1
� ra2

= ra1
� ra2

j j, where a1 and a2 are the

variables that are used to define the surface as shown

in Fig. 5a. In the case of planar problems,

n ¼ ra2
� k= ra2

� kj j, where k ¼ ½ 0 0 1�T is

assumed to be perpendicular to the surface as shown

in Fig. 5a. Assuming the pressure is constant, the

vector of generalized air pressure forces can be written

as

Q j
p ¼ pt

Z

S j
o

ðS jÞT J jn j

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn jÞTJ jðJ jÞTn j

q� 
dS j

o

� 

¼ ptC
j
p

ð31Þ

where

C j
p ¼

R
S j

o
ðS jÞT J jn j

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn jÞTJ jðJ jÞTn j

q� 
dS j

o. The

element force vector Q j
p ¼ ptC

j
p can be used to obtain

the assembled ANCF mesh force vector Qp ¼ ptCp,

where Cp is the vector resulting from the assembly of

the vector C j
p.

By solving the inverse dynamics problem, the

generalized constraint forces associated with each

constrained node can be obtained and expressed in

terms of the constraint Jacobian matrix and the vector

of Lagrange multipliers when the augmented formu-

lation is used. The virtual work of the generalized

constraint forces acting on the ANCF chamber j is

written as

dW j
c ¼ ððC j

eÞ
Tk jÞTde j ¼ Q j

c

� �T
de j ð32Þ

where e j is the vector of element nodal coordinates, k j

is the vector of Lagrange multipliers, and C j
e is the

Jacobian matrix of the driving constraints of the

inverse dynamics problem. In order to write the

preceding equation in terms of the vector of nodal

coordinates e j. The element vectors Q j
c can be

assembled to obtain the mesh force vector Qc asso-

ciated with the element nodal coordinates. Equating

the two vectors Qc and Qp, the magnitude of the

pressure required to control the SRM motion and

shape can be written as pt ¼ Qc:Cp

�
Cp:Cp.

9 Numerical examples

To demonstrate the use of the proposed approach for

the SRM motion and shape control, four numerical

Fig. 5 Pneumatic chamber

cross section: (a) offset e
between the pressure center

and the neutral axis, and (b)

the pressure forces are

transferred to the neutral

axis with F1; F2 and

bending moment M
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examples are considered. The first two examples show

the differences between applying position and posi-

tion-gradient constraints to SRM control of a can-

tilever beam. In these two examples, a planar

cantilever beam with constant cross section is bent to

a quarter circle using position constraints in the first

example and position and position-gradient con-

straints in the second example. These constraints

describe the desired motion trajectories at each node.

The third and the fourth examples demonstrate the

feature of the new approach to accurately capture the

effect of the stress-free initially curved geometry and

control the shape during the SRM motion. In the first

of these two examples, a tapered cantilever beam is

bent to a quarter circle without altering the shape of the

beam cross section. In the second of these two

examples, the shape of the beam, which is bent also

to a quarter circle, is changed during the motion to

have a constant cross section throughout the beam at

the final configuration. In both examples, the inverse

dynamics position-gradient constraints play a signif-

icant role, distinguishing this proposed ANCF

approach for the motion/shape control from other

continuum-based approaches.

For the four examples considered in this section,

comparison is made between the results obtained

using the inverse dynamics model and the results of

the forward dynamics model to which the control

actuation forces are applied. Using the air pressure

control law, the air pressure is determined for different

cases. The computer simulation is performed using the

general-purpose MBS software SIGMA/SAMS (Sys-

tematic Integration of Geometric Modeling and Anal-

ysis for the Simulation of Articulated Mechanical

Systems). Eight fully parameterized planar shear-

deformable ANCF beam elements are used in the FE

discretization. Silicone rubber material, which is

commonly used in the manufacturing of soft pneu-

matic actuators, is used in this investigation

[78, 80, 86, 91, 92]. The cantilever beam has a length

of 0.5 m, height 0.2 m, and width 0.015 m. The

material Young’s modulus is 1:2 � 106 Pa, the mass

density is 1130 kg/m3, and Poisson’s ratio is 0.495.

