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Abstract The Hopf bifurcation behavior is an impor-
tant issue for the nonlinear dynamic analysis of gas foil
bearing (GFB)-rotor systems. However, there is a lack
of detailed study on different types of Hopf bifurcation
and their corresponding characteristics for GFB-rotor
systems. This paper is intended to provide a clear and
systematic insight into the nonlinear dynamic charac-
teristics of GFB-rotor systems with a supercritical or a
subcritical Hopf bifurcation. The onset speed (OS) of
instability (i.e., the bifurcation point) for the system is
calculated by the linear stability analysis. The periodic
solution of the system before or after the bifurcation
point is obtained by the shooting method, and its sta-
bility is assessed by the Floquet multipliers. The shock
stability and the unbalanced response characteristics of
the GFB-rotor system with a supercritical or a subcrit-
ical Hopf bifurcation are presented. A GFB-rotor sys-
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tem with a supercritical Hopf bifurcation shows better
dynamic characteristics than a systemwith a subcritical
Hopf bifurcation. The parameter analysis reveals that
the aspect ratio and the foil stiffness of the GFBs have
obvious effects on the Hopf bifurcation type, while the
loss factor has a relatively small effect. It is remark-
able that although a lower foil stiffness increases the
OS of instability, the actual speed limit would proba-
bly decrease as the Hopf bifurcation changes from a
supercritical to a subcritical type. This can contribute
to an understanding of the necessity of studies on actual
available operating speed based on nonlinear analysis
rather than conventional linear analysis for the bearing
design.

Keywords Gas foil bearing · Nonlinear dynamics ·
Hopf Bifurcation · Parameter analysis

1 Introduction

Gas foil bearings (GFBs) are self-acting gas-lubricated
bearings with a compliant foil structure. In comparison
with conventional rolling element and oil-lubricated
bearings, GFBs have significant advantages such as
fewer components, the elimination of oil, lower fric-
tional losses, and wider operational temperature ranges
[1,2]. Therefore, GFBs are increasingly employed in
advanced high-speed, high-performance, and long-life
rotating machinery systems. Among the various types
of GFBs, the bump-type foil bearing is the most widely
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studied and used [3]. However, due to the low viscos-
ity of the gas, the damping capacity of GFBs is fairly
limited, which may result in nonlinear vibrations or
instability under high-speed conditions [4]. The stabil-
ity and vibration problems are still key issues for their
application in high-speed rotors, and many efforts have
beenmade to study the stability andvibration character-
istics of GFB-rotor systems using linear and nonlinear
dynamic analysis.

The early studies of the dynamics forGFB-rotor sys-
tems relied on linear dynamic analysis, due to the lim-
ited computer power and numerical techniques avail-
able at that time. In most of these linear analyses, the
force coefficient (FC) method that was first introduced
by Lund [5] was used to represent the gas film forces.
Peng and Carpino [6] proposed a calculation method
for the FC of GFBs. Based on this FC method, the
characteristics of the onset speed (OS) of instability
were widely investigated in [7–10]. Vleugels et al. [7]
demonstrated that a foil structure with a proper design
could increase the OS of instability. In recent years, the
accuracy of the FC method for compliant gas bearings
has been discussed and improved in [11–13]. Besides,
it has been demonstrated that the stability of the static
equilibrium point can be assessed directly based on an
eigenvalue analysis [14].

Nevertheless, it is far from enough to just per-
form the linear analysis of GFB-rotor systems. Due
to the nonlinear hydrodynamic film, experiments and
simulations of the rotors supported on the bump-
typeGFBs show significant subsynchronous vibrations
and frequency-locking behaviors [4,9,10,15–19]. Sim-
ilar subsynchronous vibration phenomena were also
widely observed in rotor systems supported by other
types of gas bearings [20–28]. The first study to attempt
to explain the nonlinear vibrations was presented by
San Andrés and Kim [15] using a reduced numerical
model that neglected the gas film under the assump-
tion of a very stiff gas film. They suggested the cause
of the subsynchronous vibrations as a forced nonlin-
earity under high unbalanced levels rather than typical
hydrodynamic bearing instability. Inspired by the work
of Andrés and Kim [15], Hoffmann et al. [9] investi-
gated the effect of the nonlinear fluid film forces on
the subsynchronous vibrations and found that the sys-
tem may be self-excited by the gas film forces with
a frequency related to the system’s natural frequency.
Their results also indicated that the speed range of the
subsynchronous vibrations, which characterize stable

Hopf bifurcation behavior, decreases and finally disap-
pears with the increase in the static load. A coincident
conclusion could be drawn from the simulation results
of Gu et al. [29] in which no subsynchronous vibrations
existed before thefilm failure.Amore systematic inves-
tigation was conducted by Hoffmann and Liebich [10]
experimentally andnumerically. The two causes of sub-
synchronous vibrations were studied individually, and
one of the findings was that a higher unbalanced value
would result in a lower onset speed of subsynchronous
vibrations.

Except for the subsynchronous vibrations, another
noteworthy nonlinear topic is the existence of stable
and unstable periodic solutions (i.e., limit cycles). On
the one hand, Pham and Bonello [30] noticed that there
was no stable limit cycle in a GFB-rotor system with
the most commonly used parameters, while a stable
limit cycle was obtained with a very stiff foil structure
and a small bearing clearance. Bonello and Pham [31]
gave a specific explanation that attributed this to the
compliance of the foil structure, in view of the fact that
limit cycles have been numerically obtained in rotors
supported by rigid gas bearings in [20,22]. On the other
hand, an unstable limit cycle was found by Yang et
al. [32] in rigid gas bearings, which results in a shock
instability phenomenon; in other words, the nonlinear
stability of the system is determined by the amplitude
of the disturbance.

