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Abstract A bistable nonlinear energy sink (BNES)
conceived for the passive vibration control of beam
and plate structures under harmonic excitation is inves-
tigated. By applying an Incremental Harmonic Bal-
ance (IHB)method togetherwith an adjusted arc-length
continuation technique, the frequency and amplitude
responses are obtained, and their respective trends are
discussed in detail from three aspects. The simplest
single-mode dynamics is first considered with a spe-
cial focus on the coupled effect of the cubic nonlin-
ear stiffness and the negative linear stiffness, where an
analytical treatment using complex-averaging method
is also applied to obtain the slow invariant manifold
for understanding the underlying dynamics. Then the
multi-mode dynamics of the beamare discussed in vari-
ation of each parameter. As a result, a simple step-by-
step design rule for the BNES is summarized. Finally,
the obtained results and design criteria of the BNES in
the beam case are extended to a 2D plate, realizing a
broadband control for multi-mode plate vibration. It is
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found that compared to a traditional cubic one, a BNES
can have a better performance both on the frequency
and amplitude point of view.
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1 Introduction

Passive vibration control is a subject of special con-
cern in many fields of engineering. In this realm, one
of the classical methods is a tunedmass damper (TMD)
[1,2], whose effectiveness has been discussed in vari-
ous systems under different excitations [3–5]. A com-
mon drawback for such a linear TMD is that: it is only
effective in the vicinity of a single resonant frequency.
To overcome this, the idea of using nonlinear phenom-
ena to design broadband vibration absorbers has thus
emerged, leading to the development of the so-called
nonlinear energy sink (NES) [6,7].

The general implementation of an NES consists in
a lightweight localized nonlinear device attached to
the primary system with strongly nonlinear couplings
for passive energy localization into itself. Unlike the
linear TMD, the essential nonlinearities in the NES
make it possible to generate rich dynamical regimes
that are incapable in linear or weakly nonlinear sys-
tems. More precisely, beyond a certain energy level,
a one-way irreversible nonlinear energy transfer phe-
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nomenon, termed as targeted energy transfer (TET) is
activated [8,9], providing a highly efficient mechanism
for broadband vibration suppression. Analytical and
numerical studies for NES to take advantage of the
TET phenomenon, and hence to achieve vibration sup-
pression in a broadband manner, were demonstrated in
[10–14]. Experimental verifications for the effective-
ness of NES with TET are also numerous [15–17]. The
applications of NES for efficient broadband vibration
mitigation could be found in many engineering fields,
from nonlinear beams and plates [18–20], to buildings
[21] and aerospace systems [22,23]. On the other hand,
by TET, NESs are also successfully applied in the field
of energy harvesting in some recent investigations [24–
27].

Many types of NES have been developed to obtain
optimum performance. Depending on the type of the
nonlinearity, the simplest and also the most stud-
ied one is an oscillating attachment with essentially
cubic nonlinear stiffness [28,29], while other kinds of
designs could be found based on piece-wise nonlinear-
ity [30,31], vibro-impact dynamics [32–34], rotational
element [35,36], nonlinearmembrane [37], andmagnet
[38,39].Along the same lines, another newextension to
the NES, referred to as the Bistable Nonlinear Energy
Sink (BNES), is proposed in some recent studies [40–
42]. In this configuration, a bistable potential function
is realized by adding a negative linear stiffness into the
classical cubic NES. It has been shown that compared
to the aforementioned NESs, a BNES can reduce the
minimal energy that is required to activate the targeted
energy transfer.

The transient dynamical regimes of a BNES coupled
to a linear oscillator are investigated in [40,41], analyt-
ically and numerically. With the limiting phase trajec-
tories (LPTs), it was then demonstrated that depend-
ing on the initial energy induced to the system, the
BNEScan be able to achieve different dynamicalmech-
anisms for strong energy transfer: for high energy
inputs, the dynamics are governed by 1:1 and 1:3 reso-
nances, and strongly modulated regime is observed; at
low energy levels, periodic intra-well or chaotic cross-
well responses are activated for the energy exchange
between the linear oscillator and the nonlinear attach-
ment. The optimal tuning of the BNES in a 2-dof linear
primary system under impulse is considered [42], and
compared with the classical TMD and NES. Experi-
ments are also conducted in [43,44], showing that this
BNES can realize TET for various impacts, and has

a better frequency performance than existing passive
devices. Recently, the forced dynamics of the BNES
coupled to a linear oscillator under periodic excita-
tion is discussed in [45], where the efficiency of each
response regime and its corresponding threshold is
derived and examined, it is proved that for the periodic
excitation, the intra-well oscillation and the 1:1 reso-
nance play the most important role for effective sup-
pression, in the low and high excitation level, respec-
tively.

