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Abstract In order to solve the constrained-input
problem and reduce the computing resources, a novel
event-triggered optimal control method is proposed
for a class of discrete-time nonlinear systems. In the
proposed method, the event-triggered control policy is
applied to the globalized dual heuristic dynamic pro-
gramming (GDHP) algorithm. Compared with the tra-
ditional adaptive dynamic programming (ADP) con-
trol, the event-triggered GDHP control can reduce the
computation while ensuring the system performance.
In this paper, a non-quadratic function is given to code
the control constraints and the trigger condition with
the stability analysis is provided.Neural networks (NN)
are constructed in theGDHPstructure,where themodel
network is designed to identify the unknown nonlinear
system, the critic network is used to learn the cost func-
tion and its partial derivative, and the action network is
designed to obtain the approximate optimal control law.
Three simulation examples are presented to demon-
strate the performance of the proposed event-triggered
design for constrained discrete-time nonlinear systems.
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1 Introduction

Traditional period control uses a time-triggered mech-
anism in which the control law is executed for every
fixed time interval. Such a samplingmechanism greatly
increases the computing burden and causes computing
waste. Compared with the traditional time-triggered
control, the event-triggered control can effectively uti-
lize computing resources and reduce the resources
waste [1,2]. The event-triggered control updates the
control signal irregularly by setting the trigger condi-
tion on the premise of guaranteeing the system perfor-
mance [3–5]. Under this event-triggered mechanism,
the control law is only executed when the trigger con-
dition is satisfied.

Event-triggered control has been widely studied and
applied in general linear systems, continuous-time sys-
tems, discrete-time systems and other fields [6–11]. For
instance, Zhang et al. [7] proposed a state-feedback
event-triggered control method for linear systems.
Tabuada [8] introduced an event-triggered mechanism
for nonlinear systems, which can make the Lyapunov
function decrease strictly along the solution curve. Qiu
et al. [10] designed an fuzzy event-triggered control
for pure-feedback nonlinear systems with unknown
states. Recently, many scholars have applied the event-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-021-06218-4&domain=pdf
http://orcid.org/0000-0003-1055-9513


2646 C. Mu et al.

triggered control to the adaptive dynamic program-
ming (ADP) algorithm [12–18]. Zhong et al. [15] pro-
posed an event-triggered mechanism for continuous-
time nonlinear systems and studied the unknown sys-
tem dynamic by a NN observer. Literature [16] gave
an event-triggered ADP control method and designed
a dynamic NN structure to identify the system inter-
nal states for continuous-time systems. In [17], Yang et
al. used NN structure to reconstruct the angular posi-
tion and angular velocity signals of the robot arm, and
introduced the event-triggered ADP control method to
approximate the performance index of the robot.

ADP algorithm is a useful method of iteratively
solving the optimal control for various systems, which
satisfies the principle of Bellman optimality [19–23].
In 1977, Werbos [19] first proposed the framework
of the ADP algorithm. The main idea of this method
is to use the function approximation structure (such
as neural network, fuzzy model, polynomial, etc.) to
approximate the cost function and control law. Subse-
quently, Murray et al. [20] presented a specific ADP
iterative algorithm for continuous systems and gave
strict proof of stability and convergence. Prokhorov
and Wunsch [24] summarized that the main struc-
tures of ADP algorithm can be classified as: heuristic
dynamic programming (HDP), dual heuristic dynamic
programming (DHP), globalized DHP (GDHP), and
their action-dependent structure. On the basis of pre-
vious studies, Jiang et al. [21] introduced a novel pol-
icy iterative algorithm without relying on the system
dynamic. Al-Tamimi et al. [22] proposed an value-
iteration-based ADP algorithm for discrete-time non-
linear systemswith unknown internal dynamic. In [23],
the greedy ADP algorithm was proposed to solve the
tracking control problem for discrete-time nonlinear
systems by converting the optimal tracking problem
into the optimal adjustment problem.

