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Abstract The bifurcation characteristics of the active
magnetic bearing-rotor system subjected to the external
excitation were investigated analytically when it was
operating at a speed far away from its natural frequen-
cies. During operation of the system, some nonlinear
factors may be prominent, for example, the nonlinear-
ity of bearing force and current saturation. Nonlinear
factors can lead to some complicated behaviors, which
have negative effects on the operating performance and
stability. To analyze the bifurcations happening at the
speed far away from harmonic resonances, an approx-
imate analytical method that can be applicable to the
bifurcation analysis of the forced vibration system was
proposed.Byapplying it to the activemagnetic bearing-
rotor system, multiple static equilibriums and periodic
solutions were obtained, and then, the stability analy-
sis was conducted based on Floquet theory. The valid-
ity and accuracy of the approximate analytical method
were verified by the numerical integration method and
generalized cell mapping digraphmethod. It was found
that there was supercritical pitchfork bifurcation of
static equilibrium in the active magnetic bearing-rotor
system. The influences of external excitation and con-
troller parameters on dynamical characteristics were
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discussed. Based on analysis results, controller param-
eterswere also improved to prevent nonlinear behaviors
and improve system performance.
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1 Introduction

1.1 Nonlinear AMB-rotor system

Active magnetic bearing (AMB) is a typical mecha-
tronic product consisting of sensors, power amplifier,
controller, and electromagnetic actuator. In rotating
machines, AMBs can generate proper electromagnetic
forces in time through the cooperation of their compo-
nents to achieve the suspension support of rotors [1].
During operation, once the rotor deviates from the
reference position, the sensor measures the rotor dis-
placement and transmits measurement signal to the
controller. Then the controller gives control command
based on its control law. The power amplifier out-
puts corresponding control current. Thereby the elec-
tromagnetic forces are adjusted and the rotor is driven
to return to the reference position through this way.

Compared with mechanical bearings, AMBs have
many advantages. There is no contact between the
rotor and stator. Accordingly, there is no mechanical
wear. The additional lubrication system is also unnec-
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essary. The extremely high-speed operation can also be
achieved due to non-contacting support. What’s more,
the dynamical characteristics including stiffness and
damping can be adjusted flexibly by the controller. Due
to these advantages, AMBs have been widely used in
high-speed rotating machines, especially those operat-
ing in harsh environments, the primary helium circula-
tor for high-temperature gas-cooled nuclear reactor[2–
4] for example.

In the process of design and commissioning, it is
necessary to obtain accuratemodelswhich can describe
the characteristics of AMB-rotor systems. The most
common models are linearized. They can be obtained
by linearizing the electromagnetic force with respect
to the rotor displacement and current near the refer-
ence position [1]. In the vicinity of reference position,
linearized models can accurately describe dynamical
characteristics of systems and play key roles in system
design, performance analysis, system identification and
controller design of AMB-rotor systems [5,6].

However, AMB-rotor systems are inherently non-
linear and there exist nonlinear factors in most of their
components. Nonlinear factors can be divided into two
types according to involved components, namely the
bearing nonlinearities and the rotor nonlinearities. The
nonlinear factors in bearings and related components
are called bearing nonlinearities. One of the important
bearing nonlinearities is the nonlinear relationship of
the electromagnetic force with respect to the rotor dis-
placement, current in bearing, which is called the non-
linearity of electromagnetic force in this paper.Besides,
bearing nonlinearities also include the nonlinear mag-
netization, magnetic saturation, hysteresis due to the
feature of ferromagnetic material [7], the voltage or
current saturation due to the capacity of power ampli-
fier [8,9], etc. The nonlinear factors in rotating parts are
called rotor nonlinearities, which include the internal
friction of rotor [10,11], and even some faults [12–14]
such as rotor crack and rub-impact. When the AMB-
rotor systems are operating under some harsh condi-
tions, subjected to heavy load and large disturbance
for example, these nonlinear factors may lead to some
complicated phenomena, which always have important
influences on the system performance and stability. In
addition, with the increasing trend of operation speed
of rotating machines, the nonlinear factors in AMB-
rotor systems are becoming more and more prominent.
Thereby many nonlinear behaviors happen frequently
in AMB-rotor systems.

In AMB-rotor systems, many nonlinear phenom-
ena such as jump phenomenon [15], pitchfork bifur-
cation [16], period doubling, quasi-periodic motion
and even chaos [17] have been observed. In cases of
jump phenomenon and supercritical pitchfork bifurca-
tion, the maximum displacement of rotor will increase
obviously, which will make the system performance
deteriorate and even lead to instability. In case of the
period doubling, quasi-periodicmotion and chaos, non-
synchronous vibrations occurring in the system will
generate alternating stress in the rotor, which will dam-
age the system structure and shorten the operating life.
These nonlinear dynamical behaviors have significant
influences on the performance, stability and operating
life of the AMB-rotor systems.

However, analyses based on the linearized models
cannot explain these complicated behaviors. Accord-
ingly, no effective measures can be proposed to avoid
these phenomena. On the basis of this research back-
ground, it is necessary to conduct dynamical analyses
of the AMB-rotor systems by taking nonlinear factors
into consideration. It can help to get a comprehensive
understanding of dynamical characteristics under var-
ious operating conditions from nonlinear perspective
and propose effective measures to improve the system
performance.

1.2 Nonlinear analysis methods

The nonlinear dynamics of rotating machinery has
always been the research hot spot. In this field, many
effective analysis methods were developed and some
valuable results were found [10,12,14,18–22]. These
papers focused on nonlinear bearing forces (mainly
nonlinear oil-film forces), rotor cracks, internal fric-
tion, internal damping, rub-impact and other possi-
ble nonlinear factors in bearing-rotor systems. Vari-
ous nonlinear phenomena such as oil whirl, jump phe-
nomenon, bifurcation, quasi-periodicmotion and chaos
were investigated. The mechanisms and conditions of
these complicated behaviors were illustrated in detail.

The analysis methods adapted in these papers can be
classified into numerical methods, approximate analyt-
ical methods and qualitative analysis methods.

Numerical methods mainly included the numeri-
cal integration method and cell mapping methods.
References [13,20,23] used the numerical integration
method to study nonlinear phenomena in the bearing-
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rotor systems. The period doubling, quasi-periodic
motion and chaos were investigated using bifurca-
tion diagrams, time domain responses, shaft center
trajectories, Poincaré map and power spectrum com-
prehensively. Some analysis results were validated
through experiments. In numerical analyses of non-
linear dynamics of bearing-rotor systems, the largest
Lyapunov exponent can be calculated and regarded as
the judgment of the chaos [14,24,25].

References [16,26] applied cell mapping methods
to rotor systems to obtain global nonlinear dynamical
characteristics including attractors and their domains
of attraction. Hsu proposed the simple cell mapping
method firstly in [27]. Consequent on this, various
improved methods such as the generalized cell map-
pingmethod [28,29], generalized cell mapping digraph
method [30,31] and Poincaré-like simple cell map-
ping method [32] were developed. Compared with tra-
ditional point mapping methods, these cell mapping
methods have the advantages of low computation cost
and wide application. They have shown great potential
to be used in nonlinear dynamical analysis of bearing-
rotor systems.

The approximate analyticalmethods include the har-
monic balance method, the method of multiple scales,
the averaging method, the asymptotic method, etc.
Compared with numerical methods, they can help to
understand mechanisms of nonlinear phenomena in
the systems, calculate the critical parameter domains
quantitatively and determine the stability conditions.
Reference [33] used the harmonic balance method to
study responses of a dual-rotor system with transverse
crack. The super-harmonic responses were found, and
influences of depth and position of the crack were also
discussed. Reference [12] applied the method of mul-
tiple scales to analyze nonlinear dynamical character-
istics in 2:1 and 3:1 super-harmonic resonances of an
aircraft cracked rotor. The calculation accuracy of the
method of multiple scales was improved by expand-
ing orders of time-scale in [34]. The method of mul-
tiple scales is widely used and can be applied to the
dynamical behaviors of the bearing-rotor systems with
different nonlinear factors. But in solving process, the
solvability is dependent on the secular term which is
always obtained according to conditions of resonances
or harmonic resonances. Therefore, themethod ofmul-
tiple scales focuses on the dynamical characteristics of
bearing-rotor systems in harmonic resonance regions.
Thewhirlingmotions and stability of bearing-rotor sys-

tems with hysteretic internal friction were analyzed
using averagingmethods in [10,11,35,36]. The authors
discussed influences of hysteretic internal friction on
the system stability and pointed out that proper stiff-
ness anisotropy of the supports is beneficial to stability
of systems.

Besides numerical methods and approximate ana-
lytical methods, there are also some analysis meth-
ods which can be applied to the bifurcation and sta-
bility analyses of nonlinear systems. These methods
are always used to analyze the topological properties
of nonlinear governing equations qualitatively, which
can help to understand the whole nonlinear character-
istics of the systems. References [37,38] obtained the
nonlinear viscoelastic shaft models based on Hamilton
principle and then used the method of normal form and
center manifold theory to study Hopf bifurcations and
double Hopf bifurcations. The bifurcations and stabil-
ity of nonlinear rotor system with viscoelastic damp-
ing were discussed. Reference [22] also used the center
manifold theory to analyze the supercritical and sub-
critical bifurcations in the floating ring bearing-rotor
system and discussed the oil whirl and whip. How-
ever this kind of method are mostly applicable to bifur-
cation analyses of autonomous and parameter-excited
systems. In bearing-rotor systems, rotor eccentricities
are inherent, and the external excitation is unavoidable
during operation. Therefore, the systems are substan-
tially forced vibration systems in which the applica-
tions of qualitative analysis methods are limited.

In the field of nonlinear dynamics of rotating
machines, there are many different forms of analy-
sis methods applicable for different situations. In the
above papers, numerical methods, analytical methods
and qualitative analysis methods were applied to differ-
ent systems operating in different working conditions.
Many valuable results have been obtained.

1.3 Applications of nonlinear analysis methods in
AMB-rotor systems

As one type of bearing-rotor systems, AMB-rotor sys-
tems have similarities with others in some aspects, for
example some similar nonlinear factors in rotors and
bearings. On the other hand, the AMB-rotor systems
may be special in some ways. There are some special
nonlinear factors due to peculiarities ofAMB-rotor sys-
tems. Meanwhile, for the same nonlinear factors of the
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rotor, behaviors of rotor systems supported by AMBs
may be very different from those in rotor systems
supported by other bearings. In addition, controllers
of AMB systems also have influences on dynamical
behaviors due to nonlinear factors of the rotor [39].

Different from mechanical bearings, support forces
of the AMBs are electromagnetic forces, which have
a more definite relation with system parameters. Thus,
models of bearing forces can be obtained more eas-
ily. The nonlinearity of electromagnetic forces is more
prominent due to the large range of rotor displacement
in AMB-rotor systems. Electrical components and fer-
romagnetic materials used in the systems may lead
to the current or voltage saturation, nonlinear magne-
tization, magnetic saturation and hysteresis possibly,
whichwill never happen inmechanical bearings. These
unique nonlinear factorswill makeAMB-rotor systems
exhibit some different nonlinear dynamical behaviors.
The complicated behaviors caused by bearing and rotor
nonlinearities need further analyses. However the non-
linear dynamical analyses of mechanical bearing-rotor
systems can provide some methodological guidances.
These analysis results have immense heuristic values.

The methods mentioned in Sect. 1.2 have been used
in nonlinear analyses of AMB-rotor systems, and some
analysis results were similar to those in other bearing-
rotor systems. References [17,40,41] used the numer-
ical integration method to study complicated dynam-
ical behaviors of AMB-rotor systems by considering
the nonlinearity of bearing forces. The period dou-
bling, quasi-periodic motions and chaos were found.
They illustrated the influences of system parameters
on dynamical characteristics and identified some key
factors. Reference [15] obtained the approximate ana-
lytical solutions of a nonlinearAMB-rotor system in the
main resonance region by using the method of multi-
ple scales. The jump phenomenon and local bifurcation
behaviors were illustrated based on the solutions. The
influences of external excitation amplitude and con-
troller parameters on dynamical characteristics were
also discussed. Besides, the harmonic balance method
can also be utilized to analyze the nonlinear responses
of the AMB-rotor system in the main resonance and
harmonic resonance regions [42]. These reports proved
the universality of analysis methods in the nonlinear
dynamics of rotating machines.

