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Abstract NiTiNOL-steel wire rope (NiTi-ST) is a

new vibration absorber with nonlinear stiffness and

hysteretic damping. Although there are many studies

on NiTi-ST nonlinear identification, there are few

studies on vibration suppression for laminated struc-

tures with NiTi-ST. In the present work, the NiTi-ST is

integrated with a composite laminated beam for

structural vibration suppression for the first time. A

coupling model of the composite laminated beam

embedded with NiTi-ST is proposed. The nonlinear

restoring force and hysteretic damping force of NiTi-

ST are processed into polynomial form. The responses

of the beam embedded with different NiTi-ST are

investigated by the Galerkin discretization together

with the harmonic balance method (HBM). The terms

of the polynomial model are discussed. Two numerical

methods are utilized for steady-state responses and

numerical validations. Simulation results demonstrate

the effectiveness of NiTi-ST. This vibration suppres-

sion method can be popularized for other laminated

structures and contribute to vibration control in

engineering fields.

Keywords Vibration suppression � NiTiNOL-steel
wire rope � Composite beam � Passive control

1 Introduction

Composite laminated beams are common structures

for load-bearing and strength enhancement in indus-

tries. In the critical environment, a primary concern of

the structure is the vibration caused by external loads

or self-motions, which may lead to the reduction of the

system’s lifespan. Hence, the vibration suppression

problem of composite laminated structures is

significant.

Passive vibration absorption methods are widely

used in engineering. In recent years, there has been

great interest in nonlinear vibration suppression for

composite beams and other structures. The common

vibration control techniques are applying nonlinear

passive control devices because they are simply

designed, economical, and practical. The nonlinearity

of these devices can increase the bandwidth of

vibration suppression [1] and enhance the robustness

of the system. To date, many studies have investigated

the new design of passive nonlinear vibration

absorbers and their applications. For example,
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nonlinear vibration absorbers and isolators based on

saturation phenomenon [2, 3], magnetism [4], and

inerter [5] were proposed and thoroughly investigated.

Various kinds of impact dampers were designed and

analyzed for resonance suppression [6, 7]. One of the

most representative nonlinear vibration absorbers is

the nonlinear energy sink which can realize the

targeted energy transfer [8–10] and achieve vibration

suppression at various temperatures and moisture

levels [11]. The nonlinear energy sink was applied to

many structures such as linear systems [12, 13], beams

[14, 15], laminated plates [16–18], and trapezoidal

wings [19]. Overall, these studies highlight the

massive need for better vibration suppression devices

and strategies for engineering structures. The require-

ment of new passive vibration absorbers still exists.

Shape memory alloys (SMA) have many extraor-

dinary properties such as complete shape recovery

after experiencing large strains and energy dissipation

through hysteresis of response [20]. Paiva et al.

discussed the constitutive modeling of SMAs includ-

ing polynomial models, models with assumed phase

transformation kinetics, and models with internal

constraints [21]. Savi et al. investigated the nonlinear

dynamics of SMA systems and observed periodic,

quasi-periodic, and chaotic behaviors [22, 23]. SMAs

attracted the interest of many researchers in vibration

control and structural engineering over the past

decades. Ghasemi et al. used the SMA pounding

tuned mass damper to control the wave-induced

vibrations of the offshore jacket platforms [24].

Kumbhar et al. proposed an adaptive tuned vibration

absorber based on magnetorheological elastomer-

shape memory alloy composite and studied the

dynamic response of the system with this absorber

[25]. Huang et al. applied an SMA-based tuned mass

damper to a timber floor system for semi-active

control [26]. Qian et al. experimentally investigate

structural vibration suppression under strong seismic

excitation with a new super-elastic shape memory

alloy friction damper [27]. The integration of SMAs

into composite structures has resulted in many bene-

fits, which include actuation, vibration control, damp-

ing, sensing, and self-healing [28]. Alebrahim et al.

studied the thermomechanical properties of a hybrid

composite beam with carbon fibers and SMA wires

numerically and experimentally [29]. Bayat and

EkhteraeiToussi analyzed the vibrations of a compos-

ite beam with SMA wires using the Panico–Brinson

model and differential quadrature-integral quadrature

combined method [30, 31]. Soltanieh et al. investi-

gated SMA wires embedded in composite plates with

nonlinear finite element method and reported that

SMA wires cannot always strengthen the plates [32].