Although these studies have revealed that a properly
designed BNES may be more effective than the other
types of NES enumerated above, most of them still
focus on transient dynamics and consider discrete oscil-
lators. The forced dynamics for such a BNES in more
complex structures such as beams and plates is still not
well understood, so its correspondingdesign criteria are
uncertain. On the other hand, in recent researches, the
advances of NESs are developing toward applications
in continuous and complex structures. Some existing
studies [19,46–48] on the classical cubic NES have
shown that in continuous systems, NES may exhibit
much richer dynamics and stronger parameter sensi-
tivity, which is quite different from what was observed
in discrete systems. Therefore, the dynamics of BNES
in these systems need to be further addressed. In light
of these facts, the main purpose of this paper is thus to
study the steadydynamics ofBNES in continuous beam
and plate structures, and to establish the design guide-
lines for broadband suppression of vibrations involving
multiple modes.

This paper is organized as follows: The equation of
motion is introduced in Sect. 2, and an IHB method
is applied for calculating the forced responses of the
system. Then, a validation test on the IHB method is
presented in Sect. 3. Sections 4 and 5 are respectively
the dynamics and parametric design of the bistableNES
in beam and plate systems. Finally, the conclusions and
discussions are presented in Sect. 6.

2 Model description

Figure. 1 depicts the schematic of the considered sys-
tem, it consists of a simply supported, linear Euler-
Bernoulli beam coupled to a lightweight nonlinear
attachment. The beam is considered to be of length
L , and subjected to a harmonic excitation induced at
x = xF with temporal part F(t) = F cosωt . The
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Fig. 1 A linear beam coupled to a bistable nonlinear energy sink

attachment is located at the position x = xc, with a
total mass m that is assumed to be small as compared
to the beam mass. Finally, it is noted that the restoring
force of the nonlinear oscillator is contributed by two
parts: a cubic nonlinear component kn and a negative
linear stiffness kl , thus acting as a bistable nonlinear
energy sink (BNES) in the literature [40,41].

Let u = u(x, t) and v = v(t) denote respectively
the displacement of the beam and that of the attached
BNES, then the governing equations for such a system
shown in Fig. 1 are given by

ρsutt + C1ut + E I uxxxx + f δ(x − xc)

= F(x, t), (1a)

mv̈ = f, (1b)

f = klw + knw3 + C2ẇ, (1c)

w = u (xc, t) − v, (1d)

whereρs , E , and I are themass per unit length,Young’s
Modulus, and inertia moment of the beam. C1 and C2

account for the damping of the beam and the BNES.
f is the interaction between the beam and the BNES,
characterized as a function of the relative displacement
w and relative velocity ẇ.

Define ε = m/ρs L as the ratio between the mass
of the BNES and the total mass of the beam, it is con-
venient to have a dimensionless form for Eq. (1) by
introducing

x̄ = x

L
, ū = u

L
, v̄ = v

L
, w̄ = w

L
, t̄ =

√
E I

ρs L4 t,

k̄l = L3kl

E I
, k̄n = L5kn

E I
, σ = C1L2

2
√

ρs E I
,

ξ = C2L

2
√

ρs E I
, F̄ = L2F

E I
, ω̄ = ωL2

√
ρs

E I
.

(2)

Substituting these variables into Eq. (1) and dropping
for simplicity the overbars in the obtained equations

yields

utt + 2σut + uxxxx + f δ (x − xc) = F(x, t), (3a)

εv̈ = f, (3b)

f = klw + knw3 + 2ξẇ, (3c)

w = u (xc, t) − v. (3d)

A modal expansion is applied to discretize the sys-
tem, the displacement u = u(x, t) is thus written in
terms of

u(x, t) =
Nm∑
i=1

φi (x)qi (t) (4)

with φi (x) the mode function for each i = 1, 2, · · · ,

Nm , andqi (t) the associatedmodal coordinate. For sim-
ply supported boundary condition, the mode functions
together with the eigenfrequencies are computed via

φi (x) = √
2 sin (iπx) , Ωi = i2π2, i = 1, 2, · · · (5)

Denoting q = [q1, q2, · · · , qNm ]T as a vector of the
modal coordinates, � as a diagonal matrix such that
� = diag(Ωi ), and introducing Sc = [φ1(xc), · · · ,

φNm (xc)], SF = [φ1(xF ), · · · , φNm (xF )] be the matri-
ces that containing all the first Nm modes at the point xc

and xF . Implying the above expressions together with
Eq. (4) into system (3), one can easily obtain

q̈ + 2σ q̇ + �2q + ST
c f = ST

F F cosωt, (6a)

εv̈ = f, (6b)

f = klw + knw3 + 2ξẇ, (6c)

w = Scq − v. (6d)

Let X = [qT , v]T , and rescale the time variable as
τ = ωt , Eq. (6) can finally be rewritten as

ω2M̄Ẍ + ωC̄Ẋ + K̄X + K̄n(SX)2X = F̄ cos τ (7)

where

M̄ =
[
In

ε

]
, C̄ = 2σ

[
In

0

]
+ 2ξSTS,

K̄ =
[

�2

0

]
+ klSTS, K̄n = knSTS,

F̄ =
[
ST

F
0

]
F, S = [

Sc,−1
]
. (8)

Eqution (7) shows that how the problem is trans-
ferred to a standard form of multi-degree-of-freedom
vibration system. It is emphasized that although Eq. (7)
is derived from a simply supported beam in Fig. 1. It is
also valid for other boundary conditions or for a plate,
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bymodifying only the characteristicmatrices presented
in Eq. (8), which will then be specified later.