However, the characteristics of AMB-rotor sys-
tems are more complicated than those of mechani-
cal bearing-rotor systems. The digital controllers are

adopted, and then, the control delay is inevitable.
Although the timedelay is a linear dynamical character-
istic, the extremely short time delay still has significant
influences on support characteristics, rotor dynamics
and the stability of high-speed rotating machines sup-
ported byAMBs. If the nonlinearity of electromagnetic
force is prominent, the effect of control delay will be
more obvious. By considering both the nonlinearity of
bearing force and control delay, references [43,44] con-
ducted nonlinear analyses and found the soft spring
characteristic and jump phenomenon. It was pointed
out that control delay made the effect of nonlinear elec-
tromagnetic force more prominent.

Additionally, the stiffness can be designed to be
time-varying by choosing appropriate control strate-
gies due to the flexible adjustment of the AMB char-
acteristics. This design strategy may get larger sta-
ble parameter domains and improve the performance
of AMB-rotor systems. Nevertheless, the time-varying
stiffness may make the systems with nonlinearity of
bearing forces show more complicated characteris-
tics. References [45–48] used the asymptotic method,
method of multiple scales and numerical integration
method to investigate the dynamical characteristics of
nonlinear AMB-rotor systems with time-varying stiff-
ness. The Shilnikov type multi-pulse chaotic motions,
quasi-periodic motions, and jump phenomena were
found. What’s more, it was pointed out that the ratio-
nal designed parameters of PD (proportional differ-
ential) controller can generate control force to make
the chaotic motion turn into period-2 motions, which
emphasized the role of the controller in nonlinear
AMB-rotor systems [45].

These above reports about nonlinear dynamical
analyses of AMB-rotor systems show there are some
special nonlinear effects in AMB-rotor systems, and
they have important influences on the dynamical char-
acteristics. In the field of nonlinear analyses of AMB-
rotor systems, the main nonlinear factor was the non-
linearity of electromagnetic force. And some also took
both the nonlinearity of electromagnetic force and
dynamical characteristic of the controller into consider-
ation. As for analysismethods, therewere two common
ones. One was the method of multiple scales, which
was utilized to analyze the nonlinear dynamical behav-
iors near the resonances and harmonic resonances. The
other was the numerical integration method, which can
investigate period doubling, quasi-periodic motions
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and chaos by taking the rotor speed as distinguish vari-
able.

During operation of theAMB-rotor system, the rotor
suspends at a steady position. The steady suspension
position of rotor is called static equilibrium in this
paper. Different from mechanical bearing system in
which the rotor is fixed at a very limited extent, the
larger mechanical clearance of AMBs can make the
static equilibrium vary in a much larger range. In some
situations, the static equilibrium can make a signifi-
cant contribution to the rotor displacement. Therefore
the static equilibrium has significant influences on the
system performance and stability as well as the rotor
vibration amplitude. During the design and operation,
it is expected that themechanical clearance between the
rotor and stator in all directions is uniform. To achieve
this goal, the reference position is designed to locate
in the center of mechanical clearance. During opera-
tion, the static equilibrium is supposed to coincide with
the reference position. It can effectively avoid that the
clearance in an arbitrary direction becomes too small to
cause rub-impact. When the static equilibrium locates
in the reference position, we call it trivial equilibrium.
However, the static equilibrium can deviate from the
reference position during actual operation. In this situ-
ation, it is called nontrivial equilibrium.

In the following, both vibration and static equilibri-
ums are investigated.

In above reports, the characteristics of rotor vibra-
tion amplitudes and phases inAMB-rotor systemswere
complicated due to their nonlinear factors. The static
equilibrium was not considered. However there is no
doubt that static equilibriumwill affect dynamical char-
acteristics of the systems. There is few research about
the static equilibrium of the AMB-rotor system. Refer-
ence [8] studied the influence of current saturation on
the dynamical characteristics of a permanent magnet-
based homopolar magnetic bearing system and found
the current saturation would make the rotor vibrate
steadily at a position deviating from the reference posi-
tion. Although the structure of this system is different
from those of AMB-rotor systems, the similar phenom-
ena are possible in the AMB-rotor systems.

Reference [16] studied the effects of current sat-
uration on the static equilibrium of AMB-rotor sys-
tem. The generalized cell mapping digraphmethodwas
used to investigate global dynamical characteristics of
an AMB-rotor system with current saturation. There
were multiple static equilibriums in the non-resonance

region. The bifurcation behaviors occurred. The larger
mechanical clearance of AMB makes it possible that
multiple static equilibriums can be exhibited during
actual operation, even if they are not trivial equilib-
riums. This deviation of static equilibrium from ref-
erence position is detrimental to the performance and
stability of the system and needs further investigation.
However, the further application of the generalized cell
mapping digraph method used in [16] was limited due
to its expensive computational cost.

The approximate analytical methods have small
computational cost and can be used to explore mecha-
nisms of nonlinear phenomena. The common one is
the method of multiple scales. It has been applied
in nonlinear analyses of AMB-rotor systems. But as
mentioned above, in this field, the method of multiple
scales was mostly used to analyze nonlinear behav-
iors in resonance and harmonic resonance regions.
In some situations, it can also be used to explore
the behaviors in non-resonance region [21], but the
systems are parameter-excited vibration systems. The
qualitative analysis methods including bifurcation the-
ory can be applied to study bifurcation behaviors of
autonomous and parameter-excited vibration systems
in non-resonance region. Butmost of themdid notwork
for forced vibration systems.

Based on anAMB-rotor systemconsidering the non-
linearity of electromagnetic force and current satura-
tion, this paper developed a novel method of multiple
scales to investigate bifurcation characteristics of the
AMB-rotor system in non-resonance region. The mul-
tiple static equilibriums of the nonlinear model can
be obtained through the method and the supercriti-
cal pitchfork bifurcation was found. After transform-
ing the non-autonomous governing equation into the
autonomous form through state augment, the stability
analysis of multiple solutions can be conducted based
on Floquet theory. The validity of the method was veri-
fied by numerical methods. It was found that there was
supercritical pitchfork bifurcation of static equilibrium
in theAMB-rotor systemwith current saturation,which
could give the reason why the rotor deviated from the
reference position when the system was operating at
its working speed. The supercritical pitchfork bifur-
cation makes the maximum instantaneous displace-
ment of the rotor increase a lot and has negative influ-
ences on the performance and stability of the system.
The influences of controller parameters were also dis-
cussed, and the adjustment of the controller parameters
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was conducted based on the analysis results. Changing
the controller parameters can prevent the supercritical
pitchfork bifurcation effectively to improve the system
performance. The research generalized applications of
the method of multiple scales in the field of nonlinear
dynamics of rotating machines. The system structure
design and controller design based on the nonlinear
analysis results can help the AMB-rotor system keep
in high-performance operation even if the operating
condition is harsh.

2 Model description

The research object is a blower rotor supported by
AMBs, whose operating speed is �0 = 27,000 rpm,
see details in [16]. Different from mechanical bear-
ings, AMBs use the electromagnetic force to achieve
the non-contact support of the rotor and have larger
mechanical clearance. Figure 1 shows the structural
sketch of theAMB-rotor system. The static equilibrium
is designed to locate in the reference position exactly,
as shown in Fig. 1a. In this case, the rotor vibrates at
the reference position. The maximum displacement of
the rotor is exactly the vibration amplitude. Accord-
ing to the analysis based on linear theory, the designed
system has enough stability margin and can vibrate sta-
bly for different conditions. However, during the actual
operation, an unexpected phenomenon happened. The
static equilibrium deviated from the reference position
and the rotor vibrated at a new static equilibrium, as
shown in Fig. 1b. In this case, the maximum displace-
ment of rotor becomes much larger, that is sum value
of the vibration amplitude and static equilibrium. The
system performance deteriorates. It is easy for the rotor
to exceed the physical limit to cause instability. By ana-
lyzing the operational data, the current saturation was
found. The AMB-rotor system showed typical nonlin-
ear characteristics.

In order to explore this phenomenon, this paper
planned to do the nonlinear dynamical analysis through
an approximate analytical method. A model that can
describe the nonlinear characteristics accurately was
needed. During actual operation, unexpected phe-
nomenon was more prominent in one direction due to
the tiny differences among all directions. Therefore,
this paper focused on one direction and obtained the
single-degree-of-freedom (SDOF) model by neglect-
ing the coupled relationship between different direc-

Reference position 
(Static equilibrium) Vibration amplitude

Maximum displacement

Minimum displacement

Rotor

Static equilibrium
Vibration amplitude

Maximum displacement

Minimum displacement

Rotor

Reference position 

(a)

(b)

Fig. 1 Structural sketch of AMB-rotor system

tions. For simple analysis, the actual controller was
simplified into a PD controller at the operating speed.
Summing up the above, this paper would conduct the
nonlinear dynamical analysis based a SDOF model
with PD controller.

2.1 Mathematical model

During operation, the AMB-rotor system always suf-
fers external excitations such as unbalance excitation
and air load. In general, external excitations are syn-
chronous with the rotor speed. Under the combined
effects of bearing force generated by currents and exter-
nal excitation, the AMB-rotor system can keep vibrat-
ing stably.However, there are limitations in the capacity
of the power amplifier. The actual currents are not infi-
nite and have extreme values. The relationship between
the electromagnetic force and rotor displacement and
currents are also nonlinear. If the external excitation
is large, the system will prominently exhibit the non-
linearity of bearing force and current saturation. It is
more accurate to describe dynamical characteristics of
the AMB-rotor system by considering them. These two
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nonlinear factors are taken into consideration to build
a nonlinear SDOF model. The modeling process is as
follows [1,16].

The control current according to the control law of
the PD controller can be formulated in

i = Kpy + Kd ẏ, (1)

where y is the rotor displacement, ẏ is the velocity of the
rotor, Kp and Kd represent the proportional and differ-
ential gains of PD controller, respectively. The control
current i will work with the bias current i0 together in
the electromagnets in differential arrangement. But due
to the output capacity of power amplifier, the currents
in a pair of opposite electromagnets i+ and i− have
limits and can be expressed as

i± = med (0, i0 ± i, im)

=
⎧
⎨

⎩

0 i0 ± i < 0
i0 ± i 0 ≤ i0 ± i ≤ im
im im ≤ i0 ± i

, (2)

where im is the maximum current that the power ampli-
fier can output, 0 is the minimum, and ‘med’ means
taking the median.

The currents i+ and i− generate the nonlinear elec-
tromagnetic force,

F = 1

4
KF

((
i+

s0 + y

)2

−
(

i−
s0 − y

)2
)

, (3)

where s0 is the air gap of the bearing, and KF is the
force coefficient determined by the system structure.

During operation, the AMB-rotor system is sub-
jected to the external excitation inevitably. The differ-
ential equation of motion can be expressed in

ÿ = 1

m
(−F + f cos (�t)) , (4)

where f is the excitation amplitude.
Equations (1)–(4) can describe the nonlinear dynam-

ical characteristics of the AMB-rotor system with PD
controller. Shown as Eq. (3), the electromagnetic force
is a nonlinear function with respect to the rotor dis-
placement and currents in the system. Compared with
the linearized model, this model is more accurate to
describe the actual system. Different frommost reports
about the nonlinear investigations of AMB-rotor sys-
tems [15,17,40–42], the actual limitation about the

currents is considered as well as the nonlinearity of
the bearing force. If the operating condition becomes
harsh, the systemwill need large electromagnetic force
to suppress vibration. Accordingly, large control cur-
rent is needed. If the expected currents exceed the lim-
itations, the current saturation will happen. The cur-
rent saturation will make the electromagnetic force
shown in Eq. (3)more complicated. Based on the above
SDOF nonlinear model, the complicated behaviors of
the AMB-rotor system can be investigated.

2.2 Non-dimensional equation of motion

This paper introduced these non-dimensional variables
shown in Eq. (5) to transform the nonlinear differen-
tial equation of motion shown in Eq. (4) into a non-
dimensional one.

ỹ = y

s0
, �̃ = �

�0
, t̃ = �0t,

ĩ = i

im
, ĩ0 = i0

im
, ĩ± = i±

im
. (5)

By substituting Eq. (5) into Eqs. (1)–(4), we can
obtain the non-dimensional equation,

¨̃y = −F̃ + f̃ cos
(
�̃t̃

)
, (6a)

F̃ = K̃F

⎛

⎝

(
ĩ+

1 + ỹ

)2

−
(

ĩ−
1 − ỹ

)2
⎞

⎠ , (6b)

ĩ± = med
(
0, ĩ0 ± ĩ, 1

)
, (6c)

ĩ = K̃p ỹ + K̃d ˙̃y, (6d)

where K̃F = KF i2m
4m�2

0s
3
0
, K̃p = Kps0

im
, K̃d = �0Kds0

im
, f̃ =

f
ms0�2 .