In fact, the disagreements about the existence of sub-
synchronous vibrations and stable or unstable periodic
solutions come from different Hopf bifurcation behav-
iors (i.e., supercritical Hopf bifurcation and subcriti-
cal Hopf bifurcation) [33]. The investigations of dif-
ferent Hopf bifurcation behaviors are very common in
oil journal bearings [34–38]. Although most of them
were based on analytical formulas for an infinitely long
or an infinitely short journal bearing, the investigation
carried out by Chasalevris [38] greatly highlighted the
significance of the prediction of the Hopf bifurcation
behaviors and the actual available speed range in oil
journal bearing-rotor systems.However, the commonly
usedmethods applied in theseworks are not suitable for
gas bearing systems, because no analytical formulas are
feasible to describe the dynamic gas film forces. Fur-
thermore, due to the compressibility of the gas film and
the introduction of a complaint foil structure, a GFB-
rotor system is a multi-field coupling system with a
large number of degrees of freedom, while the analyti-
cal method applied in oil journal bearings to character-
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ize the stability of periodic solutions makes sense only
in systems with few degrees of freedom [38]. There-
fore, a different approach is needed to characterize the
Hopf bifurcation behaviors in GFB-rotor systems.

The Hopf bifurcation behaviors are vitally impor-
tant in the nonlinear dynamic analysis of GFB-rotor
systems, because different Hopf bifurcation behaviors
lead to entirely different nonlinear dynamic character-
istics of the system. It is worth noting that the subcrit-
ical Hopf bifurcation is often potentially dangerous in
engineering applications, which has been widely con-
cerned. However, to the knowledge of the authors, no
research related to different Hopf bifurcation types,
especially the subcritical Hopf bifurcation, has been
reported in the field of gas bearing. In order to fill the
gap in the research on differentHopf bifurcation behav-
iors in GFB-rotor systems, the nonlinear dynamic char-
acteristics of GFB-rotor systems with a supercritical
Hopf bifurcation or a subcritical Hopf bifurcation are
investigated in this paper. The periodic solution of the
system is obtained by the shooting method, and its sta-
bility is assessed by Floquet multipliers. The analysis
results provide a clear and systematic insight into the
nonlinear dynamic characteristics of the two typical
Hopf bifurcation behaviors, which are fragmentarily
reflected in previous studies. The parameter analysis
provides guidance for the design of GFBs to achieve
high actual available operating speed based on nonlin-
ear analysis rather than the conventional high OS of
instability based on linear analysis.

2 Governing equations and solutions

The present work is based on a classical GFB-rotor sys-
tem, as shown in Fig. 1. The center of the fixed bearing
sleeve is chosen as the origin of the Cartesian coordi-
nates. The x , y, and z axes are defined to point in the
vertical direction, the horizontal direction, and the axial
direction of the bearing, respectively. The unbalance is
assumed to be located on the center disk only; hence,
the responses of both bearings are constrained to be
identical, and the system is modeled as a point-mass
rotor in a GFB.

In order to obtain the dimensionless governing equa-
tions of the system, four characteristic variables are
used: the radial clearanceC as the characteristic length
in the x and y directions, the bearing radius R as the
characteristic length in the angular and axial directions
of the bearing, the inverse of the rotational speed 1/�
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Fig. 1 A symmetric GFB-rigid rotor system: a the configuration
of the system and b the schematic of a bump-type GFB with
associated nomenclature

as the characteristic time, and the ambient pressure pa
as the characteristic pressure. Then, the dimensionless
pressure p̃, time τ , mass m̃, and force vector f̃ can be
written as:

p̃ = p

pa
, τ = �t, m̃ = �2C

pa R2m, f̃ = f
pa R2 (1)

2.1 Analytical model

Given x̃r = [
ex , ey

]T as the dimensionless displace-
ment of the rigid rotor, the dimensionless equation gov-
erning the motion of the rigid rotor is

¨̃xr = 1

m̃r

(
w̃r + f̃p + f̃ub

)
(2)

where m̃r is the dimensionless rotor mass, and w̃r =[
w̃r , 0

]T is the dimensionless static load vector. The
dimensionless gas film force vector f̃p is obtained by
integrating the filmpressure distribution over thewhole
bearing surface, as follows:

f̃p =
∫ L/2R

−L/2R

∫ 2π

0
( p̃ − 1)Aθdθdζ (3)
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where θ ∈ [0, 2π ] is the angular coordinate along
the rotational direction of the rotor, and ζ = z/R ∈
[−L/2R, L/2R] is the dimensionless Cartesian coor-
dinate along the axial direction of the bearing, L is the
bearing length, and Aθ = [cos θ, sin θ ]T. The Gümbel
condition is adopted to make a correction for the sub-
ambient pressure; in other words, the contribution of
p̃ < 1 is omitted in integration (3). The dimensionless
unbalanced force vector f̃ub is

f̃ub = u�2

pa R2

[
cos (τ + θ0)

sin (τ + θ0)

]
(4)

where u is the unbalance, and θ0 is the initial phase of
the unbalanced force.

