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Abstract This paper investigates mixed-mode oscil-
lations (MMOs)with a three-dimensional conductance-
based cardiac action potential model, which makes the
heart beat in a nonrenewable way. The 3D model was
entailed by utilizing voltage-dependent timescales to
describe the mechanism in which MMOs are gener-
ated. As expected, motivated by geometric singular
perturbation theory, our analysis explains in detail the
geometric mechanisms that there is a range of parame-
ters under which the cardiac model highlights that the
presence of MMOs is induced by the intrinsical canard
phenomenon. Much is currently known about the geo-
metric mechanisms, for a folded saddle, the two sin-
gular canards perturb to maximal canards. Character-
istics of the stimulus current such as frequency and
duration determine which early afterdepolarizations
(EADs), as a special case of MMOs bears, as well as
the article compares the detailed manifold structures of
original and dimensionless systems with square wave
pulses by setting the pacing cycle length. An exceed-
ingly vital technique of the analysis is the slow–fast
dynamics analysis by which the system governs multi-
ple timescale structures analytically. A more novel and
successfulmultiple-timescale approachdivides the sys-
tem so that there is only one fast variable and demon-
strates that the MMOs arise from canard dynamics,
such as using a three-variable model in which two vari-
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ables are treated as “slow” and one treated as “fast”,
which the layer problem and the reduced problem are
considered to explain the trajectory on the critical man-
ifold. Meanwhile, if one variable was regarded as the
single slow variable, substantial bifurcation properties
are discovered for slow–fast system, as well as gen-
eral one-parameter bifurcation type is discussed for
the whole system similarly. By focusing on the first
Lyapunov coefficient of the Hopf bifurcation, which
decides whether the bifurcation is supercritical or sub-
critical, it was shown that an unstable limit cycle can
arise via a delayed subcritical Hopf bifurcation for the
original system. Meanwhile, the dynamical studies of
cardiacmodel havemajor implications for further elab-
orating the complex dynamic behaviors, such as EADs,
which can lead to tissue-level arrhythmias. Ultimately,
it has turned these researches into a considerable player
in the signal and information transmission for underly-
ing nervous systems.

Keywords MMOs · EADs · Hopf bifurcation ·
Lyapunov coefficient · Slow–fast dynamics · Canard ·
Cardiac model

1 Introduction

Mixed-mode oscillations (MMOs) are trajectories of
a dynamical system in which there is an alternation
between large amplitude oscillations and small ampli-
tude oscillations, which emerge in chemical oscil-
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lations, biological system, neural dynamics, etc. To
date, MMOs were first observed predominantly in the
Belousov–Zhabotinsky reaction bywhichmore diverse
models have emerged, such as biological and neuron
systems. Previous investigations include the Van der
Pol–Duffing model, the 3D autocatalator, and the car-
diac cell model, as well as examples in versatile other
disciplines; cf. Refs. [1–5].

The Hodgkin–Huxley (HH) equations, known as
one of the most significant neuron models which reveal
well-defined periodic oscillations within a wide range
of process parameters [6]. Specifically, Rubin et al. cap-
tured the 3D canard structures of the HH equations by
which there is the selection of MMOs with multiple
timescales [7,8]. We show, further, the MMOs, found
in the FitzHugh–Nagumo system, were demonstrated
to fetch a more incisive understanding for systems that
show canard dynamics [9,10].

Early afterdepolarizations (EADs) are always con-
sidered as a class of pathological MMOs within the
repolarization phase of action potential in human car-
diomyocytes, which can be generated by hypokalemia,
oxidative stress, etc. Experimental studies from the
1980s induced to the significant conclusion that EADs
occur during inward currents are increased and the
outward are decreased [11,12]. In electrophysiolog-
ical investigations have manifested that, EADs can
induce diversified types of cardiac arrhythmia on cell
level; see, e.g., Refs. [13–15] for details and references.
Moreover, an alternative perspective of discussing
EADs is that complementing the biophysical mean-
ing in terms of dynamical systems, as well as EADs
are explored mathematically combined with com-
puter simulations. Recently, an explanation revealed
by slow–fast analysis of a three-dimensional cardiac
model, gives a more detailed description of EADs
[16–18]. In cardiac cells, studies on EADs, have been
widely conducted under disease conditions or at the
cellular level; however, the dynamical mechanisms still
unknown. From the mathematical point of view, there
are various nonlinear models to understand EADs.
Combining the simulation results with experimen-
tal observations can help resolve the mechanism of
EADs. Moreover, bifurcation analysis demonstrates us
to understand the mechanisms more intensely, which
plays an essential role in the complex dynamics [19–
22]. Early studies of mechanisms have suggested to
elaborate the generation of MMOs in neuron mod-
els. Historically, MMOs are always denoted by the

symbol Ls , which began with L1 large oscillations
(LAOs), followed by s1 small oscillations (SAOs),
L2 (LAOs), s2 (SAOs), and so on [23,24]. Using the
Fenichel theorem in an ordinary differential system,
a multitude of scholars confirmed that the studies on
GSPT have been assured [25]. Particularly, one impor-
tant notion that arises in the study of the canards in
R3 firstly [26]. Physiologically, there have been copi-
ous studies that proposed to state the canard explo-
sions generationmechanism for the R3 system [27,28].
Note that, generically, chaos emanates from MMOs is
the another concerned aspect for dynamical systems
[29,30]. As expected, the detailed structure of slow
manifold and bifurcation structures were generalized
to demonstrate the emergence mechanism of MMOs
(Refs. [31–33]). Previous studies indicate that there are
a few of deterministic models such as dopaminergic
and interneuron neuron cells that showed substantial
MMOs phenomena. We refer the reader to [34–36] for
details. Complementary to theoretical advances in the
discussion on the mechanisms of MMOs, slow mani-
folds near folded singular points and pseudo-plateau
bursting have been developed to visualize geomet-
ric structures that shape the dynamics of these sys-
tems [37–40]. An additional advantage of these mea-
sures is that the analysis of multiple-timescale model
which can better interpret the properties of the neu-
ron models [24]. Qualitatively, the results of MMOs
play a significant role in characterizing the distinct
dynamic behaviors of the 3D cardiac cell model,
such as the signal transmission of the biological sys-
tem.

The idea of adopting the slow–fast technique for
dynamic analysis was investigated in a neuronal
parabolic model firstly, which was most commonly
applied to the transitions between chaos and oscilla-
tions in the peroxidase reaction [41,42]. This tech-
nique yields key insights into the bifurcation structure
and global invariant manifolds in slow–fast systems
[43–45].Mathematically, previous studies indicate that
Hopf bifurcation is necessary to trap a more holistic
understanding of the deterministic models [43,45]. To
the best of our knowledge, MMOs phenomenon was
encountered in two-slow-two-fast systems [46]. In con-
junction with this, there is the slow–fast dynamic anal-
ysis as ameanwhich provides a fairly complete view of
studying diverse neuron models that take on complex
oscillations properties [47–49]. The differences among
bifurcation, chaos and MMOs that were expounded in
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the slow–fast systems has only recently been explained;
see, for example, Refs. [50,51], and other contributions
in this focus issue. Specifically, Izhikevich et al. derived
a typical set of theory for dynamical systems, named the
geometry of excitability, spiking and various other dis-
ciplines; see, e.g., [52,53] for details and references. A
geometric understanding of the dynamic system,which
concentrated on the relation between ion channels and
MMOs, was identified in miscellaneous neuron mod-
els, for instance, Chay–Keizer model, pituitary model,
pyramidal cell model, pre-Bötzinger model, etc. (e. g.,
Refs. [47–49,54–56]). Concluding that the first Lya-
punov coefficient determines the type of Hopf bifurca-
tion and the stability of the limit cycle, a detailed cal-
culation theorem was proposed for characterstic Lya-
punov numbers of dynamical systems [57–59]. Addi-
tionally, the above theories also provide new ideas for
machine learning [60–63].

The remainder of the article is arranged as follows. In
Sect. 2, we first give a brief overview of the model with
Hodgkin–Huxley formalism which was modified from
the Luo–Rudy model for mammalian ventricular cells.
Section 3 is the summary of innovation in this article.
At first, Sect. 4 focuses on the comparison of dynam-
ical properties generated by the standard and dimen-
sionless models under systematic variation of with the
characterized current stimulation and the parameters
to further highlight differences in the numeral calcula-
tions that appear with canard or bifurcation structure.
Additionally, in Sect. 4, a natural question that arises in
this part is that how the parameters influence the gen-
erating of MMOs in th 3D cardiac model. As expected,
except for concluding that the two singular canards per-
turb to maximal canards, there are various MMOs pat-
terns, which change within the variation of parameters
in the 3Dmodel mathematically. In Sect. 5, an substan-
tial technique to an understanding of system is slow–
fast dynamic analysis so that the paper divides the 3D
cardiac cell model by which two-slow-one-fast or one-
slow-two-fast systemswith the layer and reduced prob-
lem. As described in more detail in Sect. 6, we gener-
ate codimension-one bifurcation analysis with respect
to parameter gK as well as the calculation of the first
Lyapunov coefficient near the Hopf point is illustrated
distinctly. Eventually, discussion and conclusions are
provided in Sect. 7.

