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Abstract MicroRNAs are able to modulate gene
expression at the posttranscriptional level and play an
essential role in various biological processes. In this
paper, we establish a general model of an miRNA-
mediated gene regulatory network motif with extracel-
lular stimulus. Dynamical properties of the regulatory
motif without stimulus focus on diverse codimension-1
and codimension-2 bifurcation analyses of two impor-
tant feedback strengths as the parameters. Under vary-
ing levels of stimulus, we further consider stochastic
dynamics controlled by crucial behaviors of monos-
tability, bistability, excitability and oscillation in four
typical regions on different two-parameter bifurcation
diagrams. Furthermore, we apply potential landscapes
to characterize global dynamics and stability behind
physical properties of the stochastic behaviors. More
essentially, our model can qualitatively simulate exper-

L. Hao
School of Mathematics Science, Tianjin Normal
University, Tianjin 300387, China

Z. Yang (B)
School of Mathematics and Systems Science and LMIB,
Beihang University, Beijing 100191, China
e-mail: yangzhuoqin@buaa.edu.cn

Y. Bi
School of Statistics and Mathematics, Inner Mongolia
University of Finance and Economics, Hohhot 010070,
China

Y. Bi
InnerMongoliaKeyLaboratory for EconomicDataAnalysis and
Mining, Hohhot 010070, China

imental findings of long-term memory formation in
Aplysia.

Keywords microRNA · gene regulatory network ·
bifurcation · potential landscape · long-term memory

1 Introduction

MicroRNAs (miRNAs) are small non-coding RNAs as
vital posttranscriptional regulators of gene expression
that may be able to mediate cleavage or translational
repression of their target mRNAs [1–6]. For the last
several years, the regulatory roles of miRNAs have
been studied both experimentally and theoretically,
which revealed that miRNAs may control diverse cel-
lular functions, including development, proliferation,
metabolism, apoptosis, immunity, and, more recently,
neuronal growth and plasticity [7–10]. Dysregulation
of miRNAs has been implicated in many diseases such
as Alzheimer’s disease [11], Parkinson’s disease [12]
andmany cancers [13]. However, the underlyingmech-
anismsof various functions ofmiRNAs throughbiolog-
ically meaningful networks integrating multiple genes
still need to be explored.

Many mathematical models have been developed to
investigate dynamics of microRNA-mediated motifs
[14–21]. Liu et al. [16] show that how the dynamics
of two minimal architectures is drastically affected by
two mechanisms of small non-coding RNAs partici-
pating in cellular processes, and a comparison is given
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to reveal the implication of the fundamental differ-
ences. Zhou et al. [18] provide a general computational
model for a two-node miRNA-mediated feedback loop
(MFL) in which a transcriptional factor (TF) regulates
an miRNA, and show that the MFL can behave either
as switches and as oscillators, depending on the TF as
a repressor or an activator. By using a combination of
deterministic and stochastic methods, Nitzan et al. [20]
present a theoretical and numerical study of coherent
mixed feedback loops of two genes, in which a tran-
scription factor and a small non-coding RNA mutually
regulate each other’s expression.

However, extracellular stimulus has not been con-
cerned in the above models, which may exist in
miRNA-regulated biological systems. For example,
miR-124 as a memory-related microRNA can regulate
long-term memory in Aplysia by binding to the tran-
scription factorCREB1 (cyclicAMP(cAMP)-response
element-binding protein) mRNA under the stimulation
of 5-HT [7,22]. In addition, 5-HT triggers downregu-
lation of microRNA-22 (miR-22) and thereby upreg-
ulates the expression of CPEB, which in turn reg-
ulates the presynaptic expression of atypical PKC,
another candidate regulator of memory maintenance
[23]. Long-term sensitization is due to long-term facil-
itation (LTF) of synaptic connections between sensory
neurons and motor neurons, which is induced by the
modulatory actions of the neurotransmitter 5-HT [24–
27]. Therefore, from the viewpoint of biological sig-
nificance, it is necessary to consider extracellular stim-
ulus in mathematical modeling of miRNA-regulated
systems.