In order to calculate the periodic solutions for the
system described by Eq. (7), an Incremental Harmonic
Balance (IHB) method [49–51] is employed due to its
simplicity in handling multi-degree-of-freedom non-
linear systems, and advantages in analyzing the fre-
quency and amplitude response. Other alternatives,
such as the shooting method [52,53], the collocation
method [54], the invariant manifold method [55], or a
recently proposed integral-equation approach [56],will
also be applicable for readers of particular interests.

Let X0, F̄0, ω0 be a set of solution for Eq. (7), and
introduce a small increment in each of the three param-
eters according to

X = X0 + ΔX, ω = ω0 + Δω, F̄ = F̄0 + ΔF, (9)

Eq. (7) can first be rewritten with respect to the incre-
ments and then using the harmonic balance process, the
solutions of system (7) are expressed in terms of

Xk = a0 +
n∑

i=1

(aki cos iτ + bki sin iτ),

ΔXk = Δa0 +
n∑

i=1

(Δaki cos iτ + Δbki sin iτ), (10)

and finally, one obtains

KmcΔN = R + RmcΔω + R f ΔF, (11)

where the matrices are specified in “Appendix A”.
The periodic solution N is thus described in terms

of the excitation amplitude F and frequency ω. For
interest of studying the frequency response of the sys-
tem, one may fix the amplitude of the external excita-
tion, i.e., assuming ΔF = 0 in Eq. (11), and likewise,
for amplitude response, one set Δω = 0 in Eq. (11).
In the general implementation of the IHB method, a
continuation scheme is usually coupled for the path-
following solution. Particular continuation techniques
include Gauss-Newton algorithms, piecewise linear,
and Pseudo-arc-length, to name just a few. In this work,
a two-point tracing algorithm [49] that improved from
the traditional Pseudo-arc-length continuation method
is applied. Finally, The stabilities of the periodic solu-
tions can be analyzed by means of the Floquet theory,
in which the transition matrix is calculated using a pre-
cise Hsu’s method following [49,57], see for details in
Appendix B.

3 Validation Test

A convergence study is first realized in order to select
appropriately the number of modes used in the calcu-
lation, one such example is performed in Fig. 2. With
Nm = 1, a linear resonance peak occurs at ω = 9 near
the first natural frequency Ω1, and two nonlinear res-
onances can be observed respectively in ω ∈ [1, 6.5]
and ω ∈ [15, 29]. When the second mode of the beam
is taken into account, the nonlinear resonances behave
quite differently, especially in the higher frequencies.
Corresponding to what was identified in ω ∈ [15, 29]
for Nm = 1, this nonlinear resonance now shows a
more complete structure in a wider frequency range
ω ∈ [16, 36] andwith a sharp peak occurs atω = 36. In
addition, as frequency increases, another newnonlinear
resonance around the second natural frequency Ω2 is
observed in ω ∈ [38, 47]. For further larger number of
modes, the system behaves the same as with Nm = 2,
only slight differences are indicated on the response
curves. To conclude, at least two modes are required
to ensure the convergence in the interested frequency
range ω ∈ [0, 50]. In later analysis related to the beam
case, Nm = 5will then be selected for our calculations.

Generally, the forced vibrations satisfy the 1:1 res-
onance condition, which is characterized by the first
order harmonics cos τ and sin τ . Higher order harmon-
ics can provide better approximations for describing the
super-harmonic and sub-harmonic resonances under
some special conditions, however, they also compli-
cate a lot the analysis. Since ourmain purpose is to seek
for simple guidelines to design the BNES for effective
reductions of resonant peaks at each mode of a beam or
a plate, the 1:1 resonance condition is assumed, i.e., the
first order harmonics are the most significant to char-
acterize the dynamics of the system, while the higher
order of the harmonics, as compared to the first order
ones, could be eliminated, see in [49,51]. In the simu-
lations hereafter, we keep only the terms 1, cos τ , and
sin τ in the IHB approximation.