The elastic forces are formulated using the general

continuum mechanics approach (GCM); and the

Navier–Stokes damping, recently proposed for ANCF

solids, is used [98]. The coefficient of dynamic

viscosity l that is used in the Navier–Stokes damping

is determined according to l ¼ Gcm2, where G is the

modulus of rigidity and cm2 is the dissipation factor

[98]. In the current investigation, the dynamic viscos-

ity coefficient l is assumed to be 3 � 104 Pa: s in all

examples in order to have an objective comparison of

the results. However, in the first example, it was found

that a dynamic viscosity coefficient less than

1000 Pa.s is sufficient to damp out the high-frequency

modes because of small number of constraints. The

value of the dynamic viscosity coefficient l can reach

very high values for the rubber materials at small shear

rates [99, 100]. Recent investigation developed a

novel technique to change the damping properties of

the soft PneuNet chambers by adding cavities that

have viscous fluid and granular particles [101].

9.1 Use of imaging techniques

If imaging techniques or experimental measurements

are used to obtain a point cloud that defines the SRM

geometry, one can systematically use such data to

determine the ANCF coordinates and define the

inverse dynamics rheonomic constraints. By provid-

ing images to software, such as MATLAB, discrete-

point data that define the SRM geometry for given

desired configurations can be determined. Using these

data points, the ANCF nodal coordinates associated

with each node can be calculated as previously

discussed. For example, the configurations of the

cantilever beam bent to a quarter circle as shown in

Fig. 6 can be provided to MATLAB to obtain the data

at the 9 points as shown in Table 1. The nodal

coordinates can be calculated using the extracted data

points and the tangent and normal vectors that can be

used to define the gradients. Considering that the beam

is divided into eight elements with nine nodes, the

nodal coordinates of each node can be calculated as

shown in Table 2 which presents the results for the last

node at different configurations. Based on the calcu-

lated nodal coordinates for each node, the rheonomic

constraint equations used in the inverse dynamics

problem can be formulated.

9.2 Planar straight cantilever beam

In the first two examples, the straight cantilever beam

is bent to a quarter circle that has a radius R1 ¼ 0:25 m

as shown in Fig. 6. In order to achieve this desired
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motion, each node is subjected to rheonomic con-

straints that are explicit functions of time. The initial

position of each node i is defined in the global

coordinate system XY by the coordinates xi and yi,

i ¼ 1; 2; . . .; 9, where ½ xi yi �T ¼ ½ xi
1 xi

2 �
T
. The

final position of each node is defined by xi
d and yi

d as

well as the angle hi
d , where hi

d is defined as shown in

the figure. The desired motion trajectory is achieved in

the inverse dynamics by applying the motion con-

straint equations xi
d ¼ t=Tð Þ2R1 sin hi

d and

yi
d ¼ � t=Tð Þ2 R1 � R1 cos hi

d

� �
, where T is a constant

and 0� t � T .

The motion is controlled in the first example by

applying two position-constraint equations xi
d and yi

d at

each node, except for the first node, which is

connected to the ground by a rigid joint and its

position does not change [41]. Therefore, sixteen

position-constraint equations are applied in the first

example to control the position coordinates of eight

nodes. In this first example, no position-gradient

constraints are applied, and therefore, in the inverse

dynamics problem, the number of constraint equations

of the model is less than the number of model

coordinates. Consequently, numerical integration of a

number of differential equations equal to the number

of degrees of freedom of the inverse dynamics model

is necessary. The constraint forces determined from

the solution of the inverse dynamics problems are used

to define the pressure actuation and driving forces of

the forward dynamics model. The obtained displace-

ments of the straight cantilever beam at different time

steps are shown in Fig. 7, which demonstrates that the

desired motion is achieved using the proposed

Fig. 6 Initially straight

planar cantilever beam bent

to a straight quarter circle

Table 1 Data at different time steps for Node 9

Time (ms) x (m) y (m)