Stochastic models can more accurately describe the
dynamics of gene regulatory systems due to inevitable
noise. The idea of potential landscapes has been intro-
duced to uncover the global biological principles of
protein dynamics, interactions, and gene networks
[28–33]. For a non-equilibrium open system, which
exchanges energies and information with the outside
environments, the potential landscape is able to reveal
insights into the global robustness and physical mech-
anisms of the non-equilibrium interactions [34–36].
Therefore, it is worthy of investigating the system
dynamics of a stochastic model through the potential
landscapes.

In this paper, we provide a mathematical model of
an miRNA-mediated network motif with extracellular
stimulus. We first characterize dynamical properties of
the regulatory motif without stimulus through bifurca-

Fig. 1 Schematic description of our model. Protein (P) is acti-
vated, while miRNA is repressed by stimulus (S). P activates the
miRNA gene and its own gene transcription. mRNA andmiRNA
are combined into a complex (C)

tion analysis, which indicates that varying the param-
eters in the model can produce various codimension-
1 and codimension-2 bifurcations. Then, determinis-
tic and stochastic dynamics in the system with chang-
ing stimulus reveal that the stochastic dynamics of the
system is consistent with the deterministic dynamics.
These dynamics of monostability, bistability, excitabil-
ity and oscillation are further examined by means of
the potential landscape. In addition, we show that the
model can qualitatively simulate several experimental
findings of long-term memory formation in Aplysia.

2 Model and method

2.1 Model development

We develop a networkmotif with extracellular stimula-
tion to describe the interplay of an miRNA, an mRNA
and a protein, as shown in Fig. 1. Protein (P), as a tran-
scriptional activator, activates miRNA gene (genemi)
but is negatively regulated by miRNA (grey), and P
would also activate expression of its own gene (geneP)
to form a positive feedback loop (blue). Furthermore,
we assume that an extracellular stimulus (S) can acti-
vate the P and downregulate the miRNA level. The
miRNA and the mRNA are combined into a complex
(C) with a rate of δ, which is assumed to be degraded
rather thandissociated into itsmiRNAandmRNAcom-
ponents.

We denote the concentrations of the stimulus, the
miRNA, the mRNA and the P as [S], [miRNA],
[mRNA] and [P], respectively. The extracellular stim-
ulus S is considered by defining linear functions
λ[S] [miRNA] in equation (1) for inhibition onmiRNA
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Table 1 Default parameter values of eqs. (1)–(3)

Parameter Value Parameter Value

[S] (μM) 0 λ (μM−1 min−1) 0.001

V1 (μM min−1) 7 V2 (μM min−1) 5

K1 (μM) 5 K2 (μM) 5

ks (min−1) 0.001 γ (min−1) 0.2

gm (μM min−1) 0.06 gi (μM min−1) 0.75

dp (min−1) 0.06 di (min−1) 0.02

dm (min−1) 0.02 δ (μM−1 min−1) 0.02

and ks[S] in equation (3) for protein activation under
the stimulation of S. The roles of the protein in gene
expression are represented by Hill type functions of
[P] with Hill coefficients of 2, in which transcription
of miRNA gene and its own gene can be described as
V1[P]2

[P]2+K1
2 and

V2[P]2
[P]2+K2

2 , respectively. V1 and V2 are feed-

back strengths betweenmiRNA andmRNA genes with
sufficient P, and K1 and K2 are two dissociation con-
stants of two complexes of P from promoter regions of
the miRNA and mRNA genes, respectively. gi and gm
illustrate basic transcription rates of the miRNA and
mRNA genes. Degradation rates of miRNA, mRNA,
and P are defined by di , dm and dp, respectively.

Here, we describe dynamics of the model using
rate eqs. (1)–(3). All parameters and their basal val-
ues are listed in Table 1. In the following numerical
simulations, bifurcation analyses are performed with
XPPAUT, and differential equations are solved using
the Runge–Kutta method [37].

d[miRNA]
dt

= gi + V1[P]2
[P]2 + K1

2 − δ[miRNA][mRNA]
−di [miRNA] − λ[S][miRNA], (1)

d[mRNA]
dt

= gm + V2[P]2
[P]2 + K2

2 − dm[mRNA]
−δ[miRNA][mRNA], (2)

d[P]
dt

= γ [mRNA] + ks[S] − dp[P]. (3)

2.2 Potential landscapes

Biologically, external stochasticfluctuations fromhighly
dynamical and inhomogeneous cellular environments
can be significant for dynamics. Therefore, it needs to
develop a probabilistic description to model the cor-
responding cellular process, which can be realized by

constructing a diffusion equation on the external fluc-
tuations for probability evolution [31,38,39].