3 Analytical analysis

This paper used the approximate analytical method to
investigate nonlinear dynamical characteristics of the
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AMB-rotor system when it was operating far away
from resonances. The polynomial fitting was employed
firstly to transform the non-smooth model (6) into a
polynomial expression that can be solved analytically.
Then a novel method of multiple scales was proposed
to get the approximate solutions, which could obtain
both static equilibrium and vibration characteristics. At
last, Floquet theory was used to carry out the stability
analysis of approximate solutions.

3.1 Approximation of electromagnetic force

Due to current saturation, the characteristic of actual
electromagnetic force is complicated. As shown in
Eq. (6b), the function of electromagnetic force with
respect to the rotor displacement and currents is a ratio-
nal fraction one. At critical points where current satu-
ration occurs, the change of electromagnetic force is
non-smooth. If the approximate analytical method is
applied to the non-smooth model directly, a large num-
ber of section-by-section calculations depending on
the piecewise function of electromagnetic force will
be needed. It brings a challenge to the application
of approximate analytical method. In order to solve
the problem, this paper conducted a polynomial fitting
of the electromagnetic force and got an approximate
expression of the model which can describe the char-
acteristics of electromagnetic force approximately.

In the possible operating region, namely ỹ ∈
[−0.8, 0.8], ĩ ∈ [−2.8, 2.8], this paper used a eleven-
order polynomial tofit the electromagnetic force F̃ with
respect to the control current ĩ and rotor displacement ỹ.
The error of mean square of fitting is RMSE = 0.0030.
The original electromagnetic force, fitting one, and
their difference are shown in Fig. 2. It can be seen
that they generally fit precisely. The difference between
them is much smaller compared with absolute value of
the original electromagnetic force. In most operating
regions, the difference value can be neglected. The dif-
ference has little influence on the subsequent analysis.
The fitting electromagnetic force can reflect character-
istics of the actual electromagnetic force accurately.

Substitute the control current (6d) into the fitting
polynomial of the electromagnetic forcewith respect to
ĩ and ỹ, then obtain the expression of the fitting electro-
magnetic force with respect to the rotor displacement
ỹ and its first-order derivative ˙̃y, shown in Eq. (7) .

Fig. 2 Fitting result of electromagnetic forces. aActual electro-
magnetic forces. b Fitting electromagnetic forces. c Difference
between actual and fitting electromagnetic forces

F̃ f =
∑

1≤m+n≤11

km,n ỹ
m ˙̃yn, (7)

where km,n = 0 ifm+n is even number.Otherwise km,n

are the relational expressions about controller parame-
ters K̃p, K̃d, see the details in “Appendix A”. The non-
linearity of electromagnetic force and current satura-
tion can be reflected in fitting electromagnetic force
(7).

The non-dimensional model in Eq. (6) is trans-
formed into the fitting model by the polynomial fitting,
shown in Eq. (8).

¨̃y = −F̃ f + f̃ cos
(
�̃t̃

)
. (8)

The nonlinear dynamical analysis of the AMB-rotor
system can be carried out based on the fittingmodel (8).

3.2 Analytical solutions

This paper utilized the method of multiple scales to
study complicated behaviors in the AMB-rotor system
analytically. Themethod ofmultiple scales is one of the
common approximate analyticalmethods to investigate
the dynamical characteristics of nonlinear systems. In
the field of nonlinear dynamical analyses of rotor-
bearing systems, the method of multiple scales is usu-
ally applied in two cases. The one usage of the method
of multiple scales is to investigate the free vibration
to obtain nonlinear relationship between the vibration
amplitude and vibration phase. The other is to study the
nonlinear behaviors of the forced or parameter-excited
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vibration systems in primary and harmonic resonance
regions. In above both usages, it only can obtain the
magnitude-frequency characteristics of rotor vibration.
The secular term is obtained by using the resonance
conditions, and the solvability condition is the secular
term equal zero.

In this paper, the aim is to investigate the forced
vibration of the AMB-rotor system when it is operat-
ing far away from resonances. Moreover, the compli-
cated behaviors are reflected in the static equilibrium
rather than the magnitude-frequency characteristics.
Obviously, the traditional method of multiple scales
is not applicable. Aiming at the problem, this paper
improved the traditional method of multiple scales to
get both vibration amplitude and static equilibrium and
then analyzed nonlinear dynamical characteristics of
the AMB-rotor systems. Although the idea of multi-
ple time scales including the fast and slow scales was
still adopted, the minor perturbation term chosen and
the form of solution were different from the traditional
ones [15]. Accordingly, the way to derive the secular
term was also different.

The nonlinear rotor systems show complicated
behaviors in terms of vibration amplitude. The reasons
why nonlinear behaviors occur lie in the intrinsic prop-
erties of systems. However, the AMB-rotor system in
this paper exhibited complicated nonlinear responses
when it operated at a speed far away from the reso-
nances, which was obviously different from the jump
phenomena and bifurcations in resonance regions. The
unexpected behaviorsweremostly caused by the forced
vibration, namely affected by the external excitation.
Therefore, the different minor perturbation term was
chosen, then Eq. (9) was obtained.

¨̃y + ε F̃ f = f̃ cos
(
�̃t̃

)
, (9)

where ε is the non-dimensional perturbation parameter,
which denotes the corresponding term is minor pertur-
bation term. This paper only considered the first-order
approximation of solutions. Then the form of analytical
solution can be formulated in

ỹ = y0 + εy1. (10)

The dynamical characteristics can be analyzed from
two time scales, namely T0 = t̃ and T1 = εt̃ . From the

algebraic relationship between t̃ and T0, T1, the follow-
ing equation can be derived,

d

dt̃
= D0+εD1,

d2

dt̃2
= D2

0+ε2D0D1+ε2D2
1, (11)

whereD0 andD1 denote to derivativewith respect to T0,
T1 respectively. Substitute Eqs. (10) and (11) into Eq.
(9), then equate the powers of perturbation parameter
ε, we can obtain two linear differential equations,

ε0 : D2
0y0 = f̃ cos

(
�̃t̃

)
, (12)

ε1 : D2
0y1 = −2D0D1y0 −

∑

1≤m+n≤11

km,n ỹ
m ˙̃yn . (13)

The stationary solutions of the periodically excited
AMB-rotor system must be periodic. Therefore only
periodic solutions were considered in this paper. The
solution of Eq. (12) was supposed to be

y0 = C0 + A cos
(
�̃T0

)
= C0 + ae−D�̃T0

+ āej�̃T0 , (14)

where C0 is the static equilibrium, a is the complex
vibration amplitude, and ā is its conjugate. The vibra-
tion amplitude of rotor is |A|, and A = 2Re (a). The
solution form is different from that in the traditional
method of multiple scales, which only includes the
vibration amplitude and phase. It contains both vibra-
tion and static equilibrium terms and can reflect dynam-
ical characteristics of the AMB-rotor system compre-
hensively.

The term A cos
(
�̃T0

)
or ae−j�̃T0 + āej�̃T0 is the

harmonic term describing the rotor vibration. Because
the operating speed is much larger than the natural fre-
quency. The value of A can be approximately deter-
mined by the external excitation amplitude f̃ and oper-
ating speed �̃. And when the system is operating
steadily at working speed, the influence of vibration
phase of the rotor on the system stability is very weak
and can be ignored. Based on this, a is a real number
and we can obtain,

A = 2a = − f̃

�̃2
. (15)
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In order to get C0, by substituting Eq. (14) into Eq.
(13), we can get

D2
0y1 = b1C0 + b2C0

3 + b3C0
5 + b4C0

7 + b5C0
9

+b6C0
11 + b7e

−j�̃T0 + b8e
−2j�̃T0

+b9e
−3j�̃T0 + b10e

−4j�̃T0 + b11e
−5j�̃T0

+b12e
−6j�̃T0 + b13e

−7j�̃T0 + b14e
−8j�̃T0

+b15e
−9j�̃T0 + b16e

−10j�̃T0 + b17e
−11j�̃T0

+CC, (16)

where b1–b17 are functions with respect to coefficients
of fitting electromagnetic force km,n , a and �̃, see the
details in “AppendixB,” andCC represents the complex
conjugate of the harmonic terms. Equation (16) is too
complicated to be solved directly. Luckily, it is unnec-
essary to obtain the complete solution. In the equation,
only C0 needs to be determined. It is found there is a
constant term on the right-hand side. Set it as G (C0),
we can get,

G (C0) = b1C0 + b2C0
3 + b3C0

5 + b4C0
7

+ b5C0
9 + b6C0

11. (17)

It has nothing to do with time T0. However, there is
no term on the left-hand side in Eq. (16) to balance it.
If the constant term does not equal to zero, Eq. (16)
cannot have any periodic convergent solutions, which
is inconsistent with the actual situations. Therefore, the
term is the secular term. In this paper, the secular term is
an expression with respect to the static equilibrium C0

rather than harmonic terms determined by resonance
conditions.

According to the solvability of the method of mul-
tiple scales, we can obtain,

G (C0) = b1C0 + b2C0
3 + b3C0

5 + b4C0
7

+ b5C0
9 + b6C0

11 = 0. (18)

It is a polynomial equation that can have multiple
real solutions. There may be other static equilibriums
besides C0 = 0, which means the AMB-rotor system
may have multiple static equilibriums. The solution
meets the condition C0 = 0 is the trivial equilibrium,
otherwise nontrivial equilibrium. After getting static
equilibriums, the approximate solutions of Eq. (8) can
be obtained,

ỹ = y0 = C0 + A cos
(
�̃t̃

)
. (19)

This subsection used the improved method of multi-
ple scales to investigate dynamical characteristics of the

AMB-rotor system at its operating speed. The analysis
results show that characteristics of vibration amplitude
|A| are simple. But the characteristics of static equi-
librium are complicated. There may be multiple static
equilibriums. During operation, complicated responses
are mainly reflected in the suspension position of rotor
represented by the static equilibrium C0.

3.3 Stability analysis

According to the solving procedure in Sect. 3.2, this
paper can obtain multiple periodic solutions of the
AMB-rotor system. The stability of each solution can
be analyzed based on Floquet theory.

Before stability analysis, this paper augmented the
states by introducing ξ1 = ˙̃y, ξ2 = ỹ, ξ3 = �̃t̃ . Then
the polynomial model of the AMB-system (8) with
external excitation can be transformed into

ξ̇ =
⎡

⎣
ξ̇1
ξ̇2
ξ̇3

⎤

⎦ =
⎡

⎣
−F̃ f (ξ1, ξ2) + f̃ cos (ξ3)

ξ1

�̃

⎤

⎦

= G (ξ) , (20)

where F̃ f (ξ1, ξ2) is the fitting electromagnetic force
expressed by the extended states, see the details in
“Appendix C”. After state augment, the governing Eq.
(8) becomes an autonomous onewhich does not include
explicitly time term. The stability analysis can be con-
ducted based on Eq. (20). The eigenvalue of corre-
sponding monodromy matrix can determine the sta-
bility of solutions.

The state Eq. (20) is a periodic function with T =
2π
�̃
. The monodromymatrix of the system can be deter-

mined by the following equation,

dM
(
t̃
)

dt̃
= ∂G (ξ)

∂ξ

∣
∣
ξ0
M

(
t̃
)
,

M (0) = I, (21)

where I is an identity matrix. The monodromy matrix
M is the solution at time T of Eq. (21).

The procedure of stability analysis is as follows.
Substitute solutions ξ2 = C0 + A cos (ξ3) , ξ1 = ξ̇2
obtained in Sect. 3.2 into Eq. (20), then obtain corre-
sponding monodromy matrix M. The stability of ana-
lytical solutions can be determined by eigenvalues of
M, namely Floquet multipliers λi (M).

The monodromy matrixM is obtained based on the
autonomous Eq. (20). There is always an immutable
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Floquet multiplier, that is λ3 = 1. It is corresponding
to the periodic excitation. The stability of solution is
decided by the moduli of the other two Floquet multi-
pliers. If both moduli of these two Floquet multipliers
are less than 1, the corresponding solution is stable.
Otherwise, the solution is unstable.