Previous studies demonstrated that SMAs are great

materials for new vibration absorbers. Short ropes can

also dissipate energy when forced to deform bending

due to the interwire friction. They have been widely

used for vibration isolation [33] and tuned mass

damper [34]. A new nonlinear vibration absorber

made of assemblies of nickel titanium-Naval Ord-

nance Laboratory (NiTiNOL) strands, wires, and steel

wire ropes was proposed by Carboni et al. [35]. The

NiTiNOL-steel wire ropes (NiTi-ST) with multiple

configurations were theoretically and experimentally

analyzed, and the hysteresis was described with a

modified Bouc–Wen model [36]. There are mainly

two methods for modeling hysteresis: one is based on

physical hysteresis characters, and the other is based

on hysteresis phenomenology [37]. The phenomeno-

logical models are merely mathematical models, and

they can describe different hysteresis loops more

generally. There are operator-based models and dif-

ferential-based models [38]. Bouc–Wen model is one

of the most popular differential-based models with a

strong ability in describing hysteresis loops with

different trigonometric features [39]. Bouc–Wen

model has widespread applications in structural ele-

ments, mechanical systems, energy dissipation sys-

tems, and so on. The modified Bouc–Wen model

proposed by Carboni et al. [36] took account of the

pinching behavior of NiTi-ST. The nonlinear dynamic

behavior character of NiTi-ST was investigated in the

frequency domain and time domain, and the absorber

properties were optimized [40]. The NiTi-ST can be

used for multiple purposes. Carboni et al. evaluated

the NiTi-ST in a structure of multistory steel building

model which demonstrated a good performance within

designed frequency bandwidth [41]. Zhang et al. [42]

developed a novel NES with NiTi-ST for whole-

spacecraft vibration isolation.

Despite the rich dynamic behavior of the device, the

NiTi-ST still requires robust mechanic models for

analysis. The nonlinear parametric identification of

NiTi-ST poses a considerable challenge to the

research community. Carboni et al. [43] identified

the parameters of the modified hysteretic restoring

force model to minimize the difference between
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numerical and experimental results. Brewick et al.

[44] employed data-driven methodologies to create a

generalized model for NiTi-ST. The experiment data

were identified with Volterra/Wiener neural network,

polynomial basis methods, and artificial neural net-

works. The results indicated that the polynomial

model can represent the nonlinear behaviors of NiTi-

ST. Combined with naı̈ve elastic net regularization,

Brewick et al. reduced the order of the polynomial

model and obtained comparable results of traditional

methods [45]. Currently, most researchers are dedi-

cated to parametric identification of NiTi-ST. The

applications on composite structures are rarely pre-

sented, and the strong ability to suppress vibration of

composite beams is rarely reported, to the authors’

best knowledge.

With the reduced-order polynomial model for NiTi-

ST proved to be suitable for reporting the dynamic

behavior briefly, in the present paper, the NiTi-ST

coupled to a composite laminated beam is studied via

semi-analytical and numerical methods for the first

time. The nonlinear restoring and damping forces of

NiTi-ST are converted into reduced-order polynomial

models. It is noted that the real SMA devices exhibit

strong thermomechanical coupling [46]. The differ-

ence between nonisothermal and isothermal behavior

can be pronounced when the mechanical load is

changing rapidly [47]. In the present paper, to simplify

modeling, the composite beam embedded with NiTi-

ST is investigated under the isothermal condition and

the thermomechanical behavior is ignored. The non-

linear responses of the beam are obtained, and the

vibration suppression effects of the NiTi-ST are

examined. The rest of the paper is arranged as follows:

In Sect. 2, a 1-DOF system with NiTi-ST is presented

for polynomial model fitting. The composite beam

model is established, and the polynomial model is

coupled as the nonlinear restoring and damping force.

In Sect. 3, the Galerkin truncation method is used to

discretize the nonlinear governing equation of the

beam and the HBM [48] combined with the presto-arc

length method [49] is used to obtain the semi-

analytical results. In Sect. 4, a modified variational

approach [50, 51] is developed to establish the

discretized beam model. The Newmark-b method is

employed for nonlinear time-domain responses. The

Runge–Kutta method is carried out to verify the results

in Sects. 3 and 4. It is found that the NiTi-ST is a

promising vibration absorber for the composite beam.

The NiTi-ST may have a bright future in engineering

applications.