The generalized potential is closely associated with
the steady-state probability of a non-equilibrium net-
work [31].Landscape ideas basedonaquasi-equilibrium
assumption with known potentials were introduced for
uncovering global principles in biology. For a non-
equilibrium open system, the global dynamics and sta-
bility are determined by the potential landscape, when
the landscape reflects directly the steady-state proba-
bility distribution by the weight of each state [30–35].

The dynamical equation of our model can be written
as Ẋ = F(X), where X = ([miRNA], [mRNA], [P]),
and F(X) represents the right-hand side of equa-
tions (1)-(3). Furthermore, our stochastic model due to
inevitable fluctuations canmore accurately extended as

Ẋ = F(X) + ζ, (4)

where ζ is often assumed as Gaussian white noise with
its mean and variance 〈ζ(t)〉 = 0 and 〈ζ(t)ζ(t ′)〉 =
2Dδ(t−t ′).D is the diffusion coefficient tensor (matrix)
measuring level of the noise.

According to the stochastic process, we can get the
probability of system state P(X, t), which evolves fol-
lowing the Fokker-Plank equation ∂P

∂t +∇·J(X, t) = 0,
where the flux vector J defined as J(X, t) = FP −D ·
∂

∂X P measures the speed of the flow in the concen-
tration space. If the system reaches the steady state,
∂P
∂t = 0 and ∇ · J(X, t) = 0. Namely, the divergence
of the probability flux Jmust vanish at the steady state.
Thereby, there are two possibilities: one is J = 0; that
is, the system satisfies the detailed balance condition,
the other is J �= 0; that is, the detailed balance condi-
tion is broken and the system stays at non-equilibrium
state.
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Fig. 2 Bifurcation diagram
in the (V1, V2) parameter
plane when [S] = 0 μM.
The red solid line, red
dashed line, blue dashed
line and magenta
dash-dotted line depict the
saddle-node bifurcation
points (SN), saddle-node
invariant circle bifurcation
points (SNIC), Hopf
bifurcation points (supH and
subH) and fold limit cycle
bifurcation points (LPC) (or
homoclinic bifurcation
points (HC)), respectively.
These loci delineate six
regions denoted by regions
I–VI. Two codimension-2
bifurcation points exist: a
cusp point (CP) and a
Bogdanov–Takens
bifurcation point (BT). The
rectangles in a indicate the
regions that are enlarged in
b and c
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Based on the definition, the probability flux at the
steady state can be given by

Jss = FPss − D · ∂

∂X
Pss, (5)

where Pss is the stationary state probability, and U =
− ln Pss is defined as the non-equilibrium potential
related with the stationary state probability.

3 Results

3.1 Dynamics of the regulatory motif without
stimulus

We first aim to reveal the regulatory mechanism for
the protein and the miRNA in our model by setting
[S] = 0 μM (see Fig. 1). Since the parameters V1
and V2 measure the feedback strength of miRNA acti-
vation by P and the strength of self-induced activa-
tion of the P, we focus on bifurcations in the system
by adjusting the values of these two parameters (see

