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Abstract In this paper, we focus on the global
existence–uniqueness and input-to-state stability of the
mild solution of impulsive reaction–diffusion neural
networks with infinite distributed delays. First, the
model of the impulsive reaction–diffusion neural net-
works with infinite distributed delays is reformulated
in terms of an abstract impulsive functional differen-
tial equation in Hilbert space and the local existence–
uniqueness of themild solution on impulsive time inter-
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val is proven by the Picard sequence and semigroup
theory. Then, the diffusion–dependent conditions for
the global existence–uniqueness and input-to-state sta-
bility are established by the vector Lyapunov function
and M-matrix where the infinite distributed delays are
handled by a novel vector inequality. It shows that
the ISS properties can be retained for the destabiliz-
ing impulses if there are no too short intervals between
the impulses. Finally, three numerical examples verify
the effectiveness of the theoretical results and that the
reaction–diffusion benefits the input-to-state stability
of the neural-network system.

Keywords Infinite distributed delay · Input-to-state
stability · Existence–uniqueness · Vector Lyapunov
function · Impulsive reaction–diffusion neural network

1 Introduction

Due to wide applications in the field of secure com-
munication, image processing, pattern recognition, and
machine learning [5,12,16,24,25], neural networks
have attracted much interest of researchers whose
intensive efforts are oriented toward the dynamical
analysis of neural networks including stability, syn-
chronization, passivity, periodicity, among many oth-
ers [6,10,13,14]. Such analysis has also been carried
on various kinds of neural-network models such as
Hopfield neural networks, recurrent neural networks,
and complex networks. Among them, the dynami-
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cal analysis of impulsive neural networks is one of
the common interests since the impulse can either
force the neural networks to fall into the desirable
pattern or bring fluctuation to the neural networks.
How to establish the conditions between the impulse
and the continuous neural-network system for desir-
able properties has ignited plenty of valuable studies
[2,4,7,30,33].

When the electrons are moving in the nonuniform
electromagnetic field, the shift trajectory of the elec-
trons may show the diffusion phenomenon, so the
reaction–diffusion is introduced into the neural net-
works and various kinds of reaction–diffusion neu-
ral networks (RDNNs) are investigated. For exam-
ple, the global exponential synchronization in an
array of linearly diffusively coupled RDNNs was
achieved by the pinning-impulsive controller in [39].
The finite-time passivity and synchronization prob-
lems of coupled RDNNs, generalized inertial RDNNs,
and memristive RDNNs were addressed in [26,27,
31]. Recently, the research on genetic regulatory net-
workswith reaction–diffusion terms has obtainedmany
remarkable results such as stability, state estima-
tion, and sampled-data state estimation [17,28,42],
to name a few. Among the studies of RDNNs, the
dynamical analysis of impulsive RDNNs (IRDNNs)
is one of the hottest topics and has also got fruit-
ful results such as [5,9,18,19,22,36] and references
therein.

On the other hand, the time delay is inevitable
in the implementation of neural networks, so the
dynamical analysis of IRDNNs normally involves the
finite delay or infinite distributed delay [4,5,11,19,
22,23,34]. For instance, the global exponential sta-
bility of Cohen–Grossberg-type IRDNNs with finite-
time-varying delays was studied in [19]. The synchro-
nization problems of IRDNNs and stochastic IRDNNs
with finite delays and infinite distributed delays were
addressed in [5,22]. In [4], Cao et al. investigated the
almost periodicity of fractional-order IRDNNs with
time-varying delays and proved the global perfect
Mittag–Leffler stability.

In the traditional stability analysis of neural net-
works, the states are usually designed to converge to
the equilibrium point. However, when the neural net-
works are affected by external input, the stability is
hardly achieved [13]. Therefore, the input-to-state sta-
bility (ISS), originally proposed by Sontag [29], is
employed to measure how the external input influ-

ences the stability of the neural networks [1,13,40,44].
For instance, the exponential ISS issues of recur-
rent neural networks were solved by the Lyapunov–
Krasovskii function method and linear matrix inequal-
ities in [40]. The pth moment exponential ISS of
recurrent neural networks was established by the vec-
tor Lyapunov function in [13]. Note that the above-
mentioned works on ISS are concentrated on neu-
ral networks without impulses or reaction–diffusion
terms both of which can cause non-negligible influ-
ence in the neural networks. But there is less rel-
ative research on the ISS of IRDNNs, because the
IRDNNs, essentially an abstract impulsive differen-
tial equation with spatial operator in Hilbert space,
may explode at finite time under the spatiotemporal
external input; that is, the IRDNNs may not admit
a global solution which is fundamental for further
dynamical analysis including ISS. Thus, the primary
concernof thiswork is to establish theglobal existence–
uniqueness of the mild solution of IRDNNs. For the
ISS analysis of the neural networks [21,37,41], most
of the existing works address the neural networks
with finite delays and the more challenging scenario
with infinite distributed delays is rarely treated since
the present states of the infinite delayed neural net-
works depend on all the history information so that
the cross-term with infinite distributed delays gener-
ated from the Lyapunov function is difficult to handle
with the reaction–diffusion and impulses existing in
the neural-network model, which further motivates our
work.

Motivated by the above discussion, this work inves-
tigates the global existence–uniqueness and ISS of
the mild solution of IRDNNs with infinite distributed
delays. The main contributions of this paper lie in the
following three aspects.

(1) The local existence–uniqueness of the mild solu-
tion on impulsive time interval is proven by the
Picard sequence and semigroup theory after refor-
mulating the neural-network model in terms of an
abstract impulsive functional differential equation
in Hilbert space.

(2) The diffusion–dependent conditions are estab-
lished to determine the ISS properties of IRDNNs
under the spatiotemporal external input and bridge
the local existence–uniqueness and the global
existence–uniqueness of the mild solution where
the cross-term of the infinite distributed delays is
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solved by the vector Lyapunov function and a novel
vector inequality. It shows that the ISS proper-
ties can be retained for the destabilizing impulses
if there are no too short intervals between the
impulses.

(3) It is of interest to verify in the numerical examples
that the reaction–diffusion can force the trajecto-
ries of the neural networks to fall into ISS pattern
and the ISS properties can be retained under certain
impulsive perturbation.

The next sections are structured as follows. In
Sect. 2, some lemmas, definitions, and the neural-
network model are introduced. In Sect. 3, the well-
posedness and ISS of the mild solution are proven.
Section 4 proposes the numerical simulation of three
examples. Finally, some conclusions are given in Sect.
5.

Notations n̄ = {1, 2, . . . , n}, a = (a, a, . . . , a)T

for a ∈ R, I is the identity matrix, and N is the set of
positive integers. If A is a vector or matrix, A � 0 (or
A � 0) means that all elements of A are positive (or
nonnegative). For A = (ai j )n×n ∈ R

n×n , we denote
|A| = (|ai j |)n×n , A∗ = diag(a11, a22, . . . , ann),

�A� = A − A∗, and ‖A‖F � (tr(AAT ))
1
2 . L p(J, Y )

denotes the space of Borel measurable mappings
{ f (t)}t∈J from J to Y with

∫
t∈J ‖ f (t)‖p

Y dt < ∞
where J ⊂ R and p > 0. L � (L2(O))n is a Hilbert
space with inner product 〈z1, z2〉 = ∫

O zT
1 (x)z2(x)dx

and norm ‖z‖2 = ‖z‖2L = 〈z, z〉, where O =
{x |x = (x1, x2, . . . , xq)T , |xς | ≤ ρς , ς ∈ q̄}. A
function f : J → Y is piecewise continuous if it
has at most a finite number of jump discontinuities
on J and f (t+) = f (t) for all t ∈ J . PC(J, Y )

represents the space of piecewise continuous func-
tions from J to Y and PC = PC((−∞, 0],L).
PCb = { f | f ∈ PC and f (t) is bounded on (−∞, 0]}
with norm ‖ f ‖PCb = sup−∞<t≤0 ‖ f (t)‖. A function
z(t, x) is said to be piecewise continuous if z(t, x)

is piecewise continuous for all x ∈ O. K repre-
sents the class of continuous strictly increasing func-
tion κ : R+ → R+ with κ(0) = 0. K∞ is the
subset of K functions that are unbounded. A func-
tion β is said to belong to the class of KL, if β(·, t)
is of class K for each fixed t > 0 and β(s, t)
decreases to 0 as t → +∞ for each fixed s ≥
0.

2 Model description and preliminaries

Consider the following IRDNNs with infinite dis-
tributed delays

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ ẑi (t,x)
∂t = ∑q

ς=1
∂

∂xς

(

diς
∂ ẑi (t,x)

∂xς

)

− ai ẑi (t, x)

+ ∑n
j=1 bi j f̂ j (ẑ j (t, x)) + ∑n

j=1 ci j f̂ j (ẑ j (t − τ, x))

+ ∑n
j=1 ei j

∫ t
−∞ ki j (t − s) f̂ j (ẑ j (s, x))ds + ûi (t, x),

t ≥ 0, t �= tk ,
ẑi (tk , x) = ẑi (t

−
k , x) + Îik(ẑi (t

−
k , x)), k ∈ N,

(1)

where x ∈ O, i ∈ n̄, ẑi (t, x) is the state variable of
the i th neuron at time t and space x , diς represents
the positive transmission diffusion coefficient of the i th
neuron,

∑q
ς=1

∂
∂xς

(diς
∂ ẑi (t,x)

∂xς
) represents the reaction–

diffusion term, ai > 0 stands for the recovery rate,
bi j , ci j , and ei j are the connection weight strengths
of the j th neuron on the i th neuron, f̂ j stands for the
activation function, the delay kernel ki j is nonnega-
tive continuous function defined on [0,+∞) and sat-
isfies that

∫ +∞
0 ki j (s)ds = 1 and there exists a pos-

itive constant ε such that
∫ +∞
0 eεski j (s)ds < +∞,

ûi is the external input which satisfies the Dirichlet
boundary condition and supt≥0 ‖ûi (t, x)‖2 < +∞,
i, j ∈ n̄. To prevent the occurrence of accumulation
points, the impulse time sequences are assumed to sat-
isfy 0 = t0 < t1 < t2 < · · · < tk → +∞ as k → +∞,
which are denoted by setF0. For any η > 0, letF (η)

denote the set of all impulse time sequences inF0 sat-
isfying tk − tk−1 ≥ η for any k ∈ N. The impulsive
function Îik is continuous, i ∈ n̄, k ∈ N. Then, the
neural-network model (1) can be rewritten in terms of
the following vector form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ ẑ(t,x)
∂t = ∇ · (D ◦ ∇ ẑ(t, x)) − Aẑ(t, x)

+B f̂ (ẑ(t, x)) + C f̂ (ẑ(t − τ, x))

+ ∫ t
−∞ E ◦ K (t − s) f̂ (ẑ(s, x))ds

+û(t, x), t ∈ [tk−1, tk),
ẑ(tk, x) = ẑ(t−k , x) + Îk(ẑ(t

−
k , x)), k ∈ N,

(2)

where∇·(D◦∇ ẑ(t, x)) = (
∑q

ς=1
∂

∂xς
(d1ς

∂ ẑ1(t,x)
∂xς

), . . . ,
∑q

ς=1
∂

∂xς
(dnς

∂ ẑn(t,x)
∂xς

))T , ẑ = (ẑ1, ẑ2, . . . , ẑn)T , A =
diag(a1, a2, . . . , an), B = (bi j )n×n , C = (ci j )n×n ,
E = (ei j )n×n , K (s) = (ki j (s))n×n , f̂ (z) = ( f̂1(z1),
f̂2(z2), · · · , f̂n(zn))T , û = (û1, û2, . . . , ûn)T , Îk(ẑ) =
( Î1k(ẑ1), Î2k(ẑ2), . . . , Înk(ẑn))T , and ◦ denotes
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Hadamard product. The Dirichlet boundary condition
and initial condition, associated with (1) or (2), are
given by

ẑ(t, x)|x∈∂O = 0, t ∈ R,

ẑ(t, x) = φ̂(t, x) ∈ PCb, t ≤ 0, x ∈ O.
(3)

As standard hypotheses, we assume that

(H1) there exist positive constants li such that

| f̂i (ẑ1) − f̂i (ẑ2)| ≤ li |ẑ1 − ẑ2|,

(H2) there are positive constants rik such that

|ẑ1 + Îik(ẑ1)| ≤ rik |ẑ1|,

for any ẑ1, ẑ2 ∈ R, i ∈ n̄, and k ∈ N.