2 Modeling of the system

The coupled system is made of a slender laminated

beamwith length L, width B, and height h and NiTi-ST

damper. The NiTi-ST is glued onto the composite

beam with composite adhesive and fully fixed to the

upper surface of the beam, as shown in Fig. 1. The

beam is simply supported at the end of both sides.

2.1 Restoring and damping force model of NiTi-

ST with validation

Considering the transverse vibration of the beam, the

restoring and damping force fst provided by NiTi-ST

[36] can be expressed as

fst ¼ ð1� rÞkcw3 þ rðkewþ zhÞ ð1Þ

where w is the generalized displacement field at the

middle surface of the beam. The nonlinear restoring

and damping force fst is related to the displacement

field of the beam. r, kc, ke are parameters obtained by

experiments. zh is a hysteresis damping force

described as a modified Bouc–Wen model:

_zh ¼ kdhðxÞ � ðcþ bsgnðzh _wÞÞ zhj jnf g _w

hðxÞ ¼ 1� ne�
w2

wc

�
ð2Þ

where kd, c, b, n, n, wc are material parameters, _zh is

the first-order differentiation of zh concerning time,

hðxÞ is the pinching function for modulating the

tangent stiffness at the origin. Table 1 lists the

parameter values of different NiTi-ST configurations.

The restoring and damping force fst is distributed at

the middle surface of the beam with the form of

differential equations, which are hard to be dealt with.

Hence, based on the thought of restoring force surface

Fig. 1 Composite beam embedded with NiTi-ST
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method, the force fst is identified into a polynomial

function. To start polynomial fitting, the force–

displacement–velocity data of NiTi-ST are essential,

which can be obtained from the modified Bouc–Wen

models. Therefore, a lumped-mass 1-DOF system

shown in Fig. 2 is proposed to provide polynomial

fitting data. Assuming that the force fst is proportional

to the force provided by NiTi-ST of a 1-DOF system.

The force fst is proportional to the force provided by

NiTi-ST of a 1-DOF system. The rigid mass m moves

along the vertical direction. The excitation force is

expressed as F0 sinð2pf0tÞ. Engorging the gravity

effect of the mass m and the NiTi-ST, the governing

equation is given as:

m €wm ¼ F0 sinð2pf0tÞ � fst ð3Þ

wherewm represents the displacement of the massm. It

should be noted that the displacement wm is different

with the displacement field of the composite beam.

The displacement field of the beam is related to the

position of the beam. Substituting Eqs. (1) (2) into

Eq. (3), the dynamic equation can be solved with

Runge–Kutta method. After obtaining the time-do-

main response of the 1-DOF system, the data of the

last five periods are chosen for fitting.

The data obtained above are imported into the curve

fitting toolbox of MATLAB. A polynomial function is

proposed to capture the nonlinearity of the restoring

and damping force. The polynomial function is of the

displacement w and the velocity _w of the system.

While polynomial-based models are moderately accu-

rate, they are simple to implement and allowed for

reduced-order modeling [44]. Since the analytical

results of the responses are required next, polynomial

models are necessary.

In an attempt to simplify the expression of the

restoring and damping force model as much as

possible, the maximum order of nonlinear terms is

set to be 3. After removing several terms with little

influence on the fitting results, a polynomial function

basis with no more than five terms is used for fitting,

which can be expressed as

fst ¼ k1wþ k3w
3 þ c1 _wþ r21w

2 _wþ r12w _w2 ð4Þ

where k1, k3, c1, r21, and r12 are stiffness coefficient

and nonlinear damping coefficients. The curve fitting

results are listed in Table 2.

Next, validation of the identified model is carried

out. The force of the Bouc–Wen model in the 1-DOF

system is replaced with the restoring and damping

force of the polynomial fitting model. The restoring

and damping force behavior is obtained, as presented

in Fig. 3. The identified model reports acceptable re-

sults for all configurations. For configuration S1a, the

polynomial model managed to capture the nonlinear

cubic stiffness. The restoring and damping forces of

configuration S2a and S2b are not accurately identi-

fied. The sharp corners of the hysteresis loops cannot

be described with reduced-order polynomial models

because the hysteresis damping is replaced with

polynomial damping terms in the identified model.