0 0.5 0

2 0.49 - 0.01

4 0.46 - 0.04

6 0.41 - 0.09

8 0.34 - 0.16

10 0.25 - 0.25

Table 2 Calculated ANCF coordinates of Node 9 at different

time steps

Time (ms) x (m) y (m) rx1
rx2

ry1
ry2

0 0.5 0 1 0 0 1

2 0.49 - 0.01 0.96 - 0.04 0.04 0.96

4 0.46 - 0.04 0.84 - 0.16 0.16 0.84

6 0.41 - 0.09 0.64 - 0.36 0.36 0.64

8 0.34 - 0.16 0.36 - 0.64 0.64 0.36

10 0.25 - 0.25 0 - 1 1 0
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position-constraint equations. Figure 7 shows that

there is no difference between the measured displace-

ments of the forward and inverse dynamics at different

time steps, demonstrating the effectiveness of the

proposed approach. Because in this first example the

positions of all the nodes are controlled to achieve the

desired motion trajectory while the nodal position

gradients are not specified, the nodal position gradi-

ents are not expected to remain unit vectors and stretch

and shear can occur. Figures 8 and 9 show the norm of

the gradient vectors rx and ry, respectively, at Nodes 5

and 9. It is shown that, while the norms of the gradient

vectors obtained using the inverse and forward

dynamics are in a good agreement, the position-

gradient vectors rx and ry deviate from a unit vector

leading to longitudinal and transverse stretches.

The second example has the same data and position

constraints as the first example, but the position

gradients at each node are specified to control the

shape and eliminate the longitudinal and transverse

stretches to achieve the desired shape shown in Fig. 6.

For the planar ANCF shear-deformable beam element,

the vector of nodal coordinates of node i is defined by

ei ¼ xi yi ri
x1

ri
x2

ri
y1

ri
y2

� �T
. To obtain the

shape shown in Fig. 6, the following position-gradient

constraint equations are applied at each node in

addition to the position constraints:

ri
x1


 �
d

ri
y1


 �
d

ri
x2


 �
d

ri
y2


 �
d

2
64

3
75¼ t=Tð Þ2 coshi

d � 1 sinhi
d

� sinhi
d coshi

d � 1

" #
;

i ¼ 2;3; . . .;9

ð33Þ

That is, 48 constraints are used to control the motion

and the shape of the beam in this example. By applying

both the position and position-gradient constraints to

each node of the cantilever beam, the measured beam

displacements at different time steps were found to be

the same as obtained in the first example and shown in

Fig. 7. The main difference between the two examples

is in the norm of the gradient vectors rx and ry as

shown in Figs. 10 and 11 which demonstrate that the

norm of the position-gradient vectors rx and ry follows

the motion trajectory defined by the position-gradient

Fig. 8 Norm of rx at Nodes 5 and 9 by applying position

constraints ( inverse dynamics, forward

dynamics). (Color figure online)

Fig. 9 Norm of ry at Node 5 and 9 by applying position

constraints ( inverse dynamics, forward

dynamics). (Color figure online)

0 0.1 0.2 0.3 0.4 0.5
X (m) 

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Y
 (m

) 

t=4

t=6

t=10

t=8

t=0

t=2

Fig. 7 Shape of the planar cantilever beam at different time

steps ( inverse dynamics, forward dynam-

ics). (Color figure online)

123

180 A. A. Shabana, A. E. Eldeeb



constraints to keep a constant cross section throughout

the beam at a given time step. A comparison between

the final configurations obtained in the first two

examples is shown in Fig. 12. While this figure shows

that the same motion of the nodes can be obtained

using the two different sets of constraints, applying

only position constraints is not sufficient to control

both the motion and the shape of the beam. Position

and position-gradient constraints need to be applied at

each node to obtain the desired motion and shape.

Because in the second example, the number of

constraint equations is equal to the number of degrees

of freedom, the inverse dynamics problem requires the

solution of algebraic equations only, and therefore, it

is efficient since numerical integration of motion

equations is not required.

9.3 Planar tapered cantilever beam

A planar tapered cantilever beam is considered for the

third and fourth examples used in this investigation to

demonstrate the use of the new approach to capture

accurately the stress-free initially curved geometry.

On the other hand, when using ANCF elements that

employ position gradients as nodal coordinates, the

tapered geometry can be described by changing the

norm of the gradient vectors, as shown in Fig. 13 in

which the height of the tapered beam at the right side is

0.1 m, while at left side is 0.2 m. Position and

position-gradient constraints are applied in the third

and fourth examples to control the motion and the

shape of the tapered beam (fully constrained inverse

dynamics). In the third example, the tapered cantilever

beam is bent to a tapered quarter circle as shown in

Fig. 14. The position-constraint equations at each

node are the same as the position-constraint equations

Fig. 12 Final configuration of the quarter circle; (a) position

constraints, and (b) position and position-gradient constraints

Fig. 13 Tapered beam example based on ANCF geometry

(d1 = 0.2 m, d2 = 0.1 m)