Define a linear operator

D : (H1
0 (O))n ∩(H2(O))n → L, D ẑ = ∇·(D◦∇ ẑ),

then D is an infinitesimal generator of a strongly con-
tinuous contractive semigroup S(t) on L [20]. So, the
reaction–diffusion with spatial derivative in the neural-
network model is treated as a linear operator in Hilbert
space, which enables us to reformulate the neural-
networkmodel in Euclidean space into an abstract ordi-
nary differential form in Hilbert space. Then, we arrive
at an abstract formulation of the neural networks (2)–
(3) in the form of an abstract impulsive functional dif-
ferential equation+

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dz(t)
dt = Dz(t) − Az(t) + B f (z(t))

+C f (z(t − τ)) + ∫ t
−∞ E ◦ K (t − s) f (z(s))ds

+u(t), t ∈ [tk−1, tk),

z(tk) = z(t−k ) + Ik(z(t−k )), k ∈ N,

z0 = φ ∈ PCb,

(4)

where z(t) = ẑ(t, x) ∈ L, f : L → L, u(t) =
û(t, x) ∈ L, Ik : L → L, k ∈ N, and z0(θ) = φ(θ) =
φ̂(θ, x) ∈ PCb, θ ∈ (−∞, 0].
Definition 1 An L-valued functional z(t) is said to be
a mild solution of (4), if z(t) satisfies the following
equation

z(t) = S(t − t0)φ(0) −
∫ t

t0
S(t − s)Az(s)ds

+
∫ t

t0
S(t − s)B f (z(s))ds

+
∫ t

t0
S(t − s)C f (z(s − τ))ds

+
∫ t

t0
S(t − s)

∫ s

−∞
E ◦ K (s − r) f (z(r))drds

+
∫ t

t0
S(t − s)u(s)ds

+
∑

t0<tk≤t

S(t − tk)Ik(z(t
−
k )). (5)

Definition 2 The mild solution of (4) is said to be

(i) input-to-state stable (ISS), if there exist functions
β ∈ KL and α, γ ∈ K∞ such that

α(‖z(t)‖) ≤ β(‖φ‖PCb , t−t0)+ sup
t0≤s≤t

γ (‖u(s)‖);

(ii) integral input-to-state stable (iISS), if there exist
functions β ∈ KL and α, γ ∈ K∞ such that

α(‖z(t)‖) ≤ β(‖φ‖PCb , t−t0)+
∫ t

t0
γ (‖u(s)‖)ds;

(iii) eλt -weighted input-to-state stable (eλt -ISS), if
there exist functions α1, α2, γ ∈ K∞ and a con-
stant λ > 0, such that

eλ(t−t0)α1(‖z(t)‖) ≤ α2(‖φ‖PCb )

+ sup
t0≤s≤t

{eλ(s−t0)γ (‖u(s)‖)}.

Remark 1 Note that the IRDNNs (2)–(3) are reformu-
lated in terms of the abstract impulsive functional dif-
ferential equation (4) defined on Hilbert space after the
reaction–diffusion term is represented as the linear spa-
tial operator, so themild solution and ISS properties are
also defined on the Hilbert space, and it is worthwhile
to mention that the existence–uniqueness and ISS of
(2)–(3) are equivalent to the existence–uniqueness and
ISS of (4). Besides, the overhead ISS properties defined
on Hilbert space also accord with the ISS properties of
impulsive delayed systems on Euclidean space in the
existing literature [8,38].
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Definition 3 Given a locally Lipschitz function V :
R+ × L → R+, the upper right-hand Dini derivative
of V with respect to system (4) is defined by

D+V (t, z) = lim sup
h→0+

1

h
[V (t + h, z + hG(t, z, u))

−V (t, z)],
where G(t, z, u) = Dz(t) − Az(t) + B f (z(t)) +
C f (z(t − τ)) + ∫ t

−∞ E ◦ K (t − s) f (z(s))ds + u(t).

Lemma 1 ([3,13]) If A = (ai j )n×n ∈ R
n×n with ai j ≤

0, i �= j , i, j ∈ n̄, then the following conclusions are
equivalent.

(1) A is a nonsingular M-matrix.
(2) A is semipositive; that is, there exists ν � 0 in R

n,
such that Aν � 0.

(3) A−1 exists and its elements are all nonnegative.
(4) All the leading principle minors of A are positive.

Lemma 2 ([15]) Let O be a cube |xς | ≤ ρς (ς ∈ q̄)
and let h(x) be a real-valued function belonging to
C1(O), which vanishes on the boundary ∂O, that is,
h(x)|∂O = 0. Then,

∫

O
h2(x)dx ≤ ρ2

ς

∫

O

(
∂h(x)

∂xς

)2

dx, ς ∈ q̄. (6)

Lemma 3 For k ∈ N, the functions W = (w1, . . . , wn)T ,
H = (h1, . . . , hn)T ∈ PC((−∞, tk−1],Rn) are con-
tinuous on [tk−1, tk) and satisfy the following condi-
tions

⎧
⎪⎪⎨

⎪⎪⎩

D+W (t) � AW (t) + BW (t − τ)

+ ∫ t
−∞ C(t − s)W (s)ds, tk−1 ≤ t < tk,

D+ H(t) = AH(t) + BH(t − τ)

+ ∫ t
−∞ C(t − s)H(s)ds, tk−1 ≤ t < tk,

(7)

where A = (ai j )n×n, ai j ≥ 0, i �= j , B = (bi j )n×n,
bi j ≥ 0, i, j ∈ n̄, C(s) = (ci j (s))n×n, ci j (s) ≥ 0, and∫ +∞
0 ci j (s)ds < +∞, i, j ∈ n̄. Then, W (t) ≺ H(t)

for t ≤ tk−1 implies W (t) � H(t) for tk−1 ≤ t < tk .

Proof Suppose that the conclusion is not true, there
exist ǐ ∈ n̄ and ť ∈ (tk−1, tk) such that

wǐ (ť) = hǐ (ť), D+wǐ (ť) > D+hǐ (ť), (8)

and

wi (t) ≤ hi (t), for all t ≤ ť, i ∈ n̄. (9)

However, it follows from (7) that

D+wǐ (ť) ≤ aǐ ǐwǐ (ť) +
∑

j �=ǐ

aǐ jw j (ť)

+
n∑

j=1

(bǐ jw j (ť − τ)

+
∫ ť

−∞
cǐ j (ť − s)w j (s)ds)

≤ aǐ ǐ hǐ (ť) +
∑

j �=ǐ

aǐ j h j (ť)

+
n∑

j=1

(bǐ j h j (ť − τ)

+
∫ ť

−∞
cǐ j (ť − s)h j (s)ds)

= D+hǐ (ť), (10)

which contradicts (8). Hence, W (t) � H(t) for tk−1 ≤
t < tk . ��
Consider the following inequality

⎧
⎨

⎩

D+H(t) = AH(t) + BH(t − τ)

+ ∫ t
−∞ C(t − s)H(s)ds, tk−1 ≤ t < tk,

H(t) = δ1, t ≤ tk−1,

(11)

where A = (ai j )n×n , ai j ≥ 0, i �= j , B = (bi j )n×n ,
bi j ≥ 0, i, j ∈ n̄, C(s) = (ci j (s))n×n , ci j (s) ≥ 0, and∫ +∞
0 ci j (s)ds < +∞, i, j ∈ n̄.

Lemma 4 Suppose that there exists a scalar σ ≥ 1
such that
[

A∗ + σ

(

�A� + B +
∫ +∞

0
C(s)ds

)]

1 + ln σ

tk − tk−1
1 ≺ 0,

(12)

then H(t) � δ1 for t ∈ (−∞, tk) and H(t−k ) � δ
σ

1.

Proof From (12), we have

ai i + σ
∑

j �=i

ai j + σ

n∑

j=1

(

bi j +
∫ +∞

0
ci j (s)ds

)
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1738 T. Wei

+ ln σ

tk − tk−1
< 0, (13)

for ∀i ∈ n̄. When t = tk−1, a simple computation
yields

D+hi (tk−1) =
n∑

j=1

[

ai j h j (tk−1) + bi j h j (tk−1 − τ)

+
∫ tk−1

−∞
ci j (tk−1 − s)h j (s)ds

]

≤ δ

n∑

j=1

[

ai j + bi j

+
∫ tk−1

−∞
ci j (tk−1 − s)ds

]

= δ

n∑

j=1

[

ai j + bi j +
∫ +∞

0
ci j (s)ds

]

< 0,

(14)

for ∀i ∈ n̄. Then, we can conclude that H(t) � δ1 for
tk−1 ≤ t < tk . If it is not true, there exist ǐ ∈ n̄ and
ť ∈ (tk−1, tk) such that

hǐ (ť) = δ, D+hǐ (ť) ≥ 0, (15)

and

hi (t) ≤ δ, for all t ≤ ť, i ∈ n̄. (16)

However, it follows from (11) that

D+hǐ (ť) = aǐ ǐ hǐ (ť) +
∑

j �=ǐ

aǐ j h j (ť)

+
n∑

j=1

[

bǐ j h j (ť − τ)

+
∫ ť

−∞
cǐ j (ť − s)h j (s)ds

]

≤ δ

n∑

j=1

[

aǐ j + bǐ j +
∫ ť

−∞
cǐ j (ť − s)ds

]

≤ δ

n∑

j=1

[

aǐ j + bǐ j +
∫ +∞

0
cǐ j (s)ds

]

< 0,

(17)

which contradicts (15). Hence, H(t) � δ1 for t < tk .

In the following, we will show that, for ∀i ∈ n̄,
hi (t

−
k ) ≤ δ

σ
if σ > 1. For ∀i ∈ n̄, we denote the first

time when D+hi (t) ≥ 0 on (tk−1, tk) by t̂ and t̂ = tk if
D+hi (t) < 0 for all t ∈ (tk−1, tk). Further, we denote
the first time when hi (t) ≤ δ

σ
on (tk−1, tk) by t̃ and

t̃ = tk if hi (t) > δ
σ
for all t ∈ (tk−1, tk). Then, we

claim that t̂ ≥ t̃ . Suppose that it is not true, there exists
σ̌ ∈ (1, σ ) such that D+hi (t̂) ≥ 0 and hi (t̂) = δ

σ̌
.