Table 1 Parameter values of different NiTi-ST configurations Snj [40]

Snj kc
kN
mm3

� �
ke

kN
mm

� �
kd

kN
mm

� �
c kN

�nþ1

mm

� �
b kN

�nþ1

mm

� �
n (–) n(–) wc(mm2) r (–)

S1a 4.611 9 10–4 0.010 1.00 0.400 0.349 1.0 0.99 277.72 0.251

S2a – 5.250 9 10–3 0.020 0.500 0.544 1.0 – – 1

S2b – 4.17 9 10–3 0.0684 0.500 1.5 1.0 0.674 950 1

S3a 4.647 9 10–5 0.017 0.163 0.878 1.441 1.1 0.896 78.81 0.308

S3b 9.978 9 10–5 0.013 0.460 1.204 1.219 1.1 0.755 234.33 0.321

S3c 1.638 9 10–4 0.010 0.034 0.334 1.288 1.118 0.208 57.37 0.739

Fig. 2 A 1-DOF system restricted with NiTi-ST
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Table 2 Parameter values

of identified restoring and

damping force model

Snj k1
N
m

� �
k3

N
m3

� �
c1

N s
m

� �
r21

N s
m3

� �
r12

N s
2

m3

� �
R-Square

S1a – 4.097 9 108 122.4 1.699 9 106 - 6.515 9 104 0.9983

S2a 5966 – 52.09 1.259 9 105 - 9876 0.9986

S2b 4523 – 16.49 1.077 9 105 - 2608 0.9963

S3a 6016 3.228 9 107 49.96 3.396 9 105 - 2.26 9 104 0.9996

S3b 3962 7.299 9 107 124.70 6.446 9 105 - 2.998 9 104 0.9989

S3c 8535 4.222 9 107 104.80 6.114 9 104 - 2.761 9 104 0.9999

Fig. 3 Force–displacement

loops for different NiTi-ST

configurations: a S1a, b S2a,

c S2b, d S3a, e S3b and f S3c
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Higher order damping terms are required for more

accurate descriptions. For the rest of the configura-

tions, the identified polynomial model performs

relatively better than S2a and S2b. The identified

restoring and damping force model is applied for the

rest of the modeling.

2.2 Composite beam model

The composite laminated beam with Nl layers is

studied. The coordinates of kth lamina on the z-axis are

zk and zkþ1. Based on the Euler–Bernoulli beam

model, displacement functions of an arbitrary point in

the beam can be written as

~uðx; z; tÞ ¼ �z
ow

ox
~wðx; z; tÞ ¼ wðx; tÞ

(
ð5Þ

where ~u and ~w are the displacement of the arbitrary

point in x- and z-directions, respectively. w is the

generalized displacement at the middle surface of the

beam. The generalized displacement field w differs

from the displacement wm of the lumped-mass system

in Fig. 2. It is related to the position x of the beam.

The normal strain of the composite laminated beam

can be expressed as

exx ¼ �z
o2w

ox2
ð6Þ

The constitutive equation of the kth layer can be

expressed as follows

rxx
ryy
rxy

2
4

3
5
ðkÞ

¼
Q

ðkÞ
11 Q

ðkÞ
12 Q

ðkÞ
16

Q
ðkÞ
12 Q

ðkÞ
22 Q

ðkÞ
26

Q
ðkÞ
16 Q

ðkÞ
26 Q

ðkÞ
66

2
64

3
75

exx
eyy
cxy

2
4

3
5
ðkÞ

ð7Þ

where Q
ðkÞ
i;j ði; j ¼ 1; 2; 6Þ denotes the transformed

elastic coefficient related to the kth lamina elastic

constants Q
ðkÞ
i;j and the angle hðkÞ between the x-axis

and the principal material directions. It can be

calculated with the following expression:

Q
ðkÞ
11 ¼ Q

ðkÞ
11 cos4 hðkÞ þ 2 Q

ðkÞ
12 þ 2Q

ðkÞ
66

� �

sin2 hðkÞ cos2 hðkÞ þ Q
ðkÞ
22 sin4 hðkÞ

Q
ðkÞ
12 ¼ Q

ðkÞ
11 þ Q

ðkÞ
22 � 4Q

ðkÞ
66

� �
sin2 hðkÞ cos2 hðkÞ

þ Q
ðkÞ
12 sin4 hðkÞ þ cos4 hðkÞ
� �

Q
ðkÞ
22 ¼ Q

ðkÞ
11 sin4 hðkÞ þ 2 Q

ðkÞ
12 þ 2Q

ðkÞ
66

� �

sin2 hðkÞ cos2 hðkÞ þ Q
ðkÞ
22 cos4 hðkÞ

Q
ðkÞ
16 ¼ Q

ðkÞ
11 � Q

ðkÞ
12 � 2Q

ðkÞ
66

� �
sin hðkÞ cos3 hðkÞ

þ Q
ðkÞ
12 � Q

ðkÞ
22 þ 2Q

ðkÞ
66

� �
sin3 hðkÞ cos hðkÞ

Q
ðkÞ
26 ¼ Q

ðkÞ
11 � Q

ðkÞ
12 � 2Q

ðkÞ
66

� �
sin3 hðkÞ cos hðkÞ

þ Q
ðkÞ
12 � Q

ðkÞ
22 þ 2Q

ðkÞ
66

� �
sin hðkÞ cos3 hðkÞ

Q
ðkÞ
66 ¼ Q

ðkÞ
11 þ Q

ðkÞ
22 � 2Q

ðkÞ
12 � 2Q

ðkÞ
66

� �
sin2 hðkÞ

þ Q
ðkÞ
66 sin4 hðkÞ þ cos4 hðkÞ
� �

ð8Þ

The elastic constantsQ
ðkÞ
i;j can be expressed from the

engineering elastic parameters of the kth material:

Q
ðkÞ
11 ¼ E

ðkÞ
1

1� lðkÞ12 l
ðkÞ
21

; Q
ðkÞ
12 ¼ lðkÞ12 E

ðkÞ
2

1� lðkÞ12 l
ðkÞ
21

;

Q
ðkÞ
22 ¼ E

ðkÞ
2

1� lðkÞ12 l
ðkÞ
21

; Q
ðkÞ
66 ¼ G

ðkÞ
12

ð9Þ

The external load is uniformly distributed over an

area with x1 ¼ L=4 and x2 ¼ L=2 on the upper surface

of the beam, seeing Fig. 4.

According to the generalized Hamilton’s principle,

the governing equation of the composite beam can be

obtained by

Fig. 4 Excitation applied on the beam
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d
Z t2

t1

T � U þWf þWst

� �
dt ¼ 0 ð10Þ

where T , U, Wf , and Wst are the potential energy, the

kinetic energy, the work done by the restoring and

damping force provided by NiTi-ST, and the work

done by external loads, respectively, given as:

T ¼ 1

2

XNl

k¼1

Z zkþ1

zk

Z
S

qðkÞ _w2B dx dz

U ¼ 1

2

Z L

0

Nx
o2w

ox2
B dx

Wf ¼
R L

0
BfwðxÞw dx

Wst ¼
R L

0
�vfstw dx

8>>>>>>>><
>>>>>>>>:

ð11Þ

with qðkÞ, Nx, fw, v representing the density of kth

lamina, the generalized force resultant of the beam, the

external loads distributed on the x-axis, and the

parameter modifying the restoring and damping force.

Nx can be written as:

Nx ¼
XNl

k¼1

Z zkþ1

zk

�zrxxdz ð12Þ

Substituting Eqs. (4) and (11) into Eq. (10) and

setting the coefficients of virtual displacements to zero

yield

qBh €wþ B
o2Nx

ox2
þ gB

o3Nx

ox2ot
¼ Bfw

� v k1wþ k3w
3 þ c1 _wþ r21w

2 _wþ r12w _w2
� �

ð13Þ

Equation (13) is reduced by assuming that the

thickness, density, and strain of every lamina are the

same, respectively. The layers of the laminated beam

are cross-ply (0�/90�/0�/90�). The geometry dimen-

sions of the beam are length L = 0.462 m, width

B = L/15, height h = L/50, and the material properties

are E1 = 152.4 GPa, E2 = 10.16 GPa,

G12 ¼ G13 ¼ 4.36 GPa, G23 = 3.75 GPa, c12 = 0.3

and q = 1461.73 kg/m3. The damping coefficient

g = 10–5, and the parameter modifying the restoring

and damping force v = 0.2.