Control constraints widely exist in practical worlds,
which can easily damage the overall performance of the
system and maybe lead to system instability [25–28].
As one of the powerfulmethod to solve the optimal con-
trol problem for nonlinear systems, ADP method also
plays an important role in the system with control con-
straints. Na et al. [29] proposed a novel online control
policy for constrained nonlinear systems based on iter-
ative ADP algorithm. Fan et al. [30] solved the output-
constrained optimal control problem for continuous-
time nonlinear systems. In addition, researchers have
applied iterative ADP event-triggered control to a class

of constrained-input systems. For continuous-time con-
strained nonlinear systems, Zhu et al. [31] introduced
an event-triggered optimal control policy and gave the
detailed Lyapunov analysis. Literature [32] considered
the global stability of the saturated system, and pro-
posed a state-dependent non-quadratic event-triggered
control method. In [33], an event-triggered state feed-
back control policy was provided for constrained lin-
ear systems, the positive lower bounds and the self-
triggered method were also given.

Recently, scholars haveproposedmanyevent-trigge-
redmethods for linear systems, but there are few studies
that focus on discrete-time nonlinear systems. Besides,
for discrete-time nonlinear systems, researches usually
use the basic structures (such as HDP and DHP) of
ADP algorithm, and do not consider the constrained-
input problem. Motivated by this, we propose a novel
ADP-based event-triggered approximate optimal con-
trol for discrete-time nonlinear systems with control
constraints. In this paper, the globalized dual heuristic
dynamic programming (GDHP) structure is designed
to learn the event-triggered optimal control, in which
the information of cost function and its partial deriva-
tive are both studied by the critic network. Compared
with the HDP and DHP structures, the GDHP struc-
ture learnsmore system information, which enables the
GDHP method to obtain better control performance.
The contributions of this paper are summarized as fol-
lows: (1) the event-triggered design is developed on
the GDHP technique for discrete-time nonlinear sys-
tems, where the control law generated from action net-
work is updated when the trigger condition is satisfied.
(2) The control constraints are well considered in the
event-triggered design based on GDHP structure, and
the stability of event-triggered constrained systems has
been provided.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the adaptive event-triggered control
for a class of discrete-time nonlinear systems with con-
trol constraints. The trigger condition and the corre-
sponding stability analysis are given in Sect. 3. The
approximate optimal learning method using GDHP
structure and the detailed iterative process are discussed
in Sect. 4. Section 5 presents three simulation exam-
ples to prove the effectiveness of the proposed method.
Finally, Sect. 6 gives the conclusion and discussion.
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2 Problem formulation

Consider a class of discrete-time nonlinear systems
described as

xk+1 = f (xk) + g(xk)uk, (1)

where xk = [x1k, x2k, . . . , xnk]T ∈ R
n is the state vec-

tor, uk = [u1k, u2k, . . . , umk]T ∈ R
m is the control

input vector. For any xk , f (xk) : Rn → R
n is differen-

tiable with f (0) = 0, g(xk) : Rn → R
n×m is nonsin-

gular. Assume that system (1) is Lipschitz continuous
on a set Ω in Rn containing the origin, and the system
(1) is controllable in the sense that there exists a contin-
uous control onΩ to stabilize the system. Let us define
Ωu = {uk |uk = [u1k, u2k, . . . , umk]T ∈ R

m, |ui k | ≤
ui , i = 1, 2, . . . ,m}, where ui is the saturating bound-
ary of the i th executor. U ∈ R

m×m is the constant
diagonal matrix given by U = diag [u1, u2, . . . , um].

In the event-triggered control,we set the time {ki }∞i=0
as sampling instant, which means the controller only
samples at discrete-time points k0, k1, k2, . . .. The state
feedback control law uk satisfies

uk = μ(xki ), (2)

where xki represents the state vector at sampling instant
ki ≤ k < ki+1, i = 0, 1, 2, . . .. In addition,wedesign a
zero-order-hold (ZOH) device to maintain the control
input during the trigger interval. Thus, a continuous
control input sequence can be obtained by the ZOH.