However, from (11) and H(t) � δ1 for t ∈ (−∞, tk),
it follows that

D+hi (t̂)

= ai i hi (t̂) +
∑

j �=i

ai j h j (t̂)

+
n∑

j=1

[

bi j h j (t̂ − τ) +
∫ t̂

−∞
ci j (t̂ − s)h j (s)ds

]

≤ ai i
δ

σ̌
+ δ

∑

j �=i

ai j + δ

n∑

j=1

[

bi j +
∫ t̂

−∞
ci j (t̂ − s)ds

]

= δ

σ̌

{

ai i + σ̌

[ ∑

j �=i

ai j +
n∑

j=1

(bi j +
∫ +∞

0
ci j (s)ds)

]}

< 0, (18)

which is contradiction. Hence, t̂ ≥ t̃ . Furthermore, we
can show that hi (t

−
k ) ≤ δ

σ
if t̃ = tk . Otherwise, there

exists σ̌ ∈ (1, σ ) such that δ
σ̌

≤ hi (t) ≤ δ for tk−1 ≤
t < tk and hi (t

−
k ) = δ

σ̌
. However, for tk−1 ≤ t < tk ,

D+hi (t)

= ai i hi (t) +
∑

j �=i

ai j h j (t)

+
n∑

j=1

[

bi j h j (t − τ) +
∫ t

−∞
ci j (t − s)h j (s)ds

]

≤ ai i hi (t) + δ
∑

j �=i

ai j + δ

n∑

j=1

[

bi j +
∫ t

−∞
ci j (t − s)ds

]

≤ hi (t)

{

ai i + σ̌

[ ∑

j �=i

ai j +
n∑

j=1

(bi j +
∫ +∞
0

ci j (s)ds)

]}

,

(19)

which indicates that
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− ln σ̌

tk − tk−1
≤

{

ai i + σ̌

[∑

j �=i

ai j

+
n∑

j=1

(bi j +
∫ +∞

0
ci j (s)ds)

]}

. (20)

Since σ̄ < σ , the inequality (20) contradicts with (13).
Hence, hi (t

−
k ) ≤ δ

σ
if t̃ = tk . If t̃ < tk , we can also

show that hi (t) ≤ δ
σ
for [t̃, tk); otherwise, there exists

ť ∈ [t̃, tk) such that D+hi (ť) > 0 and hi (ť) = δ
σ
.

However, from (11) and H(t) � δ1 for t ∈ (−∞, tk),
it follows that

D+hi (ť)

= ai i hi (ť) +
∑

j �=i

ai j h j (ť)

+
n∑

j=1

[

bi j h j (ť − τ) +
∫ ť

−∞
ci j (ť − s)h j (s)ds

]

≤ ai i
δ

σ
+ δ

∑

j �=i

ai j + δ

n∑

j=1

[

bi j +
∫ ť

−∞
ci j (ť − s)ds

]

= δ

σ

{

ai i + σ

[ ∑

j �=i

ai j +
n∑

j=1

(bi j +
∫ +∞
0

ci j (s)ds)

]}

< 0, (21)

which is contradiction. Therefore, hi (t
−
k ) ≤ δ

σ
for

∀i ∈ n̄ if σ > 1, that is, H(t−k ) � δ
σ

1. The proof
is completed. ��

3 Main results

In this section, the global existence–uniqueness and ISS
of the mild solution of the IRDNNs (4) are developed
by two steps. First, the local existence–uniqueness on
the impulsive time interval is established by the Picard
sequence. Then, the global existence–uniqueness and
ISS are obtained by the vector Lyapunov function, M-
matrix, the vector Lemmas 3 and 4.

3.1 Local existence–uniqueness

This subsection mainly concerns the local existence–
uniqueness of the mild solution of the IRDNNs (4) on
each impulsive time interval. First, let us consider the
following auxiliary equation

⎧
⎪⎪⎨

⎪⎪⎩

dz(t)
dt = Dz(t) − Az(t) + B f (z(t))

+C f (z(t − τ)) + ∫ t
−∞ E ◦ K (t − s) f (z(s))ds

+u(t), t ∈ [tk−1, tk),

ztk−1 = φk−1 ∈ PCb,

(22)

where k ∈ N. Accordingly, the mild solution of the
overhead auxiliary equation is defined by

z(t) = S(t − tk−1)φk−1(0)

+
∫ t

tk−1

S(t − s)F(s, z(s), u(s))ds,
(23)

where tk−1 ≤ t < tk , F(t, z(t), u(t)) = −Az(t) +
B f (z(t))+C f (z(t−τ))+∫ t

−∞ E◦K (t−s) f (z(s))ds+
u(t). Then,we have the following proposition about the
existence–uniqueness of the mild solution of the aux-
iliary Eq. (22).

Proposition 1 If (H1) and (H2) hold, the auxiliary
Eq. (22) has a unique continuous mild solution on
[tk−1, tk).

Proof From (H1), for arbitrary z1(x), z2(x) ∈ L, we
have

‖ f (z1(x)) − f (z2(x))‖2

=
n∑

i=1

∫

O
[ f̂i (z

1
i (x)) − f̂i (z

2
i (x))]2dx

≤
n∑

i=1

l2i

∫

O
[z1i (x) − z2i (x)]2dx

≤ l2‖z1(x) − z2(x)‖2,

(24)

where l = maxi {li }, which implies that

‖F(t, z(t), u(t))‖2
≤ 5n‖A‖2F‖z(t)‖2 + 5n‖B‖2F‖ f (z(t))‖2

+ 5n‖C‖2F‖ f (z(t − τ))‖2 + 5‖u(t)‖2

+ 5‖
∫ t

−∞
E ◦ K (t − s) f (z(s))ds‖2

≤ 5‖u(t)‖2 + 5n(‖A‖2F + 2l2‖B‖2F )‖z(t)‖2
+ 10nl2‖C‖2F‖z(t − τ)‖2 + 10l2‖E‖2FΘ(z(t))

+ 10n(‖B‖2F + ‖C‖2F + ‖E‖2F )‖ f (0)‖2, (25)

123



1740 T. Wei

where

Θ(z(t)) =
n∑

i=1

n∑

j=1

∫ t

−∞
ki j (t − s)‖z j (s)‖2ds. (26)

For any b ∈ [tk−1, tk), we define the Picard sequence
as follows zm

tk−1
= φk−1 for m = 0, 1, 2, . . ., z0(t) =

φk−1(0) for t ∈ [tk−1, b], and

zm(t) = S(t − tk−1)φk−1(0)

+
∫ t

tk−1

S(t − s)F(s, zm−1(s), u(s))ds, (27)

for t ∈ [tk−1, b] and m = 1, 2, . . .. When m =
0, z0(t) is obviously continuous on [tk−1, b] and
suptk−1≤s≤t ‖z0(s)‖2 ≤ ‖φk−1‖2PCb . Combining (25),
we obtain

‖F(t, z0(t), u(t))‖2 ≤ 5n(‖A‖2F + 2κl2)‖φk−1‖2PCb

+ 10nκ‖ f (0)‖2 + 5u∗,
(28)

where κ = ‖B‖2F + ‖C‖2F + ‖E‖2F and u∗ =
supt≥0 ‖u(t)‖2,which indicates that F(t, z0(s), u(s)) ∈
L2([tk−1, b],L). Therefore, z1(t) is continuous and
suptk−1≤s≤t ‖z1(s)‖2 < ∞ for t ∈ [tk−1, b]. Applying
the inequality (

∑n
i=1 ai )

2 ≤ n
∑n

i=1 a2
i , the Cauchy–

Schwarz inequality, Eq. (28), and the contraction of the
semigroup S(t) yields

sup
tk−1≤s≤t

‖z1(s) − z0(s)‖2

≤ 2 sup
tk−1≤s≤t

‖S(s − tk−1)φk−1(0) − φk−1(0)‖2

+ 2 sup
tk−1≤s≤t

‖
∫ s

tk−1

S(s − r)F(r, z0(r), u(r))dr‖2

≤ 8‖φk−1‖2PCb + 2(b − tk−1)

×
∫ b

tk−1

‖F(s, z0(s), u(s))‖2ds

≤ 8‖φk−1‖2PCb + 10(b − tk−1)
2

× [n(‖A‖2F + 2κl2)‖φk−1‖2PCb

+ 2nκ‖ f (0)‖2 + u∗]
� C0, (29)

In the following, we will show that zm(t) is continuous
on [tk−1, b] and

sup
tk−1≤s≤t

‖zm(s)‖2 < ∞, (30)

sup
tk−1≤s≤t

‖zm+1(s) − zm(s)‖2 ≤ C0[M(t − tk−1)]m

m! ,

(31)

for m = 0, 1, 2, . . ., where t ∈ [tk−1, b], M =
4n(b − tk−1)(‖A‖2F + κl2). When m = 0, z0(t) has
been proved to be continuous, and (30)–(31) hold. Sup-
pose that zm(t) is continuous and (30)–(31) hold for
m = 0, 1, 2, . . . , p −1, we will show that zk(t) is con-
tinuous and (30)–(31) hold for m = p. From (25), we
see that

‖F(t, z p−1(t), u(t))‖2
≤ 5u∗ + 5n(‖A‖2F + 2l2‖B‖2F )‖z p−1(t)‖2

+ 10nl2‖C‖2F‖z p−1(t − τ)‖2
+ 10l2‖E‖2FΘ(z p−1(t)) + 10nκ‖ f (0)‖2

≤ 5u∗ + 10nκ‖ f (0)‖2 + 10nκl2‖φk−1‖2PCb

+ 5n(‖A‖2F + 2κl2) sup
tk−1≤s≤t

‖z p−1(s)‖2,

which indicates that F(t, z p−1(s), u(s)) ∈ L2([tk−1, b],
L). Therefore, z p(t) is continuous on [tk−1, b]. By
the inequality (

∑n
i=1 ai )

2 ≤ n
∑n

i=1 a2
i , the Cauchy–

Schwarz inequality, (H2), Eq. (25), and the contraction
of the semigroup S(t), we have

sup
tk−1≤s≤t

‖z p(s)‖2

≤ 2 sup
tk−1≤s≤t

‖S(s − tk−1)φk−1(0)‖2

+ 2 sup
tk−1≤s≤t

‖
∫ s

tk−1

S(s − r)F(r, z p−1(r), u(r))dr‖2

≤ 2‖φk−1‖2PCb

+ 2(b − tk−1) sup
tk−1≤s≤t

∫ s

tk−1

‖F(r, z p−1(r), u(r))‖2dr

≤ 2‖φk−1‖2PCb + 10(b − tk−1)
2u∗

+ 20nκ(b − tk−1)
2‖ f (0)‖2

+ 10n(b − tk−1)‖A‖2F sup
tk−1≤s≤t

∫ s

tk−1

‖z p−1(r)‖2dr

+ 20n(b − tk−1)l
2‖B‖2F
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sup
tk−1≤s≤t

∫ s

tk−1

‖z p−1(r)‖2dr

+ 20n(b − tk−1)l
2‖C‖2F

sup
tk−1≤s≤t

∫ s

tk−1

‖z p−1(r − τ)‖2dr

+ 20(b − tk−1)l
2‖E‖2F

sup
tk−1≤s≤t

∫ s

tk−1

Θ(z p−1(r))dr

≤ C0 + 10n(b − tk−1)
2(‖A‖2F + 2κl2)

sup
tk−1≤s≤t

‖z p−1(s)‖2

< ∞, (32)

sup
tk−1≤s≤t

‖z p+1(s) − z p(s)‖2

= sup
tk−1≤s≤t

‖
∫ s

tk−1

S(s − r)[F(r, z p(r), u(r))