2 Model

The model includes three variables for the membrane
potential (V ) of the cell, the dynamic inactivation of the
inward calcium current ( f ), and the dynamic activation
gating variable of the outward potassium current (x).
The differential equations are as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C
dV

dt
= −gCad∞(V ) f (V−ECa)−gK x(V − EK )+Isti = z(V, f, x)

d f

dt
= f∞(V ) − f

τ f
= g(V, f )

dx

dt
= x∞(V ) − x

τx
= h(V, x)

(1)

This model employs the Hodgkin–Huxley formal-
ism [6], which is the reduced modification of the
Luo–Rudymodel formammalian ventricular cells [17–
19,64]. Intrinsically, V is the transmembrane voltage,
the variable f describes the inward calcium current,
and x is the outward potassium current. More explic-
itly, note that the stimulus current Isti furnishes the sys-
tem with square wave pulses of 1 mS duration and 1.0
µA/cm2 amplitude at a frequency set by the pacing
cycle length (PCL) [16,17],

Isti = 1.0
∑

i∈N
{H (t− i · PCL)−H (t−[i · PCL + 1])}.

(Here H(·) is the Heaviside function.)
The corresponding steady states of channel gating

are revealed as follows:

d∞(V ) = 1

1+e
V−VTd

kd

, f∞(V ) = 1

1+e
V−VT f

k f

, and

x∞(V ) = 1

1+e
V−VT x

kx

.

With regard to the rest of this paper, except for gK , all
the other parameters involved in the 3D cardiac model
are fixed, as given in Table 1.

Combining GSPT and bifurcation theories, inte-
grated by the fourth-order Runge–Kutta algorithmwith
a 0.1 ms step size, the 3D cardiac model can be
endowed with the comprehensive dynamical under-
standing. MATCONT software, a supportive tool for
the scientific research on the nonlinear dynamics, dec-
orates all sorts of bifurcation diagrams. More gen-
erally, as for codimension-one bifurcation, the paper
shows different equilibrium curves, which include neu-
tral saddle point, saddle-node point, limit point bifur-
cation of cycle, Hopf bifurcation point, etc.; other-
wise, Bogdanov–Takens bifurcation point, general-
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Table 1 Standard parameter values for the cardiac model

Parameter Value Definition

C 1 µF/cm2 Membrane capacitance

gCa 0.025 µS/cm2 Maximal conductance of calcium ion channels

gK 0.046 µS/cm2 Maximal conductance of potassium ion channels

ECa 100 mV Reversal potential for calcium ion channels

EK −80 mV Reversal potential for potassium ion channels

τ f 80 ms Time constant of calcium ion channel

τx 300 ms Time constant of potassium ion channel

VT f −20 mV The steady state function reference voltage of variable f

VTd −35 mV The steady state function reference voltage of variable d

VT x −40 mV The steady state function reference voltage of variable x

kd −6.24 mV The steady state function constant of variable d

k f 8.6 mV The steady state function constant of variable f

kx −5 mV The steady state function constant of variable x

ized Hopf bifurcation point, etc. can also be derived for
codimension-two bifurcation. As we will show in this
paper, MATLAB, MAPLE, and MATCONT package
[65] are the strong tools for the numerical simulation
and the picture manipulation.

3 Innovation

• The paper compares the manifold structures and
the phase diagram trajectories for the original and
dimensionless systems.

• Adding the square wave pulses into the dimension-
less system, controlled by setting the pacing cycle
length, facilitates the generation of EADs.

• The presence of 1s-typeMMOswas proved, aswell
as there are the two singular canards perturbing to
maximal canards for a folded saddle.

• The three-variable model was elaborated with
slow–fast dynamic analysis; yet, differently, two
variables are treated as “slow” and one treated as
“fast”, not one “slow” and two “fast” variables.

4 MMOs in the cardiac model

To derive the dynamical properties of the cardiac heart
cellmodel, this article first gives the time series ofmem-
brane potential, accompanied by mixed-mode oscil-
lations in the 3D system for Eq. (1), as shown in

Fig. 1. Diagrams (a)–(c) of Fig. 1 are pictures when
gK = 0.041mS/cm2, gK = 0.042mS/cm2, gK =
0.046mS/cm2, respectively. (E.g., see Table 1 for
details of other parameter values.)

In this section, one question that naturally arises is
the mechanism by which MMOs are generated in the
3D cardiac model. First, we investigated appropriate
voltage and timescales, kv and kt respectively defined
as V = kvv, t = ktτ . Then, the system for Eq. (1) is
transformed as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dV

dt
= gmax kt

Cmkv

[−ḡCad∞(V ) f (V − ECa) − ḡK x(V − EK )]
d f

dt
= kt [ f∞(V ) − f ]

τ f
dx

dt
= kt [x∞(V ) − x]

τx

(2)

where gmax = 1000nS, kv = 1mv, kt = 1ms, gi =
gi/gmax and i represents K ,Ca. The dimensionless
system for Eq. (3) is then illustrated by setting ε

� Cmkv

gmax kt
= 0.001 �1

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε
dv

dτ
= [−ḡCad∞(V ) f (V − ECa) − ḡK x(V − EK )] = z(v, f, x)

d f

dt
= kt [ f∞(V ) − f ]

τ f
= g1(v, f )

dx

dt
= kt [x∞(V ) − x]

τx
= h1(v, x)

(3)

The dimensionless system for Eq. (3) is stated to the
periodic stimulus by which the cell exhibits distinct
EADs phenomenon with period set by the intermedi-
ate PCL (1150ms ≤ PCL ≤ 1450 ms). As Fig. 2a–c
shown: action potential with EADs for PCL=1400 ms,

123



Characterizing mixed-mode oscillations shaped by canard and bifurcation structure 2885

Fig. 1 The time series of
membrane potential,
accompanied by
mixed-mode oscillations in
the 3D system for Eq. (1).
Diagrams a–c are pictures
when
gK = 0.041mS/cm2, gK =
0.042mS/cm2, gK =
0.046mS/cm2,
respectively. The upper
right rectangular frame
pictures of diagrams a–c are
the partial enlargement
pictures, respectively. See
Table 1 for details of other
parameter values

Fig. 2 The time series of
membrane potential,
accompanied by early
afterdepolarizations in the
dimensionless 3D system
for Eq. (3). In a–c, the
stimulus pulse is “on”
during the black dotted line
segments. Diagrams a–c
are pictures when
gK = 41mS/cm2, gK =
43mS/cm2, gK =
46mS/cm2, respectively. a
Action potential with EADs
for PCL = 1400 ms. b
Action potential with EADs
for PCL=1350 ms. c Action
potential with EADs for
PCL=1200 ms. See Table 1
for details of other
parameter values

PCL=1350 ms, PCL=1200 ms, respectively. The arti-
cle utilized a dynamic compensation protocol [16] in
which the dimensionless 3Dmodel was paced at a fixed
PCL until it reached the steady state, after which PCL

was recorded (e.g., refer to Table 1 for details of other
parameter values). In order to better enrich the charac-
teristics of periodic solutions under MMOs which vary
with different parameters, the article gives the phase
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Fig. 3 Phase portraits of the original and dimensionless sys-
tems (1) and (3) in the projection on the (x, V )-plane, which
corresponds the time series of membrane potential as shown in
Figs. 1 and 2, respectively. In a–b, Diagrams a–b are pictures
when gK = 0.041mS/cm2 for original systems (1) and gK =
41mS/cm2 dimensionless systems (3), respectively. Diagrams

c–d are pictures when gK = 0.043mS/cm2 for original systems
(1) and gK = 43mS/cm2 dimensionless systems (3), respec-
tively. Diagrams e–f are pictures when gK = 0.046mS/cm2 for
original systems (1) and gK = 46mS/cm2 dimensionless sys-
tems (3), respectively. See Table 1 for details of other parameter
values

portraits of the deterministic system in the projection on
the (x, V )-plane in Fig. 3, which correspond to the time
series ofmembrane potential in Figs. 1 and 2. As shown
in Fig. 3a, b are pictures when gK = 0.041mS/cm2 for
original systems (1) and gK = 41mS/cm2 dimension-
less systems (3), respectively. Diagrams (c)–(d) are pic-
tures when gK = 0.043mS/cm2 for original systems
(1) and gK = 43mS/cm2 dimensionless systems (3),
respectively. Diagrams (e)-(f) are pictures when gK =
0.046mS/cm2 for original systems (1) and gK =
46mS/cm2 dimensionless systems (3), respectively.

Another important component of this work is the
mechanism studies and the numerical exploration of
theMMOs for the dimensionless system Eq. (3). Based
on making the limiting problem ε → 0 in the 3D
system for Eq. (3), we can conjecture the reduced
problem. An eventful question that arises is that how
the slow variables ( f, x) vary along the critical man-
ifold S0 := {(v, f, x) ∈ R3 : z(v, f, x) = 0}, i.e.,
on the V -nullsurface. The objective of this section is

to make clear the critical manifold S in the dimen-
sionless 3D model, which is expressed as f (v, x) =
− ḡK x(V−EK )

ḡCad∞(V )(V−ECa)
. And yet, as the system for Eq.