Through above processing, the stability problem of
multiple solutions is transformed into the eigenvalue
problem of monodromy matrix. The stability of the
solutions can be determined by solving the eigenval-
ues of the monodromy matrix.

This section can obtain multiple solutions of the
AMB-rotor system and judge their stability through
analysis procedure introduced in Sects. 3.2 and 3.3. The
specific procedure is as follows. By substituting sys-
tem parameters including the rotor speed �̃, controller
parameters K̃p and K̃d, and external excitation ampli-
tude f̃ into Eqs. (15) and (18), the vibration amplitude
|A| and static equilibrium C0 can be obtained. After
that, the periodic solutions can be obtained according
to Eq. (19). The stability of each solution can be judged
by solving the eigenvalues of the monodromy matrix
M.

4 Analytical results

4.1 Analysis procedure with an example

As mentioned above, the research object is a blower
supported by AMBs. Non-dimensionalize the AMB-
rotor system according to the process in Sect. 2.2. In
the non-dimensional model, the electromagnetic force
coefficient is K̃F = 0.0097, and the bias current is
ĩ0 = 0.5. The operating speed of system is �̃ = 1. The
controller was designed based on the classical linear
control theory. In the linear theoretical framework, the
designed controller parameters have sufficient stability
margin and can make the system keep globally stable.
Based on the frequency domain method, the original
controller parameters can be transformed into the pro-
portional and differential gains of PD controller at a
certain speed [16]. Then the non-dimensional PD con-
troller parameters are K̃p = 1.9044, K̃d = 4.8006,
respectively. Under the combination of above system
parameters, the AMB-rotor system are expected to
vibrate at the reference positionwith a small amplitude.
However, unexpected complicated behaviors happened
during the actual operation.

This paper takes this system as an example to inves-
tigate the unexpected behaviors, and the approximate
analyticalmethod introduced inSect. 3 is themain anal-
ysis method. In this subsection, this paper explains how
to use the proposed method to conduct the nonlinear
dynamical analysis of the AMB-system.

For different external harmonic excitation, the num-
ber and stability of periodic solution in the AMB-rotor
system can be different.

For example, when the operating speed is �̃ = 1
and external amplitude is set as f̃ = 0.1, we can obtain
the vibration amplitude |A| = 0.1000 according to Eq.
(15). Then substitute system parameters K̃F = 0.0097,
ĩ0 = 0.5, �̃ = 1, K̃p = 1.9044 and K̃d = 4.8006 into
Eq. (18) and solve the polynomial equation. The static
equilibriums can be obtained. The relationship between
G (C0) andC0 is shown in Fig. 3. There are three static
equilibriums, namely

C0 = 0,±0.7656.

It should also be noted that we chose the fitting range
ỹ ∈ [−0.8, 0.8],ĩ ∈ [−2.8, 2.8] during the fitting pro-
cess of electromagnetic force, which completely cov-
ered the possible operation range of the AMB-rotor
system. In the fitting range, in order to make the fit-
ting electromagnetic force as close as possible to the
actual force, a sufficiently high-order polynomial was
used tofit the relationship of electromagnetic forcewith
respect to rotor displacement and control current. This
high-order fitting caused overfitting outside the fitting
range, and the fitting electromagnetic force is only valid
for the selected range and not extrapolative. Therefore,
the validity of solutions obtained based on the fitting
model should be tested by telling whether solutions are
in the fitting range. By considering C0 and |A| simul-
taneously, the actual static equilibrium should locate
in the region [−0.8 + |A| , 0.8 − |A|], which is also
marked in Fig. 3. The static equilibriums outside the
region are extraneous roots. It can be seen that there is
only one trivial equilibrium in this situation.

At last, we obtain the static equilibrium and periodic
solution of the AMB-rotor system when f̃ = 0.1,

C01 = 0,

ỹ1 = −0.1000 cos t̃ .
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Fig. 3 Static equilibriums for f̃ = 0.1

After obtaining theperiodic solution ỹ = −0.1000 cos t̃ ,
the corresponding monodromy matrix can be calcu-
lated according to Eqs. (20) and (21). After state aug-
ment, the solution can be expressed as

ξ1 = 0.1000 sin t̃,

ξ2 = −0.1000 cos t̃,

ξ3 = t̃ .

Substitute it into Eq. (20), and calculate the mon-
odromy matrix M according to Eq. (21). The corre-
sponding Floquet multipliers are

λ1=0.5833+ j0.5422, λ2=0.5833− j0.5422, λ3=1.

All the eigenvalues are not greater than 1. The solution
is stable. The analysis shows when f̃ = 0.1, there is
one stable periodic solution in the AMB-rotor system.

However when f̃ = 0.2, we can obtain the static
equilibriums C0 = 0,±0.3282,±0.6835 and vibra-
tion amplitude |A| = 0.2000. Figure 4 shows the static
equilibriums for f̃ = 0.2. As we can see, there are
three actual equilibriums and two extraneous roots. In
this situation, the static equilibriums of the AMB-rotor
system are

C02 =
⎧
⎨

⎩

0,
0.3282,
−0.3282.
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Fig. 4 Static equilibrium for f̃ = 0.2

Then further three possible periodic solutions can be
obtained according to Eq. (19); they are

ỹ2 =
⎧
⎨

⎩

−0.2000 cos t̃,
0.3282 − 0.2000 cos t̃,
−0.3282 − 0.2000 cos t̃ .

By substituting the periodic solutions into the mon-
odromy matrix M and getting λ (M), their stability
can be determined, respectively. The trivial solution
ỹ2 = −0.2000 cos t̃ is unstable, while two nontrivial
solutions ỹ2 = ±0.3282 − 0.2000 cos t̃ are stable.

This paper regards the external excitation amplitude
f̃ as the distinguishing variable and uses the approxi-
mate analytical method to solve the static equilibrium
C0 and vibration amplitude |A|, and further periodic
solutions ỹ. After removing extraneous roots and con-
ducting stability analysis based on Floquet theory, the
nonlinear dynamical characteristics can be explored in
depth. Table 1 gives calculation results for some exter-
nal excitation amplitudes, and the corresponding sta-
bility is also noted.

Through above procedures, this paper can get the
multiple solutions and their stability in the AMB-rotor
system with nonlinear electromagnetic force and cur-
rent saturation. The nonlinear dynamical analysis can
be conducted based on the solved results.

4.2 Supercritical pitchfork bifurcation

The dynamical characteristics of the AMB-rotor sys-
tem for different external excitations can be ana-
lyzed according to the analysis procedure introduced
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Table 1 Calculation results for some f̃

f̃ |A| C0 ỹ λ Stability

0.05 0.0500 0 −0.0500 cos t̃ 0.3919 + j0.6192, 0.3919 − j0.6192, 1 Stable

0.1 0.1000 0 −0.1000 cos t̃ 0.5833 + j0.5422, 0.5833 − j0.5422, 1 Stable

0.15 0.1500 0 −0.1500 cos t̃ 0.8422 + j0.2078, 0.8422 − j0.2078, 1 Stable

0 −0.2000 cos t̃ 0.5496, 1.5243, 1 Unstable

0.2 0.2000 0.3282 0.3282 − 0.2000 cos t̃ 0.7138 + j0.4061, 0.7138 − j0.4061, 1 Stable

− 0.3282 −0.3282 − 0.2000 cos t̃ 0.7138 + j0.4061, 0.7138 − j0.4061, 1 Stable
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Unstable Solution

Fig. 5 Static equilibriumC0 with respect to excitation amplitude
f̃

in Sect. 4.1. The system parameters are fixed at �̃ = 1,
K̃p = 1.9044, K̃d = 4.8006. The analytical results
show that the characteristic of vibration amplitude is
simple and nonlinear behaviors of the AMB-rotor sys-
tem with current saturation are mainly reflected in the
static equilibrium C0. The analysis results are intro-
duced in this subsection.

Figure 5 gives the relationship between static equi-
librium C0 and excitation amplitude f̃ . Its abscissa is
f̃ , while the ordinate is C0. The red line represents
stable solutions and the blue are unstable ones. It can
be seen there are multiple static equilibriums for some
values of f̃ in the nonlinear AMB-rotor system with
current saturation.

Under the effects of nonlinearity of electromag-
netic force and current saturation, the AMB-rotor sys-
tem shows complicated characteristics. Different from
expected behavior that there is always one stable trivial
equilibrium, multiple static equilibriums are found in
the AMB-rotor system. Accordingly there are multi-
ple periodic solutions and their stability characteristics

are complicated. As f̃ is small, there is only one static
equilibrium, namely stable trivial equilibrium. In this
situation, the system does not exhibit nonlinear behav-
iors. However, the number and stability of static equi-
libriums will change with the increase of f̃ . It can be
seen that the trivial equilibrium loses its stability in the
vicinity of f̃ = 0.16, and in the meantime two sta-
ble nontrivial equilibriums appear. After that, there are
three static equilibriums in the system. Two of them
are stable, and one is unstable. It is a typical supercriti-
cal pitchfork bifurcation. If f̃ continues to enlarge, the
bifurcation will become more and more prominent.

Only stable static equilibriums can be exhibited dur-
ing actual operation of the AMB-rotor system. The
corresponding dynamical behaviors are introduced as
follows. For the small f̃ , the system is operating at
the trivial equilibrium. As for large f̃ , the trivial equi-
librium loses its stability and the rotor deviates from
the trivial equilibrium and starts to vibrate at one of
two new nontrivial equilibriums. Which one of non-
trivial equilibriums will be exhibited during operation
depends on initial conditions. When f̃ is small and
supercritical pitchfork bifurcation does not occur, the
rotor displacement only depends on the vibration. In
this situation, the maximum displacement of rotor is

the vibration amplitude, i.e., ỹmax = |A| = f̃
�̃2 . How-

ever, after bifurcation, the rotor displacement depends
on both static equilibrium and vibration amplitude and
is the sum value of static equilibrium and vibration
amplitude, namely ỹmax = C0 + |A|. The deviation of
static equilibrium makes system performance deterio-
rate and even threatens stable operation of the system.

To illustrate that intuitively, the relationship between
rotor displacement ỹ and external excitation amplitude
f̃ can be obtained by adding the vibration amplitude
|A|. The nontrivial equilibriums are symmetrical about
the trivial equilibrium based on the static equilibriums,
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Fig. 6 Rotor displacement ỹ with respect to external excitation
amplitude f̃

as shown in Fig. 5. We only focus on one of nontrivial
equilibriums and the trivial equilibrium to get rotor dis-
placement when the system is operating stably at them.
Figure 6 shows the rotor displacement when the system
is operating at stable trivial equilibrium or nontrivial
equilibrium. The abscissa is f̃ , while the ordinate is
the rotor displacement ỹ whose reference substance is
the reference position of the rotor. The green line repre-
sents the physical limit which depends on the mechan-
ical clearance between the rotor and stator. The rotor
will rush into the stator if it exceeds the limit, which
will lead to instability.

It is found that the nonlinearity of electromagnetic
force and current saturation have major impact on the
dynamical behaviors of the AMB-rotor system. For
small f̃ , the nonlinear factors in the AMB-rotor system
are not prominent and complicated behaviors do not
appear. The maximum displacement is not large and
appears to increase linearly with the increase of f̃ . In
this situation, the rotor vibrates at the trivial equilibrium
and can keep far away from the physical limit. The sys-
tem can keep in a good performance during operation.
However, when f̃ increases to a certain level, nonlinear
factors become prominent, and supercritical pitchfork
bifurcation occurs. In this case, the rotor displacement
is affected by both the static equilibrium and vibration
amplitude. It has a more complicated relationship with
respect to f̃ . Even a small change of f̃ will make the
rotor displacement increase a lot. The rotor operates
within an inch of the physical limit. The system perfor-
mance deteriorates. If f̃ continues to enlarge, the rotor
displacement will even exceeds the physical limit, and
the rotor will crash into the stator, which will lead to

direct instability and damage the system structure. It
can be seen from Fig. 6, the theoretical maximum value
of external excitation which can avoid rub-impact and
keep system stable is f̃ = 0.1940. However consid-
ering the disturbances during the actual operation, the
acceptable f̃ is much smaller. When the rotor displace-
ment is close to the physical limit, a small disturbance
may lead to the rub-impact between the rotor and sta-
tor, and instability occurs frequently. There is no doubt
the supercritical pitchfork bifurcation is harmful to the
system and should be prevented.