3 Analytical solutions

3.1 Galerkin truncation

The Galerkin method is one of the most common

procedures for truncating the partial differential

equation. Based on the simply supported boundary

conditions, the solution of Eq. (13) is written as:

wðx; tÞ ¼
Xn
i¼1

qiðtÞ � sin
ipx
L

ð14Þ

where i is the order of the modal shape function. Once

substituting Eq. (14) into Eq. (13), according to the

Galerkin method with four modes, the equation can be

transformed into Eq. (15):

Z L

0

Xn
i¼1

qBh €wþB
o2Nx

ox2
þgB

o3Nx

ox2ot

� �
�sinipx

L
dx

�
Z L

0

Xn
i¼1

Bfw�v k1wþk3w
3þc1 _wþr21w

2 _wþr12w _w2
� �� �

:

�sinipx
L
dx¼0

ð15Þ

Expanding Eq. (15) yields a set of ordinary differ-

ential equations:

g1;i €qi þ g2;i _qi þ g3;iqi � g4;ifw þ g5;i

�
Z L

0

Xn
i¼1

v k1wþ k3w
3 þ c1 _wþ r21w

2 _wþ r12w _w2
� �

� sin ipx
L

dx¼ 0

ð16Þ

where gj;i are the coefficients of the ODEs.

3.2 Harmonic balance method

The harmonic balance method combined with the

presto-arc length method is adopted for the approxi-

mately analytical results. With the thought of harmonic

balance, the displacement response can be expanded as

qiðtÞ ¼ Ai;0 þ
X̂n
j¼1

cosðjxtÞ � Ci;j þ
X̂n
j¼1

sinðjxtÞ � Si;j

ð17Þ

with j as the harmonic order. The Ai;0, Ci;j; and Si;j
are the constant terms, the coefficients of cosine and
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sine terms, respectively. The velocity and acceleration

responses are given as

_qiðtÞ¼�
X̂n
j¼1

jxsinðjxtÞ�Ci;jþ
X̂n
j¼1

jxcosðjxtÞ�Si;j

€qiðtÞ¼�
X̂n
j¼1

j2x2 cosðjxtÞ�Ci;j�
X̂n
j¼1

j2x2 sinðjxtÞ�Si;j

ð18Þ

Since the order of the nonlinear restoring and

damping force is 3, the constant terms and the second-

order terms are omitted. The harmonic terms with

j = 1,3 remain and are substituted into Eq. (16). After

balancing the coefficients of all the harmonic terms, a

set of nonlinear algebraic equations related to the

coefficients are obtained. Following the presto-arc

length method, the amplitude–frequency response

curve can be easily obtained.

3.3 Analytical results

The response is measured at the position of 3/4L on the

x-axis. Figure 5 demonstrates the amplitude response

of the composite beam. The natural frequency of the

composite laminated beam is 146.3 Hz. As illustrated

in Fig. 5a, the NiTi-ST successfully reduced the

vibration amplitude around the natural frequency.

The S3b configuration demonstrates the best result and

the resonance frequency is hardly changed. The S1a

and S3a configurations show slightly softening behav-

ior. The softening behavior is caused by the quasi-zero

stiffness of S1a and S3a around the origin. The

restoring force provided by S1a configuration mainly

consists of cubic stiffness restoring force, and the S3a

is affected by the pinching effect. When the excitation

increases, as shown in Fig. 5b, S1a and S3a present

jump phenomenon, while other configurations show

softening behaviors which might be the contribution

of hysteresis. Figure 6 presents the progress with the

increment of the external load.

A parametric study is carried out for avoiding the

jump phenomenon. In Fig. 7, the minus cubic term r12
is changed for S1a and S3b. As the absolute value of

r12 decreased, the S1a configuration recovered. On the

contrary, while increasing the absolute value of r12 for

S3b, the jump phenomenon appears. It seems that the

sudden increments of amplitude are caused by the

flaws of reduced-order polynomial model rather than

the nonlinearity of NiTi-ST. The polynomial models

are only suitable for reporting nonlinear responses

under reasonable excitation.

The equivalent linear damping c1 is also studied as

shown in Fig. 8. With the increment of c1, the ability

of vibration reduction is enhanced, while the reso-

nance frequency remains unchanged. The polynomial

model contains many terms related to the velocity,

while the equivalent damping term plays a major role

in dissipating energy. Hysteresis damping features of

NiTi-ST are described with other high-order terms,

which contribute to energy dissipation less than linear

damping c1.

4 Numerical analysis

4.1 Domain decomposition

The domain decomposition approach is a truncation

method based on the modified variational principle

(MVP) and the least-square weight residual method

Fig. 5 Vibration

suppression effect of

different NiTi-ST

configurations under small

and large external loads:

a fw = 4 kPa, b fw = 16 kPa.