Define the event-triggered error as

ek = xki − xk; k ∈ [ki , ki+1), (3)

where xki represents the state at the sampling instant,
xk represents the current state. By (2) and (3), we can
get

uk = μ(ek + xk). (4)

Then, applying (4) into (1), we have

xk+1 = f (xk) + g(xk)μ(ek + xk). (5)

The general discrete-time optimal control problem
is to find the control law uk that can minimize the fol-
lowing infinite domain cost function

V (xk) =
∞∑

j=k

U (x j , μ(e j + x j )), (6)

where μ(e j + x j )) = μ(xki ), and U (x j , μ(e j + x j ))
is the utility function. The utility function is usually a
quadratic form which can be described as

U (xk, μ(xki )) = xTk Qxk + μT (xki )Rμ(xki ), (7)

where Q and R are symmetric positive definitematrices
with appropriate dimensions, and U (0, 0) = 0. How-
ever, such a quadratic utility function is not suitable
for the system with control constrains. Thus, a non-
quadratic form is provided to solve the constrained-
input problem, and the utility function becomes

U (xk, μ(xki )) = xTk Qxk

+ 2
∫ μ(xki )

0
ϕ−T

(
U

−1
τ
)
URdτ, (8)

where τ ∈ R
m , ϕ(·) ∈ R

m is a bounded one-to-one
function satisfying |ϕ(·)| ≤ 1. Here, U (xk, μ(xki )) is
denoted by Uk .

Based on Bellman optimality principle, we can
obtain the optimal cost function V ∗(xk) as

V ∗(xk) = min
μ(xki )

{
Uk + V ∗(xk+1)

}
. (9)

In addition, the control law uk satisfies the first-order
necessary condition of optimal control [34]. For k ∈
[ki , ki+1), i = 0, 1, 2 . . ., the optimal control law
μ∗(xki ) can be obtained as

μ∗(xki ) = argmin
μ(xki )

{
Uk + V ∗(xk+1)

}

= Uϕ

(
−1

2

(
UR

)−1
gT (xk)

∂V ∗(xk+1)

∂xk+1

)
. (10)

Next, we will give an event-triggered condition and
prove the corresponding stability for system (5).

3 Stability proof under the event-triggered
condition

Definition 1 (cf. [35]) For∀xk ∈ Ω , a control law uk is
admissible with respect to (6) on Ω if uk is continuous
and stabilizes (1) onΩ , uk = 0 if xk = 0, and∀x0 ∈ Ω ,
V (x0) is finite. For the constant diagonal matrix U ∈
R
m×m , let m = 1, there is u = U with

∥∥μki

∥∥ ≤ u.

For system (5), we define an event-triggered con-
dition ‖ek‖ ≤ eT , where eT is the trigger threshold.
During the event-triggered control, the action network
will update the corresponding control law only if the
trigger condition is satisfied. Besides, at each sampling
instant ki , i = 0, 1, 2 . . ., the trigger error ‖ek‖ will be
reset to zero.
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Assumption 1 (cf. [36]) If function V :Rn → R
n ≥ 0

is continuously differentiable, the state vector xk and
the trigger error ek satisfy

‖ f (xk − ek)‖ ≤ P1 ‖ek‖ + P1 ‖xk‖ , (11)

‖g(xk − ek)‖ ≤ P2 ‖ek‖ + P2 ‖xk‖ , (12)

α1(‖x‖) ≤ V (xk) ≤ α2(‖x‖), ∀x ∈ R
n (13)

V (xk+1) − V (xk) ≤ −αV (xk) + β ‖ek‖ , (14)

α−1
1 (‖x‖) ≤ L ‖x‖ . (15)

where L , P1, P2, α and β are the positive constants, α1

and α2 are the class κ∞ functions.

Among them, if (13) and (14) hold, function V
is called an input-to-state stability Lyapunov (ISS-
Lyapunov) function [37].

According to (3), for each k ∈ [ki , ki+1), we have

ek+1 = xki − xk+1, (16)

where ki is the latest sampling instant. In addition,
according to [36], we can get

‖ek+1‖ ≤ ‖xk+1‖ . (17)

From Assumption 1, by applying (3) and (5) into (17),
we have

‖ek+1‖ ≤ ∥∥ f (xk) + g(xk)μ(xki )
∥∥

≤ ‖ f (xk)‖ + ‖g(xk)‖ u
= ∥∥ f (xki − ek)

∥∥ + ∥∥g(xki − ek)
∥∥ u

≤ (P1 + P2u)
∥∥xki

∥∥ + (P1 + P2u) ‖ek‖
≤ (P1 + P2u)