When the AMB-rotor system is operating at a speed
far away from resonances, the vibration amplitude
of the rotor is simple and nearly consistent with the
analysis result based on linear theory. However, the
static equilibrium C0 shows complicated characteris-
tics. With the increase of f̃ , the trivial equilibrium
loses its stability, and the rotor deviates from the ref-
erence position. In other words, the supercritical pitch-
fork bifurcation in the AMB-rotor system is reflected
in the static equilibrium C0 rather than the vibration
amplitude A, which is different from the phenomenon
in fluid film bearing-rotor system in [22]. TheAMBhas
a larger bearing mechanical clearance; it can make the
stable nontrivial solution be exhibited during operation
when the nonlinear factors are prominent.

5 Numerical validation

In order to verify the validity of the method of multi-
ple scales, two numerical methods were used. They are
the numerical integration method and the generalized
cell mapping digraph method. The numerical results
were obtained by them and compared with the analyt-
ical results.

The numerical integration method was used to ver-
ify the time series responses. The time series responses
obtained through the numerical integrationmethod and
the method of multiple scales were compared. Take
f̃ = 0.1, 0.18 as examples to show the time series
responses before and after supercritical pitchfork bifur-
cation. Figures 7 and 8 show the time series responses
for f̃ = 0.1, 0.18, respectively. In the case of f̃ = 0.1,
the analytical result is highly consistentwith the numer-
ical. There is only one stable static equilibrium. The
rotor vibrates at the trivial equilibrium, and the max-
imum displacement of rotor is exactly the vibration
amplitude |A| = 0.1.During operation, themechanical
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Fig. 7 Steady-state response for f̃ = 0.1

clearance between the rotor and stator is large enough
to avoid rub-impact. The high performance of the sys-
tem can be ensured. While in the case of f̃ = 0.18,
there are three static equilibriums. Accordingly, there
are three periodic solutions. The rotor can operate at
any one of nontrivial equilibriums, and the maximum
displacement is large.During numerical simulation, the
rotor cannot keep vibrating stably at the unstable trivial
equilibrium for a long time. But any nontrivial equilib-
rium can be exhibited. The stable analytical solutions
can fit numerical results very well. In Fig. 8, we can
only get the stable time series responses throughnumer-
ical integration method. The comparison of numeri-
cal and analytical results shows the method of multi-
ple scales can get accurate stable solutions. However,
the numerical integration method cannot test the accu-
racy of unstable solutions because it cannot simulate
unstable time series responses steadily. The following
numerical results obtained by the generalized cell map-
pingdigraphmethodwill show theunstable solution is a
saddle-node point. We cannot use inverse-time numer-
ical integration method to get the unstable solution nei-
ther.

Aiming at the problem that unstable solution cannot
be verified by the numerical integration method, the
generalized cell mapping digraph method was adopted
to get both stable and unstable solutions to provide ref-
erence substances for analytical solutions. Reference
[16] introduced how to use the generalized cell map-
ping digraphmethod to do global dynamical analysis of
the nonlinear AMB-rotor system. The analysis results
include stable attractors and their domains and unstable
attractor and its stable/unstable manifolds. In results of
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Fig. 8 Steady-state response for f̃ = 0.18

generalized cell mapping digraph method, this paper
only focuses on the stable and unstable solutions to
verify the accuracy of analytical solutions.

The validation process is introduced as follows.
Firstly, choose four different values of external exci-
tation amplitude, namely set f̃ = 0.05, 0.1, 0.15, 0.2.
Then get four phase diagrams and regard them as four
slices in a three-dimensional diagram shown in Fig. 9.
At last, deal with the analytical results shown in Fig.
6 and get the rotor displacement for f̃ ∈ [0.05, 0.24]
based on static equilibriumC0 and vibration amplitude
|A|. The method of multiple scales neglects vibration
phase in Eq. (14). This paper sets ˙̃y = 0 directly when
putting analytical solutions into Fig. 9.

To show the comparison of numerical and analytical
results in details, take f̃ = 0.2 as an example to point
out analytical and numerical solutions in a phase dia-
gram. The results of generalized cell mapping method
contain the stable solutions and their domains of attrac-
tion, unstable solution and its stable/unstable manifold.
The solutions aremarkedby×. The analytical solutions
are marked by ◦. The red are stable solutions, and the
blue represent unstable ones.

It can be seen from Fig. 9 that the results obtained by
themethod ofmultiple scales and generalized cellmap-
pingmethod are consistent. The number and stability of
analytical solutions are in accordance with numerical
ones. The numerical and analytical results are highly
consistent, and the differences in ỹ and ˙̃y are very tiny.
Although Eq. (14) only considers the static equilibrium
C0 and vibration amplitude A and ignores the vibration
phase in the method of multiple scales, the handling
method do not cause substantive effects on the analyt-
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Fig. 9 Comparison between analytical and numerical solutions

ical results, which can also be proved by Figs. 7 and
8.

In summary, this section obtained numerical results
through the numerical integration method and gener-
alized cell mapping digraph method. The comparisons
between analytical results and numerical results prove
the validity and accuracy of the approximate analytical
method.

6 Effects of controller parameters

According to the analysis results inSect. 4.2, it is known
the AMB-rotor system with current saturation exhibits
supercritical pitchfork bifurcation that is detrimental
to the operating performance. Decreasing the exter-
nal excitation amplitude f̃ can suppress the bifurcation
effectively. However, limited by the operation load and
rotor eccentricity, it is always difficult to decrease f̃
further. Other measures to change the system charac-
teristics are needed. Compared with mechanical bear-
ings, AMBs have a superiority, namely the stiffness

Fig. 10 Static equilibrium C0 with respect to K̃p and K̃d

and damping characteristics can be adjusted flexibly
through controller. There is no doubt that controller
parameters have significant influences on dynamical
characteristics of the AMB-rotor system. The influ-
ences of controller on nonlinear behaviors should be
explored in depth. In this paper, the actual high-order
controller was simplified into a PD controller equiva-
lently in order to investigate effects of controller param-
eters.

The analysis results show the supercritical pitch-
fork bifurcation with respect to controller parame-
ters K̃p and K̃d also exist. In order to investigate the
dynamical characteristics under the action of differ-
ent controller parameter combinations, the relationship
between static equilibrium C0 and controller parame-
ters K̃p, K̃d were obtained for f̃ = 0.18, as shown in
Fig. 10. There is only one stable trivial equilibrium for
large K̃p and small K̃d. However, for small K̃p and large
K̃d, the trivial equilibrium loses stability, and two sta-
ble nontrivial equilibriums appear. This phenomenon
means the different controller parameters can make the
system show very different dynamical characteristics.

The results can provide guidance for the controller
design of the AMB-rotor system when nonlinear fac-
tors are prominent. In the controller design based on the
linear theory, the large stiffness is expected for heavy
bearing capacity, which always means large propor-
tional gain K̃p. In the meantime, in order to suppress
the vibration, a large damping is expected too, which
needs large differential gain K̃d. However, such con-
troller design principle seems not perfect from the per-
spective of nonlinear dynamics. Large K̃d may cause
supercritical pitchfork bifurcation of static equilibrium
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Fig. 11 Static equilibrium C0 with respect to f̃ before and after
controller parameter modification

in the system, which will have bad influences on the
system instead.

This paper conducted the nonlinear dynamical anal-
ysis of the AMB-rotor system by considering the non-
linearity of electromagnetic force and current satura-
tion. The controller parameters can be modified based
on the analysis results to prevent nonlinear behaviors
and improve system performance. In this paper, the
controller parameters were changed into K̃p = 2.0074,
K̃d = 1.8527 according to Fig. 10. Under action of
the controller parameters, the supercritical pitchfork
bifurcation disappears, as shown in Fig. 11. For any
f̃ ∈ [0.05, 0.24], there is only one stable trivial equi-
librium. In this situation, even if the external excitation
is large, the AMB-rotor system can stay at the trivial
equilibrium and vibrate at a small amplitude. The mod-
ified controller parameters can keep C0 = 0 for a wide
range of f̃ , and themaximum displacement of the rotor
decreases a lot.

The results imply that the controller design princi-
ple based on nonlinear dynamics should be considered.
It can provide the supplement to the linear controller
design principle and prevent nonlinear behaviors under
some harsh operating conditions. Take the results in
this paper as an example, the large differential gain
K̃d will lead to bifurcation. In the case of bifurcation,
although vibration amplitude can be suppressed effec-
tively, the deviation of the rotor from trivial equilibrium
will enlarge the rotor displacement. It makes instabil-
ity happenmore easily. Therefore, during the controller
design, the parameters should be chosen by consider-
ing both effects of vibration amplitude and static equi-

librium comprehensively. Proper controller parameters
can prevent the occurrence of bifurcation and keep sys-
tem in high-performance operation even for some com-
plicated and harsh operating conditions.

7 Conclusions and prospect

In this paper, nonlinear behaviors of the AMB-rotor
systemwere investigated by considering the nonlinear-
ity of electromagnetic force and current saturation. A
novel method of multiple scales was developed to ana-
lyze bifurcation behaviors of the periodically excited
AMB-rotor system, and corresponding stability analy-
sis of multiple solutions was carried out based on Flo-
quet theory. The comparison of the results with those
based on the numerical methods proved the validity
and accuracy of the proposed method. It is the first
time to use the method of multiple scales for the bifur-
cation analysis of a forced bearing-rotor system when
it is operating at a speed far away from resonances. It
is found there is supercritical pitchfork bifurcation in
the AMB-rotor system. The bifurcation is not reflected
in vibration amplitude but the static equilibrium. The
influences of controller parameters and external exci-
tation on supercritical pitchfork bifurcation were dis-
cussed. Based on analysis results, the modification of
controller parameters can prevent the nonlinear behav-
iors and improve the system performance effectively.

Although the bifurcation in the AMB-rotor system
was investigated through themethod ofmultiple scales,
the actual high-order controller was simplified into a
PD controller. In the future, other analytical methods
are to be proposed and applied to theAMB-rotor system
with higher-oder controller. The more accurate results
are needed to help get a comprehensive understanding
of nonlinear characteristics of the AMB-rotor system.
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Appendix A

The coefficients km,n in Eq. (7):
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k1,0 = 0.02287K̃p − 0.01033, k3,0 = −0.02308K̃ 3
p − 0.02852K̃ 2