The gas flow in the bearing is assumed to be a
laminar, Newtonian, and compressible thin-film flow
under isothermal condition. Hence, the dimensionless
gas film pressure p̃ (θ, ζ ) is governed by the Reynolds
equation for an isothermal compressible perfect fluid
[39]. The dimensionless form of the Reynolds equation
is written as:

2S
∂

∂τ

(
p̃h̃
)

+ S
∂

∂θ

(
p̃h̃
)

= ∂

∂θ

(
p̃h̃3

∂ p̃

∂θ

)
+ ∂

∂ζ

(
p̃h̃3

∂ p̃

∂ζ

)
(5)

where S = 6μ�/pa (R/C)2 is the bearing number,
μ the dynamic viscosity of the gas, and h̃ = h/C the
dimensionless film thickness. By introducing a variable
ψ = p̃h̃, the Reynolds Eq. (5) is transformed into the
following equation:

∂ψ

∂τ
= 1

2S

{
∂

∂θ

[

ψ

(

h̃
∂ψ

∂θ
− ψ

∂ h̃

∂θ

)]

+ ∂

∂ζ

[

ψ

(

h̃
∂ψ

∂ζ
− ψ

∂ h̃

∂ζ

)]}

− 1

2

∂ψ

∂θ
(6)

The dimensionless film thickness is expressed as:

h̃ = 1 + ex cos θ + ey sin θ + w̃ (7)

where w̃ = w/C is the dimensionless foil deflection.
The gas film is open to the environment on all sides;

hence, the pressure at each edge is constant and is set
as the ambient pressure pa ; in other words, p̃ = 1. For
Eq. (6) with ψ = p̃h̃, the boundary condition is that
ψ = h̃ at the bearing edges.

The simple elastic foundation model is introduced
to model the foil structure, considering its good corre-
lation with the experimental results and high efficiency
for dynamic simulations [40,41]. This is a damped
Winkler foundation model with a stiffness per unit
area, kb, and an equivalent viscous damping coeffi-
cient, cb. The hysteretic damping is used to model the
energy dissipation of the foil structure; in other words,
cb = η f kb/ω f , where η f is the mechanical loss factor
of the bump foil, and ω f is the oscillation frequency.
The time domain analysis needs to fix the oscillation
frequency ω f at a certain value, and the most com-
monly used method is to set ω f as the rotational speed
�. Besides, the assumption of a constant foil deflection
in the axial direction is much more coincident with
the real situations for the first-generation GFBs. The
dimensionless equation governing the deflection of the
foil structure can be written as:

˙̃w (θ) = 1

η f

(
P̃θ (θ)

k̃θ
b

− w̃ (θ)

)

(8)

where k̃θ
b = kbC/pa is the dimensionless form of

kb, and P̃θ (θ) = R/L
∫ L/2R
−L/2R ( p̃ (θ, ζ ) − 1) dζ is the

average dimensionless gauge pressure over the axial
direction.

Finally, the GFB-rotor system is governed by Eqs.
(2), (6), and (8).

2.2 Discretization

As the Reynolds equation is a nonlinear partial dif-
ferential equation, to obtain the dynamic responses of
the GFB-rotor system established in Sect. 2.1, the help
of numerical methods is needed. The finite difference
method is used to discretize the equations in the spatial
field. By so doing, the governing equations of the entire
system are discretized into a set of ordinary differential
equations (ODEs); thus, the nonlinear transient analy-
sis can be performed by using a numerical integration
algorithm.

The gas film domain is meshed into a uniform rect-
angular grid with Nθ × Nζ points, in which Nθ and
Nζ are the number of points along the angular and
axial directions of the bearing, respectively. The con-
tinuous variables ψ and w̃ are replaced by the discrete
approximations ψi, j and w̃i where i = 1, . . . , Nθ and
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j = 1, . . . , Nζ . Using a central difference scheme, the
partial derivatives in Eq. (6) can be approximated as:

∂ψ

∂θ

∣∣∣∣
i, j

≈ ψi+1, j − ψi−1, j

2�θ
,

∂2ψ

∂θ2

∣∣∣∣
i, j

≈ ψi+1, j − 2ψi, j + ψi−1, j

(�θ)2
,

∂ψ

∂ζ

∣
∣∣∣
i, j

≈ ψi, j+1 − ψi, j−1

2�ζ
,

∂2ψ

∂ζ 2

∣∣∣∣
i, j

≈ ψi, j+1 − 2ψi, j + ψi, j−1

(�ζ)2
,

∂ h̃

∂θ

∣∣∣
∣∣
i, j

≈ [− sin θ, cos θ ] x̃r

+ w̃i+1 − w̃i−1

2�θ
,

∂2h̃

∂θ2

∣∣∣
∣∣
i, j

≈ [− cos θ,− sin θ ] x̃r

+ w̃i+1 − 2w̃i + w̃i−1

(�θ)2
,

∂ h̃

∂ζ

∣∣∣∣∣
i, j

= 0,
∂2h̃

∂ζ 2

∣∣∣∣∣
i, j

= 0 (9)

for the interior grid points (i = 2, . . . , Nθ − 1 and
j = 2, . . . , Nζ −1).�θ and�ζ refer to the step sizes in
the respective directions. The boundary conditions are
implemented by applying ψi, j = h̃i on the boundary
points (i = 1, Nθ or j = 1, Nζ ).