The converged IHB solutions are also compared to
the simulations using a 4th Rouge-Kutta method at
some frequencies with a single stable solution to exam-
ine their accuracy.As it is clear, a good agreement could
be observed. At the other frequencies, the frequency
response curvemay undergo several Saddle-Node (SN)
bifurcations and Neimark-Sacker (NS) bifurcations,
bringing unstable branches or multiple states. Depend-
ing on the initial conditions, the response regimes at
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Fig. 2 Convergence of the frequency response curve as Nm
increases from 1 to 10, for kn = 10000, kl = −20, ξ = 0.1,
σ = 0.1, ε = 0.1, xc = 0.7, xF = 0.3, F = 5. Solid and
dashed lines: stable and unstable branches on the response
curve. Stars are the results reported by the 4th Rouge-Kutta
method with Nm = 5, the point at ω = 20 is simulated under
initial condition [X(0); Ẋ(0)] = [−0.018, 0.006, 0, 0, 0,

−0.0086, 0.0085, 0.0016, 0, 0, 0,−0.026]T , the two points at
ω = 30 are simulated under [X(0); Ẋ(0)] = [0.014, 0.04,
0, 0, 0,−0.162, 0.23, 0.34, 0, 0, 0,−1.8]T for the solution
|uc| = 0.04, and under [X(0); Ẋ(0)] = [−0.007, 0.01,
0, 0, 0,−0.0036, 0.006, 0.01, 0, 0, 0,−0.03]T for the solution
|uc| = 0.022, other points are simulated uner zero initial condi-
tions

these frequencies may converge to a stable periodic
orbit predicted by the IHB, or to other possible quasi-
periodic or chaotic attractors. The complete identifi-
cation of the dependence of the system response on
the initial condition is, however, out of the scope of
this paper. Our concentration will be on the parametric
effect of the structures of response curves. The practi-
cal implication here is that such bifurcations provide
richer dynamics, and by adjusting the characteristic
parameters of the BNES, one is able to control their
affecting frequency bands and amplitude levels to acti-
vate response regimes that are more effective than the
usual periodic response in a given interval to reduce
the linear resonance peak and achieve better damp-
ing performance. Motivated by this, we would like to
restrict our analysis to the most used case of zero ini-
tial conditions, and the responses of the beam and the
BNES at four different frequencies are then shown in
Fig. 3(a–d). Several distinct regimes could thus be iden-
tified: at ω = 5, where there are three periodic solu-
tions with very close values, a small amplitude periodic
intra-well response is observed, the BNES enters in
one of its potential wells, and oscillates about the sta-
ble equilibrium that characterized by the dashed line
w = √−kl/kn = 0.0447. For ω = 31, the BNES

exhibits a chaotic cross-well dynamics, in this case,
the BNES oscillates between its two equilibrium and
the amplitude is slightly larger than the stable equilib-
rium. At ω = 38, a usual stable periodic response is
shown and the amplitude of the BNES is symmetri-
cal. Finally for ω = 43, the vibration amplitudes of
the beam and the BNES show strong modulation, and
consequently, the response regime is the well-known
strongly modulated response (SMR) as referred to in
the literature.

Among these four regimes, the intra-well and cross-
well dynamics result from the special potential well of
the BNES, and hence are not able to be observed in
a classical cubic NES. While the SMR and the usual
periodic response could be found in almost all the exist-
ing types of NES. For a classical NES, its efficacy is
mainly due to the SMR, and the general tuning is to
activate such SMR at the interested frequencies that
one wants to control according to the level of vibra-
tions, so as to avoid as much as possible the sharp
periodic resonance peaks. However, the SMR can exist
only in a certain amplitude range, the classical cubic
NES becomes inefficient when the vibration amplitude
is low. On the contrary, a BNES, by taking advantage of
its special potential well, provides intra-well or cross-
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Fig. 3 Response regimes on the frequency response curve for
four different values of excitation frequency, with system param-
eters the same as in Fig. 2

well dynamics in the low vibration level, the former,
has been recognized as another effective regime other
than the SMR for vibration suppression. Our design
will thus be mainly devoted to operating the SMR and
intra-well dynamics to realize broad control over awide
range of forcing amplitudes and frequencies.

Finally in this section, by fixing the excitation fre-
quency at ω = 42, e.g., in the vicinity of the sec-
ond resonance frequency, and changing the excitation
amplitude, the amplitude responses of the beam and
the BNES are illustrated in Fig. 4. At low excitation
level, a stable branch 1 characterized by a straight line
is identified, representing a linear behavior. An unsta-
ble branch 2 then occurs in F ∈ [2, 20], the BNES
becomes effective by taking advantage of its nonlinear-
ity. More precisely, the response curve no longer shows
a linear growth but flattened. It first stretches horizon-
tally to the left, after reaching the folding pointB, it then

bends to the right-down direction and finally connected
to another stable branch 3 at positionC. Throughout the
whole unstable branch, and at the beginning of the high-
amplitude stable branch with F < 30 (point D), the
response amplitude of the beamkeeps decreasing as the
excitation level increases, an effective vibration sup-
pression mechanism is thus achieved. Concerning the
response regimes on the amplitude response curve, the
intra-well response lies on the first stable branch 1 with
relatively low forcing amplitudes, while the SMR gen-
erally exists at higher forcing amplitudes on the unsta-
ble branch 2 and the other stable branch 3. As such,
in the discussions hereafter, we will also refer to the
response at the forcing level corresponding to branch
1 as the low-amplitude response, while the response at
branches 2 and 3 will be termed as the high-amplitude
response.