− F(r, z p−1(r), u(r))]dr‖2

≤ (b − tk−1) sup
tk−1≤s≤t

∫ s

tk−1

‖F(r, z p(r), u(r))

− F(r, z p−1(r), u(r))‖2dr

≤ 4(b − tk−1)

{

sup
tk−1≤s≤t

∫ s

tk−1

‖A(z p(r) − z p−1(r))‖2dr

+ sup
tk−1≤s≤t

∫ s

tk−1

‖B[ f (z p(r)) − f (z p−1(r))]‖2dr

+ sup
tk−1≤s≤t

∫ s

tk−1

‖C[ f (z p(r − τ))

− f (z p−1(r − τ))]‖2dr

+ sup
tk−1≤s≤t

∫ s

tk−1

‖
∫ r

−∞
E ◦ K (r − v)×

[ f (z p(v)) − f (z p−1(v))]dv‖2dr

}

≤ 4(b − tk−1)

{

n(‖A‖2F + l2‖B‖2F + l2‖C‖2F )×
∫ t

tk−1

sup
tk−1≤v≤r

‖z p(v) − z p−1(v)‖2dr

+ l2‖E‖2F sup
tk−1≤s≤t

∫ s

tk−1

Θ(z p(r) − z p−1(r))dr

}

≤ M
∫ t

tk−1

sup
tk−1≤v≤r

‖z p(v)

− z p−1(v)‖2dr

≤ M
∫ t

tk−1

C0[M(r − tk−1)]p−1

(p − 1)! dr

= C0[M(t − tk−1)]p

p! . (33)

Hence, (30)–(31) hold for m = p. By mathematical
induction, zm(t) is continuous on [tk−1, b], and (30)–
(31) hold for all m = 0, 1, 2, . . .. Combining zm

tk−1
=

φk−1 for allm = 0, 1, 2, . . ., and
∑∞

m=0
C0[M(b−tk−1)

m ]
m!

< ∞, we find that the sums

zk(t) = z0(t) +
k−1∑

m=0

(zm+1(t) − zm(t)) (34)

are convergent uniformly in t ∈ (−∞, b]. Denote the
limit by z(t), which is clearly continuous on [tk−1, b].
Note that
∥
∥
∥
∥

∫ t

tk−1

S(t − s)F(s, zm(s), u(s))ds

−
∫ t

tk−1

S(t − s)F(s, z(s), u(s))ds

∥
∥
∥
∥

2

≤ 4(b − tk−1)

{∫ t

tk−1

‖A(zm(s) − z(s))‖2ds

+
∫ t

tk−1

‖B[ f (zm(s)) − f (z(s))]‖2ds

+
∫ t

tk−1

‖C[ f (zm(s − τ)) − f (z(s − τ))]‖2ds

+
∫ t

tk−1

∥
∥
∥
∥

∫ s

−∞
E ◦ K (s − r)[ f (zm(r))

− f (z(r))]dr‖2 ds

}

≤ M(b − tk−1) sup
tk−1≤s≤t

‖zm(s) − z(s)‖2 → 0,

(35)

as m → ∞. Hence we can take m → ∞ in (27) to
obtain the relation

z(t) = S(t − tk−1)φk−1(0)

+
∫ t

tk−1

S(t − s)F(s, z(s), u(s))ds,

for tk−1 ≤ t ≤ b as desired. From the arbitrariness of
b in [tk−1, tk), z(t) is the unique mild solution of (22)
on [tk−1, tk). ��
Remark 2 The existence–uniqueness of the mild solu-
tion through the bounded initial condition determined
by Proposition 1 corresponds to the local existence–
uniqueness of the mild solution of (4) on every impul-
sive time interval, which will be derived in the next
subsection. And it is straightforward to have the fol-
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lowing results on [t0, t1) by Proposition 1 under the
fact that z0 = φ ∈ PCb.

Proposition 2 If (H1) and (H2) hold, the IRDNNs (4)
have a unique continuous mild solution on [t0, t1).

3.2 Global existence–uniqueness and ISS

This subsection will establish the global existence–
uniqueness and ISS of themild solution of the IRDNNs
(4). A further assumption is made as follows:
(H3) f (0) = 0.

Theorem 1 Assume that (H1)–(H3) hold. Then, the
IRDNNs with infinite distributed delays (4) have a
unique global mild solution and are ISS, iISS, and eλt -
ISS over the class F (η), if Λ+ A−|B|∗L −σ(�|B|�+
|C | + |E |)L − ln σ

η
I is a nonsingular M-matrix, where

Λ = diag(
∑q

ς=1
d1ς
ρ2

ς
,
∑q

ς=1
d2ς
ρ2

ς
, . . . ,

∑q
ς=1

dnς

ρ2
ς

), L =
diag(l1, l2, · · · , ln), and σ = maxi,k{rik, 1}.
Proof SinceΛ+ A−|B|∗L −σ(�|B|�+|C |+|E |)L −
ln σ
η

I is a nonsingularM-matrix, it follows fromLemma

1 that there exists ν = (ν1, ν2, . . . , νn)T � 0 such
that [Λ + A − |B|∗L − σ(�|B|� + |C | + |E |)L −
ln σ
η

I ]ν � 0. Then, there exist positive constants pi =
νi/(mini (νi )) ≥ 1, i ∈ n̄ such that, for ∀i ∈ n̄,
⎛

⎝−
q∑

ς=1

diς

ρ2
ς

− ai + ln σ

η
+ li |bii |

⎞

⎠ pi

+ σ

⎛

⎝
∑

j �=i

l j p j |bi j | +
n∑

j=1

l j p j |ci j |

+
n∑

j=1

l j p j |ei j |
⎞

⎠ < 0. (36)

For τ > 0, let us consider the following function

Πi (λi ) = λi −
q∑

ς=1

diς

ρ2
ς

− ai + li |bii | + ln σ

η

+ σ

pi

∑

j �=i

l j p j |bi j | + σ

pi

n∑

j=1

l j p j |ci j |eλi τ

+ σ

pi

n∑

j=1

l j p j |ei j |
∫ +∞

0
ki j (s)e

λi sds,

(37)

where i ∈ n̄. Combining (36),weobtain thatΠi (0) < 0
and Πi (λi ) is continuous and monotonous on [0, b),
furthermore, Πi (λi ) → +∞ as λi → b where b > ε

is the explosive point or b = +∞. Thus, there exists
a constant λ0i ∈ (0, ε) such that Πi (λ

0
i ) < 0. If we

denote λ0 = mini {λ0i }, then Πi (λ
0) < 0 for ∀i ∈ n̄,

which further implies that

[

λ0 I − P + Q∗ + σ(�Q� + Reλ0τ

+
∫ +∞

0
K(s)eλ0sds)

]

1 + ln σ

η
1 ≺ 0.

(38)

whereP = Λ+A,Q = P−1|B|L P ,R = P−1|C |L P ,
K(t − s) = P−1|E |L P ◦ K (t − s), and P =
diag(p1, . . . , pn).

Given φ ∈ PCb, we write z(t) = z(t;φ) and define
the vector Lyapunov–Krasovskii function candidate by
V (t, z(t)) = (V1(t, z1(t)), V2(t, z2(t)), . . . , Vn(t, zn(t)))T

and Vi (t, zi (t)) = p−1
i ‖zi (t)‖. For t ∈ [tk−1, tk),

k ∈ N, the upper Dini derivative of V 2
i with respect

to (4) is calculated by

D+V 2
i (t, zi (t))

= 2p−2
i

〈

zi (t),
q∑

ς=1

∂

∂xς

(

diς
∂zi (t; x)

∂xς

)

− ai zi (t)

+
n∑

j=1

bi j f j (z j (t)) +
n∑

i=1

ci j f j (z j (t − τ))

+
n∑

j=1

ei j

∫ t

−∞
ki j (t − s) f j (z j (s))ds + ui (t)

〉

≤ 2p−2
i

{ ∫

O
zi (t; x)

q∑

ς=1

∂

∂xς

(

diς
∂zi (t; x)

∂xς

)

dx

+ (−ai )

∫

O
(zi (t; x))2dx

+
n∑

j=1

bi j

∫

O
zi (t; x) f j (z j (t; x))dx

+
n∑

j=1

ci j

∫

O
zi (t; x) f j (z j (t − τ ; x))dx

+
n∑

j=1

ei j

∫

O
zi (t; x)

∫ t

−∞
ki j (t − s) f j (z j (s; x))dsdx
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+
∫

O
zi (t; x)ui (t; x)dx � 2p−2

i

6∑

m=1

Θm(z(t)).

(39)

From the Green’s formula, the Dirichlet boundary con-
dition (3), and Lemma 2, we get

Θ1(z(t))

=
∫

O
zi (t; x)∇ ·

(

diς
∂zi (t; x)

∂xς

)q

ς=1
dx

=
∫

O
∇ ·

(

zi (t; x)diς
∂zi (t; x)

∂xς

)q

ς=1
dx

−
∫

O
(∇ · zi (t; x))

(

diς
∂zi (t; x)

∂xς

)q

ς=1
dx

=
∫

∂O

(

zi (t; x)diς
∂zi (t; x)

∂xς

)q

ς=1
· ndx

−
q∑

ς=1

∫

O
diς

(
∂zi (t; x)

∂xς

)2

dx

≤ −
q∑

ς=1

diς

ρ2
ς

∫

O
(zi (t; x))2dx,

(40)

where · stands for the inner product,n stands for the out-
ward unit normal field of the boundary, and∇ stands for
the gradient operator. By the virtue of Holder inequal-
ity, we have

Θ3(z(t))

≤
n∑

j=1

|bi j |
∫

O
|zi (t; x)|| f j (z j (t; x))|dx

≤
n∑

j=1

l j |bi j |
(∫

O
|zi (t; x)|2dx

) 1
2

(∫

O
|z j (t; x)|2dx

) 1
2

, (41)

Θ4(z(t))

≤
n∑

j=1

|ci j |
∫

O
|zi (t; x)|| f j (z j (t − τ ; x))|dx

≤
n∑

j=1

l j |ci j |
(∫

O
|zi (t; x)|2dx

) 1
2

(∫

O
|z j (t − τ ; x)|2dx

) 1
2

, (42)

Θ5(z(t))

≤
n∑

j=1

|ei j |
∫

O
|zi (t; x)|

∫ t

−∞
ki j (t − s)| f j (z j (s; x))|dsdx

=
n∑

j=1

|ei j |
∫ t

−∞
ki j (t − s)

∫

O
|zi (t; x)|| f j (z j (s; x))|dxds

≤
n∑

j=1

l j |ei j |
(∫

O
|zi (t; x)|2dx

) 1
2

×
∫ t

−∞
ki j (t − s)

(∫

O
|z j (s; x)|2dx

) 1
2

ds, (43)

Θ6(z(t))

≤
(∫

O
|zi (t; x)|2dx

) 1
2
(∫

O
|ui (t; x)|2dx

) 1
2

.