(3) points out that this singular perturbation system
holds fast variable V , and slow variables f , x ; ε is
the perturbation parameter. After rescaling time under
the transformation τ = εt1, and supposing the pertur-
bation parameter ε → 0, Eq. (3) is transformed into
a one-dimensional layer problem as follows: dv

dt1
=

z(v, f, x), d f
dt1

= 0, dx
dt1

= 0.
Given the singular solutions of the reduced and the

layer problems, a theorem [32] was raised to con-
firm the existence of MMOs with a sufficiently small
0 < ε � 1. In what follows, we review the follow-
ing theorem to prove the existence of MMOs in the 3D
cardiac cell model. Further investigation of the specific
manifold distinction between the original system for
Eq. (1) and the dimensionless systems for Eq. (3), the
paper first invokes such an exacting comparison about
the manifold. In Fig. 4, picture (a) depicts the manifold
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Fig. 4 a The manifold S1 which satisfies z = 0 and singu-
lar periodic orbit � for the original system (1), shadowed onto
(V, f, x) space for gK = 0.046µS/cm2, Isti = 0 and all other
parameters set to their standard values. b Critical manifold S and
singular periodic orbit � for the dimensionless systems (3), pro-
jected onto (v, f, x) space for gK = 46µS/cm2, Isti = 0 and
all other parameters set to their standard values. Generally, L±

are the fold curves of the critical manifold S by which the upper
(colored) and the lower branches (dark blue) are the attracting
branches, denoted as S+

a and S−
a , respectively. Analytically, the

middle (light blue) branch of S is the repelled branch, named
as Sr . The dimensionless variables have no unit. (Color figure
online)

S1 which satisfies z = 0 and singular periodic orbit
� for the original system for Eq. (1), shadowed onto
(V, f, x) space for gK = 0.046µS/cm2, Isti = 0 and
all other parameters set to their standard values. Mean-
while, Fig. 4b includes critical manifold S and singu-
lar periodic orbit � for the dimensionless systems (3),
projected onto (v, f, x) space for gK = 46µS/cm2,
Isti = 0. Generally, L± are the fold curves of the crit-
ical manifold S by which the upper (colored) and the
lower branches (dark blue) are the attracting branches,
denoted as S+

a and S−
a , respectively. Analytically, the

middle (light blue) branch of S is the repelled branch,
named as Sr . The dimensionless variables have no unit.
General results have been compared in Fig. 4a, b,which
show that except for the different phase diagrams under
these two systems, the diagram (b) also has an S-shaped
critical manifold.

Assumption 1 The criticalmanifold S := {(v, f, x) ∈
S0 : f ∈ [0, 1]} of the dimensionless system
for Eq. (3) is a “cubic-shaped” folded surface i.e.,
S = S−

a
⋃

L− ⋃
Sr

⋃
L+ ⋃

S+
a with upper and lower

attracting branches S±
a , S+

a ∪ S−
a := {(v, f, x) :

zv(v, f, x) < 0}, a repelling branch Sr := {(v, f, x) :
zv(v, f, x) > 0} as well as two fold curves L±, L+ ∪
L− := {(v, f, x) : zv(v, f, x) = 0, zvv(v, f, x) �= 0}.
For the detailed pictures, the readers can see Figs. 4b
and 5.

Fig. 5 Critical manifold S and the folded curve which satis-
fies zv = 0 for the dimensionless systems (3), shadowed onto
(v, f, x) space for gK = 46µS/cm2, Isti = 0 and all other
parameters set to their standard values. The two lines they inter-
sect are noted as L±. The upper branch is recorded as L+ and the
lower one is L−. The picture in the upper left corner is the projec-
tion of the original image on the (v, f ) plane. The dimensionless
variables have no unit

Mathematically, for Eq. (3), what’s apparent is that
z(v, f, x) and zv(v, f, x) are both not only contin-
uous but also bounded functions within the region
R = [−100, 100] × [0, 1] × [0, 1], and consequently,
the derivative function zv(v, f, x) of z(v, f, x) does
exist. The critical manifold is a folded colored “S-
shaped” surface, which is depicted as S = {(v, f, x) :
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Fig. 6 In order to make Fig. 5 more intuitive to the reader,
we redrawn the superimposed diagrams of critical manifold S
and the folded curve which satisfies zv = 0 within the dif-
ferent f value ranges. The superimposed diagrams are for the
dimensionless systems (3), shadowed onto (v, f, x) space for

gK = 46µS/cm2, Isti = 0 and all other parameters set to their
standard values. The two lines they intersect are noted as L±.
The upper branch is recorded as L+ and the lower one is L−.
a When f ∈ [0, 1]. b When f ∈ [0, 10]. The dimensionless
variables have no unit

z(v, f, x) = 0} as well as the folded curve is
a gray inverted “V -shaped” surface which satisfies
zv(v, f, x) = 0; see Fig. 5 for details. Figure 5 delin-
eates the intersection of the two functions of z(v, f, x)
and zv(v, f, x), which is shadowed onto (v, f, x) space
for gK = 46µS/cm2, Isti = 0 and all other parame-
ters set to their standard values. Intersection lines of
these two planes are noted as L±; the upper branch is
remarked as L+ and the lower branch is denoted L−.
To gain a better understanding, the picture we present
in the upper left corner of Fig. 5 is the projection of
the original image on the (v, f ) plane. Specifically,
the globe return mechanism was introduced along the
critical manifold, which is induced by the canard phe-
nomenon. The trajectory line (blue) settles on a resting
state until it alters from the upper attracting branch S+

a
to the folded curve L+. As expected, it departs from
the folded curve L+ and then reaches to the repelling
branch Sr . Our analysis describes the trajectory arrives
to the lower attracting branch S−

a , and grows through
the jump point in the folded curve L−. Finally, it gets
back to the beginning point along the upper attracting
branch S+

a . In order to make Fig. 5 more intuitive for
readers, the paper also draws critical manifold S and
the folded curve within the different f value ranges, as
Fig. 6a, b shown. The superimposed diagrams are con-
structed from the dimensionless systems (3), shadowed

onto (v, f, x) space for gK = 46µS/cm2, Isti = 0
when f ∈ [0, 1] and f ∈ [0, 10], respectively. The
two lines they intersect are noted as L±. The upper
branch is recorded as L+ and the lower one is L−.

Assumption 2 The system for Eq. (3) possesses a
folded singular saddle P0 ∈ L± that satisfies z f · g1 +
zx · h1 = 0, and the two eigenvalues of the Jacobian
matrix of the last two formulae for Eq. (3), restricted
to S at P0, are 1136949.325967209, −0.003300543,
respectively.

Above all, we claim that the definition of the folded
singularities of the system for Eq. (3) is as follows [24]:
z(P0) = 0, ∂z

∂v
(P0) = 0, ∂2z

∂v2
(P0) �= 0, ∂z

∂ f (P0)g1(P0)+
∂z
∂x (P0)h1(P0) = 0.
To that end, the paper solves the above three equations
through the “ f solve′′ function so that we derive the
coordinates of the fold singular saddle P0 (−73.513
207263314655, 1.346209433947835, 0.04075973753
0003)when the initial valueof (v, f, x) is (−50,0.8,0.6).
After making the perturbation parameter ε → 0 in the
system for Eq. (3), there is a reduced 2D system:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 = z(v, f, x)
d f

dt
= f∞(V ) − f

τ f
= g1(v, f )

dx

dt
= x∞(V ) − x

τx
= h1(v, x)

(4)

123



Characterizing mixed-mode oscillations shaped by canard and bifurcation structure 2889

Fig. 7 Criticalmanifold, folded curve and singular periodic orbit
are for Eqs. (3) and (4), shadowed onto the (v, f ) plane for gK =
46µS/cm2, Isti = 0 and all other parameters set to their standard
values. As for the critical manifold, its upper branch (colored)
and lower branch (dark blue) are the attracting branches, denoted
as S+

a and S−
a , respectively. Meanwhile, the middle (light blue)

one is the repelled branch, which is recorded as Sr . � (dark
green) is the trajectory of the model as well as L± (purple) in the
figure is the projection of two folded curves on the (v, f ) plane.
Specifically, SC (dark) represents the strong eigendirection at the
folded singular saddle P0. Extraordinarily, funnel is the shadow
area, which is rounded by SC and L−. (Color figure online)

Notably, the full differential form of the first formula
for Eq. (4), which is turned into:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−zv
dv

dτ
= z f g1 + zxh1

d f

dt
= f∞(V ) − f

τ f
= g1(v, f )

dx

dt
= x∞(V ) − x

τx
= h1(v, x)

(5)

Therefore, the projection phase plane of the reduced
2D system becomes
⎧
⎪⎪⎨

⎪⎪⎩

dv

dτ
= −Q1(v, f, x)

Q2(v, f, x)

dx

dτ
= x∞(V ) − x

τx
= h1(v, x)

(6)

which is restricted to f (v, x) = − GK x(V−EK )
gCad∞(V )(V−ECa)

,
where

Q1(v, f, x)

= z f g1 + zx h1
= −(25(v − 100))(1/(80(1 + exp(.1162790698v

+ 2.325581396)))

− (1/80) f )/(1 + exp(−0.1602564103v − 5.608974360))

+(−46v − 3680)(1/(300(1 + exp(−(1/5)v − 8)))

−(1/300)x) (7)

Q2(v, f, x)

= zv(v, f, x)

= −gCaḋ∞(V ) f (V − ECa) − gCad∞(V ) f − GK x

= −4.006410258 f (v − 100)

exp(−0.1602564103v − 5.608974360)/(1 + exp(

−0.1602564103v − 5.608974360))2

−25 f/(1 + exp(−0.1602564103v − 5.608974360))

−46x (8)

where “·′′ denotes a derivative with respect to time τ ;
A0 implies the Jacobian matrix of the 2D system.