Fig. 2). Five different types of codimension-1 bifur-
cation points are found, namely, saddle-node bifurca-
tion points (SN), saddle-node invariant circle bifurca-
tion points (SNIC), supercritical and subcritical Hopf
bifurcation points (supH and subH), fold limit cycle
bifurcation points (LPC) and homoclinic bifurcation
points (HC). Then, two-parameter bifurcation diagram
in the (V1, V2) plane is constructed by continuation of
the loci of these codimension-1 bifurcation points, as
shown in Fig. 2. The SN1 and SN2 bifurcation curves
(red solid line) coalesce at a codimension-2 cusp point
(CP), whereas they meet with the subH and the supH
bifurcation curves (blue dashed) at two codimension-2
Bogdanov–Takens bifurcation points (BT1 and BT2),
respectively. The upper section of the magenta dash-
dotted curve is composed of the LPC bifurcation point
that gives rise to the stable and the unstable limit cycle.
Instead, the HC bifurcation point is generated on the
lower section of the magenta dash-dotted curve, when
the only existing unstable limit cycle before encounter-
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Fig. 3 Phase diagrams
corresponding to the six
labeled regions in Fig. 2. a
(V1, V2) = (10, 0.5). b
(V1, V2) = (11.75, 7). c
(V1, V2) = (15, 7). d
(V1, V2) = (5, 4.1). e
(V1, V2) = (7.82, 5). f
V1, V2) = (8.5, 5). Stable
(unstable) steady states are
denoted by blue solid (green
open) circles and stable
(unstable) limit cycle by
blue solid (green dashed)
curves. Black curves
correspond to deterministic
trajectories of the system
with diverse initial values
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Fig. 4 Bifurcation diagrams of [P] versus V1 at six values of
V2 when [S] = 0 μM . Stable and unstable steady states are
represented by red solid lines and black dashed lines, respec-
tively. For the stable and unstable limit cycles, the maximum
and minimum values of [P] are denoted by blue solid circles and

green open circles, respectively. Bifurcation points aremarked as
SN, saddle-node bifurcation point; supH, supercritical bifurca-
tion point; subH, subcritical bifurcation point; HC, homoclinic
bifurcation point; LPC, fold limit cycle bifurcation point; and
SNIC, saddle-node invariant circle bifurcation point
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ing the LPC bifurcation curve collides with the saddle
between the SN1 and SN2 bifurcation curves.

The (V1, V2)-parameter plane is further divided into
six regions as I–VI by the curves of different bifurcation
types in Fig. 2. Six phase diagrams of dynamic solu-
tions for [P] and [miRNA] illustrated in Fig. 3 facil-
itate perceptual understanding of distinctive dynamic
behaviors of these six regions. Now, we attempt to clas-
sify all the regions by qualitative properties of the num-
ber of steady states decided by the SN1 and SN2 bifur-
cation curves as well as appearance and disappearance
of limit cycles.

Monostability in the region I is determined by a
lower stable steady state below the SN2 bifurcation
curve or a higher stable steady state above the SN1
bifurcation curve as shown in Fig. 3a. The higher sta-
ble steady state is surrounded by a stable limit cycle and
an unstable limit cycle in the region II (see Fig. 3b) via
the LPC bifurcation curve. Furthermore, the unstable
limit cycle disappears, but the stable limit cycle exists
as oscillation in region III (see Fig. 3c) via the subH
bifurcation curve. Otherwise, two steady states coex-
ist with a saddle in the regions IV, V and VI between
the SN1 and the SN2 bifurcation curves. The region
IV is characterized in bistability when these two stable
steady states coexistswith the saddle (see Fig. 3d).Nev-
ertheless, the higher stable steady state is surrounded
by an unstable limit cycle in the region V (see Fig. 3e).
As the parameters pass through the subH bifurcation
curve, the higher stable steady state loses stability and
becomes unstable in the region VI. All those makes the
system become excitable in the regions V and VI (see
Fig. 3f).

To better understand transition mechanisms of the
different regions in Fig. 2, we choose six values of V2
to display qualitatively different one-parameter bifur-
cation diagrams of [P] versus V1 as shown in Fig. 4.
For a small value of V2 as 0.5, the system invariably
lying in the region I in Fig. 2 has to keep monostable
(see Fig. 4a). As V2 is increased to 2 and even 4.1
(see Fig. 4b), the systemmakes change from bistability
to monostability with the increasing V1 via a saddle-
node bifurcation (SN2) on the SN2 bifurcation curve
in Fig. 2 (see Fig. 4b and c). Only difference of them
is that an unstable limit cycle generated by a subcriti-
cal Hopf bifurcation (subH) on the upper branch grows
gradually and then collides with a saddle at a homo-
clinic bifurcation (HC) point on the middle branch in
Fig. 4c. Bifurcation behaviors for V2 = 5 (see Fig.