With the approximated partial derivatives, the gov-
erning equation ofψi, j can be discretized as a nonlinear
ODE:

ψ̇i, j = gi, j (x̃r , ψi, j , ψi−1, j , ψi, j−1,

ψi+1, j , ψi, j+1, w̃i−1, w̃i , w̃i+1) (10)

For the foil structure, the governing equation is dis-
cretized as:

˙̃wi = 1

η f

(
P̃θ,i

k̃θ
b

− w̃i

)

(11)

where the average dimensionless gauge pressure over
the axial direction is expressed as:

P̃θ,i = R/L
∫ L/2R

−L/2R

(
ψ (θi , ζ )

h̃ (θi )
− 1

)
dζ

≈ 1

Nζ − 1

⎛

⎝1 +
Nζ −1∑

j=2

ψi, j

h̃i

⎞

⎠− 1 (12)

Similarly, the discrete expression of the dimension-
less gas film force vector f̃p is

f̃p =
∫ L/2R

−L/2R

∫ 2π

0

(
ψ

h̃
− 1

)
Aθdθdζ ≈

�θ�ζ

Nθ−1∑

i=2

Nζ −1∑

j=2

[(
ψi, j

h̃i
− 1

)
Aθi

]
(13)

After the discretization, the governing equations of
the system can be written as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

¨̃xr = 1
m̃r

(
w̃r + f̃p (x̃r , �, w̃) + f̃ub (τ )

)

�̇ = g (x̃r , �, w̃)

˙̃w = 1
η f

(
P̃θ (x̃r ,�,w̃)

k̃θ
b

− w̃
) (14)

where � = [ · · · ψi, j · · · ]T and w̃ = [ · · · w̃i · · · ]T
are the generalized coordinate vectors of the gas film
and the foil structure (i = 2, . . . , Nθ − 1 and j =
2, . . . , Nζ − 1).

For the true nature of the dynamic interaction
between the rotor, the gas film, and the foil structure,
the governing equations of the system are written as a
set of coupled nonlinear ODEs [31]. The state vector
of the coupled system is defined as:

y =

⎡

⎢⎢
⎣

x̃r˙̃xr
�

w̃

⎤

⎥⎥
⎦ (15)

Finally, the governing equations of the entire system
can be arranged in a general form as:

ẏ = f (τ, y) (16)

As Eq. (16) is a stiff system, the variable-step and
variable-order implicit integrator ode15s in MATLAB
[42] was used for the efficient time-domain integration.
At each time step, the rotor motion, the hydrodynamic
pressure, and the foil deflection are solved simultane-
ously based on the numerical differentiation formulas
(a variant of the backward differentiation formulas).
The analytical Jacobian matrix ∂f/∂y is used to make
the computation more efficient.

3 Stability analysis methods

The stability analysis of a rotor system is critical, as
instability can lead to catastrophic failure. The stability
analysis methods used in this work for an autonomous
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GFB-rotor system, ẏ = f (y), are revisited briefly for
clarity in this section. The threshold speed for a Hopf
bifurcation, which is named as the OS of instability in
this paper, can be predicted by a linear stability analy-
sis of the system’s equilibrium point. Besides, nonlin-
ear stability analysis is needed to analyze the periodic
behavior before or after theOSof instability. The shoot-
ing method is adopted to find the periodic solution of
the system, and then, the stability of the periodic solu-
tion can be obtained according to the Floquet theory.

3.1 Linear stability analysis

The linear stability analysis focuses on the small per-
turbations of the system around its equilibrium point.
The equilibrium point of system (16), designated by
ys , can be obtained by solving a set of nonlinear alge-
braic equations f (ys) = 0 using the Newton–Raphson
method. Then, the perturbation equation around the
static equilibrium point can be expressed as:

�ẏ = J (ys)�y (17)

where the Jacobian matrix is

J (ys) = ∂f (y)
∂y

∣
∣∣∣
y=ys

(18)

The perturbation around the static equilibrium point
is assumed to be

�y = Yeλt (19)

Substituting Eq. (19) into Eq. (17), the correspond-
ing standard eigenvalue problem is established as:

λY = J (ys)Y (20)

The eigenvalues of the Jacobian matrix determine
the equilibrium point’s stability property: the equilib-
riumpoint is stable if all the eigenvalues have a negative
real part, while the equilibrium point is unstable if at
least one of the eigenvalues has a positive real part. The
Hopf bifurcation occurs where a pair of complex con-
jugate eigenvalues cross the imaginary axis (i.e., the
real parts change sign).

3.2 Periodic solution and its stability

In this section, a solution of the system ẏ = f (y) sub-
ject to the initial condition η is denoted as y (τ ; η). A

solution yp (τ ; η) is periodic if it satisfies the following
conditions:

ẏp = f
(
yp
)
, yp (T ; η) = yp (0; η) = η (21)

where T is the period. For a perturbation δη of initial
value η, the difference of a periodic solution yp (τ ; η)

at time T is

yp (T ; η + δη) − yp (T ; η) ≈ ∂yp (T ; η)

∂η
δη = Mδη

(22)

where M = ∂yp(T ;η)

∂η
is called the monodromy matrix.