∥∥xki
∥∥ + 2(P1 + P2u) ‖ek‖ . (18)

Therefore, we can obtain

‖ek‖ ≤ 2(P1 + P2u) ‖ek−1‖ + (P1 + P2u)
∥∥xki

∥∥

≤ 2(P1 + P2u)(2(P1 + P2u) ‖ek−2‖
+ (P1 + P2u)

∥∥xki
∥∥) + (P1 + P2u)

∥∥xki
∥∥ · · ·

≤ (2(P1 + P2u))k−ki
∥∥eki

∥∥

+ (2(P1 + P2u))k−ki−1(P1 + P2u)
∥∥xki

∥∥

+ (2(P1 + P2u))k−ki−2(P1 + P2u)
∥∥xki

∥∥

+ · · · + (P1 + P2u)
∥∥xki

∥∥ . (19)

Set the initial condition eki = 0, Eq. (19) can be solved
as

‖ek‖ ≤ 1 − (2(P1 + P2u))k−ki

1 − 2(P1 + P2u)
(P1 + P2u)

∥∥xki
∥∥ .

(20)

So, we define (20) as the event-triggered condition,
such that

‖ek‖ ≤ eT

= 1 − (2(P1 + P2u))k−ki

1 − 2(P1 + P2u)
(P1 + P2u)

∥∥xki
∥∥ .

(21)

In the following, we will give the stability proof of
the system (5) with control constraints under the con-
dition (21).

Theorem 1 According to Assumption 1, if 0 ≤ P1 +
P2u ≤ 1 and the function V (xk) satisfies

V (xk) ≤ V (xki+1)

= −ξαV (xki )(ki+1 − ki ) + V (xki ), (22)

for k ∈ [ki , ki+1), i = 0, 1, 2 . . ., where ξ ∈ (0, 1),
the event-triggered control system (5)with control con-
straints is asymptotically stable.

Proof By (13) and (15), one can get
∥∥xki

∥∥ ≤ α−1
1 (V (xki )) ≤ LV (xki ). (23)

Substituting (20) into (14), one has

V (xk+1) − V (xk) ≤ −αV (xk)

+ β
1 − (2(P1 + P2u))k−ki

1 − 2(P1 + P2u)
(P1 + P2u)

∥∥xki
∥∥ .

(24)

Then, considering (22) and (23), one can define

ψk = β
1 − (2(P1 + P2u))k−ki

1 − 2(P1 + P2u)
L(P1 + P2u). (25)

Equation (24) can be written as

V (xk+1) ≤ (1 − α)V (xk) + ψkV (xki ). (26)

Therefore, it obtains

V (xk) ≤ (1 − α)V (xk−1) + ψk−1V (xki )
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≤ (1 − α)(1 − α)V (xk−2) + ψk−2V (xki )

+ ψk−1V (xki ) · · ·
≤ (1 − α)k−ki V (xki )

+ (1 − α)k−ki−1ψki V (xki ) + · · ·
+ (1 − α)ψk−2V (xki ) + ψkV (xki ). (27)

According to theorem 1, ψk is a monotonically
increasing function with positive common ratio. Then,
(27) can be solved as

V (xk) ≤ (1 − α)k−ki V (xki )

+ ψk
1 − (1 − α)k−ki

α
V (xki ). (28)

Based on (22), one has

V (xk) ≤ −ξαV (xki )(k − ki ) + V (xki ). (29)

To simplify the calculation, one can define

M(xk) = −ξαV (xki )(k − ki ) + V (xki ). (30)

Therefore, one has

V (xk) ≤ M(xk). (31)

From (30), the first difference ofM(xk) can be obtained
as

ΔM = M(xk+1) − M(xk)

= −ξαV (xki ). (32)

Then, substituting (13) into (32), it obtains

ΔM ≤ −ξα · α1(x ‖ki‖) < 0. (33)

This completes the proof. 
�
From the above derivation process, it can be con-

cluded that the event-triggered control system (5) with
control constrains is asymptotically stable.