In the remainder of this article, we note that λ1, λ2
as the eigenvalues of the Jacobian matrix A0 at P0 so
that A0 is written as

A0|P0 =
(

1.136949326 · 106 −4.56634506 · 107
8.164373473 · 10−7 −1/300

)

(9)

It is not hard enough to solve the eigenvalues of A0,
which are as follows: λ1 = 1136949.325967209, and
λ2 = −0.003300543, such that P0 is a folded singu-
lar saddle. Clearly, in Fig. 7, a folded saddle generates
a singular funnel (shaded), which is the area bounded
by the lower attracting branch S−

a (dark blue) and the
fold lines L− (purple); � (dark green) is the trajectory
of the model and SC represents the strong eigendirec-
tion at the folded singular saddle P0. Naturally, since
the solutions to the system for Eq. (3) pass through
the funnel region, which can lead to the generation of
MMOs, it is remarkably substantial to study the loca-
tion of singular orbits [27]. Nevertheless, as we will
show below, the article performs the singular periodic
orbit (SO) in the 3D cardiac model, composed of the
reduced and layer problems, which enables to explain
the emergence mechanism of MMOs.

Assumption 3 When f ∈ (0, 1.346209434], the sys-
tem for Eq. (3) owns an SOwhich comprises a segment
within the singular funnel of the folded saddle point as
an endpoint.

Correspondingly, for illustrating the mechanism of
canard, the article shadows the system onto the (v, f )
plane or onto the (v, x) plane. Specially, the system for
Eq. (3) on the (v, f ) plane is identified in this paper.
And yet, as Fig. 7 points out, L± is the two folded lines,

123



2890 L. Yaru, L. Shenquan

projected on the (v, f ) plane; P0 is the folded singu-
lar saddle, as well as SC denotes the strong eigendi-
rection at this folded singular saddle. Implicitly, the
shadow area is the funnel which is rounded by SC and
L−. A periodic orbit is remarked by the trajectory �

at gK = 46µF/cm2. Additionally, the investigation of
SO is extremely vital to consider the local return mech-
anismwhich shadows the solutions of the layer problem
onto the funnel region. In view of Assumption 3, a SO
is defined as ε varies until ε → 0, which is entirely suit-
able when f ∈ (0, 1.346209434]. In particular, when
f = 1.346209434, the return mechanism projects
onto the boundaries of the funnel, which represents
the intersection case for different oscillatory behavior,
e.g., MMOs and relaxation oscillations. Generically,
according to Refs. [24,26,27], we know that if a singu-
larly perturbed system satisfies Assumptions 1–3, that
is, MMOs exist (for sufficiently small ε). Thus, in next
part, the paper suggests the following two theorems.

Theorem 1 If the system for Eq. (3) fulfills Assump-
tions 1–3 and for a sufficiently small ε, there exists 1s

MMO patterns with the canard phenomenon for some
0 < ε � 1 and s > 0.

Theorem 2 (Canards in R3) For the slow–fast system
(3) with ε > 0 sufficiently small the following conclu-
sion hold:

As regards the folded saddle, the two singular
canards will perturb to maximal canards. Be aware
that a maximal canard applies to a (transverse) inter-
section of the slow manifolds, one is attracting branch
and the other is repelling branch, which near a folded
singularity [24].

5 Slow–fast dynamics analysis

5.1 Two-slow-one-fast analysis of the whole system

After rescaling a dimensionless time variable t = kt1 t1
as well as a dimensionless voltage variable V = kv1V1
[42,43,56], the system for Eq. (1) (when Isti = 0)
becomes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dV1
dt1

= gt kt1
Cmkv1

[−ĝCad∞(V1) f (V1−ECa)−ĝK x(V1 − EK )]
d f

dt1
= kt1 [ f∞(V1) − f ]

τ f
dx

dt1
= kt1 [x∞(V1) − x]

τx

(10)

where gt = 1000nS, kv1 = 1000mv, kt1 = 1000ms, ĝi
= gi/gt and i indicates K ,Ca. Exactly as you will see,
the dimensionless system for Eq. (10) is expounded by

making ε̂1 � Cmkv1
gt kt1

= 0.001 � 1 and ε̂2 = τ f /kt1 =
0.08 � 1, which regulate the variation of variables.
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε̂1
dV1
dt1

= gt kt1
Cmkv1

[−ĝCad∞(V1) f (V1−ECa)−ĝK x(V1−EK )]=z1(V1, f, x)

ε̂2
d f

dt1
= kt1 [ f∞(V1) − f ] = g2(V1, f )

dx

dt1
= kt1 [x∞(V1) − x]

τx
= h2(V1, x)

(11)

Consequently, a system for Eq. (11) is depicted with
two slow variables (V1, f ) and one fast variable x ,
accompanied by two small parameters (ε̂1, ε̂2). Rescal-
ing the timescale t1 = ε̂2t2, the system for Eq. (11) is
changed into
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dV1
dt2

= ε̂2

ε̂1
z1(V1, f, x)

d f

dt2
= g2(V1, f )

dx

dt2
= ε̂2h2(V1, x)

(12)

One of the substantial goals in this part is to distin-
guish the rate of change for the perturbation parame-
ters.More specifically, there are two cases: one variable
is faster than the other variables, or those variables have
the identical timescales. Note that, this paper supposes

lim
(ε̂1,ε̂2)→(0,0)

ε̂1
ε̂2

= s, where s = O(1), that is to say,

ε̂2 = sε̂1. Since the relation between ε̂1 and ε̂2 (i.e.,
when ε̂2 → 0, implying that ε̂1 → 0), the article con-
fers the value of ε̂2 with the implicit form of ε̂1. In our
analysis, specifically, if ε̂2 → 0 (means ε̂1 → 0) in the
system for Eq. (12) so that the 2D layer problem will
be illustrated as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dV1
dt2

= sz1(V1, f, x)

d f

dt2
= g2(V1, f )

dx

dt2
= 0

(13)

As we will show, the singular limit ε̂2 → 0, which rep-
resents the slow timescale (i.e., in the system for Eq.
(11)), the 2D reduced problem grows as
⎧
⎪⎪⎨

⎪⎪⎩

0 = z1(V1, f, x)
0 = g2(V1, f )
dx

dt2
= h2(V1, x)

(14)
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Fig. 8 a Colored critical manifold is the plane SS which meets
the equation SS = {(V1, f, x), z1(V1, f, x) = g2(V1, f ) = 0}.
Aswe seebelow, singular periodic orbit� is capturedbyEqs. (13)
and (14), projected onto (V1, f, x) space for gK = 46µS/cm2,
Isti = 0 and all other parameters set to their standard values.
Generally, there are two fold curves L± on the critical manifold
SS. As for the critical manifold, its upper branch (colored) and

the lower branch (dark blue) are the attracting branches, noted as
SS+

a and SS−
a , respectively. Otherwise, the middle (light blue)

branch is the repelled branch, which is remarked as SSr . b The
time series of mixed-mode oscillations correspond to the trajec-
tory of a for the system (11). See Table 1 for details of other
parameter values. (Color figure online)

Particularly, asymptotic expansion is one way to solve
the reduced and layer problems [66] as well as the the-
ories of GSPT give support for the two problems in a
new sight [30]. As for our 3D system, this paper shows
a detailed analysis with the 2D layer problem and 1D
reduced problem based on GSPT. We show, further,
that, a set of equilibria for the 2D layer problem is
offered, which is called the critical manifold: SS =
{(V1, f, x), z1(V1, f, x) = g2(V1, f ) = 0}. Actually,
in view of the folded theories of Refs. [8,17,18,36,56],
the folded bifurcation curve can be remarked as L =
{(V1, f, x) ∈ SS, det (Js) = z1V1g2 f − z1 f g2V1 = 0},
where

Js =
(
z1V1 z1 f
g2V1 g2 f

)

(15)

Exactly as Fig. 8a shows, colored critical mani-
fold is the plane SS which meets the equation SS =
{(V1, f, x), z1(V1, f, x) = g2(V1, f ) = 0}. As we
see below, singular periodic orbit � is captured by
Eqs. (13) and (14), projected onto (V1, f, x) space for
gK = 46µS/cm2, Isti = 0 and all other parameters set
to their standard values. Generally, there are two fold
curves L± on the critical manifold SS. As for the crit-
ical manifold, its upper branch (colored) and the lower
branch (dark blue) are the attracting branches, noted

as SS+
a and SS−

a , respectively. Otherwise, the mid-
dle (light blue) branch is the repelled branch, which is
remarked as SSr . Figure 8b is the time series of mixed-
mode oscillations correspond to the trajectory of (a) for
the system (11).