The eigenvalues of the monodromy matrix are called
the Floquet multipliers and decide whether the initial
perturbation decays or grows. According to the Floquet
theory, the monodromymatrix has+1 as an eigenvalue
for all periodic solutions of an autonomous system;
hence, the stability of the periodic solution depends
on the other eigenvalues. If all the moduli of the other
eigenvalues are smaller than 1, the periodic solution is
stable; otherwise, the periodic solution is unstable.

The monodromy matrix has another representation,
which can be used for its calculation. The periodic solu-
tion yp (τ ; η) satisfies the system equation; in other
words, ẏp (τ ; η) = f

(
yp (τ ; η)

)
. Taking the partial

derivative of the previous equation with respect to η

and exchanging the order of the partial differentials, a
set of ODEs is obtained as follows:

�̇ = J
(
yp
)
� (23)

where � (τ ) = ∂yp(τ ;η)

∂η
. At the initial moment,

y (0; η) = η, hence � (0) = ∂yp(0;η)

∂η
= I where I

is an identity matrix. Note that � (τ ) depends on the
periodic solution yp. Hence, � (τ ) is called the funda-
mental matrix solution, which is the solution of ODE
(23)with the initial condition� (0) = I for the periodic
solution yp. The monodromy matrixM of the periodic
solution yp is identical to � (T ).

As the periodic solution of the GFB-rotor system is
unknown, the shootingmethod is used to find a periodic
solution of the system. The task is to find an initial con-
ditionη that leads to a periodic solution and also the cor-
responding period T . The shooting method starts with
an initial guess for the unknown initial condition and
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Nonlinear dynamic analysis of supercritical and subcritical Hopf 2247

period; then, the initial condition and the period are cor-
rected to fulfill the periodic condition by the Newton–
Raphson iteration. The error vector corresponding to
the periodic condition is defined as r = η − y (T ; η).
For an estimation

(
ηk, Tk

)
at the kth iteration with a

correction
(
�ηk,�Tk

)
, the error vector is written as:

rk = ηk + �ηk − y
(
Tk + �Tk; ηk + �ηk

)
(24)

Expanding Eq. (24) into a Taylor series around(
ηk, Tk

)
and truncating the series at the second term

yield

rk ≈ ηk + �ηk −
[
y
(
Tk; ηk

)+ ∂y
∂η

(
Tk; ηk

)

�ηk + ∂y
∂T

(
Tk; ηk

)
�Tk

]
(25)

where y
(
τ ; ηk

)
is calculated by numerically integrat-

ing ẏ = f (y) with the initial condition ηk , and
∂y
∂η

(
Tk; ηk

)
can be found by numerically integrat-

ing (23) with y
(
τ ; ηk

)
. Furthermore, ∂y

∂T

(
Tk; ηk

) =
f
(
y
(
Tk; ηk

))
is the slope of the trajectory at τ = Tk .

Let error (25) be equal to zero, and then, the iterative
formula for getting a better estimation is obtained as:
[

∂y
∂η

(
Tk; ηk

)− I f
(
y
(
Tk; ηk

)) ] [�ηk
�Tk

]

= ηk − y
(
Tk; ηk

)
(26)

As the number of variables is one more than the num-
ber of equations in (26), an additional orthogonality
constraint f

(
ηk
) · �ηk = 0 is imposed, which can be

approximated as f
(
y
(
Tk; ηk

)) · �ηk = 0. Therefore,
the complete iterative formula of the shooting method
is[

∂y
∂η

(
Tk; ηk

)− I f
(
y
(
Tk; ηk

))

fT
(
y
(
Tk; ηk

))
0

][
�ηk
�Tk

]

=
[

ηk − y
(
Tk; ηk

)

0

]
(27)

The solution is converged when the periodic condi-
tion is satisfied with a desired accuracy, and a periodic
solution of the system is found. Themonodromymatrix
is also obtained as a by-product of the shootingmethod.

4 Results and discussions

In this section, the nonlinear dynamic characteristics
of the GFB-rotor system were investigated. For all

the numerical cases, the number of grid points was
150×10, and the grid independencewas checked using
a double-refined grid. This large number of angular
points is required for simulationswith a large amplitude
limit cycle. The relative error tolerance of the ode15s
functionwas set as 10−6. In the simulations, the gasfilm
height could become zero or negative due to an unsta-
ble motion or a very large amplitude motion, resulting
in collisions or rubs between the rotor and the foil.
This film failure would be unacceptable for an operat-
ing rotor in practice. The simulationwould terminate in
this case as it was beyond the capability of the present
mathematical model.

4.1 Model verification

First, the present model was verified with an experi-
mentally validated model from Ref. [43,44]. The bear-
ing parameters used in the numerical verification are
listed in Table 1. Furthermore, the mass of the rotor
was 3.06kgwith a static load of 30N, and the rotational
speed was 12,000 rpm. The rotor was released from the
origin of coordinates with a zero velocity, while the
initial pressure was equal to the ambient pressure, and
the initial foil deflection was zero. The transient trajec-
tories of the two simulations are illustrated in Fig. 2,
where the reference data are from Ref. [44]. As can be
seen, there is very good agreement between the results
of the present work and Ref. [44].

4.2 Hopf bifurcation phenomena and dynamic
characteristics

The Hopf bifurcation in a GFB-rotor system can be
supercritical or subcritical depending on the bearing

Table 1 The parameters of the GFB

Parameters Value

Bearing radius, R 19.05mm

Bearing length, L 38.1mm

Bearing clearance, C 31.8µm

Foil structural stiffness, kb 4.6417GN/m3

Foil structural loss factor, η f 0.25

Ambient pressure, pa 1.01325 × 105 Pa

Dynamic viscosity, μ 1.95 × 10−5 Ns/m2
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parameters. This section aims to give a complete char-
acterization of these two bifurcation phenomena and
their dynamic characteristics.