Up to now, we have obtained the frequency and
amplitude responses of the system, based on which the
typical dynamical behaviors of the BNES are briefly
discussed. In the next section, a detailed analysis will
be carried out concerning the parametric trends of the
frequency and amplitude responses, so as to finally fig-
ure out practical but simple criteria that guiding the
design of the BNES in complex structures.

4 Response and design in beam system

The tuning of a BNES in continuous systems such
as beams and plates is of course not an easy issue,
which requires special insights into their complicated
dynamics that are affected by various parameters. To
carry out the analysis, it is hence convenient and nec-
essary to start from the simplest case of single-mode
dynamics, as it allows one to find some simple guide-
lines as well as analytical demonstrations. Focusing
on the single-mode dynamics in the beam system, in
this section a detailed parametric analysis on the fre-
quency and amplitude response will first be performed
in Sect. 4.1, and then an analytical treatment based on
the so-called Slow Invariant Manifold (SIM) will be
given in Sect. 4.2. Finally, the conclusions found will
be extended to the multi-mode dynamics in Sect. 4.3
and Sect. 4.4 for more general designs.
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Fig. 4 Amplitude response for ω = 42, with excitation amplitude increases from F = 0.5 to F = 100, the other parameters are the
same as in Fig. 2

4.1 Single-mode dynamics around Ω1

Considering the first mode resonant vibration, the exci-
tation frequencyω is hence assumed to be in the vicinity
of the first natural frequency such that the vibrations of
the other modes can be eliminated. Particular interests
are paid to the effects of the two parameters: the non-
linear stiffness kn and the negative stiffness kl .

Figure 5 compares the frequency responses of the
system with different values of nonlinear stiffness kn .
At kn = 2, there is a single stable branch with a
resonance peak that occurs at ω = 10, the BNES
behaves linearly. The dynamics changes dramatically
when kn = 10, as bifurcations appear, strong nonlin-
earity begins to be excited in the vicinity of the reso-
nance frequency. As a result, the response regime also
changes from periodic to strongly modulated, leading
to a remarkable reduction on the resonance peak. With
increasing kn , the overall performance improves and
suppression bandwidth increases, an effective mecha-
nism for broadband vibration control is thus realized.
Judging from the relative motion, one can also find that
as kn increases, the frequency response curve bends to
the right, hence a hardening phenomenon is addressed.
Finally, for an inappropriately too large stiffness such
as kn = 40, an undesired periodic response peak arises
on the left hand of the resonance frequency at ω = 9,
the performance deteriorates again.

Varying the negative stiffness kl , the results are illus-
trated in Fig. 6. It is noted that an addition of a negative
stiffness kl at a small modulus can eliminate the unde-
sired response at the left handof themain resonance fre-
quency. However, increasing the modulus of kl causes
detrimental effects with continuously narrowed effec-
tive frequency bands and increased resonance peaks.
Indeed, this is the opposite of the kn behavior shown
in Fig. 5, i.e., increasing |kl | shows an equivalent trend
with that brought by decreasing kn . It should be empha-
sized that, the above discussions and conclusions are
restricted to the special case in which the stronglymod-
ulated regime is excited in the resonant vibration. For
other situations, the conclusions might change, in fact,
as one will find later in this section that, at the low
amplitude vibration level, the bistability induced by
the negative stiffness can improve the effectiveness of
the NES. But anyhow, the equivalent effect between
kl and kn is highlighted to be of special significance,
since in the research hereafter, the readers will see how
a BNES can be optimized by controlling simultane-
ously the value of both kl and kn , so that to improve the
low-amplitude performance without affecting a lot the
high-amplitude behavior.

Another set of investigation is then carried out for
an exhaustive justification of the BNES performance at
different forcing amplitude. To do this, the normalized
amplitude responses, i.e., the responses of |uc| and |w|
divided by the forcing amplitude F , are hence investi-
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Fig. 5 Effect of nonlinear stiffness kn on the frequency response.
(a): uc, beam response at the attached point, and (b): w, relative
motion between the NES and the beam. kl = 0, ξ = σ = 0.1,
ε = 0.1, xc = 0.7, xF = 0.3, F = 5

gated. Figure 7 plots the response curves at ω = 10 for
three different values of kn . As it is apparent, the BNES
is particularly effective at a certain range of ’moder-
ate’ excitation level, within which a strongly nonlinear
behavior is activated and the beam response decreases
largely along an unstable branch until reaching its min-
imal. While for excitation level either too high or too
low, it might behave inefficiently and linearly. Increas-
ing the nonlinear stiffness kn does not change the over-
all shape of the amplitude response curve but brings a
left shift, the BNES is thus tuned to be effective towards
a lower excitation level, and vise versa.