p +
0.06079K̃p − 0.05111, k5,0 = 0.01302K̃ 5

p + 0.02609K̃ 4
p − 0.06087K̃ 3

p −
0.0412K̃ 2

p + 0.1919K̃p + 0.3458, k7,0 = 0.003566K̃ 7
p − 0.009379K̃ 6

p +
0.02636K̃ 5

p +0.0287K̃ 4
p −0.0713K̃ 3

p −0.05661K̃ 2
p −0.1839K̃p−1.968, k9,0 =

0.000455K̃ 9
p + 0.001425K̃ 8

p − 0.004855K̃ 7
p − 0.00675K̃ 6

p + 0.02344K̃ 5
p +

0.02136K̃ 4
p − 0.07812K̃ 3

p − 0.008971K̃ 2
p + 0.4281K̃p + 4.045, k11,0 =

−0.000022K̃ 11
p −0.000077K̃ 10

p +0.00031K̃ 9
p +0.000514K̃ 8

p −0.002422K̃ 7
p −

0.00299K̃ 6
p + 0.01789K̃ 5

p + 0.016K̃ 4
p − 0.117K̃ 3

p − 0.08791K̃ 2
p + 0.5638K̃p −

3.368, k0,1 = 0.02287K̃d, k2,1 = −0.06924K̃ 2
p K̃d − 0.05704K̃p K̃d +

0.06079K̃d, k4,1 = 0.0651K̃ 4
p K̃d + 0.10436K̃ 3

p K̃d − 0.18261K̃ 2
p K̃d

− 0.0824K̃p K̃d + 0.1919K̃d, k6,1 = −0.024962K̃ 6
p K̃d − 0.056274K̃ 5

p K̃d +
0.1318K̃ 4

p K̃d + 0.1148K̃ 3
p K̃d − 0.2139K̃ 2

p K̃d − 0.11322K̃p K̃d − 0.1839K̃d,

k8,1 = 0.004094K̃ 8
p K̃d + 0.0114K̃ 7

p K̃d − 0.033985K̃ 6
p K̃d − 0.0405K̃ 5

p K̃d +
0.1172K̃ 4

p K̃d +0.08544K̃ 3
p K̃d −0.23436K̃ 2

p K̃d −0.017942K̃p K̃d +0.428K̃d,

k10,1 = −0.000238K̃ 10
p K̃d − 0.000767K̃ 9

p K̃d + 0.0027891K̃ 8
p K̃d

+ 0.004114K̃ 7
p K̃d − 0.016954K̃ 6

p K̃d − 0.01794K̃ 5
p K̃d + 0.08945K̃ 4

p K̃d +
0.064K̃ 3

p K̃d−0.351K̃ 2
p K̃d−0.17582K̃p K̃d+0.5638K̃d, k1,2 = −0.06924K̃p K̃ 2

d−
0.02852K̃ 2

d , k3,2 = 0.1302K̃ 3
p K̃

2
d + 0.15654K̃ 2

p K̃
2
d − 0.18261K̃p K̃ 2

d −
0.0412K̃ 2

d , k5,2 = −0.074886K̃ 5
p K̃

2
d − 0.140685K̃ 4

p K̃
2
d + 0.2636K̃ 3

p K̃
2
d +

0.1722K̃ 2
p K̃

2
d − 0.2139K̃p K̃ 2

d − 0.05661K̃ 2
d , k7,2 = 0.016376K̃ 7

p K̃
2
d +

0.0399K̃ 6
p K̃

2
d − 0.101955K̃ 5

p K̃
2
d − 0.10125K̃ 4

p K̃
2
d + 0.2344K̃ 3

p K̃
2
d +

0.12816K̃ 2
p K̃

2
d − 0.23436K̃p K̃ 2

d − 0.008971K̃ 2
p , k9,2 = −0.00119K̃ 9

p K̃
2
d −

0.00345K̃ 8
p K̃

2
d + 0.011156K̃ 7

p K̃
2
d + 0.0144K̃ 6

p K̃
2
d − 0.050862K̃ 5

p K̃
2
d

−0.04485K̃ 4
p K̃

2
d +0.1789K̃ 3

p K̃
2
d +0.096K̃ 2

p K̃
2
d −0.351K̃p K̃ 2

d −0.08791K̃ 2
d ,

k0,3 = −0.02308K̃ 3
d , k2,3 = 0.1302K̃ 2

p K̃
3
d+0.10436K̃p K̃ 3

d−0.06087K̃ 3
d , k4,3

= −0.12481K̃ 4
p K̃

3
d − 0.18758K̃ 3

p K̃
3
d + 0.2636K̃ 2

p K̃
3
d + 0.1148K̃p K̃ 3

d −
0.0713K̃ 3

d , k6,3 = 0.038212K̃ 6
p K̃

3
d + 0.0798K̃ 5

p K̃
3
d − 0.169925K̃ 4

p K̃
3
d −

0.135K̃ 3
p K̃

3
d + 0.2344K̃ 2

p K̃
3
d + 0.08544K̃p K̃ 3

d − 0.07812K̃ 3
d , k8,3 =

−0.003571K̃ 8
p K̃

3
d − 0.0092K̃ 7

p K̃
3
d + 0.026032K̃ 6

p K̃
3
d + 0.028801K̃ 5

p K̃
3
d −

0.08477K̃ 4
p K̃

3
d−0.0598K̃ 3

p K̃
3
d+0.1789K̃ 2

p K̃
3
d+0.064K̃p K̃ 3

d−0.117K̃ 3
d , k1,4 =

0.0651K̃p K̃ 4
d + 0.02609K̃ 4

d , k3,4 = −0.12481K̃ 3
p K̃

4
d − 0.140685K̃ 2

p K̃
4
d +

0.1318K̃p K̃ 4
d + 0.0287K̃ 4

d , k5,4 = 0.057317K̃ 5
p K̃

4
d + 0.09975K̃ 4

p K̃
4
d −

0.169925K̃ 3
p K̃

4
d − 0.10125K̃ 2

p K̃
4
d + 0.1172K̃p K̃ 4

d + 0.02136K̃ 4
d , k7,4 =

−0.007141K̃ 7
p K̃

4
d − 0.016101K̃ 6

p K̃
4
d + 0.039047K̃ 5

p K̃
4
d + 0.036001K̃ 4

p K̃
4
d −

0.08477K̃ 3
p K̃

4
d − 0.04485K̃ 2

p K̃
4
d + 0.08945K̃p K̃ 4

d + 0.016K̃ 4
d , k0,5 =

0.01302K̃ 5
d , k2,5 = −0.074886K̃ 2

p K̃
5
d − 0.056274K̃p K̃ 5

d + 0.02636K̃ 5
d ,

k4,5 = 0.057317K̃ 4
p K̃

5
d + 0.0798K̃ 3

p K̃
5
d − 0.101955K̃ 2

p K̃
5
d − 0.0405K̃p K̃ 5

d +
0.02344K̃ 5

d , k6,5 = −0.009998K̃ 6
p K̃

5
d − 0.019321K̃ 5

p K̃
5
d + 0.039047K̃ 4

p K̃
5
d +

0.028801K̃ 3
p K̃

5
d − 0.050862K̃ 2

p K̃
5
d − 0.01794K̃p K̃ 5

d + 0.01789K̃ 5
d , k1,6 =

−0.024962K̃p K̃ 6
d − 0.009379K̃ 6

d , k3,6 = 0.038212K̃ 3
p K̃

6
d + 0.0399K̃ 2

p K̃
6
d −

0.033985K̃p K̃ 6
d − 0.00675K̃ 6

d , k5,6 = −0.009998K̃ 5
p K̃

6
d − 0.016101K̃ 4

p K̃
6
d +

0.026032K̃ 3
p K̃

6
d + 0.0144K̃ 2

p K̃
6
d − 0.016954K̃p K̃ 6

d − 0.00299K̃ 6
d , k0,7 =

−0.003566K̃ 7
d , k2,7 = 0.016376K̃ 2

p K̃
7
d +0.0114K̃p K̃ 7

d −0.004855K̃ 7
d , k4,7 =

−0.007141K̃ 4
p K̃

7
d − 0.0092K̃ 3

p K̃
7
d + 0.011156K̃ 2

p K̃
7
d + 0.004114K̃p K̃ 7

d −
0.002422K̃ 7

d , k1,8 = 0.004094K̃p K̃ 8
d+0.001425K̃ 8

d , k3,8 = −0.003571K̃ 3
p K̃

8
d−

0.00345K̃ 2
p K̃

8
d +0.002789K̃p K̃ 8

d +0.000514K̃ 8
d , k0,9 = 0.000455K̃ 9

d , k2,9 =
−0.00119K̃ 2

p K̃
9
d−0.000767K̃p K̃ 9

d+0.00031K̃ 9
d , k1,10 = −0.000238K̃p K̃ 10

d −
0.000077K̃ 10

d , k0,11 = −0.000022K̃ 11
d .

Appendix B

The coefficients in Eq. (16): b1 = −k1,0−6k3,0aā−30k5,0a
2 ā2−

140k7,0a
3ā3 −630k9,0a

4ā4 −2772k11,0a
5ā5 −2k1,2�̃

2aā−6k3,2�̃
2a2 ā−

20k5,2�̃
2a3ā3 − 70k7,2�̃

2a4ā4 − 252k9,2�̃
2a5ā5 − 6k1,4�̃

4a2 ā2 − 12k3,4

�̃4a3ā3−30k5,4�̃
4a4ā4−84k7,4�̃

4a5ā5−20k1,6�̃
6a3ā3−30k3,6�̃

6a4ā4−
60k5,6�̃

6a5ā5 − 70k1,8�̃
8a4ā4 − 84k3,8�̃

8a5ā5 − 252k1,10�̃
10a5ā5,

b2 = −k3,0−20k5,0aā−210k7,0a
2 ā2−1680k9,0a

3ā3−11550k11,0a
4ā4−

2k3,2�̃
2aā − 20k5,2�̃

2a2 ā2 − 140k7,2�̃
2a3ā3 − 840k9,2�̃

2a4ā4 − 6k3,4

�̃4a2 ā2 − 40k5,4�̃
4a3ā3 − 210k7,4�̃

4a4ā4 − 20k3,6�̃
6a3ā3 − 100k5,6

�̃6a4ā4 − 70k3,8�̃
8a4ā4,

b3 = −k5,0 −42k7,0aā−756k9,0a
2 ā2 −9240k11,0a

3ā3 −2k5,2�̃
2aā−

42k7,2�̃
2a2 ā2 − 504k9,2�̃

2a3ā3 − 6k5,4�̃
4a2 ā2 − 84k7,4�̃

4a3ā3 − 20k5,6

�̃6a3ā3,

b4 = −k7,0−72k9,0aā−1980k11,0a
2 ā2−2k7,2�̃

2aā−72k9,2�̃
2a2 ā2−

6k7,4�̃
4a2 ā2,

b5 = −k9,0 − 110k11,0aā − 2k9,2�̃
2aā,

b6 = −k11,0,

b7 = −k1,0a − k3,0a
2 ā − 3k3,0aC0

2 − 10k5,0a
3ā2 − 30k5,0a

2 āC0
2 −

5k5,0aC0
4−35k7,0a

4ā3−210k7,0a
3ā2C0

2−105k7,0a
2 āC0

4−7k7,0aC0
6−

126k9,0a
5ā4 − 1260k9,0a

4ā3C0
2 − 1260k9,0a

3ā2C0
4 − 252k9,0a

2 āC0
6 −

9k9,0aC0
8 − 462k11,0a

6ā5 − 6930k11,0a
5ā4C0

2 − 11550k11,0a
4ā3C0

4 −
4620k11,0a

3ā2C0
6 − 495k11,0a

2 āC0
8 − 11k11,0aC0

10 + 5jk6,1�̃a4ā3 +
30jk6,1�̃a3ā2C0

2 + 15jk6,1�̃a2 āC0
4 + jk6,1�̃aC0

6 + 14jk6,1�̃a5ā4 +
140jk8,1�̃a4ā3C0

2+140jk8,1�̃a3ā2C0
4+28jk8,1�̃a2 āC0

6+jk8,1�̃aC0
8+

42jk10,1�̃a6ā5 + 630jk10,1�̃a5ā4C0
2 + 1050jk10,1�̃a4ā3C0

4

+ 420jk10,1�̃a3ā2C0
6 + 45jk10,1�̃a2 āC0

8 + jk10,1�̃aC0
10 + jk0,1�̃a +

jk2,1�̃a2 ā+ jk2,1�̃aC0
2 + 2jk4,1�̃a3ā2 + 6jk4,1�̃a2 āC0

2 + jk4,1�̃aC0
4 −

k1,2�̃
2a2 ā − 2k3,2�̃

2a3ā2 − 3k3,2�̃
2a2 āC0

2 − 5k5,2�̃
2a4ā3 − 20k5,2

�̃2a3ā2C0
2 − 5k5,2�̃

2a2 āC0
4 − 14k7,2�̃

2a5ā4 − 105k7,2�̃
2a4ā3C0

2 −
70k7,2�̃

2a3ā2C0
4−7k7,2�̃

2a2 āC0
6−42k9,2�̃

2a6ā5−504k9,2�̃
2a5ā4C0

2−
630k9,2�̃

2a4ā3C0
2−168k9,2�̃

2a3ā2C0
6−9k9,2�̃

2a2 āC0
8+3jk0,3�̃

3a2 ā+
2jk2,3�̃

3a3ā2 + 3jk2,3�̃
3a2 āC0

2 + 3jk4,3�̃
3a4ā3 + 12jk4,3�̃

3a3ā2C0
2 +

3jk4,3�̃
3a2 āC0

4+6jk6,3�̃
3a5ā4+45jk6,3�̃

3a4ā3C0
2+30jk6,3�̃

3a2 āC0
4+

3jk6,3�̃
3a2 āC0

6 + 14jk8,3�̃
3a6ā5 + 168jk8,3�̃

3a5ā4C0
2 + 210jk8,3

�̃3a4ā3C0
4 + 56jk8,3�̃

3a3ā2C0
6 + 3jk8,3�̃

3a2 āC0
8 − 2k1,4�̃

4a3ā2 −
3k3,4�̃

4a4ā3 − 6k3,4�̃
4a3ā2C0

2 − 6k5,4�̃
4a5ā4 − 30k5,4�

4a4ā3C0
2 −

10k5,4�̃
4a3ā2C0

4−14k7,4�̃
4a6ā5−126k7,4�̃

4a5ā4C0
2−10k7,4�̃

4a4ā3C0
4−

14k7,4�̃
4a3ā2C0

6+10jk0,5�̃
5a3ā2+5jk2,5�̃

5a4ā3+10jk2,5�̃
5a3ā2C0

2+
6jk4,5�̃

5a5ā4+30jk4,5�̃
5a4ā3C0

2+10jk4,5�̃
5a3ā2C0

4+10jk6,5�̃
5a6ā5+

90jk6,5�̃
5a4ā4C0

2+75jk6,5�̃
5a4ā3C0

4+10jk6,5�̃
5a3ā2C0

6−5k1,6�̃
6a4ā3−

6k3,6�̃
6a5ā4 − 15k3,6�̃

6a4ā3C0
2 − 10k5,6�̃

6a6ā5 − 60k5,6�̃
6a5ā4C0

2 −
25k5,6�̃

6a4ā3C0
4+35jk0,7�̃

7a4ā3+14jk2,7�̃
7a5ā4+35jk2,7�̃

7a4ā3C0
2+

14jk4,7�̃
7a6ā5+84jk4,7�̃

7a5ā4C0
2+35jk4,7�̃

7a4ā3C0
4−14k1,8�̃

8a5ā4−
14k3,8�̃

8a6ā5 − 42k3,8�̃
8a5ā4C0

2 + 126jk0,9�̃
9a5ā4 + 42jk2,9�̃

9a6ā5 +
126jk2,9�̃

9a5ā4C0
2 − 42k1,10�̃

10a6ā5 + 462jk0,11�̃
11a6ā5,

b8 = −3k3,0a2C0 − 20k5,0a3āC0
3 − 10k5,0a2C0

3 − 105k7,0a4ā2C0 −
140k7,0a3āC0

3 − 210k7,0a2C0
5 − 504k9,0a5ā3C0 − 1260k9,0a4ā2C0

3

− 504k9,0a3āC0
5 − 36k9,0a2C0

7 − 2310k11,0a6āC0 − 9240k11,0a5ā3C0
3 −
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6930k11,0a4ā2C0
5 − 1320k11,0a3āC0