4 Event-triggered controller design based on
GDHP structure

In this section, we will apply the event-triggered condi-
tion into the GDHP structure. Due to the actual optimal
control law cannot be obtained in theory, an iterative
stopping criterion is designed to obtain the approxi-
mate optimal control law. Only when the stopping con-
dition is satisfied, an iterative process is completed.

Fig. 1 Event-triggered control systembased on theGHDP struc-
ture

Then, the trigger error between the sampled state and
the current state is compared with the trigger threshold
online.When the designed trigger condition is violated,
the current control law will be sampled. Otherwise, the
control law is maintained by a ZOH.

This section is divided into three parts. Firstly,
an approximate optimal event-triggered controller is
designed in the first part. Then, the specific implemen-
tation process of NN is given in the second part. Sub-
sequently, the iterative stopping criterion is provided in
the third part.

4.1 Event-triggered controller design

The event-triggered controller design based on GDHP
structure is displayed in Fig. 1. It can be seen that
the proposed event-triggered GDHP method is imple-
mented by three NN structures, where the model net-
work is designed to obtain the system dynamic, the
critic network is used to approximate the cost func-
tion and its partial derivative, and the action network
is designed to obtain the event-triggered approximate
optimal control law.

In addition, a sensor device is designed to judge
whether the trigger condition is violated. When the
trigger condition is violated, the current time is set to
the sampling instant ki , i = 1, 2, . . ., and the control
law μ(xki ) is maintained by the ZOH device during
ki ≤ k < ki+1.
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4.2 NN implementation of GDHP technique

4.2.1 Model network

For the unknown system, before performing the itera-
tive calculation, a model network is first constructed to
obtain the systemdynamic. The number of hidden layer
neurons is set as Nm . Letυm denote theweightmatrix of
input-to-hidden layer, andωm denote the weight matrix
of hidden-to-output layer. According to the state vector
xk and the control law μ(xk), the state vector x̂k+1 for
the next time step can be obtained as

x̂k+1 = ωT
mφ(υT

m xmk), (34)

where φ(·) ∈ RNm is the activation function, which
satisfies

φ(a) = 1 − exp(−a)

1 + exp(−a)
. (35)

Set the error function as

emk = x̂k+1 − xk+1 (36)

and the objective error function as

Emk = 1

2
eTmkemk . (37)

In the iterative training of the model network, the
weights are updated based on the gradient descent rule,
which are

ωm(k+1) = ωmk − ϑm

[
∂Emk

∂ωmk

]
, (38)

υm(k+1) = υmk − ϑm

[
∂Emk

∂υmk

]
, (39)

where ϑm is the learning rate. Notice that the weights
are kept unchanged after a sufficient training and will
be used in the following training.

4.2.2 Critic network

It iswell known that the critic networkof theHDPstruc-
ture learns the information of the cost function V (xk)
and the critic network of the DHP structure learns the
information of the partial derivatives ∂V (xk)/∂xk of
the cost function. However, in the GDHP structure, the
critic network not only learns the information of the
cost function V (xk), but also studies the knowledge of
its partial derivatives ∂V (xk)/∂xk . Because the GDHP
structure learning more information about the system,

themore excellent control performance can be obtained
by this method. For simplicity, the partial derivative is
denoted as λ(xk) = ∂V (xk)/∂xk .

In the critic network, the outputs can be obtained as

V̂ (xki ) = ωVT
c φ(υT

c xki ), (40)

λ̂(xki ) = ωλT
c φ(υT

c xki ), (41)

where υc represents the weight matrix of input-to-
hidden layer, and ωc represents the weight matrix
of hidden-to-output layer. The target function can be
expressed as

V (xki ) =Uk + V̂ (̂xki+1), (42)

λ(xki ) = 2Qxk + 2

(
∂μ(xki )

∂xki

)
URϕ−1(U

−1
μ̂(xki ))

+ (
∂ x̂ki+1

∂xki
+ ∂ x̂ki+1

∂μ̂(xki )

∂μ̂(xki )

∂xki
)T

× λ̂(̂xki+1). (43)

Hence, the error function can be obtained as

eVck =V̂ (xki ) − V (xki ), (44)

eλ
ck = λ̂(xki ) − λ(xki ). (45)