In order to highlight the influence of the bearing
design on the nonlinear characteristics for a given rotor
system, the aspect ratio L/D (where D = 2R is the
bearing diameter), the foil structural stiffness kb, and
the loss factor η f were chosen as the design parameters.
The different sets of design parameters would lead to
different types of Hopf bifurcations. Furthermore, the
other bearing parameters were held constant as listed
in Table 1. The mass of the rotor was set as 2.04kg,
and the static load was 20N. To focus on the inherent
attributes of the system, the unbalance u was set as 0
in Sects. 4.2.1 and 4.2.2.

4.2.1 Supercritical and subcritical Hopf bifurcation
phenomena

With a typical set of design parameters, L/D = 2,
kb = 5 × 109 N/m3, and η f = 0.25, the system
undergoes a supercritical Hopf bifurcation. The OS of
instability (i.e., the bifurcation point) is 11,475 rpm.
The equilibrium solution and the periodic solution (if
it existed) were obtained for different rotational speeds,
and their stabilities were evaluated using the methods
given in Sect. 3. The bifurcation diagram is illustrated
in Fig. 3a, where the stable solutions are indicated by
solid lines, and the unstable solutions are indicated by
dashed lines. The equilibrium and periodic solutions at

13,000 rpmare plotted in Fig. 3b, and the Floquetmulti-
pliers of the periodic solution are plotted in Fig. 3c. It is
clear to see that as the speed exceeds the OS of instabil-
ity, a branch of stable equilibrium solutions bifurcates
into a branch of unstable equilibrium solutions and a
branch of stable periodic solutions. However, because a
large amplitude periodic solution leads to the film fail-
ure, there is an upper limit for the speed accompanied
by a stable periodic solution. The existence of stable
periodic solutions indicates that the machine may still
operate even if the speed exceeds the OS of instabil-
ity for a well-balanced rotor or for other cases where
a small oscillation in the narrow clearance of the gas
bearing is acceptable [15].

On the other side, the system undergoes a subcrit-
ical Hopf bifurcation with the design parameters of
L/D = 1, kb = 5 × 109 N/m3, and η f = 0.25, as
shown in Fig. 4. The OS of instability (i.e., the bifurca-
tion point) is 17,367 rpm. Different from the supercrit-
ical Hopf bifurcation, when the speed decreases and
passes through the OS of instability, the subcritical
Hopf bifurcation has a branch of unstable equilibrium
solutions bifurcating into a branch of stable equilibrium
solutions and a branch of unstable periodic solutions.
Again, there is aminimumspeed for the existence of the
unstable periodic solutions, because of the film failure.
Note that for this subcritical case, no stable solution
can be obtained once the speed exceeds the bifurcation
point, which means a sudden and unpredictable failure
of the bearing.

4.2.2 Shock stability characteristics

The shock stability characteristics of a system with
a supercritical or a subcritical Hopf bifurcation were
studied. The shock stability discussed here refers to
the ability of the system to resume stable operation
after suffering nondestructive shocks with a rotational
speed lower than the OS of instability. The responses
after the end of shocks were concerned, and the effects
of the shocks were equivalent to various initial con-
ditions that are dominated by the rotor position. That
is, the rotor was initially constrained to a given posi-
tion with zero velocity, and the initial film pressure and
foil deflection were computed under the condition that
the gas film force, the static load, and the constrained
forcewere balanced. Then, the dynamic simulationwas
started with releasing the rotor by removing the con-
strained force. The initial dimensionless rotor position
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was limited within the unit circle, which means a non-
destructive shock.

For a system with a supercritical Hopf bifurcation,
the rotor could always converge to the equilibriumpoint
after nondestructive shocks in the simulations. It sug-
gests that there is no shock stability problem for this
type of system.

For a system with a subcritical Hopf bifurcation,
the convergence of the rotor trajectory depends on the
magnitude of the shock as an unstable periodic solu-
tion exists. The initial position that makes the rotor
converge to the equilibrium point belongs to the basin
of attraction of the static equilibrium point. The case
with the design parameters of L/D = 1, kb = 5× 109

N/m3, and η f = 0.25 was used as an example, whose
OS of instability is 17,367 rpm. The boundaries of the
basins of attraction at various speeds are plotted in Fig.
5a. Two trajectories of the rotor with a small difference
of initial positions near the asterisks in Fig. 5a inside
and outside the basin of attraction at 16,000 rpm are
given in Fig. 5b and c. As can be seen, along with the
increase in the speed, the size of the basin of attrac-
tion decreases and becomes nearly zero at the OS of
instability. Hence, for a rotor system with a subcritical
Hopf bifurcation, the actual available speed may be far
lower than the OS of instability when considering the
shock stability. It should be explained that, for some
cases with a subcritical Hopf bifurcation, the divergent
trajectory can converge to a stable periodic solution out-
side the unstable periodic solution. This stable periodic
solution does not lead to the film failure but usually has
a large amplitude. Moreover, it can be observed only
near the transition point of the two bifurcation types,
which is discussed in detail in Sect. 4.3.