Fig. 11 Norm of ry at Nodes 5 and 9 by applying position and

position-gradient constraints ( inverse dynamics,

forward dynamics). (Color figure online)

Fig. 10 Norm of rx at Nodes 5 and 9 by applying position and

position-gradient constraints ( inverse dynamics,

forward dynamics). (Color figure online)
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used in the previous examples. The main difference

between the straight and tapered beams is the change

of cross section defined by the gradient vector ry. To

preserve the tapered geometry of the beam during

bending, the following position-gradient constraint

equations are applied:

where ri
y2


 �
o

represents the initial stretch value of the

cross section at each node i. For instance, node 9 has

initial stretch value r9
y2


 �
o

of 0.5, while node 8 has

initial stretch value r8
y2


 �
o

of 0.5625. The displace-

ment of the beam centerline was found to be the same

as the displacement obtained in the first two examples

shown in Fig. 7. The norm of the gradient vector rx for

the midpoint and the tip-point is also the same as the

ones obtained in the second example shown in Fig. 10.

In this example, the norm of the gradient vector ry is

assumed to remain constant. This is achieved as shown

in Fig. 15 for the midpoint and the tip point. The

figure also shows that the same results were obtained

using the inverse- and forward dynamics models. The

initial and final configurations of the tapered beam,

bent to a tapered quarter circle, are shown in Fig. 16.

In the fourth example considered, the tapered

cantilever beam is bent and while moving is shaped

to have a constant cross section; that is, the tapered

geometry is eliminated, as shown in Fig. 17. The

ri
x1


 �
d

ri
y1


 �
d

ri
x2


 �
d

ri
y2


 �
d

2
4

3
5 ¼ t=Tð Þ2

cos hi
d � 1 ri

y2


 �
o
sin hi

d

� sin hi
d ri

y2


 �
o

cos hi
d � 1

� �
2
4

3
5; i ¼ 2; 3; . . .; 9 ð34Þ

Fig. 14 Tapered cantilever beam bent to a quarter circle

Fig. 15 Norm of ry at Nodes 5 and 9 of the tapered beam

( inverse dynamics, forward dynamics).

(Color figure online)
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constraint equations used to control the position of

each node are the same as the equations of the previous

examples. The challenge in this example is to convert

the initial tapered geometry to a straight geometry. In

order to obtain the desired non-tapered geometry, the

following position-gradient constraint equations are

used:

The displacements of the beam centerline obtained

using the forward and inverse dynamics were found to

be the same (Fig. 7). The main goal of presenting this

example is to demonstrate how the position-gradient

constraint can be used to eliminate the tapered

ri
x1


 �
d

ri
y1


 �
d

ri
x2


 �
d

ri
y2


 �
d

2
4

3
5 ¼ t=Tð Þ2

cos hi
d � 1 sin hi

d

� sin hi
d cos hi

d � ri
y2


 �
o

" #
; i ¼ 2; 3; . . .; 9 ð35Þ

Fig. 17 Initially tapered

cantilever beam shaped to a

curved constant cross

section beam

Fig. 16 Tapered cantilever beam configurations: (a) initial configuration; (b) final configuration
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geometry and obtain a curved beam with constant

cross section, as shown in Fig. 18. The results

obtained using the forward dynamics model by

applying the control forces were found to be the same

as those predicted using the inverse dynamics model.

The initial and final configurations of the tapered

beam, which is bent with constant cross section, are

shown in Fig. 19. Figures 20 and 21 show the change

of the norm of the gradient vector ry at the nodes of the

third and fourth examples, respectively.

9.4 Actuation forces and air pressure

As discussed before, the inverse dynamics forces are

considered as actuation forces applied in the forward

dynamics problem to obtain the desired motion

trajectories and shapes. Each node has six generalized

constraint forces associated with its six nodal coordi-

nates; consequently, 48 generalized constraint forces

can be obtained for each of the previous examples. As

an example, the generalized constraint forces associ-

ated with the midpoint (Node 5) for the fourth example

are shown in Fig. 22. By assuming that the air pressure

is the same for all elements and by using the element

Fig. 18 Norm of ry at Nodes 5 and 9 in the fourth example

( inverse dynamics, forward dynamics).