Generically, the 2D reducedproblem is a differential-
algebraic system, which is constrained to some surface
to elaborate the dynamical properties along that sur-
face. Given that the layer problem, the paper describes
the projection of the reduced problem as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−z1V1
dV1
dt2

= z1 f g2 + z1xh2 = z1xh2 = F̂1

−g2 f
d f

dt2
= g2V1g2 + g2xh2 = g2xh2 = F̂2

dx

dt2
= h2(V1, x)

(16)

In this article, we have analyzed the critical manifold
by reducing the coordinate charts and proposed the pro-
jection of the reduced system on the (V1, x) plane [40]
as follows:⎧
⎪⎨

⎪⎩

det (J )
dV1
dt2

= −g2 f (z1 f g2 + z1xh2)

dx

dt2
= h2(V1, x)

(17)

Furthermore, by rescaling the time(t2 = det (J )τ1), the
singular system for Eq. (17) is turned into the following
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de-singularized system:
⎧
⎪⎨

⎪⎩

dV1
dτ2

= −g2 f (z1 f g2 + z1xh2) � F(V1, x)

dx

dτ2
= det (J )h2(V1, x)

(18)

In what follows, if det (J ) < 0, time rescaling over-
turns the direction of trajectories; therefore, the de-
singularized system for Eq. (18) owns two kinds of
singularities: one is ordinary and the other is folded.
Mathematically, ordinary singularities are expressed
as E := {(V1, f, x) ∈ SS : g2 = x2 = 0}, how-
ever, M = {(V1, f, x) ∈ L , F = 0} stands for folded
singularities. Since dV1/dτ2 is finite at folded singu-
larities, the trajectory will pass through the folded lines
within a certain period of time. In general, these spe-
cial solutions with the layer problem and reduced prob-
lem, called singular canards, whichmay cause complex
dynamics phenomena with small perturbations, as well
as can be favorable for interpreting those behaviors for
the neuron systems.

5.2 One-slow-two-fast analysis of the whole system

More generally, in view of fast and slowdynamics tech-
nique [43,44], variable x was regarded as the slow
variable in the system for Eq. (1) when Isti = 0.
Subsequently, through drawing equilibrium curves,
we get the Z -shaped equilibria curve of fast sub-
system, as well as perform phase diagrams on the
(x, v) plane by the MATCONT and MATLAB soft-
wares. When gK = 0.043µS/cm2, there are three
limit points LPi (i = 1, 2, 3), one Hopf point H ,
one neutral saddle NS and one branch point BP
in the equilibrium curve of the slow–fast system for
Eq. (1), as Fig.9a shown. Furthermore, at point H
(when x0 = 0.751503), the equilibrium of the sys-
tem for Eq. (1) is (V0, f0) = (−26.803114, 0.688059),
and the corresponding eigenvalues of the Jacobian
matrix A are λ1,2 = ±0.0249633i . The first Lya-
punov coefficient is 4.219167 · 10−4 at the H point.
Since that the first Lyapunov coefficient is positive,
H is a subcritical Hopf bifurcation point, in other
words, it generates the unstable limit cycle. At point
LP1, when x = 0, the equilibrium of Eq. (1) is
(V0, f0) = (108.224248, 0) by which the correspond-
ing eigenvalues of the Jacobian matrix A are λ1 =
0 and λ2 = −0.0125; normal form constant a =
−5.078556 · 10−10. Therefore, there is a saddle-node

bifurcation so that LP1 is examined. At point LP2,
when x = 0.796621, the equilibrium of Eq. (1) is
(V0, f0) = (−30.749875, 0.777297) bywhich the cor-
responding eigenvalues of the Jacobian matrix A are
λ1 = 0 and λ2 = 0.0311872; normal form constant
a = −2.608390 · 10−3. Hence, LP2 is tested. At point
LP3, when x = 0.032326, the equilibrium of Eq. (1)
is (V0, f0) = (−73.503466, 0.998017) by which the
corresponding eigenvalues of the Jacobianmatrix A are
λ1 = 0 and λ2 = −0.0124979; normal form constant
a = −1.064856·10−4. Consequently, LP3 is assessed.
At point NS, when x = 0.116851, the equilibrium
of Eq. (1) is (V0, f0) = (−56.590151, 0.986001),
and the corresponding eigenvalues of the Jacobian
matrix A are λ1 = −0.0124039 and λ2 = 0.0124039.
Simultaneously, there is a neutral saddle bifurcation.
Accordingly, NS is tested. At point BP , when x =
0.011126, the equilibrium of Eq. (1) is (V0, f0) =
(−80.000000, 0.933284), and the corresponding eigen-
values of the Jacobian matrix A are λ1 = 0 and
λ2 = −0.0124996. Similarly, there is a branch point.
Accordingly, BP is examined.

When gK = 0.046µS/cm2, there are three limit
points LPi (i = 1, 2, 3), one Hopf point H and one
neutral saddle NS in the equilibrium curve of the
slow–fast system for Eq. (1) as Fig. 9b shown. Fur-
thermore, at point H (when x0 = 0.702492), the
equilibrium of the system for Eq. (1) is (V0, f0) =
(−26.803114, 0.688059), and the corresponding eigen-
values of the Jacobianmatrix A areλ1,2 = ±0.0249633i .
The first Lyapunov coefficient is 4.219167 · 10−4 at
the H point. Since that the first Lyapunov coefficient
is positive, H is a subcritical Hopf bifurcation point,
in other words, it generates the unstable limit cycle.
At point LP1, when x = 0, the equilibrium of Eq.
(1) is (V0, f0) = (108.224247, 0) by which the cor-
responding eigenvalues of the Jacobian matrix A are
λ1 = 0 and λ2 = −0.0125; normal form constant
a = 5.078556 · 10−10. Therefore, there is a saddle-
node bifurcation so that LP1 is examined. At point
LP2, when x = 0.744668, the equilibrium of Eq. (1) is
(V0, f0) = (−30.749875, 0.777297) bywhich the cor-
responding eigenvalues of the Jacobian matrix A are
λ1 = 0 and λ2 = 0.0311872; normal form constant
a = 2.608390 · 10−3. Hence, LP2 is tested. At point
LP3, when x = 0.030217, the equilibrium of Eq. (1)
is (V0, f0) = (−73.503475, 0.998017) by which the
corresponding eigenvalues of the Jacobianmatrix A are
λ1 = 0 and λ2 = −0.0124979; normal form constant
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Fig. 9 The bifurcation diagram of x as the single bifurca-
tion parameter in the (x , V )-plane with slow–fast dynamics
analysis technique for the one-slow-two-fast system. The blue
inverted Z -shaped curve is the equilibria curve of x as the one-
parameter for the slow–fast system. The brown lines represent
the maximum and minimum membrane potential value V of

limit cycles. The labels represent the following bifurcations:
H (Hopf point), LPi (i = 1, 2, 3)(saddle-node), BP(branch
point), NS(neutral saddle). a When gK = 0.043µS/cm2. b
When gK = 0.046µS/cm2. For the detailed data, please refer
to Tables 2 and 3. (Color figure online)

Table 2 Data related to the special bifurcation points with the single parameter x for the one-slow-two-fast system when gK =
0.043µS/cm2

Points Parameter x Eigenvalues λ1, λ2, λ3 Normal form parameter

H 0.51503 λ1,2 = ±0.0249633i l1 = 4.219167 · 10−4,

LP1 0 λ1 = −0.00912441, λ2 = −0.0125 a = −5.078556 ·10−10

LP2 0.796621 λ1 = 0, λ2 = 0.0311872 a = −2.608390 ·10−3

LP3 0.032326 λ1 = 0, λ2 = −0.0124979 a = −1.064856 ·10−4

NS 0.116851 λ1,2 = ±0.0124039 –

BP 0.011126 λ1 = 0, λ2 = −0.0124996 –

Abbreviations in this table represent the following points: H (subcritical-Hopf), LPi (i = 1, 2, 3) (saddle-node), NS (neutral saddle),
BP (branch point)

a = 1.064855 · 10−4. Consequently, LP3 is assessed.
At point NS, when x = 0.109230, the equilibrium of
Eq. (1) is (V0, f0) = (−56.590151, 0.986001), and
the corresponding eigenvalues of the Jacobian matrix
A are λ1 = −0.0124039 and λ2 = 0.0124039. Simul-
taneously, there is a neutral saddle bifurcation. Accord-
ingly, NS is tested. For the detailed data, the readers
can refer to Tables 2 and 3.