4.2.3 Unbalanced response characteristics

The unbalanced response characteristics of a system
with a supercritical or a subcritical Hopf bifurcation
were investigated. In order to study the steady-state
response of the rotor under unbalanced excitation, the
time-domain simulation was started from the equi-
librium state obtained without an unbalance and was
ended when the trajectory was stable for a sufficiently
long time, where the magnitude of the unbalance u was
calculated based on the ISO balance grade and the OS
of instability.

The case of a supercritical Hopf bifurcation was
first studied with the design parameters of L/D = 2,

kb = 5× 109 N/m3, and η f = 0.25. Two typical sub-
synchronous vibration phenomena were observed (i.e.,
whirl and whip motions). A whirl motion is dominated
by the unbalanced force, and its frequency is equal to
half of the rotational speed, while a whip motion is
dominated by the self-excited effect of the gas film. Fig-
ure 6a gives a complete description of the changes in
theOS of thewhirl, whip, and film failurewith different
balance grades. The waterfall diagram under a balance
grade of G1.0 is plotted in Fig. 6b. The steady-state tra-
jectory, the transient curve, and the FFT diagram at the
speeds of 12,000 rpm and 13,000 rpm under a balance
grade of G1.0 are given in Fig. 6c and d to character-
ize the whirl and whip motions, respectively. The whirl
motion appears first as a forced nonlinear vibrationwith
the increase in the rotational speed. The whip motion
does not immediately appear when the speed exceeds
the OS of instability, where the frequency of the self-
excited vibration becomes synchronized with the half
frequency of the unbalanced excitation. With the fur-
ther increase in the rotational speed, the amplitude of
the self-excited vibration increases, and the frequency-
lockingdisappears, resulting in abeat vibrationbecause
the self-excited frequency is close to half the rotational
speed.With the increase in the unbalance, the OS of the
whirl and film failure shows a downward trend while
the OS of the whip motion shows an upward trend,
which agrees with the result of Ref. [10]. Under low
balance grades, the reason for the film failure is the
excessive amplitude of the whip motion; under a bal-
ance grade larger than G2.5, the film fails due to the
excessive amplitude of the whirl motion, and the whip
motion disappears, which can explain the result of Ref.
[15]. The gas film can still work without failure at a
speed higher than the OS of instability even under a
balance grade of G6.3, indicating a good unbalance
tolerance for the systemwith a supercritical Hopf bifur-
cation.

For the case of a subcriticalHopf bifurcationwith the
design parameters of L/D = 1, kb = 5 × 109 N/m3,
and η f = 0.25, the unbalanced response characteris-
tics are shown in Fig. 7. It is clear to see that, compared
to the case with a supercritical Hopf bifurcation, the
unbalanced response characteristics of the subcritical
Hopf bifurcation aremuch simpler.No subsynchronous
vibration is found within the studied parameter range.
The OS of the film failure is lower than the OS of insta-
bility and decreases rapidly with the increase in the bal-
ance grade. This can be intuitively understood by the
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boundaries of the basins of attraction shown in Fig. 5a.
A large unbalance leads to a large deviation from the
equilibrium point, while the basin of attraction narrows
as the rotational speed increases. Hence, for a system
with a subcritical Hopf bifurcation, the actual available
speed is also lower than the OS of instability under a
large unbalance.

4.3 Parameter study

According to the analysis presented in Sect. 4.2, the
available speed for a GFB-rotor system may be much
lower than theOSof instability, due to the poor dynamic
characteristics of the subcritical Hopf bifurcation. The
parameter design of a GFB has a significant influ-
ence on the Hopf bifurcation type and thus the non-
linear characteristics of the system. In this section, the
influences of the bearing parameters on the nonlin-
ear characteristics and the available speed of a well-
balancedGFB-rotor systemwere investigated. For ease
of expression and understanding, two speed limits are
defined here as follows:

(1) Actual speed limit. When operating below this
speed, the rotor can always return to the stable equilib-
rium point after suffering any nondestructive shock.

(2) Ideal speed limit. When operating below this
speed, the rotor returns to the stable equilibrium point
or a stable periodic solution after suffering any nonde-
structive shock.

These two speed limits were obtained by the nonlin-
ear time-domain simulations. Based on the definitions,
the actual speed limit is the upper limit of the oper-
ating speed applicable to all devices, while the ideal
speed limit can only serve as a reference for devices
tolerating small oscillations. However, the speed range
between the two speed limits characterizes the exis-
tence of stable periodic solutions, so these two speed
limits are both considered in this section for a complete
description of change in bifurcation behaviors.

The influence of the aspect ratio L/D on the OS of
instability and the two speed limits was first investi-
gated as illustrated in Fig. 8 with kb = 5 × 109 N/m3