The minimized objective error function is

Eck = (1 − ρ)(
1

2
eV T
ck eVck) + ρ(

1

2
eλT
ck e

V
ck). (46)

According to (46) and the gradient descent rule, the
weights of the critic network are updated as

ωc(k+1) = ωck − ϑc

[
(1 − ρ)

∂EV
ck

∂ωck
+ ρ

∂Eλ
ck

∂ωck

]
, (47)

υc(k+1) = υck − ϑc

[
(1 − ρ)

∂EV
ck

∂υck
+ ρ

∂Eλ
ck

∂υck

]
, (48)

where ϑc > 0 is the learning rate. 0 ≤ ρ ≤ 1 is a
constant that reflects the weights of HDP and DHP in
GDHP structure, which means that when ρ = 0, the
structure reduces to a pure HDP, and when ρ = 1, the
used structure reduces to a pure DHP.

4.2.3 Action network

In the action network, the sampled state xki is taken as
the input and the obtained μ̂(xki ) is used to approxi-
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mate μ(xki ). With the activation function φ(·) ∈ RNm ,
μ̂(xki ) can be formulated as

μ̂(xki ) = ωT
a φ(υT

a xki ), (49)

where υa represents the weight matrix of input-to-
hidden layer, and ωa represents the weight matrix of
hidden-to-output layer. According to (10), the target
control input at the sampling instant ki can be obtained
as

μ(xki ) = Uϕ

(
−1

2

(
UR

)−1
gT

(
xki

) ∂V ∗(xki+1)

∂xki+1

)
. (50)

Define the error function eak and the objective error
function Eak as

eak = μ̂(xki ) − μ(xki ), (51)

Eak = 1

2
eTakeak . (52)

Similarly, the weights updating rule of the action net-
work can be formulated as

ωa(k+1) = ωak − ϑa

[
∂Eak

∂ωak

]
, (53)

υa(k+1) = υak − ϑa

[
∂Eak

∂υak

]
, (54)

where ϑa > 0 is the learning rate.

4.3 Approximate optimal algorithm design

Define V∞(xk) = lim
l→∞ Vl(xk), if the system state xk is

controllable, the cost function V∞(xk) is equal to the
optimal cost function V ∗(xk)

lim
l→∞ Vl(xk) = V ∗(xk), (55)

where l is the outer loop iteration index. As l → ∞,
we have Vl(xk) → V ∗(xk) in theory. However, it is not
possible to perform iterations indefinitely in the actual
calculation process. Thus, we introduce an error ε to
make the cost function V (xk) converge after a finite
number of iterations [38]. That is to say, there is a lim-
ited l that can make the cost function Vl(xk) satisfy
∣∣V ∗(xk) − Vl(xk)

∣∣ ≤ ε. (56)

In the iterative ADP algorithm, this design achieves
the purpose of approximate optimal regulation. How-
ever, the optimal cost function V ∗(xk) is unknown in
general, it is difficult to use the termination criterion

(56) to verify whether the iterative algorithm satisfies
the requirements. So, we use the following criterion

|Vl+1(xk) − Vl(xk)| ≤ ε (57)

to replace (56).

5 Simulation results and analysis

In this section, the event-triggered GDHP method is
applied in three discrete-time systems. Simulations
show the advantages of the proposed method by com-
paring with the traditional GDHP method.

5.1 Case 1: two-dimensional system

Consider the following discrete-time system:

xk+1 =
[

x1k + 0.1x2k
−2x1k + 0.7x2k

]
+

[
0
x1k

]
uk, (58)

where xk = [x1k, x2k]T ∈ R
2 is the state vector and

uk ∈ R is the control input vector. The initial state vec-
tor is set as x0 = [−1, 1] and the boundary of the satu-
rated actuator is chosen as |u| ≤ 0.1. Let the parameters
Q = I2 and R = I , where the subscript represents the
dimensions of the identity matrix. Based on (21), we
set P1 + P2u = 0.2. The event-triggered threshold can
be obtained as

eT = 1 − 0.4k−ki

1 − 0.4
· 0.2 ∥∥xki

∥∥ . (59)