6 Codimension-one bifurcation analysis of the
whole system

In this part, the article chooses the maximal conduc-
tance of potassium channel variable gK as a single

bifurcation parameter by which there is a “C-shaped”
bifurcation diagramon the (gK , V )-plane of the system
for Eq. (1) when Isti = 0, as shown in Fig. 10, which
is the bifurcation diagram of gK as the single bifurca-
tion parameter in the (gK , V )-plane; the diagram in the
top right corner is a magnified view of the diagram. In
Fig. 10, the blue invertedC-shaped curve is the equilib-
ria curve of gK as the one-parameter; the upper branch
of the C-shaped curve is saddle-node. Meanwhile, the
blue branch curve family is the folded cycle bifurca-
tion generated near the Hopf point H1 when we select
ECa and gK as the two-parameter. The labels repre-
sent the following bifurcations: H1(subcritical-Hopf),
H2(supercritical-Hopf), LP(saddle-node), LPC(fold
cycle), NSi (i = 1, 2)(neutral saddle). Note that, a
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Table 3 Data related to the special bifurcation points with the single parameter x for the one-slow-two-fast system when gK =
0.046µS/cm2

Points Parameter x Eigenvalues λ1, λ2, λ3 Normal form parameter

H 0.702492 λ1,2 = ±0.0249633i l1 = 4.219167 · 10−4,

LP1 0 λ1 = 0, λ2 = −0.0125 a = 5.078556 ·10−10

LP2 0.744668 λ1 = 0, λ2 = 0.0311872 a = 2.608390 ·10−3

LP3 0.030217 λ1 = 0, λ2 = −0.0124979 a = 1.064855 ·10−4

NS 0.109230 λ1,2 = ±0.0124039 –

Abbreviations of this table stand for the following points: H (subcritical-Hopf), LPi (i = 1, 2, 3) (saddle-node), NS (neutral saddle)

saddle-node bifurcation point (LP) appear at gK = 0
on the (gK , V )-plane. Particularly, two Hopf bifurca-
tion points (H1 and H2) occur on the upper branch of
the C-shaped bifurcation curve at gK = 0.034428 and
gK = 0.155983, respectively. In addition, there are
two neutral saddle bifurcation points (NS1 and NS2)
at gK = 0.038482 and gK = 0.058819, respectively.
The brown dotted lines represent the maximum mem-
brane potential value Vmax and minimum value Vmin

of the limit cycle. In the following, we know, in Fig.
10, the number of equilibrium points for Eq. (1) varies
with parameter gK changes. Particularly, the stable
equilibrium point goes through the Hopf bifurcation
point; then gets instable and subsequently generates an
unstable or stable limit cycle. Yet, we also present the
dynamic properties of the codimension-one points LP ,
NS1, NS2, H1, and H2, which could determine the fir-
ing patterns of the model. (As for data related to the
special bifurcation points with one-parameter, please
refer to Table 4.)

Specifically, a case of Hopf bifurcation H1 is pre-
sented in Fig. 10 (when gK = 0.034428). In general,
the Hopf bifurcation is supercritical (or subcritical),
which is settled by the first Lyapunov coefficient is
negative (or positive) [57,58]. The first step, the paper
rewrites the system for Eq. (1) as
⎧
⎨

⎩

V̇ = F1(V, f, x),
ḟ = F2(V, f ),
ẋ = F3(V, x)

(19)

where
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1 = 1

C
[−gCad∞(V ) f (V − ECa) − gK x(V − EK ) + Isti],

F2 = f∞(V )− f
τ f

,

F3 = x∞(V )−x
τx

(20)

where d∞(V ), f∞(V ), x∞(V ), τ f and τx are detailed
in Table 1.

Additionally, the Jacobian matrix can be denoted as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂F1
∂V

∂F1
∂ f

∂F1
∂x

∂F2
∂V

∂F2
∂ f

∂F2
∂x

∂F3
∂V

∂F3
∂ f

∂F3
∂x

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where

∂F1
∂V

= −0.4006410258e − 2 f (V − 100)

e(−.1602564103V−5.608974360)/(1 + e(−.1602564103V−5.608974360))2

−0.025 f/(1 + e(−0.1602564103V−5.608974360)) − 0.046x,

∂F1
∂ f

= −(0.025(V − 100))/(1 + e(−0.1602564103V−5.608974360)),

∂F1
∂x

= −0.046V − 3.680,

∂F2
∂V

= −0.001453488372

e(0.1162790698V+2.325581396)/(1 + e(0.1162790698V+2.325581396))2,

∂F2
∂ f

= −1/80,

∂F2
∂x

= 0,

∂F3
∂V

= (1/1500)e(−(1/5)V−8)/(1 + e(−(1/5)V−8))2,

∂F3
∂ f

= 0,

∂F3
∂x

= −1/300,

Ulteriorly, the paper calculates the equilibrium of the
system forEq. (1) at point H1 (when gK = 0.034428) is
(V0, f0,x0) = (−28.8964760.7377820.902093).Mean-
while, the correspondingmatrix via taking into the spe-
cific values at that point H1 is

A|H1 =
⎛

⎝
0.02076226414 2.341845250 −2.350762104

−0.2811912152 · 10−3 −1/80 0
0.00005888056529 0 −1/300

⎞

⎠ ,

which has one pair of conjugate eigenvalues λ and λ̄,
where λ = iw, w = 0.02321742.
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Fig. 10 The bifurcation diagram of gK as the single bifurca-
tion parameter in the (gK , V )-plane; the diagram in the top right
corner is a magnified view of the diagram. The blue inverted C-
shaped curve is the equilibria curve of gK as the one-parameter.
The upper branch of the C-shaped curve is saddle-node. And the
middle branch are composed of Hopf point H1 and neutral sad-
dle points NS1, NS2. The lower branch of the C-shaped curve
processes a Hopf point H2. The blue branch curve family is the

folded cycle bifurcation generated near the Hopf point H1 when
we select ECa and gK as the two-parameter. The brown dotted
lines represent the maximum and minimum membrane poten-
tial value V of limit cycles. The labels represent the following
bifurcations: H1 (subcritical-Hopf), H2 (supercritical-Hopf), LP
(saddle-node), LPC (fold cycle), NSi (i = 1, 2) (neutral saddle).
(Color figure online)

Table 4 Data related to the special bifurcation points with one-parameter gK

Points Parameter gK Eigenvalues λ1, λ2, λ3 Normal form parameter

H1 0.034428 λ1,2 = ±0.02321742i , λ3 = 0.00540878 l1 = 1.070711 · 10−5,

NS1 0.038482 λ1 = −0.00912441, λ2 = 0.00625916, λ3 = 0.00912436 –

NS2 0.058819 λ1 = −0.0121895, λ2 = 0.00305819, λ3 = 0.0121895 –

LP 0.000000 λ1 = −0.0125, λ2 = −0.00333333, λ3 = 0 a = −1.836098 ·10−10

H2 0.155983 λ1,2 = ±0.0125564i , λ3 = −0.0055478 l1 = −1.791113 · 10−5

Typically, the Hopf bifurcation occurred at H1 point
as shown in Fig. 9. Mathematically, set

q =
⎛

⎝
0.99995072

−0.00583631 + 0.00766909i
0.00081884 − 0.00223607i

⎞

⎠ ,

p0 =
⎛

⎝
0.99995072

−0.00583631 − 0.00766909i
0.00081884 + 0.00223607i

⎞

⎠ ,

which satisfy that Aq = iwq, Ap0 = −iwp0, AT p =
−iwp. In order to render 〈p, q〉 = 1, there is

p =
⎛

⎝
−0.603956560697810 − 0.077737986299549i

−24.39227406 − 42.35565830i
12.80510500 + 56.46133930i

⎞

⎠ ,

Specially note that, 〈p, q〉 = p̄1q1 + p̄2q2 + p̄3q3 is
the standard scalar product in C3.
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To begin with the computation of first Lyapunov
coefficient, the equilibrium of the original system is
firstly moved to the origin of coordinate by taking the
following transformation
⎧
⎨

⎩

V = ξ1 + V0,
f = ξ2 + f0,
x = ξ3 + x0.