(44)

From (39)–(44), we see that

D+V 2
i (t, zi (t))

≤ 2p−2
i

(∫

O
|zi (t; x)|2dx

) 1
2

×
{

⎛

⎝−
q∑

ς=1

diς

ρ2
ς

− ai

⎞

⎠
(∫

O
|zi (t; x)|2dx

) 1
2

+
n∑

j=1

l j |bi j |
(∫

O
|z j (t; x)|2dx

) 1
2

+
n∑

j=1

l j |ci j |
(∫

O
|z j (t − τ ; x)|2dx

) 1
2

+
n∑

j=1

l j |ei j |
∫ t

−∞
ki j (t − s)

(∫

O
|z j (s; x)|2dx

) 1
2

ds

+
(∫

O
|ui (t; x)|2dx

) 1
2
}

, (45)
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which indicates that

D+Vi (t, zi (t))

≤ p−1
i

{
⎛

⎝−
q∑

ς=1

diς

ρς

− ai

⎞

⎠
(∫

O
|zi (t; x)|2dx

) 1
2

+
n∑

j=1

l j |bi j |
(∫

O
|z j (t; x)|2dx

) 1
2

+
n∑

j=1

l j |ci j |
(∫

O
|z j (t − τ ; x)|2dx

) 1
2

+
n∑

j=1

l j |ei j |
∫ t

−∞
ki j (t − s)

(∫

O
|z j (s; x)|2dx

) 1
2

ds

+
(∫

O
|ui (t; x)|2dx

) 1
2
}

≤ p−1
i

{
⎛

⎝−
q∑

ς=1

diς

ρς

− ai

⎞

⎠ pi Vi (t, zi (t))

+
n∑

j=1

l j |bi j |p j Vj (t, z j (t))

+
n∑

j=1

l j |ci j |p j Vj (t − τ, z j (t − τ))

+
n∑

j=1

l j |ei j |p j

∫ t

−∞
ki j (t − s)Vj (s, z j (s))ds

}

+ ‖ui (t)‖, (46)

Hence,

D+V (t, z(t))

� P−1(−Λ − A + |B|L)PV (t, z(t))

+ P−1|C |L PV (t − τ, z(t − τ))

+ P−1
∫ t

−∞
|E |L P ◦ K (t − s)V (s, z(s))ds

+ U (t), (47)

whereU (t) = (‖u1(t)‖, ‖u2(t)‖, . . . , ‖un(t)‖)T .When
t = tk , k ∈ N, it follows from (H2) that V (tk, z(tk)) �
σ V (t−k , z(t−k )). Thus,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

D+V (t, z(t)) � (−P + Q)V (t, z(t))
+RV (t − τ, z(t − τ)) + ∫ t

−∞ K(t − s)V (s, z(s))ds
+U (t), t ∈ [tk−1, tk),

V (tk , z(tk)) � σ V (t−k , z(t−k )), k ∈ N,

Vt0 � δ01,

(48)

where δ0 = maxi {p−1
i ‖φi‖PCb }.When t ∈ [t0, t1), the

unique mild solution of (4), which is continuous on
[t0, t1), exists fromProposition 2. If we define W 1(t) =
eλ0t V (t, z(t)) − ∫ t

t0
eλ0sU (s)ds for t0 ≤ t < t1 and

W 1(t) = V (t, z(t)) for t ≤ t0, it yields, for t ∈ [t0 +
τ,+∞) ∩ [t0, t1), that

D+W 1(t)

= λ0eλ0t V (t, z(t)) + eλ0t D+V (t, z(t)) − eλ0tU (t)

� (λ0 I − P + Q)eλ0t V (t, z(t))

+ Reλ0t V (t − τ, z(t − τ))

+ eλ0t
∫ t

−∞
K(t − s)V (s, z(s))ds

� (λ0 I − P + Q)eλ0t V (t, z(t))

+ Reλ0τ eλ0(t−τ)V (t − τ, z(t − τ))

+
∫ t0

−∞
K(t − s)eλ0(t−s)V (s, z(s))ds

+
∫ t

t0
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

= (λ0 I − P + Q)

[

W 1(t) +
∫ t

t0
eλ0sU (s)ds

]

+ Reλ0τ

[

W 1(t − τ) +
∫ t−τ

t0
eλ0sU (s)ds

]

+
∫ t0

−∞
K(t − s)eλ0(t−s)W 1(s)ds

+
∫ t

t0
K(t − s)eλ0(t−s)

[
W 1(s)

+
∫ s

t0
eλ0r U (r)dr

]

ds

� (λ0 I − P + Q)W 1(t) + Reλ0τ W 1(t − τ)

+
∫ t

−∞
K(t − s)eλ0(t−s)W 1(s)ds

+
[
λ0 I − P + Q + Reλ0τ

123



Input-to-state stability of impulsive reaction–diffusion neural networks 1745

+
∫ t

−∞
K(t − s)eλ0(t−s)ds

]

×
∫ t

t0
eλ0sU (s)ds, (49)

From (38), we get

[

λ0 I − P + Q + Reλ0τ

+
∫ t

−∞
K(t − s)eλ0(t−s)ds

]

1 ≺ 0, (50)

which further implies that

D+W 1(t) � (λ0 I − P + Q)W 1(t)

+ Reλ0τ W 1(t − τ)

+
∫ t

−∞
K(t − s)eλ0(t−s)W 1(s)ds. (51)

Likewise, for t ∈ (−∞, t0 + τ) ∩ [t0, t1),

D+W 1(t)

= λ0eλ0t V (t, z(t)) + eλ0t D+V (t, z(t)) − eλ0tU (t)

� (λ0 I − P + Q)eλ0t V (t, z(t))

+ Reλ0t V (t − τ, z(t − τ))

+ eλ0t
∫ t

−∞
K(t − s)V (s, z(s))ds

� (λ0 I − P + Q)eλ0t V (t, z(t))

+ Reλ0τ V (t − τ, z(t − τ))

+
∫ t0

−∞
K(t − s)eλ0(t−s)V (s, z(s))ds

+
∫ t

t0
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

= (λ0 I − P + Q)

[

W 1(t) +
∫ t

t0
eλ0sU (s)ds

]

+ Reλ0τ W 1(t − τ)

+
∫ t0

−∞
K(t − s)eλ0(t−s)W 1(s)ds

+
∫ t

t0
K(t − s)eλ0(t−s)

[
W 1(s)

+
∫ s

t0
eλ0r U (r)dr

]

ds

� (λ0 I − P + Q)W 1(t) + Reλ0τ W 1(t − τ)

+
∫ t

−∞
K(t − s)eλ0(t−s)W 1(s)ds

+
[

λ0 I − P + Q +
∫ t

−∞
K(t − s)eλ0(t−s)ds

]

×
∫ t

t0
eλ0sU (s)ds

� (λ0 I − P + Q)W 1(t) + Reλ0τ W 1(t − τ)

+
∫ t

−∞
K(t − s)eλ0(t−s)W 1(s)ds. (52)

Therefore, W 1(t) satisfies the following inequality

⎧
⎪⎨

⎪⎩

D+W 1(t) � (λ0 I − P + Q)W 1(t) + Reλ0τ W 1(t − τ)

+ ∫ t
−∞ K(t − s)eλ0(t−s)W 1(s)ds, t ∈ [t0, t1),

W 1
t0 � δ01.

(53)

Based on Lemma 3, we derive the following compari-
son system

⎧
⎪⎨

⎪⎩

D+ H1(t) = (λ0 I − P + Q)H1(t) + Reλ0τ H1(t − τ)

+ ∫ t
−∞ K(t − s)eλ0(t−s) H1(s)ds, t ∈ [t0, t1),

H1
t0 = (δ0 + ε)1,

(54)

where ε > 0. From Lemmas 3, 4, and (38), one has
that W 1(t) � H1(t) � (δ0 + ε)1 for t ∈ [t0, t1)
and W 1(t−1 ) � H1(t−1 ) � δ0+ε

σ
1. Considering the

arbitrariness of ε, we obtain that W 1(t) � δ01 for
t ∈ [t0, t1) and W 1(t−1 ) � δ0

σ
1 as ε → 0. Therefore,

V (t, z(t)) � δ0e−λ0t 1

+
∫ t

t0
e−λ0(t−s)U (s)ds, t ∈ [t0, t1),

V (t−1 , z(t−1 )) � δ0

σ
e−λ0t11 +

∫ t1

t0
e−λ0(t1−s)U (s)ds.

(55)

When t = tk , we have

V (t1, z(t1)) � δ0e−λ0t11 + σ

∫ t1

t0
e−λ0(t1−s)U (s)ds.

(56)
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Combining the definition of the mild solution, we have
that the mild solution of (4) exists on [t0, t1] and satis-
fies that

V (t, z(t))

� δ0e−λ0t 1 + σ

∫ t

t0
e−λ0(t−s)U (s)ds

�
[

δ0e−λ0t + σ

∫ t

t0
e−λ0(t−s)‖u(s)‖ds

]

1,

(57)

for t ∈ [t0, t1]. Suppose that the mild solution of (4)
exists and satisfies (57) on [t0, tm], then we will show
that the mild solution of (4) exists and satisfies (57) on
[t0, tm+1]. From (57), we see that, for t ∈ [t0, tm],

‖zi (t)‖ ≤ p∗δ0e−λ0t + p∗σ
∫ t

t0
e−λ0(t−s)‖u(s)‖ds

≤ p∗δ0e−λ0t + p∗σ
λ0

sup
t≥t0

‖u(t)‖ < ∞,

(58)

where p∗ = maxi {pi }, which leads to that

‖z(t)‖ =
(

n∑

i=1

‖zi (t)‖2
) 1

2

< ∞, t ∈ [t0, tm]. (59)

Combining the initial condition zt0 = φ ∈ PCb, we
obtain that ztm ∈ PCb

tm . From Definition 1, it follows
that the mild solution of (4) on [tm, tm+1) is defined by

z(t) = S(t − t0)φ(0)

+
∫ t

t0
S(t − s)F(s, z(s), u(s))ds

+
m∑

k=1

S(t − tk)Ik(z(t
−
k ))

= S(t − tm)

{

S(tm − t0)φ(0)

+
∫ tm

t0
S(tm − s)F(s, z(s), u(s))ds

+
m∑

k=1

S(tm − tk)Ik(z(t
−
k ))

}

+
∫ t

tm
S(t − s)F(s, z(s), u(s))ds

= S(t − tm)ztm (0)

+
∫ t

tm
S(t − s)F(s, z(s), u(s))ds. (60)

One can find that the mild solution of (4) on [tm, tm+1)

is exactly the mild solution of the auxiliary equation as
follows

{ dz(t)
dt = Dz(t) + F(t, z(t), u(s)), t ∈ [tm, tm+1),

ztm ∈ PCb
tm .

(61)

FromProposition 1, the overhead auxiliary Eq. (61) has
a unique continuousmild solution on [tm, tm+1); that is,
the unique mild solution of (4) exists and is continuous
on [tm, tm+1). Define

W m+1(t) =
⎧
⎪⎨

⎪⎩

V (t, z(t)), for t ≤ t0;
eλ0t V (t, z(t)), for t0 ≤ t ≤ tm;
eλ0t V (t, z(t)) − ∫ t

tm
eλ0sU (s)ds, for tm ≤ t < tm+1.