7 − 55k11,0a2C0
9 + 30jk6,1�̃a4ā2C0 +

40jk6,1�̃a3āC0
3 + 6jk6,1�̃a2C0

5 + 112jk8,1�̃a5ā3C0 + 280jk8,1�̃a4ā2C0
3 +

112jk8,1�̃a3āC0
5+8jk8,1�̃a2C0

7+420jk10,1�̃a6ā4C0+1680jk10,1�̃a5ā3C0
3+

1260jk10,1�̃a4ā2C0
5 +240jk10,1�̃a3āC0

7 +10jk10,1�̃a2C0
9 +2jk2,1�̃a2C0 +

8jk4,1�̃a3āC0+4jk4,1�̃a2C0
3+k1,2�̃2a2C0+k3,2�̃2a2C0

3−5k5,2�̃2a4ā2C0+
k5,2�̃2a2C0

5 − 128k7,2�̃2a5ā3C0 − 35k7,2�̃2a4ā2C0
3 + k7,2�̃2a2C0

7

−126k9,2�̃2a6ā4C0−336k9,2�̃2a5ā3C0
3−126k9,2�̃2a4ā2C0

5+k9,2�̃2a2C0
9+

4jk2,3�̃3a3āC0 + 12jk4,3�̃3a4ā2C0 + 8jk4,3�̃3a3āC0
3 + 36jk6,3�̃3a5ā3C0 +

60jk6,3�̃3a4ā2C0
3 + 12jk6,3�̃3a3āC0

5 + 112jk8,3�̃3a6ā4C0 + 336jk8,3

�̃3a5ā3C0
3 + 168jk8,3�̃3a4ā2C0

5 + 16jk8,3�̃3a3āC0
7 + 4k1,4�̃4a3āC0 +

3k3,4�̃4a4ā2C0 + 4k3,4�̃4a3āC0
3 + 10k5,4�̃4a4ā2C0

3 + 4k5,4�̃4a3āC0
5 −

14k7,4�̃4a6ā4C0 + 21k7,4�̃4a4ā2C0
5 + 4k7,4�̃4a3āC0

7 + 10jk2,5�̃5a4ā2C0 +
24jk4,5�̃5a5ā3C0 + 20jk4,5�̃5a4ā2C0

3 + 60jk6,5�̃5a6ā4C0 + 120jk6,5�̃5a5ā3

C0
3 + 30jk6,5�̃5a4ā2C0

5 + 15k1,6�̃6a4ā2C0 + 12k3,6�̃6a5ā3C0 + 12k3,6

�̃6a5ā3C0 + 15k3,6�̃6a4ā2C0
3 + 10k5,6�̃6a6ā4C0 + 40k5,6�̃6a5ā3C0

3 +
15k5,6�̃6a4ā2C0

5+28jk2,7�̃7a5ā3C0+56jk4,7�̃7a6ā4C0+56jk4,7�̃7a5ā3C0
3+

56k1,8�̃8a5ā3C0+42k3,8�̃8a6ā4C0+56k3,8�̃8a5ā3C0
3+84jk2,9�̃9a6ā4C0+

210k1,10�̃10a6ā4C0,

b9 = −k3,0a
3−5k5,0a

4ā−10k5,0a
3C0

2−21k7,0a
5ā2−105k7,0a

4āC0
2−

35k7,0a
3C0

4−84k9,0a
6ā3−756k9,0a

5ā2C0
2−630k9,0a

4āC0
4−84k9,0a

3C0
6−

330k11,0a
7ā4−4620k11,0a

6ā3C0
2−6930k11,0a

5ā2C0
4−2310k11,0a

4āC0
6−

165k11,0a
3C0

8 + 9jk6,1�̃a5ā2 + 45jk6,1�̃a4āC0
2 + 15jk6,1�̃a3C0

4 +
28jk8,1�̃a6ā3+252jk8,1�̃a5ā2C0

2+210jk8,1�̃a4āC0
4+28jk8,1�̃a3C0

6+
90jk10,1�̃a7ā4 + 1260jk10,1�̃a6ā3C0

2 + 1890jk10,1�̃a5ā2C0
4 + 630jk10,1

�̃a4āC0
6 + 45jk10,1�̃a3C0

8 + jk2,1�̃a3 + 3jk4,1�̃a4ā + 6jk4,1�̃a3C0
2 +

k1,2�̃
2a3+k3,2�̃

2a4ā+3k3,2�̃
2a3C0

2+k5,2�̃
2a5ā2+10k5,2�̃

2a4āC0
2+

5k5,2�̃
2a3C0

4 +21k7,2�̃
2a5ā2C0

2 +35k7,2�̃
2a4āC0

4 +7k7,2�̃
2a3C0

6 −
6k9,2�̃

2a7ā4 +126k9,2�̃
2a5ā2C0

4 +84k9,2�̃
2a4āC0

6 +9k9,2�̃
2a3C0

8 −
jk0,3�̃

3a3+jk2,3�̃
3a4ā−jk2,3�̃

3a3C0
2+3jk4,3�̃

3a5ā2+6jk4,3�̃
3a4āC0

2−
jk4,3�̃

3a3C0
4 +8jk6,3�̃

3a6ā3 +45jk6,3�̃
3a5ā2C0

2 +15jk6,3�̃
3a4āC0

4 −
jk6,3�̃

3a3C0
6 + 22jk8,3�̃

3a7ā4 + 224jk8,3�̃
3a6ā3C0

2 + 210jk8,3�̃
3a5ā2

C0
4 + 28jk8,3�̃

3a4āC0
6 − jk8,3�̃

3a3C0
8 + 3k1,4�̃

4a4ā + 3k3,4�̃
4a5ā2 +

9k3,4�̃
4a4āC0

2 +4k5,4�̃
4a6ā3 +30k5,4�̃

4a5ā2C0
2 +15k5,4�̃

4a4āC0
4 +

6k7,4�̃
4a7ā4+84k7,4�̃

4a6ā3C0
2+105k7,4�̃

4a5ā2C0
4+21k7,4�̃

4a4āC0
6−

5jk0,5�̃
5a4ā + jk2,5�̃

5a5ā2 − 5jk2,5�̃
5a4āC0

2 + 4jk4,5�̃
5a6ā3 + 6jk4,5

�̃5a5ā2C0
2 − 5jk4,5�̃

5a4āC0
4 + 10jk6,5�̃

5a7ā4 + 60jk6,5�̃
5a6ā3C0

2 +
15jk6,5�̃

5a5ā2C0
4 − 5jk6,5�̃

5a4āC0
6 + 9k1,6�̃

6a5ā2 + 8k3,6�̃
6a6ā3 +

27k3,6�̃
6a5ā2C0

2+10k5,6�̃
6a7ā4+80k5,6�̃

6a6ā3C0
2+45k5,6�̃

6a5ā2C0
4−

21jk0,7�̃
7a5ā2 − 21jk2,7�̃

7a5ā2C0
2 + 6jk4,7�̃

7a4 − 21jk4,7�̃
7a5ā2C0

4 +
28k0,7�̃

8a6ā3 + 22k3,8�̃
8a7ā4 + 84k3,8�̃

8a6ā3C0
2 − 84jk0,9�̃

9a6ā3 −
6jk2,9�̃

9a7ā4−84jk2,9�̃
9a6ā3C0

2+90k1,10�̃
10a7ā4−330jk0,11�̃

11a7ā4,

b10 = −5k5,0a
4C0 − 42k7,0a

5āC0 − 35k7,0a
4C0

3 − 252k9,0a
6ā2C0 −

504k9,0a
5āC0

3−126k9,0a
4C0

5−1320k11,0a
7ā3C0−4620k11,0a

6ā2C0
3−

2772k11,0a
5āC0

5 − 330k11,0a
4C0

7 + 24jk6,1�̃a5āC0 + 20jk6,1�̃a4C0
3 +

112jk8,1�̃a6ā2C0 + 224jk8,1�̃a5āC0
3 + 56jk8,1�̃a4C0

5 + 480jk10,1

�̃a7ā3C0+1680jk10,1�̃a6ā2C0
3+1008jk10,1�̃a5āC0

5+120jk10,1�̃a4C0
7

+ 4jk4,1�̃a4C0 + 3k3,2�̃
2a4C0 + 10k5,2�̃

2a5āC0 + 10k5,2�̃
2a4C0

3 +
28k7,2�̃

2a6ā2C0+70k7,2�̃
2a5āC0

3+21k7,2�̃
2a4C0

5+72k9,2�̃
2a7ā3C0+

336k9,2�̃
2a6ā2C0

3+252k9,2�̃
2a5āC0

5+36k9,2�̃
2a4C0

7−2jk2,3�̃
3a4C0−

4jk4,3�̃
3a4C0

3+12jk6,3�̃
3a6ā2C0−6jk6,3�̃

3a4C0
5+64jk8,3�̃

3a7ā3C0+
112jk8,3�̃

3a6ā2C0
3 − 8jk8,3�̃

3a4C0
7 − k1,4�̃

4a4C0 + 6k3,4�̃
4a5āC0 −

k3,4�̃
4a4C0

3 + 20k5,4�̃
4a6ā2C0 + 20k5,4�̃

4a5āC0
3 − k5,4�̃

4a4C0
5 +

56k7,4�̃
4a7ā3C0+140k7,4�̃

4a6ā2C0
3+42k7,4�̃

4a5āC0
5−k7,4�̃

4a4C0
7−

8jk2,5�̃
5a5āC0−8jk4,5�̃

5a6ā2C0−16jk4,5�̃
5a5āC0

3−40jk6,5�̃
5a6ā2C0

3−
24jk6,5�̃

5a5āC0
5−6k1,6�̃

6a6āC0+12k3,6�̃
6a6ā2C0−6k3,6�̃

6a5āC0
3+

40k5,6�̃
6a5āC0

3+40k5,6�̃
6a7ā3C0+40k5,6�̃

6a6ā2C0
3−6k5,6�̃

6a5āC0
5−

28jk2,7�̃
7a6ā2C0 − 32jk4,7�̃

7a7ā3C0 − 56jk4,7�̃
7a6ā2C0

3 − 28k1,8

�̃8a6ā2C0 + 24k3,8�̃
8a7ā3C0 − 28k3,8�̃

8a6ā2C0
3 − 96jk2,9�̃

9a7ā3C0 −
120k1,10�̃

10a7ā3C0,

b11 = −k5,0a
5−7k7,0a

6ā−21k7,0a
5C0

2−36k9,0a
7ā2−252k9,0a

6āC0
2−

126k9,0a
5C0

4 − 165k11,0a
8ā3 − 1980k11,0a

7ā2C0
2 − 2310k11,0a

6āC0
4 −

462k11,0a
5C0

6 + 5jk6,1a
6ā + 15jk6,1�̃a5C0

2 + 20jk8,1�̃a7ā2 + 140jk8,1

a6āC0
2 + 70jk8,1�̃a5C0

4 + 75jk10,1�̃a8ā3 + 900jk10,1�̃a7ā2C0
2 +

1050jk10,1�̃a6ā2C0
4 + 210jk10,1�̃a5C0

6 + jk4,1�̃a5 + k3,2�̃
2a5 +

3k5,2�̃
2a6ā+10k5,2�̃

2a5C0
2 +8k7,2�̃

2a7ā2 +63k7,2�̃
2a6āC0

2 +35k7,2

�̃2a5C0
4 + 21k9,2�̃

2a8ā3 + 288k9,2�̃
2a7ā2C0

2 + 378k9,2�̃
2a6āC0

4 +
84k9,2�̃

2a5C0