4d) experience a transition from a high stable steady
state with monostability to three steady states via a
saddle-node bifurcation (SN1) and further to a low sta-
ble steady state with monostability via another saddle-
node bifurcation (SN2), accompanied with an unsta-
ble limit cycle via the bifurcations the same as that in
Fig. 4c. As V2 is fixed at 5.8 (see Fig. 4e) and 7 (see
Fig. 4f), stable limit cycles and unstable limit cycles
appear pairwise around only stable steady states via
fold limit cycle bifurcations (LPC). Furthermore, the
unstable limit cycles shrink as well as the stable steady
states loses stability through a subcritical Hopf bifur-
cation (subH) with increasing V1. However, different
destinies of the stable limit cycles are that it vanishes
via SNIC bifurcations in Fig. 4e, while it shrinks to a
supercritical Hopf bifurcation (supH) point in Fig. 4f.

In summary, with respect to these two parameters V1
and V2 associated with modulations of miRNA and P,
ourmodel enables to provide abundant dynamical prop-
erties such asmonostability, bistability, excitability and
oscillations, which themselves canmake different tran-
sitions via complex bifurcation mechanisms as shown
in the codim-1 and codim-2 bifurcation diagrams.

3.2 Deterministic and stochastic dynamics under
changeable levels of stimulus

Extracellular stimulus exists in miRNA-regulated
systems and noise is inevitably involved in biological
processes, both of which have not been considered in
previous models. Now, we will consider deterministic
and stochastic dynamics in the system under varying
levels of the stimulus S. Based on the bifurcation anal-
ysis ofV1 at the six typical values ofV2 as above in Sect.
3.1, we further construct codim-2 bifurcation diagrams
in parameters plane (V1, [S]) in Fig. 5 to give a com-
parison before and after stimulation.

Themonostability in Fig. 4a is still able to cover very
large region even under stimulation, although enough
large amount of the stimulus S leads to appearance of
a narrow bistable region in Fig. 5a. Even the bistable
region in Fig. 4b is accessible to become monostable
after stimulation in Fig. 5b. All those suggest that the
monostable state with strong stability is relative robust
to the stimulus. However, for the bistable states sur-
rounded by the unstable limit cycles in Fig. 4c and d, the
increasing stimulation leads to expansions of oscilla-
tory regions for stable limit cycles and excitable regions
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Fig. 5 Bifurcation
diagrams in the
(V1, [S])-parameter plane at
different values of V2. Red
solid and blue dashed lines
depict the loci of
saddle-node bifurcation
points and Hopf bifurcation
points, respectively. These
loci delineate four regions:
monostable region, bistable
region, excitable region and
oscillatory region, which are
denoted by regions I, II, III
and IV, respectively
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for unstable steady states but contraction of bistable
regions as shown in Fig. 5c and d. For the stable limit
cycle existing without stimulation in Fig. 4e and f, the
oscillatory regions become larger and larger in Fig. 5e
and f under the control of the stimulus. Indeed, monos-
tability, bistability, excitability and oscillation are the
crucial dynamical behaviors in modeling often used to
explicate physical phenomena such as state transition
and biological rhythms.

Furthermore, as an inevitable existence of noise in
biological systems, stochastic model can more accu-
rately describe the dynamics of the system. Therefore,
stochastic dynamics of the gene regulatory network
with noise (Eq. (1)) is discussed in the four typical
dynamics behaviors including monostability and bista-
bility for small V2 in Fig. 5b, monostability, bistability,
excitability and oscillation for moderate V2 in Fig. 5d,
and only oscillations for large V2 in Fig. 5f as follows.

3.2.1 Stochastic dynamics controlled by monostability
and bistability at small value of V2

The (V1, [S])-parameter plane is divided into two
regions I and II by the loci of saddle-node bifurca-
tion points for the small V2 = 2 in Fig. 5b, that is,
a monostable region I with a single stable steady state

and a bistable region II with two stable steady states
and a saddle. Also, deterministic and stochastic phase
diagrams of the two labeled regions are illustrated in
Fig. 6, where the concentrations of both miRNA and
protein ([miRNA] and [P]) reside near the monostable
steady state in Fig. 6a but stochastically transit between
the high and the low stable steady states in Fig. 6b.

To explore global stochastic dynamics from the
potential perspective, we projected the potential func-
tion onto two independent variables, i.e., the miRNA
concentration [miRNA] and the protein concentration
[P]. On the potential landscapes for parameter values
from the two typical regions I and II, only one basin of
attraction corresponds to the global stable steady state
in the monostable region I (see Fig. 7a), while two fun-
nels toward the local minima corresponds to the high
and the low stable states in the bistable region II (see
Fig. 7b).