The model network needs to be pre-trained to obtain
the system dynamic before implementing the proposed
method. The structure of model network is designed
as 3–8–2 and the learning rate is set as ϑm = 0.1. It is
well known that the setting of parameters will affect the
convergence speed and control effect of the algorithm
to a certain extent. In order to obtain a good control
performance, the initial weights of the three networks
are randomly selected from [− 0.1, 0.1] after multi-
ple experiments, which enables the algorithm to have
a high control accuracy. To obtain sufficient system
dynamic, 500 sets of data are randomly selected from
[− 1, 1] for training. Model network is trained for 50
time steps on each sample and the training performance
is shown in Fig. 2. From Fig. 2, we can see that the
training error has a large value at the beginning, as the
samples increase, the training error becomes smaller
and eventually converges to zero. After the training,
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Fig. 2 The training result and the state error of model network

the obtained weights will be kept unchanged for the
following training.

Next, the critic network and the action network are
designed with structures 2–8–3 and 2–8–1. The initial
weights of the two networks are all randomly generated
within [− 0.5, 0.5] and the adjusting parameter is set
as ρ = 0.5. The learning rates are chosen as ϑc = 0.01
and ϑa = 0.1. During iterative process, each network
is trained for 200 inner-loop steps with each iteration
of 4000 training steps. In addition, we set ε = 10−6 as
the termination condition for each state, which ensures
the control law u is an approximate optimal control.
As shown in Fig. 3, the weight norms of the two net-
works are all convergent after the training. It should be
noted that due to the weights of Fig. 3 are updated on
line. During an iterative process Of state variables, the
weights are updated with the iterative calculation until
the termination criterion is satisfied. In the entire iter-
ative update process, it can be seen that the iteration is
performed on 4000 training steps.

In order to prove the effectiveness of the proposed
method, the traditional GDHPmethod is also applied in
this example to make a contrast. The state trajectories
and the control input curves in 200 time steps under the
twomethods are shown in Figs. 4 and 5. As can be seen
in Fig. 5, compared with the traditional GDHPmethod,
our method overcomes the constrained-input problem.
The trigger error ‖ek‖ and the trigger threshold eT are
given in Fig. 6. The error ‖ek‖ between the current state
and the sampled state is calculated in each sampling
process, if ‖ek‖ > eT , ‖ek‖ will be reset to zero. In
this simulation, the action network of traditionalGHDP

Fig. 3 The norm of weight matrix for action and critic networks
with GDHP method

Fig. 4 State trajectories with the traditional GHDP method and
the event-triggered GHDP method

method needs 200 samples to update the control input,
while the event-triggered GDHPmethod only needs 82
samples.

5.2 Case 2: three-dimensional system

Consider the following discrete-time affine nonlinear
system presented in [39]:

xk+1 =
⎡

⎣
x1k x2k

x21k − 0.5 sin(x2k)
x3k

⎤

⎦ +
⎡

⎣
0
1

−1

⎤

⎦ uk, (60)

where the state vector xk = [x1k, x2k, x3k]T ∈ R
3.

Set the initial state vector as x0 = [−0.5, 0.5, 1]T and
the saturating boundary as |u| ≤ 0.1. The performance
index function is chosen the same as case 1with Q = In
and R = Im . The termination condition error is set as
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Fig. 5 Control input trajectories u with the traditional GHDP
method and the event-triggered GHDP method

Fig. 6 Trigger error and trigger threshold

ε = 10−4. In this case, we let P1 + P2u = 0.1. So, the
trigger threshold can be obtained as

eT = 1 − 0.2k−ki

1 − 0.2
· 0.1 ∥∥xki

∥∥ . (61)

The structures of model, critic and action networks
are designed as 4–8–3, 3–8–1, and 3–8–1. All the initial
weights of three networks are randomly set in [-0.1,
0.1], and other parameters are designed the same as
case 1. Similar to case 1, the model network is pre-
trained at first and the unchanged weights are used to
train the critic network and action network.