(21)

where (V0, f0, x0) = (−28.896476, 0.737782,
0.902093).
Through this transformation, system for Eq. (19)
changes into
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dξ1
dt

= 1

C
[−gCad∞(ξ1 + V0)(ξ2 + f0)(ξ1 + V0 − ECa)

−gK (ξ3 + x0)(ξ1 + V0 − EK ) + Isti]
dξ2
dt

= f∞(ξ1 + V0) − (ξ2 + f0)

τ f
dξ3
dt

= x∞(ξ1 + V0) − (ξ3 + x0)

τx

(22)

This system (19) can also be expressed as

ẋ = Ax + F(x), x ∈ R3, (23)

where A = A|H1 , F(x) = 1

2
B(x, x) + 1

6
C(x, x, x) +

O(‖x‖4), B(x, y) and C(x, y, z) are both symmet-
ric and multilinear vector functions by which we
pick up the planar vectors x = (x1, x2, x3)T , y =
(y1, y2, y3)T , z = (z1, z2, z3)T . Mathematically, there
are

Bi (x, y) =
3∑

j,k=1

∂2Fi (ξ)

∂ξ j∂ξk

∣
∣
∣
∣
∣
∣
ξ=0

x j yk , i = 1, 2, 3 (24)

Ci (x, y, z) =
3∑

j,k,l=1

∂3Fi (ξ)

∂ξ j∂ξk∂ξl

∣
∣
∣
∣
∣
∣
ξ=0

x j yk zl , i = 1, 2, 3 (25)

where ξ = (ξ1, ξ2, ξ3)
T .

Therefore, we give

B(x, y) =
⎛

⎝
−0.00667259x1y1 + 0.08438610(x1y2 + x2y1) − 0.046(x1y3 + x3y1)

−0.1554937366 · 10−4x1y1
−0.9470196136 · 10−5x1y1

⎞

⎠ ,

C(x, y, z) =
⎛

⎝
−0.244225714 · 10−3x1y1z1 − 0.9044115820 · 10−2(x1y1z2 + x1y2z1 + x2y1z1)

6.11189169 · 10−7x1y1z1
0.1107131062 · 10−5x1y1z1

⎞

⎠ .

The first Lyapunov coefficient is a classical index to
distinguish the stability of the Hopf equilibrium, which
is first applicable to the low dimensional system such

as two-dimensional system. Nevertheless, for high-
dimensional systems, the paper gives another expres-
sion as follows [58]:

l1(0) = 1

2w
Re{〈p,C(q, q, q̄)〉 − 2〈p, B(q, A−1B(q, q̄))〉

+ 〈p, B(q̄, (2iwE − A)−1B(q, q))〉}
= 0.004077298001 > 0.

Thedetailed calculationprocess is given in “Appendix”.
Consequently, H1 is a subcritical Hopf bifurcation
point, that is to say, there is the unstable limit cycle.

Similarly, at point H2 (when gK = 0.155983),
the equilibriumof the system forEq. (19) is (V0, f0, x0)
= (−58.433516, 0.988671, 0.024442), and the
corresponding eigenvalues of the Jacobian matrix A
are λ1,2 = ±0.0125564i and λ3 = −0.0055478. The
first Lyapunov coefficient is −1.791113 · 10−5 at the
H2 point. Due to the first Lyapunov coefficient is neg-
ative, H2 is a supercritical Hopf bifurcation point, in
other words, so that there is a stable limit cycle near
H2 point. When gK = 0, the equilibrium of Eq. (19) is
(108.224236, 0.000000, 1.000000) by which the cor-
responding eigenvalues of the Jacobian matrix A are
λ1 = −0.0125, λ2 = −0.00333333, and λ3 = 0.
That is, there is a saddle-node bifurcation. Therefore,
LP is tested. When gK = 0.038482, the equilibrium
of Eq. (23) is (−33.025351, 0.819738, 0.801378), and
the corresponding eigenvalues of the Jacobianmatrix A
are λ1 = −0.00912441, λ2 = 0.00625916, and λ3 =
0.00912436. Suitably, there is a neutral saddle bifur-
cation. Appropriately, NS1 is assessed. When gK =
0.058819, the equilibrium of Eq. (19) is (−45.803999,
0.952595, 0.238522), and the corresponding eigenval-
ues of the Jacobian matrix A are λ1 = −0.0121895,
λ2 = 0.00305819, and λ3 = 0.0121895. Applicably,
there is a neutral saddle bifurcation. Hence, NS2 is
examined.
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7 Conclusions

This article conducted the studies of MMOs with a
conductance-based three-dimensional cardiacmodel, a
reduction of the Luo–Rudy model, whose biophysical
description is similar to Hodgkin–Huxley formalism
models. More generally, we compare manifold struc-
tures of the standard and dimensionless systems with
square wave pulses, accompanied by setting the pac-
ing cycle length to characterize the stimulus current
such as frequency and duration. Whether the model is
dimensionless or not, was a very useful diagnostic in
distinguishing between canard- or bifurcation-induced
MMOs since S-shaped critical manifold only appears
in the slow–fast system via a series of time-scale trans-
formations. Afterwards, the paper also focused on the
3D dimensionless cardiac model appears a great many
of dynamical properties such as the consequence of
carnard dynamics in the vicinity of a folded saddle, a
result further elaborated through the geometric analy-
sis.

The central aim of this work is to better understand
the relationship between the mechanism of MMOs
and the studies on canards. Qualitatively, the theory of
GSPT was then suggested to formally decompose the
3D system into slow and fast subsystems, which advo-
cated the theoretical framework necessary to under-
stand the MMOs generating mechanisms. The exis-
tence of the 1s-type MMOs that we study here, in the
3Dmodel, was proved in three steps; that is, firstly, one
of the key observations was that the critical manifold
S := (v, f, x) ∈ S0 : f ∈ [0, 1] of the dimensionless
system for Eq. (3) is a cubic-shaped folded surface.
Secondly, the system for Eq. (3) possesses a folded
singular saddle P0 as well as the two eigenvalues of
the Jacobian matrix restricted to S at P0 have oppos-
itive signs. Thirdly, using computational techniques
and dynamical systems ideas, we hypothesizes that if
f ∈ (0, 1.346209434), the system restricted to S pos-
sesses a singular periodic orbit that consists of a section
along the critical manifold S within the singular fun-
nel area of the folded saddle P0 as an endpoint. Except
that the above confirmation of 1s-type MMOs, as for
folded saddle P0, the two singular canards will perturb
to maximal canards.

One exceedingly valuable technique, called the
“slow–fast dynamics analysis”, can be more explicit
about the further understanding of multiple timescale
structures heuristically. Previous theoretical work has

focused on various aspects of approaches divides the
3D system into two-slow-one-fast or one-slow-two-fast
system. In this article, creatively, we first regard the 3D
model as two “slow” variables and one “fast” variable,
as well as the layer problem and the reduced problem
are considered, to demonstrate the trajectory process
along the critical manifold. The theory of folded sin-
gularities has been applied to slow–fast system so that
we show that critical manifold SS and singular periodic
orbit� for Eqs. (13) and (14), shadowed onto (V1, f, x)
space for gK = 46µS/cm2, Isti = 0; simultaneously,
the time series of MMOs correspond to the trajectory
for the system (11) were offered. Importantly, these
solutions of the layer and reduced problem, named as
singular canards, which could be beneficial to explain
complex dynamics behaviors with small perturbations
for the neuron systems. Otherwise, in this paper, vari-
able x was regarded as the slow variable in the one-
slow-two-fast system for Eq. (1). Subsequently, we
not only draw equilibrium curves, but also compare
these “Z ′′-shaped curves of fast subsystem, as well as
phase diagrams on the (x, v) plane were performed
when gK = 0.043µS/cm2 and gK = 0.046µS/cm2,
respectively. Consequently, there are substantial bifur-
cation properties of the slow–fast system.

Another way to explore dynamic behaviors of neu-
ron models is to conduct the bifurcation analysis with
respect to some parameter. In this work, we discuss
general one-parameter bifurcation by which the maxi-
mal conductance of potassium channel variable gK was
chosen as a single parameter. Except for the equilibrium
curves, the folded cycle bifurcation was generated near
the Hopf point H1 when we select ECa and gK as the
two-parameter. Extraordinarily, a saddle-node bifurca-
tion point LP appears at gK = 0 on the (gK , V )-plane.
Moreover, two Hopf points H1 and H2 occur on the
upper branches of the “C ′′-shaped bifurcation curve
when gK = 0.034428 and gK = 0.155983, respec-
tively. Additionally, there are two neutral saddle points
NS1 and NS2 at gK = 0.038482 and gK = 0.058819,
respectively. Yet, we provide a detailed discussion of
Hopf point H1 as an example. Another important com-
ponent of this work is the calculations of first Lyapunov
coefficient at theHopf points,which decidewhether the
bifurcation is supercritical or subcritical and the stabil-
ity of the limit cycle.

Ultimately, the main goal of demonstrating the
above observations motivated our study of the 3D car-
diac model. An explanation based on the GSPT the-
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ories, which support the theoretical framework nec-
essarily to understand the mechanism of MMOs, has
been suggested by various scholars. Roughly speaking,
bifurcation analysis and “slow–fast” dynamics analy-
sis revealed ion parameters such as the conductance of
the potassium ion are considerably sensitive to dynam-
ical behaviors. Conclusively, the studies on canard and
bifurcation induced-MMOs are extremely vital for fur-
ther explaining the complicated dynamic phenomena
for the cardiac cell, as well as the mechanisms are cre-
ated to provide evidence for the signal transmission of
the biophysical systems and the study of heart function.

Acknowledgements The authors acknowledges all reviewers
for giving us valuable advice for the paper.We are all grateful that
the support of the National Natural Science Foundation of China.