3.2.2 Stochastic dynamics governed by monostability,
bistability, excitability and oscillation at
moderate value of V2

Figure 5d illustrates that the (V1, [S])-parameter plane
is divided into four regions as depicted by regions I–IV
by the loci of saddle-node bifurcation points and Hopf
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Fig. 6 Deterministic and
stochastic phase diagrams
corresponding to the regions
I and II in Fig. 5b. Stable
(unstable) steady states are
denoted by blue solid (green
open) circles. Black curves
correspond to deterministic
trajectories of the system
with diverse initial values.
Gray curves correspond to
stochastic trajectories with a
noise strength D = 0.0002
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Fig. 7 The potential
landscapes for the stochastic
dynamics in Fig. 6. The
parameters are the same as
those in the phase diagrams
of Fig. 6, and the diffusion
matrix was taken as the
diagonal matrix with a noise
strength D = 0.0002

bifurcation points at moderate V2 = 5. The system
is monostable with a single stable steady state in the
region I, but bistable with two stable steady states and
a saddle in the region II. Region III behaves excitable
with a stable steady state, an unstable steady state and a
saddle while region IV has large oscillation of a stable
limit cycle around an unstable steady state.

Several typical deterministic and stochastic dynam-
ics as well as potential landscape in the four labeled
regions are illustrated in Figs. 8 and 9 , respectively.
Some small fluctuations different from that in Fig. 6a
arise from the change of the property of the only sta-
ble steady state from the node to the focus in Fig. 8a.
Also, the potential landscape in Fig. 9a shows that the
potential with more broader area than that in Fig. 7a
is funneled toward a global minimum corresponding
to the global stable steady state. Stochastic transition
between two stable steady states in the bistable region
II is caused by the noise forcing the system into either of
their attracting basins (see Fig. 8b). However, attractor

region of the stable focus restricted by stable and unsta-
ble manifolds of saddle is much larger than that of the
stable node. Therefore, most of stochastic orbits after
experiencing a large journey rotate around the stable
focus. Two stable steady states in the region II decide
that the potential has two local minima for high and low
levels ofmiRNAand protein, respectively (see Fig. 9b).
Moreover, projection sizes of the twominimaare appar-
ently different on the ([miRNA], [P]) plane.

Furthermore, the stable focus becomes unstable,
which leads to the excitable region III when a lower
stable steady state coexists along with an unstable one
and a saddle in Fig. 8c. Noise gives rise to a large
excursion of the miRNA and protein concentrations
around the unstable focus and then pull it toward the
stable steady state at low concentration levels. Even-
tually, the potential landscape exhibits a deep funnel
toward a global minimum corresponding to the global
stable steady state aswell as a valley that corresponds to
the excitable trajectories around the unstable focus (see
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Fig. 8 Deterministic and
stochastic phase diagrams
corresponding to the regions
I–IV in Fig. 5d. Stable
(unstable) steady states are
denoted by blue solid (green
open) circles and stable
limit cycle by blue solid
curves. Black curves
correspond to deterministic
trajectories of the system
with diverse initial values.
Gray curves correspond to
stochastic trajectories with a
noise strength D = 0.0002
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Fig. 9 The potential
landscapes for the stochastic
dynamics in Fig. 8. The
parameters are the same as
those in the phase diagrams
of Fig. 8, and the diffusion
matrix was taken as the
diagonal matrix with a noise
strength D = 0.0002
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Fig. 10 Deterministic and
stochastic phase diagrams
corresponding to the regions
I and II in Fig. 5f. Stable
(unstable) steady states are
denoted by blue solid (green
open) circles and stable
limit cycle by blue solid
curves. Black curves
correspond to deterministic
trajectories of the system
with diverse initial values.
Gray curves correspond to
stochastic trajectories with a
noise strength D = 0.0002
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Fig. 11 The potential
landscapes for the stochastic
dynamics in Fig. 10. The
parameters are the same as
those in the phase diagrams
of Fig. 10, and the diffusion
matrix was taken as the
diagonal matrix with a noise
strength D = 0.0002

Fig. 9c).However, the appearance of a stable limit cycle
makes stochastic trajectory due to noise move rapidly
toward it and then oscillates around it in Fig. 8d, and
so the potential landscape exhibits a closed ring valley
corresponding to the stable limit cycle (see Fig. 9d).