On the contrary, Fig. 8 shows that, increasing the
modulus of the negative stiffness kl leads to an inverse
right shift effect on the amplitude response, with the
optimal performance of the BNES tuned towards the
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Fig. 6 Effect of negative stiffness kl on the frequency response.
a: uc, beam response at the attached point, and b: w, relative
motion between the BNES and the beam. kn = 40, ξ = σ = 0.1,
ε = 0.1, xc = 0.7, xF = 0.3, F = 5

higher amplitude. As such, the trade-off between kn

and kl that has previously been pointed out in the fre-
quency response, also exists in the amplitude response.
On the other hand, however more importantly, Fig. 8
also illustrates that by introducing a negative stiffness
for a bistable configuration, the low-amplitude perfor-
mance shows an evident improvement. This improve-
ment, as further interpreted by the comparison in Fig. 9,
is obviously brought by the specific advantage that
in low excitation levels, the BNES can exhibit intra-
well dynamics, with which the amplitude of u(xc, t)
decreases significantly from around 0.1 (BNES with
kl = −20) to 0.03 (classical cubic NES) at F = 0.4.
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Fig. 7 Effect of kn on the amplitude response. a: uc, beam
response at the attached point, and b:w, relative motion between
the BNES and the beam. kl = −10, ξ = σ = 0.1, ε = 0.1,
xc = 0.7, xF = 0.3, and ω = 10

4.2 Analytical treatment

The observations in Sect. 4.1 show that the trade-off
between kl and kn plays an important role in operating
the response regimes of the system to improve the per-
formance of the BNES. In this section, a simple analyt-
ical treatment is thus proposed to derive a closed-form
relationship of this trade-off between kl and kn when
the BNES is working at the optimal SMR, so as to
guide the design of the BNES for suppressing the res-
onant vibration of the beam at an arbitrary mode. The
analysis relies on the so called concept Slow Invariant
Manifold (SIM), which has been widely demonstrated
to be a very successful analytical tool for approximat-
ing the dynamics [42,45,58,59]. Although such a SIM
is generally not solvable in continuous systems with
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Fig. 8 Effect kl on the amplitude response. a: uc, beam response
at the attached point, and b:w, relativemotion between theBNES
and the beam. kn = 100, ξ = σ = 0.1, ε = 0.1, xc = 0.7,
xF = 0.3, and ω = 10

many degrees of freedom, in the special case of single
mode dynamics, the system can be reduced to a 2-dof
equivalent system that consists of a single beam mode
and the BNES, allowing one to calculate the SIM struc-
ture and analyze the dynamics. The aimof this section is
to derive the SIM for the first mode resonant vibrations
of the beam, hence to provide an analytical perspec-
tive. To do this, a complex averaging method [45,58]
is employed to Eq. (7) by introducing the following
variable change

ψe jτ = Ẋ + jX, (12)

with j the unit imaginary. Then, the displacements and
their derivatives can be rewritten in terms of the com-
plex variables as

X = ψe jτ − ψ∗e− jτ

2 j
, Ẋ = ψe jτ + ψ∗e− jτ

2
,
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Fig. 9 Response comparison of a classical cubicNES to aBNES
at low excitation level F = 0.4 for the cases shown in Fig. 8. a:
a classical cubic NES with kn=100, b: a BNES with kn=100 and
kl=-20

Ẍ = ψ̇e jτ + j
ψe jτ − ψ∗e− jτ

2
, (13)

where ψ∗ is the complex conjugate of ψ . Substituting
Eq (13) into Eq. (7) and averaging the fast terms leads
to

2ω2M̄ψ̇ + ωC̄ψ − j

(
K̄ − ω2M̄ + 3|Sψ |2K̄n

4

)
ψ

= F̄. (14)

Eq. (14) is called the slowly modulated equation that
approximates the initial system described by Eq. (7).
It can be demonstrated that under the 1:1 resonance
condition, Eq. (14) gives identical solutions to that of
the IHB method with only the first order harmonic.

For resonant vibrations near the first mode, ω ≈ Ω1

is satisfied and the contributions of the other modes
could thus be neglected. In this way, one has X =
[q1, v]T , and ψ = [ψ1, ψv]T . Introducing ψc =
φ1 (xc) ψ1 and ψw = φ1 (xc) ψ1 − ψv to retrieve for
sake of convenience the complex amplitude of the beam
motion u(xc, t) and the relativemotionw, and injecting
these relationships to Eq. (14) gives the following

ψ̇c + εσ̃

2
ψc + ε f̃ = ε F̃

2
,

ψ̇w + j

2
(ψw − ψc) + εσ̃

2
ψc + (1 + ε) f̃ = ε F̃

2
,

(15)

with

f̃ = ξ̃

2
ψw − j k̃l

2
ψw − 3 j k̃n

8
|ψw|2ψw, F̃ = F

Ω2
1ε

,

ξ̃ = 2ξ

Ω1ε
, k̃l = kl

Ω2
1ε

, k̃n = kn

Ω2
1ε

, ε = εφ2
1 (xc) ,

σ̃ = 2σ

Ω1ε
.