(62)

For t ∈ [tm + τ,+∞) ∩ [tm, tm+1), we have

D+W m+1(t)

� (λ0 I − P + Q)eλ0t V (t, z(t))

+ Reλ0τ eλ0(t−τ)V (t − τ, z(t − τ))

+
∫ t0

−∞
K(t − s)eλ0(t−s)V (s, z(s))ds

+
∫ tm

t0
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

+
∫ t

tm
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

= (λ0 I − P + Q)

[

W m+1(t) +
∫ t

tm
eλ0sU (s)ds

]

+ Reλ0τ

[

W m+1(t − τ) +
∫ t−τ

tm
eλ0sU (s)ds

]

+
∫ t0

−∞
K(t − s)eλ0(t−s)W m+1(s)ds

+
∫ tm

t0
K(t − s)eλ0(t−s)W m+1(s)ds

+
∫ t

tm
K(t − s)eλ0(t−s)[W m+1(s)

+
∫ s

tm
eλ0r U (r)dr ]ds
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� (λ0 I − P + Q)W m+1(t) + Reλ0τ W m+1(t − τ)

+
∫ t

−∞
K(t − s)eλ0(t−s)W m+1(s)ds. (63)

For t ∈ [t0 + τ, tm + τ) ∩ [tm, tm+1), we have

D+W m+1(t)

� (λ0 I − P + Q)eλ0t V (t, z(t))

+ Reλ0τ eλ0(t−τ)V (t − τ, z(t − τ))

+
∫ t0

−∞
K(t − s)eλ0(t−s)V (s, z(s))ds

+
∫ tm

t0
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

+
∫ t

tm
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

= (λ0 I − P + Q)

[

W m+1(t) +
∫ t

tm
eλ0sU (s)ds

]

+ Reλ0τ W m+1(t − τ)

+
∫ t0

−∞
K(t − s)eλ0(t−s)W m+1(s)ds

+
∫ tm

t0
K(t − s)eλ0(t−s)W m+1(s)ds

+
∫ t

tm
K(t − s)eλ0(t−s)

[
W m+1(s)

+
∫ s

tm
eλ0r U (r)dr

]

ds

� (λ0 I − P + Q)W m+1(t) + Reλ0τ W m+1(t − τ)

+
∫ t

−∞
K(t − s)eλ0(t−s)W m+1(s)ds. (64)

For t ∈ (−∞, t0 + τ) ∩ [tm, tm+1), we have

D+W m+1(t)

� (λ0 I − P + Q)eλ0t V (t, z(t))

+ Reλ0τ V (t − τ, z(t − τ))

+
∫ t0

−∞
K(t − s)eλ0(t−s)V (s, z(s))ds

+
∫ tm

t0
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

+
∫ t

tm
K(t − s)eλ0(t−s)eλ0s V (s, z(s))ds

= (λ0 I − P + Q)

[

W m+1(t) +
∫ t

tm
eλ0sU (s)ds

]

+ Reλ0τ W m+1(t − τ)

+
∫ t0

−∞
K(t − s)eλ0(t−s)W m+1(s)ds

+
∫ tm

t0
K(t − s)eλ0(t−s)W m+1(s)ds

+
∫ t

tm
K(t − s)eλ0(t−s)

[
W m+1(s)

+
∫ s

tm
eλ0r U (r)dr

]

ds

� (λ0 I − P + Q)W m+1(t) + Reλ0τ W m+1(t − τ)

+
∫ t

−∞
K(t − s)eλ0(t−s)W m+1(s)ds. (65)

Hence, W m+1(t) satisfies the following inequality

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D+W m+1(t) � (λ0 I − P + Q)W m+1(t)

+Reλ0τ W m+1(t − τ)

+ ∫ t
−∞ K(t − s)eλ0(t−s)W m+1(s)ds,

t ∈ [tm, tm+1),

W m+1
tm � δm1,

(66)

where δm = δ0 + σ
∫ tm

t0
eλ0s‖u(s)‖ds. Similarly, we

derive the following comparison system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

D+Hm+1(t) = (λ0 I − P + Q)Hm+1(t)

+Reλ0τ Hm+1(t − τ)

+ ∫ t
−∞ K(t − s)eλ0(t−s) Hm+1(s)ds,

t ∈ [tm, tm+1),

Hm+1
tm = (δm + ε)1,

(67)

where ε > 0. Then, it follows from Lemmas 3, 4, and
(38) that W m+1(t) � Hm+1(t) � (δm + ε)1 for t ∈
[tm, tm+1) andW m+1(t−m+1) � Hm+1(t−m+1) � δm+ε

σ
1.

As ε → 0, we see that (57) holds on [tm, tm+1) and

V (t−m+1, z(t−m+1))

≤
[
δ0

σ
e−λ0tm+1 +

∫ tm+1

t0
e−λ0(tm+1−s)‖u(s)‖ds

]

1.

(68)

Combining Definition 1 and V (tm+1, z(tm+1)) �
σ V (t−m+1, z(t−m+1)), we have that the mild solution of
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(4) exists and satisfies (57) on [t0, tm+1]. By the mathe-
matical induction, the IRDNNswith infinite distributed
delays (4) have a unique global mild solution, which
satisfies (57) for t ≥ t0.

Then, we will show that the mild solution of (4) is
ISS, iISS and eλt -ISS. From (57), a simple computation
yields

‖zi (t)‖2

≤
(

p∗δ0e−λ0t + p∗σ
∫ t

t0
e−λ0(t−s)‖u(s)‖ds

)2

≤ 2(p∗δ0)2e−2λ0t

+ 2(p∗σ)2
(∫ t

t0
e−λ0(t−s)‖u(s)‖ds

)2

. (69)

Hence,

‖zi (t)‖2 ≤ 2(p∗δ0)2e−2λ0t

+ 2(p∗σ)2

(∫ t

t0
e−λ0(t−s) sup

0≤r≤t
‖u(r)‖ds

)2

≤ 2(p∗)2‖φ‖2PCb e−2λ0t

+ 2(p∗σ)2

(λ0)2
sup

0≤s≤t
‖u(s)‖2, (70)

which further implies that the mild solution is ISS with
α(s) = s2, β(s, t) = 2n(p∗)2se−2λ0t , and γ (s) =
2n(p∗σ)2s2

(λ0)2
.Applying theCauchy–Bunyakovsky–Schwarz

inequality to (69) yields

‖zi (t)‖2 ≤ 2(p∗δ0)2e−2λ0t

+ 2(p∗σ)2
∫ t

t0
e−2λ0(t−s)ds

∫ t

t0
‖u(s)‖2ds

≤ 2(p∗)2‖φ‖2PCb e−2λ0t

+ (p∗σ)2

λ0

∫ t

t0
‖u(s)‖2ds, (71)

which further implies that themild solution is iISSwith
α(s) = s2, β(s, t) = 2n(p∗)2se−2λ0t , and γ (s) =
n(p∗σ)2

λ0
s2. Let λ0 = λ1 + λ2, λ2 = (λ + λ∗)/2, and

λ1, λ2, λ, λ∗ > 0, we can derive that

‖zi (t)‖2 ≤ 2(p∗δ0)2e−2λ2t + 2(p∗σ)2

×
∫ t

t0
e−2λ1(t−s)ds

∫ t

t0
e−2λ2(t−s)‖u(s)‖2ds

≤ 2(p∗δ0)2e−(λ+λ∗)t

+ (p∗σ)2

λ1

∫ t

t0
e−(λ+λ∗)(t−s)‖u(s)‖2ds,

(72)

which further implies that

eλt‖zi (t)‖2

≤ 2(p∗δ0)2 + (p∗σ)2

λ1

∫ t

t0
e−λ∗(t−s)eλs‖u(s)‖2ds

≤ 2(p∗)2‖φ‖2PCb + (p∗σ)2

λ1λ∗ sup
0≤s≤t

{eλs‖u(s)‖2}.
(73)

Hence, the mild solution is eλt -ISS with α1(s) = s2,

α2(s) = 2n(p∗)2s2, and γ (s) = n(p∗σ)2

λ1λ∗ s2. The proof
is completed. ��
Remark 3 Note that many researchers have studied
the asymptotic behavior of IRDNNs, such as stability
and synchronization [5,19,36], based on the assump-
tion of the existence–uniqueness of the solution. From
the deduction process of Theorem 1, we see that the
global existence–uniqueness of the mild solution is
established by the local existence–uniqueness on every
impulsive time interval and themoment estimate for the
ISSproperties on the entire time interval. Therefore, the
global existence–uniqueness of the mild solution pro-
vides fundamental support for asymptotic analysis of
IRDNNs.

Corollary 1 Assume that (H1)-(H3) hold. Then, the
IRDNNs with infinite distributed delays (4) have a
unique global mild solution and are ISS, iISS, and eλt -
ISS over the class F (η), if one of the following condi-
tions holds:

(H4) there exit positive constants pi such that, for ∀i ∈
n̄,

⎛

⎝−
q∑

ς=1

diς

ρ2
ς

− ai + ln σ

η
+ li |bii |

⎞

⎠ pi

+ σ

⎛

⎝
∑

j �=i

l j p j |bi j | +
n∑

j=1

l j p j |ci j |
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+
n∑

j=1

l j p j |ei j |
⎞

⎠ < 0.

(H5) for ∀i ∈ n̄, χi = ∑q
ς=1

diς

ρ2
ς

+ai − li |bii |− ln σ
η

>

0 and

max
i∈n̄

σ li
χi

⎡

⎣
∑

j �=i

|b ji | +
n∑

j=1

(|c ji | + |e ji |)
⎤

⎦ < 1;

(H6) for ∀i ∈ n̄, χi > 0 and

σ

2χi

[ ∑

j �=i

(l j |bi j | + li |b ji |) +
n∑

j=1

l j (|ci j | + |ei j |)

+
n∑

j=1

li (|c ji | + |e ji |)
]

< 1;

(H7) Γ = Λ+ A −|B|∗L −σ(�|B|�+ |C |+ |E |)L −
ln σ
η

I , Γ = (γi j )n×n, γi i > 0, γi j ≤ 0, i �= j ,
Π :=(�i j )n×n, ρ(Π) < 1, where ρ(Π) denotes
the spectral radius of Π , and

�i j =
{
0, i = j,
γi j/γi i , i �= j.

Proof Each of (H4)–(H7) implies that Γ = Λ + A −
|B|∗L −σ(�|B|�+|C |+ |E |)L − ln σ

η
I is an M-matrix

[32]. ��
Remark 4 Note that the ISS conditions of Theorem 1
and Corollary 1 are diffusion–dependent, and the big-
ger the transmission diffusion coefficient is, the more
easily the IRDNNs fall into ISS pattern. This implies
that the reaction–diffusion along with the Dirichlet
boundary condition benefits the ISS of IRDNNs, which
will be also verified by Example 1 and Remark 9.

Remark 5 In most of the existing works on impul-
sive delayed systems [8,38] and IRDNNs [5,22,33,41],
the scalar Lyapunov function is usually employed to
achieve the ISS or stability properties, duringwhich the
cross-terms of the present states, the past states, and
the external input are inevitably amplified. Here, the
cross-terms are handled by vector Lyapunov function
and M-matrix method, so the amplification is avoided
to reduce conservatism. Compared with the ISS anal-
ysis of delayed neural networks via vector Lyapunov

function [13], the infinite distributed delays are addi-
tionally considered in the neural-network model and
effectively handled by a novel vector inequality.

Remark 6 Compared with the existing works on the
ISS of neural networks without impulses [13,40,44],
the established results indicate that the ISS properties
can be retained even though certain impulsive perturba-
tion exists in the neural networks, which is also illus-
trated in Example 2 and Remark 10. Compared with
the ISS analysis of IRDNNs [41], the impulses are not
restricted to satisfy

∑∞
k=1 ln σk < ∞ where σk are the

impulsive coefficients. Therefore, the obtained results
are more general and efficient.