3.2.3 Oscillations with gradually large amplitude for
large V2

As V2 = 7, there are the monostable region I with a
single stable steady state and the oscillatory region IV
with a stable limit cycle around an unstable steady state
separated by the loci of Hopf bifurcation points (see
Fig. 5f). Typical deterministic and stochastic dynamics
shows small fluctuations near the monostable steady
state in Fig. 10a but gradually large oscillation around
the stable limit cycle in Fig. 10b. Here, small fluctua-
tions appearing near the stable steady state in Fig. 10 a
are decided by properties of the focus, even though
the potential is still funneled toward a global mini-
mum corresponding to the global stable steady state

(see Fig. 11a). However, the gradually large oscillation
around the stable limit cycle in Fig. 10b is represented
as irregular and inhomogeneous closed ring valley on
the potential landscape in Fig. 11b.

3.3 The model can qualitatively simulate
experimental findings of long-term memory
formation in Aplysia

Empirically, treatment of five pulses with 5-HT induce
long-term facilitation of synapses betweenAplysia sen-
sory neurons and motor neurons, whereas that of three
pules do not. Interval applications of five pulses of
5-HT to the sensory neurons reduced the expression
of miR-124 and increased CREB1 protein levels [7].
Additionally, there are several putative CREB binding
sites in the presumed promoter region upstream of the
Aplysia miR-124 gene, and biologists have suggested
that CREBmay be able to regulatemiR-124 expression
levels [7]. Thus, we assume that the transcriptional acti-
vatorCREB1promotesmiR-124 gene transcription.As
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Fig. 12 Illustration of the model for the miRNA-mediated gene
regulatory network inAplysia. The protein (CREB1) is activated,
while miR-124 is repressed by the stimulus (5-HT). CREB1 acti-
vates the miR-124 gene and its own gene transcription. CREB1
mRNA (mCREB1) and miR-124 are combined into a complex (C)

was mentioned above, the miRNA-mediated gene reg-
ulatory network, in which CREB1 activates the miR-
124 (miRNA) gene, but CREB1 is negatively regulated
by miR-124, can be described by our model shown in
Fig. 1. The stimulus, the miRNA and the protein in our
model are represented as 5-HT, miR-124 and transcrip-
tional activator CREB1 in Aplysia, respectively (see
Fig. 12), so dynamics of the network motif in Aplysia
can be described by using rate Eqs (6)–(8).

d[miR-124]
dt

= gi + V1[CREB1]2
[CREB1]2 + K1

2 − di [miR-124]

−δ[miR-124][mCREB1] − λ[5-HT][miR-124], (6)
d[mCREB1]

dt
= gm + V2[CREB1]2

[CREB1]2 + K2
2 − dm [mCREB1]

−δ[miR-124][mCREB1], (7)
d[CREB1]

dt
= γ [mCREB1] + ks [5-HT] − dp[CREB1], (8)

where [miR-124], [mCREB1] and [CREB1] denote
the concentrations of miR-124, CREB1 mRNA and
CREB1 in the cell, respectively.

Our model can qualitatively simulate experimental
findings concerning stimulus protocols that can lead to
long-term memory formation in Aplysia (see Fig.13).
Two protocols for three (a) and five (b) short pulses, as
presented in Fig.13, are applied in our model to simu-
late the experimental results. Three pulses of stimulus
5-HT induce a transient increase in the CREB1 protein
concentration, which then returns to its original level
after stimulation as shown in Fig.13a. However, five
pulses of stimulus induce a persistent high level of the
CREB1 protein (see Fig.13 b), which is consistent with
the experimental findings.