and η f = 0.25, where the corresponding bifurcation
diagrams are also attached for a better understanding. It
can be seen that all three curves show a downward trend
with the increase in the aspect ratio, and the actual speed
limit is significantly less sensitive than the OS of insta-
bility. The differences between the three curves come
from the change of Hopf bifurcation behaviors. For a
low aspect ratio, the subcritical Hopf bifurcation occurs
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and leads to a considerable range of unavailable speed
below the OS of instability. With the increase in the
aspect ratio, the subcritical Hopf bifurcation changes
into the supercritical Hopf bifurcation and results in
an extension of the ideal speed limit. Note that near
the transition point of the two bifurcations, a global
bifurcation can still occur which indicates that a sta-
ble equilibrium solution, an unstable periodic solution,
and a stable periodic solution coexist within the physi-
cal boundary, asmentioned in Sect. 4.2.2. This situation
can be treated directly as a supercritical Hopf bifurca-
tion with a reduced OS of instability when it comes
to its nonlinear characteristics, although it is actually
a subcritical Hopf bifurcation at the bifurcation point
according to the definition of local bifurcation. Besides,
the decrease in the aspect ratio under a fixed bearing
diameter can be viewed as an increase in the static load.
So, it can be said that the supercritical Hopf bifurcation
changes into the subcritical Hopf bifurcation with the
increase in the static load. This agrees with the result
of Ref. [9] that the increase in the static load leads to
a decrease and finally a disappearance of the subsyn-
chronous vibrations under unbalanced excitation.

Similarly, Fig. 9 gives the influence of the foil struc-
tural stiffness kb and the loss factor η f on the OS of
instability and the two speed limits with L/D = 1.1.
For the foil stiffness, the linear results are consistent
with Ref. [7,11,13] (i.e., the flexibility of the foil struc-
ture can improve the OS of instability). However, the
nonlinear results have shown almost completely oppo-
site conclusions. The improvement of the OS of insta-
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Fig. 9 Influence of the foil structural stiffness kb and the loss
factor η f on the OS of instability and the two speed limits with
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bility arising from a softer foil structure is offset by
the transition from a supercritical Hopf bifurcation to
a subcritical Hopf bifurcation. The good news is that
the increase in the foil structural loss factor can signif-
icantly improve both the linear and nonlinear results
at a low foil stiffness, which means the effectiveness
of a soft foil structure to increase the actual speed
limit depends on the damping characteristics of the
foil structure. Therefore, if there is no sufficient damp-
ing in the structure, a higher foil stiffness should be
the first choice considering the actual available speed,
thanks to the excellent shock stability and unbalanced
response characteristics of the supercritical Hopf bifur-
cation compared to the subcritical one. Besides, the
results can give an excellent explanation to the exis-
tence of stable periodic solutions alongwith the change
of the foil structural stiffness found in Ref. [30,31].

A comprehensive view of the effect of the design
parameters on the Hopf bifurcation type and the rel-
ative difference between the OS of instability and the
actual speed limit is given in Fig. 10. As can be seen,
for a lower foil stiffness, a larger aspect ratio is needed
to have a supercritical Hopf bifurcation behavior. The
loss factor has a relatively small effect on the Hopf
bifurcation type. For a systemwith a supercritical Hopf
bifurcation, the OS of instability and the actual speed
limit are in agreement (i.e., the relative difference is
zero), while for a system with a subcritical Hopf bifur-
cation, the relative difference increases when moving
away from the transition line.
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5 Conclusions

The nonlinear dynamic characteristics of GFB-rotor
systems with a supercritical or a subcritical Hopf bifur-
cation have been presented in this paper. The governing
equation of the fully coupled system was established
to simultaneously solve the rotor motion, the hydro-
dynamic pressure, and the foil deflection. The OS of
instability (i.e., the bifurcation point) was predicted by
the linear stability analysis. The periodic solution of
the system before or after the bifurcation point was
obtained by the shooting method, and its stability was
assessed by the Floquet multipliers.

The shock stability and unbalanced response charac-
teristics of the two Hopf bifurcation types were inves-
tigated, and the results reveal that the subcritical Hopf
bifurcation is far more dangerous than the supercritical
one. For a systemwith a supercritical Hopf bifurcation,
when operating below the OS of instability, the rotor
can always return to stable operation after experiencing
any nondestructive shock. With unbalanced excitation,
whirl and whip motions were both observed, and the
bearing could still work without failure when operat-
ing above the OS of instability. For a system with a
subcritical Hopf bifurcation, even operating at a speed
below the OS of instability, the rotor may diverge and
contact with the foil structure after experiencing a non-
destructive shock. With unbalanced excitation, whirl
and whip motions did not appear, and the film would
fail suddenly as the speed increases to a threshold speed
lower than the OS of instability. Hence, for a practical

GFB-rotor system that lacks Hopf bifurcation analy-
sis during the design stage, the system may undergo a
subcriticalHopf bifurcation and suffer an unpredictable
failure even operating at a speed below the OS of insta-
bility.

Aparameter analysis of the aspect ratio, the foil stiff-
ness, and the loss factor on the Hopf bifurcation type
and the actual speed limit was carried out, and sig-
nificant differences were observed between the non-
linear results and the linear results. The aspect ratio
and the foil stiffness have obvious effects on the Hopf
bifurcation type of the system, while the loss fac-
tor has a relatively small effect. For the actual speed
limit, all three parameters have obvious effects. As the
aspect ratio increases, both the OS of instability and
the actual speed limit decrease. A lower foil stiffness
can increase the OS of instability; however, the actual
speed limit would probably decrease as the Hopf bifur-
cation changes from a supercritical type to a subcritical
type. With a low foil stiffness, a large loss factor is an
obvious improvement for the actual speed limit as well
as the OS of instability.

Therefore, to avoid the undesired subcritical Hopf
bifurcation in a practical GFB-rotor system, the inves-
tigation on the Hopf bifurcation type and actual avail-
able speed based on nonlinear dynamic analysis is of
great necessity during the bearing design stage.
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