Remark 7 Note that most of the existing works on ISS
analysis of the impulsive nonlinear systems [8,38,43]
are usually discussed under the condition of average
impulsive interval (AII) or average dwell time (ADT).
Correspondingly, the established results verify that ISS
properties of the IRDNNs can be retained for the desta-
bilizing impulses if there are no too short intervals
between the impulses instead of AII or ADT condition,
which shows the difference of the results.

When û(t, x) = 0, the IRDNNs with infinite dis-
tributed delays (2) become the following system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂ ẑ(t,x)
∂t = ∇ · (D ◦ ∇ ẑ(t, x)) − Aẑ(t, x)

+B f̂ (ẑ(t, x)) + C f̂ (ẑ(t − τ, x))

+ ∫ t
−∞ E ◦ K (t − s) f̂ (ẑ(s, x))ds, t ∈ [tk−1, tk),

ẑ(tk, x) = ẑ(t−k , x) + Îk(ẑ(t
−
k , x)), k ∈ N,

(74)

with Dirichlet boundary condition and initial condition
(3). The corresponding abstract equation of the neural
networks (74) is defined by

⎧
⎪⎪⎨

⎪⎪⎩

dz(t)
dt = Dz(t) − Az(t) + B f (z(t)) + C f (z(t − τ))

+ ∫ t
−∞ E ◦ K (t − s) f (z(s))ds, t ∈ [tk−1, tk),

z(tk) = z(t−k ) + Ik(z(t
−
k )), k ∈ N,

z0 = φ ∈ PCb.

(75)

Then, the ISS properties degenerate to the follow-
ing exponential stability of IRDNNs with infinite dis-
tributed delays.
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Fig. 1 The trajectory evolution of z(t, 1, x2) and z(t, x1, 1) of
impulsive reaction–diffusion system (76) in Example 1

Corollary 2 Assume that (H1)–(H3) hold. Then, the
IRDNNs with infinite distributed delays (75) have a
unique global mild solution and are exponentially sta-
ble over the class F (η), if Λ+ A−|B|∗L −σ(�|B|�+
|C | + |E |)L − ln σ

η
I is a nonsingular M-matrix, where

Λ = diag(
∑q

ς=1
d1ς
ρ2

ς
,
∑q

ς=1
d2ς
ρ2

ς
, . . . ,

∑q
ς=1

dnς

ρ2
ς

), L =
diag(l1, l2, · · · , ln), and σ = maxi,k{rik, 1}.
Remark 8 Compared with the stability analysis of
reaction–diffusion neural networks [15,23,32,35], the
impulsive perturbation is considered here. FromCorol-
lary 2,we can see that the stability can be retained under
certain set of the impulses, which is also illustrated in
Example 3 of the next section.

4 Numerical examples

This sectionprovides three numerical examples to illus-
trate the effectiveness and advantage of the theoretical
results.

Example 1 Consider the following scalar impulsive
reaction–diffusion systemwith infinite distributeddelay
on square domain

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂z(t,x1,x2)
∂t = d

(
∂2

∂x21
+ ∂2

∂x22

)

z(t, x1, x2) − az(t, x1, x2)

+b f (z(t, x1, x2)) + c f (z(t − τ, x1, x2))
+e

∫ t
−∞ k(t − s) f (z(s, x1, x2))

+u(t, x1, x2), t ≥ 0, t ∈ [tk−1, tk),

z(tk , x1, x2) = r z(t−k , x1, x2), k ∈ N,

(76)

with Dirichlet boundary condition and initial condition
z(t, x1, x2) = cos(πx1/4) cos(πx2/4) for−5 ≤ t ≤ 0
and z(t, x1, x2) = 0 for t < −5 where (x1, x2) ∈ O,
q̄ = {1, 2}, ρ1 = ρ2 = 2, d = 11/5, a = 0, b =
c = 1/5, e = 1/6, k(s) = es , f (s) = tanh(s), and
u(t, x1, x2) = sin(tπ/2) sin(x1π/2) cos(x2π/4). The
impulsive sequence is given by r = √

2, tk = k, η = 1,
k ∈ N. A simple computation yields

d

(
1

ρ2
1

+ 1

ρ2
2

)

+ a − b − r(c + e) − ln r

η
> 0,

where | f (s1) − f (s2)| ≤ |s1 − s2|. According to
Corollary 1, the impulsive reaction–diffusion system
with infinite distributed delay (76) has a unique global
mild solution and is ISS, iISS, and eλt -ISS. Figure
1 presents the trajectory evolution of z(t, 1, x2) and
z(t, x1, 1) with time, which shows that the states of the
impulsive reaction–diffusion system are bounded with
the bounded spatiotemporal external input u(t, x1, x2).
Figure 2 enumerates the surface simulation of the sys-
tem on the whole square domain at several moments
where we can also observe the boundedness of the
surface even though the shape of the surface changes
significantly with time. Additionally, see ‘video1.avi,’
‘video2.avi,’ and ‘video3.avi’ in the supplementary
materials for full surface evolution with time. From
these figures and videos, we see that the state trajec-
tory of the impulsive reaction–diffusion system (76)
falls into ISS pattern.

Remark 9 To determine that the reaction–diffusion
benefits the ISS of the impulsive reaction–diffusion
system, the case of (76) without reaction–diffusion
(d = 0) is considered. From Corollary 1 or the existing
results about ISS of impulsive system [8], the ISS con-
ditions are failed so that the ISS properties cannot be
ascertained. Figure 3 illustrates the trajectory evolution
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Fig. 2 The surface simulation of impulsive reaction–diffusion system (76) at different times (t = 0.0, 1.0, 2.0, 2.5, 3.0, 5.0, 6.1, 6.4,
8.0, 9.0, 11.0, 13.0) in Example 1. Zoom in for details of the surface and scalar

of impulsive system (76) without reaction–diffusion
in terms of ln(|z(t, 1, x2)|) except the boundary (see
‘video4.avi’ in the supplementarymaterials for full sur-
face evolution with time). We can see that the trajec-
tory of the impulsive systemwithout reaction–diffusion
continues increasing with time under the bounded spa-
tiotemporal external input, which implies the vanishing
of the ISS properties. The comparison of Figs. 1 and 3
verifies that the reaction–diffusion along with Dirich-
let boundary condition can be regarded as the source
to force the impulsive reaction–diffusion system to fall
into ISS pattern, which shows the efficiency of the the-
oretical criteria.

Example 2 Consider the IRDNNs with infinite dis-
tributed delays which consist of two neurons on O =
{x | − 2 ≤ x ≤ 2}, where the parameters are given by

D =
(
0.4 0
0 0.5

)

, A =
(
1 0
0 1.9

)

,

B =
(− 0.6 0.8

0.4 − 0.4

)

,

C =
(
0.1 0.4
0.4 − 0.6

)

, E =
(
0.4 0.3
0.5 0.4

)

,

and τ = 2, k(s) = es , f (s) = 0.2 tanh(s). The initial
condition is given by

z1(t, x) =
{ 1

10 cos(
xπ
4 ), t ∈ [−τ, 0],

0, t ∈ (−∞,−τ),

z2(t, x) =
{ 1

10 sin(
xπ
2 ), t ∈ [−τ, 0],

0, t ∈ (−∞,−τ),

where x ∈ O. The impulsive sequence is given by
Ik(s) = (

√
3 − 1)s, tk = k, k ∈ N, and σ = √

3,
η = 1. It is easy to check that Λ + A − |B|∗L −
σ(�|B|� + |C | + |E |)L − ln σ

η
I is a nonsingular M-

matrix. Hence, it follows from Theorem 1 that the
global mild solution of the IRDNNs exists and is ISS,
iISS, and eλt -ISS. Then, we set the external input
by u1(t, x) = cos(tπ/10) sin(xπ/2) and u2(t, x) =
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Fig. 3 The trajectory evolution of ln(|z(t, 1, x2)|) of impulsive
system (76) without reaction–diffusion in Remark 9

Fig. 4 The trajectory simulation of IRDNNs with infinite dis-
tributed delays in Example 2

(sin(tπ/10) + 1) cos(tπ/4). The state trajectories are
illustrated in Fig. 4 where we can see that the system
with the bounded spatiotemporal external input is also
bounded, which corresponds to the ISS properties.

Remark 10 Here, we consider a special case of the
IRDN-Ns with D = E = 0 in Example 2, that is,

Fig. 5 The trajectory simulation of impulsive neural networks
in Remark 10

impulsive neural networks with finite delay. Similarly,
it follows from Theorem 1 that the state trajectories
of impulsive neural networks fall into ISS pattern as
shown inFig. 5.Comparedwith the existingwork about
ISS of delayed neural networks without impulses [13],
especially Example 76 and Remark 10 determined by
Theorem 1, the results obtained here mean that the ISS
properties can be retained under certain impulsive per-
turbation. Therefore, we extend part work of [13] to
impulsive case.

Example 3 Consider the exponential stability of the
IR-DNNs in Example 2, but the parameters are given
by

D =
(
2 0
0 2

)

, A =
(
5 0
0 6

)

, B =
(− 0.3 1

0.5 0.6

)

,

C =
(
0.4 0.8
− 1 1.1

)

, E =
(− 0.8 1

− 0.9 0.5

)

,
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Fig. 6 The trajectory simulation of exponentially stable
IRDNNs in Example 3

and τ = 10, k(s) = es , f (s) = tanh(s). The initial
condition is given by

z1(t, x) =
{− 1

4 cos(
xπ
4 ), t ∈ [−τ, 0],

0, t ∈ (−∞,−τ),

z2(t, x) =
{ 1

5 cos(
xπ
2 ), t ∈ [−τ, 0],

0, t ∈ (−∞,−τ),

where x ∈ O. The impulsive sequence is given by
Ik(s) = (e1/5 − 1)s, tk = 0.5k, k ∈ N, and σ = e1/5,
η = 0.5. From Corollary 2, it follows that the global
mild solution of the IRDNNsexists and is exponentially
stable as illustrated in Fig. 6.

Remark 11 Comparedwith the existingworkon reaction–
diffusion neural networks with infinite distributed
delays [23] when the stochastic perturbation is omitted
(Example 1 determined by Theorem 1), this example
shows that the exponential stability can also be retained
under certain impulsive perturbation, which shows the
efficiency of the theoretical results.

Example 4 (Application Example) As the major appli-
cation of RDNNs, the image encryption has been
widely studied in recent literature [5,27,34], since the
pseudorandom number generators can be realized by
the complex dynamics of the RDNNs [27]. In [5], the
IRDNNs have been successfully used as the pseudoran-
domnumber generator for image encryption because of
their highly nonlinear characteristics. Thus inspired,we
employ the IRDNN in Example 2 for the image cryp-
tosystem proposed in [5]. From Theorem 1 and Corol-
lary 2, the drive system and response system with dif-
ferent initial conditions are ISS and the corresponding
error system is exponentially stable, that is the synchro-
nization of the drive signal and response signal which
are further used to cipher the Lena grayscale image and
decrypt the encrypted image, respectively. The experi-
mental results are shown in Fig. 7 where the encrypted
image hides all the information of the original image
and the decrypted image is identical with the original
image, so the encryption and decryption attempts suc-
ceed to show the applicability and practicality of the
theoretical results.