In this case, we also compare the traditional GHDP
method with the event-triggered GDHP method. The
state trajectories in 100 time steps under the two dif-
ferent methods are shown in Fig. 7. According to the

Fig. 7 State trajectories x with the traditional GHDP method
and the event-triggered GHDP method

Fig. 8 Control input trajectories u with the traditional GHDP
method and the event-triggered GHDP method

state trajectories, we can get that the two methods have
similar performance. Figure 8 shows the control input
trajectories under the twomethods.As can be seen from
Fig. 8, the proposedmethod overcomes the control con-
straints aswell as reduces the computing resources. The
event-triggered error and trigger threshold are shown
in Fig. 9, where we can see that the action network of
traditional GHDP method is updated 100 times, while
in the proposed method, the action network is only
updated 34 times. Besides, the updated weights pro-
cess of the action network from hidden-to-output layer
are shown in Fig. 10. Due to the weights in Fig. 10
obtained through the external iteration, which are only
updated at the sampling instant, the iterative time steps
of the action network are the same as the time steps of
state trajectory.
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Fig. 9 Trigger error and trigger threshold

Fig. 10 The weights of action network from hidden-to-output
layer

5.3 Case 3: torsional pendulum system

In this case, we apply the event-triggered GDHP
method to the dynamical system of torsional pendu-
lum, whose mechanical model is shown in Fig. 11. The
mathematical description of this system is as follows
[40]:
⎧
⎪⎨

⎪⎩

dθ

dt
= ω

G
dω

dt
= u − Mgl sin θ − fd

dθ

dt
,

(62)

where M = 1/3 kg is the mass, l = 2/3 m and
G = 4/3Ml2 are the length of the pendulum bar and
the rotary inertia, respectively. Let fd = 0.2 be the
frictional factor and g = 9.8 m/s2 be the acceleration

Fig. 11 The mechanical model of the torsional pendulum

of gravity. The angle θ and the angular velocity ω are
the inputs of the system.

Using the sampling intervalΔt = 0.1 s, the dynamic
function of the torsional pendulum system can be dis-
cretized as

xk+1 =
[

0.1x2k + x1k
−0.49 sin(x1k) − 0.1 fd · x2k + x2k

]
+

[
0
0.1

]
uk ,

where x1k = θ and x2k = ω. The initial state and the
control constraint are set as x0 = [−1, 1]T , |u| ≤ 0.3,
respectively. The structures of model, critic and action
networks are designed as 3–8–2, 2–8–1, and 2–8–1.
The termination condition error is set as ε = 10−3.
Besides, the trigger threshold is chosen the same as
case 2 and all other parameters are the same as case 1.

In this case, the traditional GHDP method and the
proposed method are applied in torsional pendulum
system. The state trajectories in 100 time steps under
the two method are shown in Fig. 12, which indicates
the control performance of the proposedmethod is sim-
ilar to that of the traditional GHDP method. However,
the event-triggered GDHP method is able to constrain
the control input to a certain range as shown in Fig. 13.
To further illustrate the effectiveness of the proposed
algorithm, the trigger threshold and the event-triggered
error are given in Fig. 14. Compared with the tradi-
tional time-triggered method with the requirement of
100 samples, the event-triggered method only needs 34
samples, representing a save of 66%.

6 Conclusion

In this paper, a novel event-triggered method based on
GDHP technique is proposed for a class of discrete-
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Fig. 12 State trajectories with the traditional GHDPmethod and
the event-triggered GHDP method

Fig. 13 Control input trajectories u with the traditional GHDP
method and the event-triggered GHDP method

Fig. 14 Trigger error and trigger threshold

time systems with control constraints. In order to solve
the constrained-input problem, a non-quadratic per-
formance index is introduced in the utility function.
Additionally, we give a trigger threshold and use Lya-
punov technique to prove the stability of the event-
triggered systems. Then, the NN implementation based
on GDHP technique is given and an iterative termina-
tion criterion is also designed to obtain the approx-
imate optimal control. Finally, three cases are given
to demonstrate the effectiveness of the event-triggered
GDHP method by comparing with the traditional
GDHP method. According to the simulation results
from case 1, case 2 and case 3, it can be known that
compared with the traditional time-triggered method,
the event-triggeredmethod saves 59%, 66%and66%of
computing resources, respectively. Therefore, it can be
concluded that the event-triggered GDHP method can
solve the constrained-input problem and reduce com-
puting resources while ensuring system performance.
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