Legend ‘Null’ represents the

response of composite beam

without NiTi-ST
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(LSWRM). With the adoption of MVP, the enforce-

ment of the interface and boundary constraints is

released. What’s more, the discretized equations are

convenient for numerical simulation. To obtain the

time-domain response of the beam embedded with

NiTi-ST, the domain decomposition is applied. The

beam is decomposed into N subdomains on the x-

direction, as shown in Fig. 9. Sub-coordinate o0 � x is

established in each subdomain.

The modified variational function P is constructed

as:

Fig. 6 Softening and

unstable behavior of

configurations with the

increment of external load

form 4 to 16 kPa: a S1a,

b S3b

Fig. 7 Amplitudes at

resonance frequency with

various parameters of r12:
a S1a and b S3b

Fig. 8 Amplitudes at resonance frequency with various

parameters of c1 for S2b configuration

Fig. 9 Beam model discretized in the space domain
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P ¼
XN
i¼1

Ti � Ui þWf ;i þWst;i

� �

þ
XN�1

i¼1

Pi;iþ1
k � Pi;iþ1

j

� �
ð19Þ

where Ti, Ui,Wf ;i, andWst;i are the kinetic energy, the

strain energy, the work done by external loads, and the

work done by the restoring and damping force

provided by NiTi-ST, respectively. They can be easily

obtained by replacing the general displacement wwith

the displacement of each segment wi in Eq. (11). The

subscript i represents the segment number. Pi;iþ1
k and

Pi;iþ1
j are the potential energy of the virtual boundaries

between the i and i ? 1 segment, given as

Pi;iþ1
k ¼ nwrwHw þ nrrrHrð Þjx¼xiþ1

ð20Þ

Pi;iþ1
j ¼ 1

2
nwjwH

2
w þ nrjrH

2
r

� �		
x¼xiþ1

ð21Þ

whereHw andHr are the relevant continuity equations

coordinating the displacements of two adjacent sub-

domains, written as:

Hw ¼ wi � wiþ1; Hr ¼
owi

ox
� owiþ1

ox
ð22Þ

rw and rr are the Lagrange multipliers which can be

recognized by setting the variation of Eq. (19) to zero:

rw ¼ � oNx

ox
; rr ¼ Nx ð23Þ

nw and nr are the parameters controlling the

boundary conditions. For two adjacent subdomains,

the values of these parameters are set to be 1. For the

real boundaries of the beam, the values are listed in

Table 3.

To obtain the discretized governing equation of

motion, the generalized displacement of each beam

segment wi is expanded with the Chebyshev

orthogonal polynomial of the first kind (COPFK).

The COPFK is given as

w0ðxÞ ¼ 1; w1ðxÞ ¼ x;
wiðxÞ ¼ 2xwiðxÞ � wi�1ðxÞ

ð24Þ

where x is the local displacement of ith segment, given

as x ¼ a0xþ a1 with a0 ¼ xiþ1 � xið Þ=2 and

a1 ¼ xiþ1 þ xið Þ=2. Then, the displacement wi can be

written as

wiðx; tÞ ¼
XP
j¼0

wiðxÞwj;iðtÞ ¼ wðxÞwiðtÞ ð25Þ

with P being the maximum number of COPFK

terms. Substituting Eqs. (20), (21) and (25) into

Eq. (19) and performing the variational operation with

respect to the generalized coordinate vector w, one

obtains the discretized governing equations of the

composite beam embedded with NiTi-ST:

M€qþ C _qþ ðK � Kk þ KjÞq ¼ Fw þ Fst ð26Þ

where q is the global generalized coordinate vector. M

and K are, respectively, the disjoint generalized mass

and stiffness matrices. C is the structural damping

matrix of the composite beam, which is defined a s gK,

Kk and Kj are the generalized stiffness matrices

introduced by theMVP and LSWRM, respectively. Fw

and Fst are the generalized force vector of external

loads and the nonlinear restoring and damping force

provided by NiTi-ST. Setting the truncation order

N = 4 and P = 4, the visualized patterns of M, K, Kk

and Kj are presented in Fig. 10.

4.2 Numerical results in the time domain

Since Eq. (26) is a set of nonlinear ODEs, the

Newmark-b method combined with direct iteration

procedures is applied to obtain the time-domain

responses. The parameters for Newmark-b method

are: a = 0.25, b = 0.5 and Dt = 10-4 s. The initial

generalized displacement velocity and acceleration

vectors are set to be zero vectors.