According to the one-parameter bifurcation dia-
gram in Fig. 14, there exists a one-way irreversible
switch induced by a transition from the bistability to
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Fig. 13 Time courses of [CREB1] (the second column) under
different stimulus protocols (the first column) at V1 = 7.7: three
pulses (a) and five pulses (b) of 10 μM stimulus for 5 min and
the inter-pulse interval (from the end of one pulse to the onset of
the next) of 15 min. Other parameter values are given in Table 1
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Fig. 14 Bifurcation diagram of [CREB1] versus [5-HT] at
V1 = 7.7. The stable and unstable states are represented by
red solid lines and black dashed lines, respectively. Saddle-node
bifurcation point is marked as SN. Other parameter values are
given in Table 1

the monostability with increasing stimulus concentra-
tion. There are two steady states (a low and a high) in
the system at [5-HT] = 0μM, and only a single high
steady state at [5-HT] = 10μM. Five pulses of 10μM
stimulus, but not three short pulses, are accumulated
to elevate the protein concentration over a threshold to
the attraction domain of the high stable steady state.
Since the system is monostable at [5-HT] = 10μM,
the irreversible switch can ensure that the high protein

123



2914 L. Hao et al.

concentration always stays at the high steady state even
after the stimulation.

4 Discussion

The interplay of miRNAs, mRNAs, and proteins has
been demonstrated to play crucial roles in almost all
cellular processes. In the paper,we establish the generic
network model of the regulation between the miRNA
and the protein under the extracellular stimulus. We
firstly focus on the regulatory mechanisms between
the protein and the miRNA without the stimulus and
perform the detailed codim-1 and codim-2 bifurca-
tion analyses by changing the strengths of the positive
and the negative feedbacks. The codim-2 bifurcation
plane with the cusp and the Bogdanov–Takens points is
divided into several regions by the codim-1 bifurcations
curves of saddle-node, Hopf, homoclinic, fold limit
cycle and saddle-node invariant circle. Also, complex
transitionsmechanisms of the regions ofmonostability,
bistability, excitability and oscillations are discerned by
the codim-1 and codim-2 bifurcation analyses. Further-
more, we consider deterministic and stochastic dynam-
ics under the varying levels of the stimulus as well as
noise inevitably in biological processes. The stimula-
tion level as another parameter is added to construct
the codim-2 bifurcation diagrams, and then, stochastic
dynamics are discussed in the three chosen parame-
ter diagrams with the coexistence of monostability and
bistability, ofmonostability, bistability, excitability and
oscillation, and of only oscillations, respectively. Addi-
tionally, stochastic phase diagrams in the four typical
regions illustrate that the stochastic dynamics of the
system is consistent with the deterministic dynamics.
These results are further verified by the potential land-
scapes, which clearly illustrate the transitions of land-
scapes with changing parameter values taken from the
four typical regions.

The model qualitatively simulates experimental
findings of long-term memory formation in Aplysia,
when the stimulus, miRNA and protein are represented
as 5-HT, miR-124 and the transcriptional activator
CREB1 in Aplysia, respectively. In our simulations,
five pulses of stimulus induce persistent high CREB1
level for the LTM formation, whereas three pulses do
not. Our results are in accordance with the experimen-
tal findings that five pulses of treatment with 5-HT,
but not three, induce long-term synaptic facilitation of

synapses between Aplysia sensory neurons and motor
neurons. From the view point of dynamics, the irre-
versible switch on the bifurcation diagram ensures that
the high protein concentration always stays at the high
steady state even after the stimulation.

Previous studies [16,18] have provided computa-
tional models for investigating mechanisms and roles
of miRNAs and explored dynamics by using bifurca-
tion analyses. However, comprehensive codimension-
2 bifurcation analysis and potential landscapes for
stochastic dynamics, which are taken into account sig-
nificantly in this work, have not been discussed in
these previous studies. In addition, ourmodel describes
a gene regulatory network mediated by miRNA with
extracellular stimulus, which has not been concerned
in previousmathematical models formiRNA-mediated
motifs. The mathematical model proposed in the paper
can be used to elucidate the significant dynamic prop-
erty for long-term memory formation in Aplysia asso-
ciated with bistability. However, in some other biolog-
ical systems, miRNAs can also induce more behav-
iors than bistability. For example, an miR-17-92 clus-
ter can generate large-amplitude oscillations in a cancer
network [40], and the accumulation of four Arabidop-
sis miRNAs (miR-171, miR-398, miR-168 and miR-
167) oscillated during the diurnal cycle [41]. Therefore,
more biological applications of other dynamic proper-
ties in mathematical models for gene regulatory net-
works mediated by miRNAs will be studied in future
works.
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