Then, taking into account that themass ratio between
the nonlinear attachment and the beam is small, a
multi-scale method with respect to the small param-
eter ε is introduced for the analysis of Eq. (15). Let
ψ = ψ (τ0, τ1, · · ·), τk = εkτ , k = 0, 1, · · · , and
rewrite the time derivative as
d

dτ
= ∂

∂τ0
+ ε

∂

∂τ1
+ · · · (16)

The equation can be expanded according to the orders
of ε, for which the ε0 order system is

∂ψc

∂τ0
= 0,

∂ψw

∂τ0
+ j

2
(ψw − ψc) + f̃ = 0, (17)

and set the derivative with respect to τ0 to zero yields

|ψc|2 = 4Ω2
1 ξ2 |ψw|2 +

(
kl − Ω2

1ε
)2 |ψw|2

− 3kn
(
kl − Ω2

1ε
)

2
|ψw|4 + 9k2n

16
|ψw|6 .

(18)

Equation (18) defines the SIM structure for the first
mode vibration of the system. As it can be recognized
that, the SIM depends both on the nonlinear stiffness
kn and the negative stiffness kl . An illustration of the
SIM structure in relationship of these two parameters is
given in Fig. 10a–b. Increasing kn , the topology of the
SIM becomes smaller, and the unstable branch shifts
towards the left down direction. The same conclusion
could also be drawn by decreasing |kl |. Hence, the non-
linear stiffness kn andnegative stiffness kl play a similar
role on the shape of the SIM structure. This explains the
previous counterbalance between kl and kn as observed
in the frequency and amplitude response curves in the
last section.

As depicted in Fig. 10c, the SIM shows an ’S’ shape
with two folding points P1 and P2, at which the mov-
ing trend and stability changes. As the state of the
system can move only along the SIM, when the sys-
tem is vibrating at a relatively small amplitude level,
its state will be on the lower stable branch 1 and pro-
duces only stable periodic response. This corresponds
to the behavior of a small kn in the frequency response
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Fig. 10 SIMstructure in dependence of a: nonlinear stiffness kn ,
b: negative stiffness kl ; and c: sketch for the state of the system
moving along the SIM

(kn = 2 in Fig. 6) or the low-amplitude case in the
amplitude response. If the vibration of the system is
strong enough to reach the folding point P1, then since
branch 2 is unstable, the state of the system may jump
from P1 to Pu that is of the same hight on the other
stable branch 3, in the same way, another similar jump
may also occur between P2 and Pd . This is the funda-
mental mechanism of SMR, with which the BNES can
be most effective for vibration suppression, the SMR
can be found from the unstable regions of the frequency
or amplitude responses. Finally, if the amplitude is too
large, the BNES will finally work only on branch 3 and
stable periodic response appears again, as represented
by the undesired response in the frequency response
(kn = 40 in Fig. 6) or the high-amplitude stable branch
in the amplitude response.

Following the prescriptions given in the literature
that related to discrete oscillators, see e.g. [42,45,58],
the design of the BNES for SMR needs to adjust the
BNES parameters so that the system is working in the
vicinity of the second folding point P2 to excite the
Strongly Modulated Regime (SMR) for the most effi-
cient suppression. This critical value of kn at the folding
point P2 could be found by introducing Z = |ψw|2 in

Eq. (18) and setting its derivative with respect to Z to
zero, and is expressed as

kn

Ω2
1

=
8

(
ε − kl

Ω2
1

)
± 4

√(
ε − kl

Ω2
1

)2

− 12ξ2

Ω2
1

9|ψw|2 , (19)

for the exists of a pair of bifurcations, the negative stiff-
ness must satisfies kl < Ω2

1ε−2
√
3ξΩ1. Eq. (19) thus

gives the explict trade-off kl and kn of for the optimal
SMR in the BNES as a function of the vibration ampli-
tude |ψw|.

Once the SMR is optimized by the trade-off relation-
ship in Eq. (19), one could then take advantage of the
bistability of the BNES to improve its low-amplitude
performance by operating on the intra-well response
regime, an example for such operation is illustrated in
Fig. 11. In Fig. 11, by calculating at first the trade-
off relationship in Eq. (19) at the amplitude level of
|ψw| = 0.65, four different pairs of the kl and kn are
obtained and marked in the enlarged figure with cir-
cles, including kl = 0, kn = 30 (black) as a clas-
sical cubic NES and kl = −3, kn = 40 (brown),
kl = −6, kn = 50 (red), kl = −10, kn = 62 (blue)
as another three BNESs, then the amplitude response
curves computed using the IHB for the four configu-
rations are compared in the main figure, one can see
that by balancing kl and kn in the BNES according to
the trade-off, the low-amplitude performance (the sta-
ble branches at the low forcing amplitude level) of the
BNES could be gradually improved without affecting
too much the high-amplitude behavior (the unstable
branches and the stable branches at the high amplitude
level) on the amplitude response curve.