Funding This work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 11872183.

Compliance with ethical standards

Conflict of interest The authors declare that there is no conflict
of interest regarding the publication of the paper.

Appendix

The first step, the paper rewrites the system for Eq. (1)
as
⎧
⎨

⎩

V̇ = F1(V, f, x),
ḟ = F2(V, f ),
ẋ = F3(V, x)

(26)

where
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F1 = 1

C
[−gCad∞(V ) f (V − ECa)

−gK x(V − EK ) + Isti],
F2 = f∞(V )− f

τ f
,

F3 = x∞(V )−x
τx

(27)

where d∞(V ), f∞(V ), x∞(V ), τ f and τx are detailed
in Table 1.

Additionally, the Jacobian matrix can be denoted as

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂F1
∂V

∂F1
∂ f

∂F1
∂x

∂F2
∂V

∂F2
∂ f

∂F2
∂x

∂F3
∂V

∂F3
∂ f

∂F3
∂x

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where
∂F1
∂V

= −0.4006410258e − 2 f (V − 100)

e(−.1602564103V−5.608974360)/(1 + e(−.1602564103V−5.608974360))2

−0.025 f/(1 + e(−0.1602564103V−5.608974360)) − 0.046x,

∂F1
∂ f

= −(0.025(V − 100))/(1 + e(−0.1602564103V−5.608974360)),

∂F1
∂x

= −0.046V − 3.680,

∂F2
∂V

= −0.001453488372

×e(0.1162790698V+2.325581396)/(1 + e(0.1162790698V+2.325581396))2,

∂F2
∂ f

= −1/80,

∂F2
∂x

= 0,

∂F3
∂V

= (1/1500)

e(−(1/5)V−8)/(1 + e(−(1/5)V−8))2,

∂F3
∂ f

= 0,

∂F3
∂x

= −1/300,

Ulteriorly, the paper calculates the equilibrium of the
system for Eq. (1) at point H1 (when gK = 0.034428)
is (V0, f0, x0) = (−28.8964760.7377820.902093).
Meanwhile, the corresponding matrix via taking into
the specific values at that point H1 is

A|H1 =
⎛

⎝
0.02076226414 2.341845250 −2.350762104

−0.2811912152 · 10−3 −1/80 0
0.00005888056529 0 −1/300

⎞

⎠ ,

which has one pair of conjugate eigenvalues λ and λ̄,
where λ = iw, w = 0.02321742.

Typically, the Hopf bifurcation occurred at H1 point
as shown in Fig. 9. Mathematically, set

q =
⎛

⎝
0.99995072

−0.00583631 + 0.00766909i
0.00081884 − 0.00223607i

⎞

⎠ ,

p0 =
⎛

⎝
0.99995072

−0.00583631 − 0.00766909i
0.00081884 + 0.00223607i

⎞

⎠ ,

which satisfy that Aq = iwq, Ap0 = −iwp0, AT p′ =
−iwp′,
After calculating, we obtain the following

p′ =
⎛

⎝
0.00276352 − 0.00754651i
0.61635485 − 0.19031157i

−0.76408352

⎞

⎠ ,

In order to render 〈p, q〉 = 1, there is

p =
⎛

⎝
−0.603956560697810 − 0.077737986299549i

−24.39227406 − 42.35565830i
12.80510500 + 56.46133930i

⎞

⎠ ,
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Specially note that, 〈p, q〉 = p̄1q1 + p̄2q2 + p̄3q3 is
the standard scalar product in C3.

To begin with the computation of first Lyapunov
coefficient, the equilibrium of the original system is
firstly moved to the origin of coordinate by taking the
following transformation
⎧
⎨

⎩

V = ξ1 + V0,
f = ξ2 + f0,
x = ξ3 + x0.

(28)

where (V0, f0, x0) = (−28.896476, 0.737782, 0.902093).
Through this transformation, system for Eq. (19)
changes into

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dξ1
dt

= 1

C
[−gCad∞(ξ1 + V0)(ξ2 + f0)(ξ1 + V0 − ECa)

−gK (ξ3 + x0)(ξ1 + V0 − EK ) + Isti]
dξ2
dt

= f∞(ξ1 + V0) − (ξ2 + f0)

τ f
dξ3
dt

= x∞(ξ1 + V0) − (ξ3 + x0)

τx

(29)

This system (19) can also be expressed as

ẋ = Ax + F(x), x ∈ R3, (30)

where A = A|H1 , F(x) = 1

2
B(x, x) + 1

6
C(x, x, x) +

O(‖x‖4), B(x, y) and C(x, y, z) are both symmet-

ric and multilinear vector functions by which we
pick up the planar vectors x = (x1, x2, x3)T , y =
(y1, y2, y3)T , z = (z1, z2, z3)T . Mathematically, there
are

Bi (x, y) =
3∑

j,k=1

∂2Fi (ξ)

∂ξ j ∂ξk

∣
∣
∣
∣
∣
∣
ξ=0

x j yk , i = 1, 2, 3 (31)

Ci (x, y, z) =
3∑

j,k,l=1

∂3Fi (ξ)

∂ξ j ∂ξk∂ξl

∣
∣
∣
∣
∣
∣
ξ=0

x j yk zl , i = 1, 2, 3

(32)

where ξ = (ξ1, ξ2, ξ3)
T .

It is not hard to calculate

B1(x, y) = −0.00667259x1y1 + 0.08438610x1y2

−0.046x1y3 + 0.08438610x2y1 − 0.046x3y1

B2(x, y) = −0.1554937366 · 10−4x1y1,

B3(x, y) = −0.9470196136 · 10−5x1y1

C1(x, y, z) = −0.244225714 · 10−3x1y1z1

−0.9044115820 · 10−2x1y1z2

−0.9044115820 · 10−2x1y2z1

−0.9044115820 · 10−2x2y1z1,

C2(x, y, z) = 6.11189169 · 10−7x1y1z1,

C3(x, y, z) = 0.1107131062 · 10−5x1y1z1

Moreover, if we take ξ = (ξ1, ξ2, ξ3)
T = 0, there are

B(x, y) =
⎛

⎝
−0.00667259x1y1 + 0.08438610(x1y2 + x2y1) − 0.046(x1y3 + x3y1)

−0.1554937366 · 10−4x1y1
−0.9470196136 · 10−5x1y1

⎞

⎠ ,

C(x, y, z) =
⎛

⎝
−0.244225714 · 10−3x1y1z1 − 0.9044115820 · 10−2(x1y1z2 + x1y2z1 + x2y1z1)

6.11189169 · 10−7x1y1z1
0.1107131062 · 10−5x1y1z1

⎞

⎠ .
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Accordingly, we calculate

C(q, q, q̄) =
⎛

⎝
−8.585248088515901 · 10−5 − 6.935329019316943 · 10−5i

6.110988241 · 10−7

1.106967408 · 10−6

⎞

⎠ .

〈p,C(q, q, q̄)〉 = 5.651129809645031 · 10−5 − 1.404993804116788 · 10−6i

B(q, q̄) =
⎛

⎝
−0.007732216224

−0.1554784130 · 10−4

−0.9469262867 · 10−5

⎞

⎠ .

A−1B(q, q̄) =
⎛

⎝
0.054016025185156
0.000028720763033
0.003794927089386

⎞

⎠ .

B(q, A−1B(q, q̄))

=
⎛

⎝
−0.5611810173 · 10−3 + 0.4051328738 · 10−4i

−8.398739722 · 10−7

−5.118340071 · 10−7

⎞

⎠ .

〈p, B(q, A−1B(q, q̄))〉 = 3.497118837 · 10−4 −
7.476792938 · 10−5i

B(q, q)

=
⎛

⎝
−0.7732216224 · 10−2 + 0.1499973052 · 10−2i

−0.1554784130 · 10−4

−0.9469262867 · 10−5

⎞

⎠ .

(2iwE − A)−1B(q, q)

=
⎛

⎝
0.155538578616271 + 0.173649101485302i

−0.001300959741788 + 0.000926500924901i
0.000218584210219 + 0.000022390027940i

⎞

⎠ .

B(q̄, (2iwE − A)−1B(q, q))

=
⎛

⎝
−0.001109846259466 − 0.001290202538074i
−0.2418408304 · 10−5 − 0.2700001715 · 10−5i
−0.1472908265 · 10−5 − 0.1644410017 · 10−5i

⎞

⎠ .

〈p, B(q̄, (2iwE − A)−1B(q, q))〉 = 8.3224116828 ·
10−4 + 7.1848051062 · 10−4i .
The first Lyapunov coefficient is a classical index to
distinguish the stability of the Hopf equilibrium, which
is first applicable to the low dimensional system such
as two-dimensional system. Nevertheless, for high-
dimensional systems, the paper gives another expres-
sion as follows [58]:

l1(0) = 1

2w
Re{〈p,C(q, q, q̄)〉 − 2〈p, B(q, A−1B(q, q̄))〉

+ 〈p, B(q̄, (2iwE − A)−1B(q, q))〉}
= 0.004077298001 > 0.
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