5 Conclusion

This paper concerns the global well-posedness and ISS
problems of IRDNNs with infinite distributed delays.
In light of the semigroup theory, the neural-network
model is reformulated in terms of an abstract impul-
sive functional differential equation, and the criteria
for existence–uniqueness and the ISS properties of the
mild solution are established by the Picard sequence,
vector Lyapunov function, M-matrix, and the vector
inequality. The effectiveness and advantage of the the-
oretical results are verified by three numerical exam-
ples. Note that the boundary condition considered here
is homogeneous Dirichlet boundary condition that is a
special case of Robin boundary condition, so the future
work will focus on the ISS analysis of IRDNNs with
Robin condition or Neumann condition. On the other
hand, the impulsive effects of the neural-networkmodel
are viewed as the disturbance factor for the ISS proper-
ties. As Refs. [38,41] suggest, the impulsive effects can
also stabilize the unstable nonlinear system, so the ISS
analysis of IRDNNs with stabilizing impulses would
be another future work.
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Fig. 7 Lena grayscale original image, encrypted image, decrypted image, and their corresponding histograms in Example 4

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

References

1. Ahn, C.K.: Passive learning and input-to-state stability of
switched Hopfield neural networks with time-delay. Inform.
Sci. 180(23), 4582–4594 (2010)

2. Ali, M.S., Narayanan, G., Shekher, V., Alsaedi, A., Ahmad,
B.: Global Mittag-Leffler stability analysis of impulsive
fractional-order complex-valuedBAMneural networkswith
time varying delays. Commun. Nonlinear Sci. Numer.
Simul. 83, 105088 (2020)

3. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the
Mathematical Sciences. SIAM, Philadelphia (1994)

4. Cao, J., Stamov, G., Stamova, I., Simeonov, S.: Almost peri-
odicity in impulsive fractional-order reaction-diffusion neu-
ral networks with time-varying delays. IEEE Trans. Cybern.
(2020). https://doi.org/10.1109/TCYB.2020.2967625

5. Chen, W.H., Luo, S., Zheng, W.X.: Impulsive synchroniza-
tion of reaction-diffusion neural networkswithmixed delays
and its application to image encryption. IEEE Trans. Neural
Netw. Learn. Syst. 27(12), 2696–2710 (2016)

6. He, Y., Ji, M.D., Zhang, C.K., Wu, M.: Global exponential
stability of neural networks with time-varying delay based

on free-matrix-based integral inequality. Neural Netw. 77,
80–86 (2016)

7. Hu, J., Sui, G., Lv, X., Li, X.: Fixed-time control of delayed
neural networks with impulsive perturbations. Nonlinear
Anal. Model. Control 23(6), 904–920 (2018)

8. Jiang, B., Lu, J., Li, X., Qiu, J.: Input/output-to-state sta-
bility of nonlinear impulsive delay systems based on a new
impulsive inequality. Int. J. Robust Nonlinear Control 29,
6164–6178 (2019)

9. Li, X., Cao, J.: Delay-independent exponential stability of
stochastic Cohen–Grossberg neural networks with time-
varying delays and reaction-diffusion terms. Nonlinear Dyn.
50(1–2), 363–371 (2007)

10. Li, X., O’Regan, D., Akca, H.: Global exponential stabiliza-
tion of impulsive neural networks with unbounded continu-
ously distributed delays. IMA J. Appl. Math. 80(1), 85–99
(2015)

11. Li, X., Shen, J., Rakkiyappan, R.: Persistent impulsive
effects on stability of functional differential equations with
finite or infinite delay. Appl. Math. Comput. 329, 14–22
(2018)

12. Li, X., Yang, X., Huang, T.: Persistence of delayed cooper-
ative models: impulsive control method. Appl. Math. Com-
put. 342, 130–146 (2019)

13. Liu, L., Cao, J., Qian, C.: pth moment exponential input-
to-state stability of delayed recurrent neural networks with
Markovian switching via vector Lyapunov function. IEEE
Trans. Neural Netw. Learn. Syst. 29(7), 3152–3163 (2018)

123

https://doi.org/10.1109/TCYB.2020.2967625


Input-to-state stability of impulsive reaction–diffusion neural networks 1755

14. Liu, Y., Xu, Y., Ma, J.: Synchronization and spatial patterns
in a light-dependent neural network. Commun. Nonlinear
Sci. Numer. Simul. 89, 105297 (2020)

15. Lu, J.G.: Global exponential stability and periodicity of
reaction-diffusion delayed recurrent neural networks with
Dirichlet boundary conditions. Chaos Solitons Fractals
35(1), 116–125 (2008)

16. Ma, J., Tang, J.: A review for dynamics in neuron and neu-
ronal network. Nonlinear Dyn. 89(3), 1569–1578 (2017)

17. Ma,Q., Shi,G.,Xu, S., Zou,Y.: Stability analysis for delayed
genetic regulatory networks with reaction-diffusion terms.
Neural Comput. Appl. 20(4), 507–516 (2011)

18. Ma, Q., Xu, S., Zou, Y., Shi, G.: Synchronization of stochas-
tic chaotic neural networks with reaction-diffusion terms.
Nonlinear Dyn. 67(3), 2183–2196 (2012)

19. Pan, J., Liu, X., Zhong, S.: Stability criteria for impul-
sive reaction-diffusion Cohen–Grossberg neural networks
with time-varying delays. Math. Comput. Model. 51(9–10),
1037–1050 (2010)

20. Pazy, A.: Semigroups of Linear Operators and Applications
to Partial Differential Equations. Springer, NewYork (1983)

21. Qi, X., Bao, H., Cao, J.: Exponential input-to-state stability
of quaternion-valued neural networks with time delay. Appl.
Math. Comput. 358, 382–393 (2019)

22. Sheng, Y., Zeng, Z.: Impulsive synchronization of stochastic
reaction-diffusion neural networks with mixed time delays.
Neural Netw. 103, 83–93 (2018)

23. Sheng, Y., Zhang, H., Zeng, Z.: Stability and robust stability
of stochastic reaction-diffusion neural networks with infi-
nite discrete and distributed delays. IEEE Trans. Syst. Man
Cybern. Syst. 50(5), 1721–1732 (2020)

24. Shuai, B., Zuo, Z., Wang, B., Wang, G.: Scene segmenta-
tionwith dag-recurrent neural networks. IEEETrans. Pattern
Anal. Mach. Intell. 40(6), 1480–1493 (2018)

25. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L.,
et al.: Mastering the game of Go with deep neural networks
and tree search. Nature 529, 484–489 (2016)

26. Song, X., Man, J., Ahn, C.K., Song, S.: Finite-time dis-
sipative synchronization for Markovian jump generalized
inertial neural networks with reaction-diffusion terms. IEEE
Trans. Syst. Man Cybern. Syst. (2019). https://doi.org/10.
1109/TSMC.2019.2958419

27. Song, X., Man, J., Song, S., Ahn, C.K.: Gain-scheduled
finite-time synchronization for reaction-diffusion memris-
tive neural networks subject to inconsistent Markov chains.
IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.
org/10.1109/TNNLS.2020.3009081

28. Song, X., Wang, M., Song, S., Ahn, C.K.: Sampled-data
state estimation of reaction diffusion genetic regulatory net-
works via space-dividing approaches. IEEE/ACM Trans.
Comput. Biol. Bioinform. (2019). https://doi.org/10.1109/
TCBB.2019.2919532

29. Sontag, E.D.: Smooth stabilization implies coprime factor-
ization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)

30. Stamova, I.: Global Mittag-Leffler stability and synchro-
nization of impulsive fractional-order neural networks with
time-varying delays. Nonlinear Dyn. 77(4), 1251–1260
(2014)

31. Wang, J.L., Zhang, X.X., Wu, H.N., Huang, T., Wang,
Q.: Finite-time passivity and synchronization of coupled

reaction-diffusion neural networks with multiple weights.
IEEE Trans. Cybern. 49(9), 3385–3397 (2019)

32. Wang, L., Zhang, R., Wang, Y.: Global exponential stability
of reaction-diffusion cellular neural networks with S-type
distributed time delays. Nonlinear Anal. Real World Appl.
10(2), 1101–1113 (2009)

33. Wang, X., Wang, H., Li, C., Huang, T.: Synchronization of
coupled delayed switched neural networks with impulsive
time window. Nonlinear Dyn. 84(3), 1747–1757 (2016)

34. Wei, T., Lin, P., Wang, Y., Wang, L.: Stability of stochastic
impulsive reaction-diffusion neural networks with S-type
distributed delays and its application to image encryption.
Neural Netw. 116, 35–45 (2019)

35. Wei, T., Lin, P., Zhu, Q., Wang, L., Wang, Y.: Dynamical
behavior of nonautonomous stochastic reaction-diffusion
neural-network models. IEEE Trans. Neural Netw. Learn.
Syst. 30(5), 1575–1580 (2019)

36. Wu, K., Li, B., Du, Y., Du, S.: Synchronization for impul-
sive hybrid-coupled reaction-diffusion neural networks with
time-varying delays. Commun. Nonlinear Sci. Numer.
Simul. 82, 105031 (2020)

37. Wu, K.N., Ren, M.Z., Liu, X.Z.: Exponential input-to-state
stability of stochastic delay reaction-diffusion neural net-
works. Neurocomputing 412, 399–405 (2020)

38. Wu, X., Tang, Y., Zhang, W.: Input-to-state stability of
impulsive stochastic delayed systems under linear assump-
tions. Automatica 66, 195–204 (2016)

39. Yang, X., Cao, J., Yang, Z.: Synchronization of coupled
reaction-diffusion neural networks with time-varying delays
via pinning-impulsive controller. SIAM J. Control Optim.
51(5), 3486–3510 (2013)

40. Yang, Z., Zhou, W., Huang, T.: Exponential input-to-state
stability of recurrent neural networks with multiple time-
varying delays. Cognit. Neurodyn. 8(1), 47–54 (2014)

41. Yang, Z., Zhou, W., Huang, T.: Input-to-state stability of
delayed reaction-diffusion neural networks with impulsive
effects. Neurocomputing 333, 261–272 (2019)

42. Zhang, X., Han, Y., Wu, L., Wang, Y.: State estimation for
delayed genetic regulatory networks with reaction-diffusion
terms. IEEE Trans. Neural Netw. Learn. Syst. 29(2), 299–
309 (2018)

43. Zhu, H., Li, P., Li, X., Akca, H.: Input-to-state stability for
impulsive switched systemswith incommensurate impulsive
switching signals. Commun. Nonlinear Sci. Numer. Simul.
80, 104969 (2020)

44. Zhu, Q., Cao, J., Rakkiyappan, R.: Exponential input-to-
state stability of stochastic Cohen–Grossberg neural net-
works withmixed delays. Nonlinear Dyn. 79(2), 1085–1098
(2015)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123

https://doi.org/10.1109/TSMC.2019.2958419
https://doi.org/10.1109/TSMC.2019.2958419
https://doi.org/10.1109/TNNLS.2020.3009081
https://doi.org/10.1109/TNNLS.2020.3009081
https://doi.org/10.1109/TCBB.2019.2919532
https://doi.org/10.1109/TCBB.2019.2919532

	Input-to-state stability of impulsive reaction–diffusion neural networks with infinite distributed delays
	Abstract
	1 Introduction
	2 Model description and preliminaries
	3 Main results
	3.1 Local existence–uniqueness
	3.2 Global existence–uniqueness and ISS

	4 Numerical examples
	5 Conclusion
	References