The Newmark-b method with direct iteration

procedure can be expressed as follows:

1. Ignore the nonlinear restoring and damping force

vector. Start the Newmark-b procedure with the

governing equation

M€qþ C _qþðK � Kk þ KjÞq ¼ Fw. Calculate the

Table 3 Values of boundary controlling parameters for beam

boundary conditions

Boundary condition Constraints nw nr

Free – 0 0

Simply supported w = 0 1 0

Clamped w = qw/qx = 0 1 1
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generalized coordinate vector qitþDt (i� 1) of the

next Newmark step;

2. Start the direct iteration procedure. The nonlinear

restoring and damping force Fi
st is related to qi.

Calculate Fi
st with qi from the previous step.

Replace the governing equation with M€qiþ1 þ
C _qiþ1 þ ðK � Kk þ KjÞqiþ1 ¼ Fw þ Fi

st; and

start the Newmark-b procedure again. The first

nonlinear coordinate vector qiþ1 can be obtained;

3. Repeat the iteration i times until qiþ1 � qi
		 		\e.

While the difference of the response in two

adjacent iteration steps is smaller than the toler-

ance value, the response is considered to be the

real nonlinear response of the step of the Newmark

procedure.

4. Calculate the next Newmark step based on the

previous nonlinear response until the whole pro-

cedure is over.

Figure 11 demonstrates the time history response

of the composite beam embedded with different NiTi-

ST and excited with 146.3 Hz harmonic load. The size

of the excitation is 4 kPa, which is the same as the

external load of Fig. 5a. The response is measured at

the position of 3/4L on the x-axis. The results indicated

that S1a and S3b configuration strongly reduced the

amplitude of vibration to 11.93% and 12.20% near the

resonance frequency. The S2b performs worst among

all the NiTi-ST configurations with a suppression rate

of 44.39%. Figure 12 shows the vibration suppression

effect of the beam excited with 1000 Hz load. The

Fig. 10 Visualized pattern

of matrices in Eq. (26): a M,

b K, c Kk and d Kj
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NiTi-ST can suppress the vibration rapidly at a higher

frequency.

4.3 Verifications of semi-analytical and numerical

results

The verifications are obtained via the Runge–Kutta

method with a simulation time set to be long enough

for a steady-state response. The amplitude is deter-

mined as the maximum absolute displacement in the

last several periods of the time history. The numerical

solutions are compared with the analytical results in

Fig. 5b and yield good agreements, as shown in

Fig. 13.

Good agreements of the numerical results can also

be observed from Fig. 14. The domain decomposition

method combined with the Newmark-beta method is

proved to be a promising approach for nonlinear

vibration analysis of continuum.

Fig. 11 Time-domain

responses with excitations at

146.3 Hz of different

configurations: a S1a, b S2a,

c S2b, d S3a, e S3b and f S3c
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5 Conclusion

The present study was designed to determine the

vibration suppression effect and nonlinear behavior of

NiTi-ST coupled to a composite beam. According to

the semi-analytical and numerical results, the NiTi-ST

can greatly reduce the vibration of the composite beam

under harmonic excitations. Differences between

NiTi-ST configurations are revealed by the polyno-

mial model. The minus cubic term of the model

determines the softening behavior and can lead to

instability. The polynomial models are suitable for

reporting nonlinear responses under reasonable exci-

tation. The linear damping term contributes to the

Fig. 12 Time-domain

responses with excitations at

1000 Hz of different NiTi-

ST configurations: a S1a,

b S2a, c S2b, d S3a, e S3b

and f S3c
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ability of vibration suppression. What’s more, the

ability of the domain decomposition method dealing

with nonlinear vibration problems is proved. The

numerical results achieved good agreements with the

Runge–Kutta method. The domain decomposition

method combined with the Newmark-bmethod shows

great convenience in composite structures. Other

structures such as plates, cylinder shells, and conical

shells embedded with NiTi-ST may also be analyzed

with this method.

This work is just the beginning of vibration

suppression using NiTi-ST. Unfortunately, the study

carried out numerical verifications only. The thermo-

mechanical coupling behavior of NiTi-ST is ignored.

Further researches and experiments are required to

determine the accuracy of this coupled model and

Fig. 13 Verifications of

semi-analytical results

presented in Fig. 5b

123

2404 L.-H. Zheng et al.



explore the practical vibration suppression application

for more structures.
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