(Color figure online)

Fig. 19 Tapered cantilever

beam shaped to curved beam

with constant cross section:

(a) initial configuration and

(b) final configuration

Fig. 20 Norm of ry at different nodes of the third example

( Node 2, Node 3, Node 4,

Node 5, Node 6, Node 7,

Node 8, Node 9). (Color figure online)
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connectivity conditions, the air pressure in the four

examples required to obtain the desired motion and

shape can be predicted as shown in Fig. 23. The results

of this figure show that the maximum air pressure is in

case of the fourth example because the geometry

change from tapered to constant cross section requires

larger force. Previous investigations showed that the

operating range of the applied pressure inside the

chambers of soft pneumatic actuators is usually below

0.5 MPa [27]. However, another investigation

presented nine different pressure generation methods

that can be used with soft pneumatic actuators, and the

pressure can have higher values such as 10 MPa [102].

The required air pressure in the current investigation

was found to be relatively high because of several

reasons that include use of larger dimensions, vis-

coelastic model, short time used to achieve the desired

trajectories, assumption of solid beam, and beam

width [87, 93]. By using model dimensions as the ones

used in the literature, the magnitude of the pressure is

reduced. For example, using smaller length of

0.112 m, height of 0.015 m, and width of 0.015 m,

and assuming actuation time and dynamic viscosity of

0.1 s and 1000 Pa.s, respectively, the maximum

pressure was found to be 50 kPa, a value commonly

applied in the case of smaller soft robots [27, 78].

Table 3 shows the CPU time when using different

numbers of elements for the first two examples. The

Fig. 23 Predicted air pressure required to obtain the desired

motion and shape ( first example, second

example, third example, fourth example).

(Color figure online)

Fig. 22 Generalized constraint forces associated with the nodal

coordinates of Node 5 for the fourth example ( Fx,

Fy, Frx1
, Frx2

, Fry1
,

Fry2
). (Color figure online)

Table 3 CPU time for different models

Model Number of elements CPU time (s)

First example 8 6

10 8

12 10

Second example 8 8

10 11

12 14

Fig. 21 Norm of ry at different nodes of the fourth example

( Node 2, Node 3, Node 4,

Node 5, Node 6, Node 7,

Node 8, Node 9). (Color figure online)
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first example employs position constraints only, while

the second example uses position and position-gradient

constraints. The simulation time is 10 ms with

0.001 ms step size using an Intel(R) Xeon(R) CPU

E5-1650 0@3.20 GHZ computer. In the case of the

partially constrained inverse dynamics problem, the

numerical integration is performed using the explicit

Adams–Bashforth predictor–corrector method. Table 3

shows that the second example takes more computa-

tional time than the first example because of the large

number of rheonomic constraints. Also, the CPU time

increases by increasing the number of elements.

10 Conclusions

The development of a systematic numerical procedure

for the computation of the SRM actuation forces is

demonstrated in this study. The new continuum-based

approach developed allows controlling simultane-

ously both SRM motion and shape. To this end, the

ANCF position and position gradients are used in the

formulation of the desired specified motion trajectory

and shape. This is achieved through the formulation of

rheonomic constraint equations, which are used in an

inverse dynamics procedure to define the actuation

control forces. In order to generalize the approach

developed in this study, a procedure for the numerical

reconstruction of the SRM geometry using point cloud

data that can be created using measurement or imaging

techniques is presented. These geometry data can be

used to define the ANCF nodal coordinates that enter

into the formulation of the inverse dynamics rheo-

nomic constraints. As discussed in the paper, unlike

the control of rigid-body systems which requires

number of independent actuation forces equal to the

number of joint coordinates, the SRM motion/shape

control leads to generalized control forces associated

with the ANCF position and position-gradient coor-

dinates [103]. The definition of these motion/shape

control forces is demonstrated in this study using air

pressure actuation commonly used in the SRM

control. Nonetheless, the proposed procedure can be

applied to other SRM actuation types as will be

demonstrated in future investigations. Several numer-

ical examples were presented in order to demonstrate

the motion/shape control using the new approach.

While the motion/shape control approach and algo-

rithm used in this investigation are based on MBS

formulations, it is important to acknowledge that there

are other SRM simulation tools such as SOFA

framework and discrete differential geometry-based

methods that are being developed and employ con-

ventional FE methods [104].
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