6 − jk2,3�̃

3a5 − jk4,3�̃
3a6ā − 6jk4,3�̃

3a5C0
2 − 15jk6,3

�̃3a6āC0
2 − 15jk6,3�̃

3a5C0
4 + 5jk8,3�̃

3a8ā3 − 70jk8,3�̃
3a6āC0

4 −
28jk8,3�̃

3a5C0
6−k1,4�̃

4a5+k3,4�̃
4a6ā−3k3,4�̃

4a5C0
2+4k5,4�̃

4a7ā2+
10k5,4�̃

4a6āC0
2 −5k5,4�̃

4a5C0
4 +11k7,4�̃

4a8ā3 +84k7,4�̃
4a7ā2C0

2 +
35k7,4�̃

4a6āC0
4 − 7k7,4�̃

4a5C0
6 + jk0,5�̃

5a5 − 3jk2,5�̃
5a6ā + jk2,5

�̃5a5C0
2 − 4jk4,5�̃

5a7ā2 − 18jk4,5�̃
5a6āC0

2 + jk4,5�̃
5a5C0

4 − 5jk6,5

�̃5a8ā3 − 60jk6,5�̃
5a7ā2C0

2 − 45jk6,5�̃
5a6āC0

4 + jk6,5�̃
5a5C0

6 −
5k1,6�̃

6a6ā − 15k3,6�̃
6a6āC0

2 + 5k5,6�̃
6a8ā3 − 25k5,6�̃

6a6āC0
4 +

7jk0,7�̃
7a6ā − 8jk2,7�̃

7a7ā2 + 7jk2,7�̃
7a6āC0

2 − 11jk4,7�̃
7a8ā3 −

48jk4,7�̃
7a7ā2C0

2 + 7jk4,7�̃
7a6āC0

4 − 20k1,8�̃
8a7ā2 − 5k3,8�̃

8a8ā3 −
60k3,8�̃

8a7ā2C0
2+36jk0,9�̃

9a7ā2−21jk2,9�̃
9a8ā3+36jk2,9�̃

9a7ā2C0
2−

75k1,10�̃
10a8ā3 + 165jk0,11�̃

11a8ā3,

b12 = −7k7,0a
6C0 −72k9,0a

7āC0 −84k9,0a
6C0

3 −495k11,0a
8ā2C0 −

1320k11,0a
7āC0

3 − 462k11,0a
6C0

5 + 6jk6,1�̃a6C0 + 48jk8,1�̃a7āC0 +
56jk8,1�̃a6C0

3 + 270jk10,1�̃a8ā2C0 + 720jk10,1�̃a7āC0
3 + 252jk10,1�̃

a6C0
5+5k5,2�̃

2a6C0+28k7,2�̃
2a7āC0+35k7,2�̃

2a6C0
3+117k9,2�̃

2a8ā2

C0+336k9,2�̃
2a7āC0

3+126k9,2�̃
2a6C0

5−4jk4,3�̃
3a6C0−12jk6,3�̃

3a7āC0−
20jk6,3�̃

3a6C0
3−24jk8,3�̃

3a8ā2C0−112jk8,3�̃
3a7āC0

3−56jk8,3�̃
3a6C0

5−
3k3,4�̃

4a6āC0 − 10k5,4�̃
4a6C0

3 + 21k7,4�̃
4a8ā2C0 − 21k7,4�̃

4a6C0
5 +

2jk2,5�̃
5a6C0 − 8jk4,5�̃

5a7āC0 + 4jk4,5�̃
5a6C0

3 − 30jk6,5�̃
5a8ā2C0 −

40jk6,5�̃
5a7āC0

3 + 6jk6,5�̃
5a6ā6C0

5 + k1,6�̃
6a6C0 − 12k3,6�̃

6a7āC0 +
k5,6�̃

6a6C0
3−15k5,6�̃

6a8ā2−40k5,6�̃
6a7āC0

3+k5,6�̃
6a6C0

5+12jk2,7

�̃7a7āC0 − 12jk4,7�̃
7a8ā2C0 + 24jk4,7�̃

7a7āC0
3 + 8k1,8�̃

8a7āC0 −
39k3,8�̃

8a8ā2C0+8k3,8�̃
8a7āC0

3+54jk2,9�̃
9a8ā2C0+45k1,10�̃

10a8ā2C0,

b13 = −k7,0a
7 − 9k9,0a

8ā − 36k9,0a
7C0

2 − 55k11,0a
9ā2 − 495k11,0

a8āC0
2 − 330k11,0a

7C0
4 + jk6,1�̃a7 + 7jk8,1�̃a8ā + 28jk8,1�̃a7C0

2 +
35jk10,1�̃a9ā2 + 315jk10,1�̃a8āC0

2 + 210jk10,1�̃a7C0
4 + k5,2�̃

2a7 +
5k7,2�̃

2a8ā + 210k7,2�̃
2a7C0

2 + 19k9,2�̃
2a9ā2 + 180k9,2�̃

2a8āC0
2 +

126k9,2�̃
2a7C0

4 − jk4,3�̃
3a7 − 3jk6,3�̃

3a8ā − 15jk6,3�̃
3a7C0

2 − 7jk8,3

�̃3a9ā2 −84jk8,3�̃
3a8āC0

2 −70jk8,3�̃
3a7C0

4 −k3,4�̃
4a7 −k5,4�̃

4a8ā−
10k5,4�̃

4a7C0
2 + k7,4�̃

4a9ā2 − 21k7,4�̃
4a8āC0

2 − 35k7,4�̃
4a7C0

4 +
jk2,5�̃

5a7 − jk4,5�̃
5a8ā+6jk4,5�̃

5a7C0
2 −5jk6,5�̃

5a9ā2 −15jk6,5�̃
5a8ā

123



122 X. Zhang et al.

C0
2 + 15jk6,5�̃

5a7C0
4 + k1,6�̃

6a7 − 3k3,6�̃
6a8ā + 3k3,6�̃

6a7C0
2 +

5k5,6�̃
6a9ā2−30k5,6�̃

6a8āC0
2+5k5,6�̃

6a7C0
4−jk0,7�̃

7a7+5jk2,7�̃
7a8ā−

jk2,7�̃
7a7C0

2 + jk4,7�̃
7a9ā2 + 30jk4,7�̃

7a8āC0
2 − jk4,7�̃

7a7C0
4 +

7k1,8�̃
8a8ā − 7k3,8�̃

8a9ā2 + 21k3,8�̃
8a8āC0

2 − 9jk0,9�̃
9a8ā +

19jk2,9�̃
9a9ā2 − 9jk2,9�̃

9a8āC0
2 + 35k1,10�̃

10a9ā2 − 55jk0,11�̃
11a9ā2,

b14 = −9k9,0a
8C0−110k11,0a

8āC0−165k11,0a
8C0

3+8jk8,1�̃a8C0+
80jk10,1�̃a9āC0 + 120jk10,1�̃a8C0

3 + 7k7,2�̃
2a8C0 + 54k9,2�̃

2a9āC0 +
84k9,2�̃

2a8C0
3 − 6jk6,3�̃

3a8C0 − 32jk8,3�̃
3a9āC0 − 56jk8,3�̃

3a8C0
3 −

5k5,4�̃
4a8C0 − 14k7,4�̃

4a9āC0 − 35k7,4�̃
4a8C0

3 + 4jk4,5�̃
5a8C0 +

20jk6,5�̃
5a8C0

3 + 3k3,6�̃
6a8C0 − 10k5,6�̃

6a9āC0 + 10k5,6�̃
6a8C0

3 −
2jk2,7�̃

7a8C0 +16jk4,7�̃
7a9āC0 −4jk4,7�̃

7a8C0
3 −k1,8�̃

8a8C0 +18k3,8

�̃8a9āC0 − k3,8�̃
8a8C0

3 − 16jk2,9�̃
9a9āC0 − 10k1,10�̃

10a9āC0,

b15 = −k9,0a
9−11k11,0a

10 ā−55k11,0a
9C0

2+jk8,1�̃a9+9jk10,1�̃a10 ā+
45jk10,1�̃a9C0

2+k7,2�̃
2a9+7k9,2�̃

2a10 ā+36k9,2�̃
2a9C0

2−jk6,3�̃
3a9−

5jk8,3�̃
3a10 ā−28jk8,3�̃

3a9C0
2−k5,4�̃

4a9−3k7,4�̃
4a10 ā−21k7,4�̃

4a9C0
2+

jk4,5�̃
5a9 + jk6,5�̃

5a10 ā + 15jk6,5�̃
5a9C0

2 + k3,6�̃
6a9 − k5,6�̃

6a10 ā +
k5,6�̃

6a9C0
2 − jk2,7�̃

7a9 + 3k4,7�̃
7a10 ā − 6jk4,7�̃

7a9C0
2 − k1,8�̃

8a9 +
5k3,8�̃

8a10 ā−3k3,8�̃
8a9C0

2+jk0,9�̃
9a9−7jk2,9�̃

9a10 ā+jk2,9�̃
9a9C0

2−
9k1,10�̃

10a10 ā + 11jk0,11�̃
11a10 ā,

b16 = −11k11,0a
10C0 + 10jk10,1�̃a10C0 + 9k9,2�̃

2a10C0 − 8jk8,3�̃
3

a10C0
3−7k7,4�̃

4a10C0+6jk6,5�̃
5a10C0+5k5,6�̃

6a10C0−4jk4,7�̃
7a10C0−

3k3,8�̃
8a10C0 + 2jk2,9�̃

9a10C0 + k1,10�̃
10a10C0,

b17 = −k11,0a
11+jk10,1�̃a11+k9,2�̃

2a11−jk8,3�̃
3a11−k7,4�̃

4a11+
jk6,5�̃

5a11+k5,6�̃
6a11−jk4,7�̃

7a11−k3,8�̃
8a11+jk2,9�̃

9a11+jk1,10�̃
10a11−

jk0,11�̃
11a11.

Appendix C

In Eq. (20),
F̃ f (ξ1, ξ2) = k1,0ξ2+k3,0ξ2

3+k5,0ξ2
5+k7,0ξ2

7+k9,0ξ2
9+k11,0ξ2

11+
k0,1ξ1 + k2,1ξ2

2ξ1 + k4,1ξ2
4ξ1 + k6,1ξ2

6ξ1 + k8,1ξ2
8ξ1 + k10,1ξ2

10ξ1 +
k1,2ξ2ξ1

2 +k3,2ξ2
3ξ1

2 +k5,2ξ2
5ξ1

2 +k7,2ξ2
7ξ1

2 +k9,2ξ2
9ξ1

2 +k0,3ξ1
3+

k2,3ξ2
2ξ1

3+k4,3ξ2
4ξ1

3+k6,3ξ2
6ξ1

3+k8,3ξ2
8ξ1

3+k1,4ξ2ξ1
4+k3,4ξ2

3ξ1
4+

k5,4ξ2
5ξ1

4+k7,4ξ2
7ξ1

4+k0,5ξ1
5+k2,5ξ2

2ξ1
5+k4,5ξ2

4ξ1
5+k6,5ξ2

6ξ1
5+

k1,6ξ2ξ1
6+k3,6ξ2

3ξ1
6 +k5,6ξ2

5ξ1
6 +k0,7ξ1

7+k2,7ξ2
2ξ1

7 +k4,7ξ2
4ξ1

7+
k1,8ξ2ξ1

8 + k3,8ξ2
3ξ1

8 + k0,9ξ1
9 + k2,9ξ2

2ξ1
9 + k1,10ξ2ξ1

10 + k0,11ξ1
11.
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