It is worthwhile to mention that although Eq. (18)
and Eq. (19) are derived for the first mode resonant
vibration, one can easily obtain similar expressions of
the SIM for the kth mode by simply replacing the sub-
script “1” by “k”. All the conclusions that are valid
here and in the previous Sect. 4.1 that related to the 1st
mode can also be equivalently drawn for an arbitrary
kth mode, we just skip these for conciseness.

4.3 Multi-mode dynamics

We now consider further the multi-mode dynamics, the
first parameter to be investigated is the nonlinear stiff-
ness kn , its effect on the frequency response is depicted
in Fig. 12. For a small value of kn = 10, the responses at
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Fig. 11 Adjusting simultaneously the value of both kl and kn
to improve the low-amplitude performance without affecting a
lot the high-amplitude behavior, Each curve in the main figure is
obtained with a pair of kl and kn depicted in the sub-figure with
the circle at the same color

both modes show a single periodic resonance peak, the
nonlinearity is not strong enough to bend the response
curve and the damping performance is thus mainly due
to the linear part of the system. Compared to the peaks
shown without an absorber, one can observe that the
gain is limited at mode 1 but considerable at mode 2.
As kn increases in the range [10, 120], the frequency
response changes dramatically in the vicinity of the
first natural frequency. More precisely, a set of SN and
NS bifurcations occur, as a result, the resonance curve
nearmode 1 does not go up to a single linear stable peak
but crosses the resonant region through a curved unsta-
ble branch. By creating a dent in this region, the peak
response is remarkably reduced. Moreover, the corre-
sponding response regime in the vicinity of the first
mode changes also from periodic to SMR, the damping
performance of the BNES improves continuously with
a lower and lower resonance peak. On the other hand,
at mode 2, neither the response regime nor the perfor-
mance shows an observable difference for kn varies in
this range. Continue to increase kn in the range of [120,
1e4], another set of bifurcations occur near the first
mode, resulting in anundesiredperiodic resonancewith
peak value as high as the one without an absorber, the
BNES thus loses its effectiveness atmode1.Alongwith
the occurrence of the undesired periodic response, the
bifurcations also generate two newbranches, stretching
respectively toward the left and right hand of the first
natural frequency. While the left one is then degener-
ated, the stretching of the right one eventually creates a

significant nonlinear resonance peak (the blue ellipse)
between the first and second natural frequency.With kn

increases up to around 1500, the right-hand nonlinear
resonance approaches the resonant frequency range of
mode 2, and the SMR begins to be activated at mode
2. After that, by increasing further the value of kn , the
performance at the second mode could be much more
improved with the sharp resonance peaks flattened and
reduced. However, unfortunately, for all these designs
with higher values of kn , their performances at the first
mode are particularly poor, almost no damping effect
could be addressed.

One can note that, for controlling the vibrations,
the nonlinear stiffness should also be arranged consis-
tently to the targeted modes. An effective reduction of
vibrations at a higher mode requires correspondingly a
higher value of kn , which is logical but generally pre-
vents the possibility for simply selecting a kn that can be
simultaneously optimal for all the modes. Hence, the
appropriate tuning of a BNES for multi-mode vibra-
tions over a wide frequency range resides in a balanced
performance at each interestedmode.With this inmind,
a critical working point at around kn = 120 is recom-
mend according to the examples shown in Fig. 12, for
which the BNES produces SMR in the first mode and
with intra-well responses in the second mode. It must
be noted that, such a critical working point represents
an intrinsic limitation of the BNES design. For robust
concerns, special cares shall be taken to ensure kn is not
beyond this critical point, or equivalently, the applied
forcing is not above the designed value here. There is
also an instruction that tuning the stiffness to activate
SMR at the first mode outperforms that activated at
the second one, as verified by the fact that the former
provides also an acceptable performance at the second
mode, whereas the latter loses the first mode damping
effect. This criterion will then be further demonstrated
in the coming discussions that, a BNES with kn pre-
tuned to a lower mode allows the possibility to adjust
other counting parameters to improve higher mode per-
formances, while the opposite is not true.

Figure. 13 summarizes then the effect of the neg-
ative stiffness kl . In consideration of the fact that the
existence of SMR at mode 1 and mode 2 require very
different values of kn , two special cases are thus per-
formed. In Fig. 13a, a relative small value of kn = 50,
with SMR activated at mode 1, is presented. One can
see that a possible balanced control could then be found
at around kl = −4, where the peaks at both modes are
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Fig. 12 Frequency
responses for nonlinear
stiffness kn varies. uc: the
amplitude of the beam at
checking point x = 0.7.
Other parameters are
selected as kl = −20,
ξ = 0.1,ε = 0.1, σ = 0.1,
xc = 0.7, xF = 0.3, F = 5.
The magenta curve is the
beam response without an
absorber, working as a
reference case. The boxes
with arrows at some
interested positions indicate
the steady-state responses of
the beam simulated under
zero initial condition

considerably reduced.While in Fig. 13b, a parallel case
with kn = 4000 for SMR activated around mode 2 is
shown, the picture becomes much different: varying kl

now only brings sensitive difference near the second
mode, but does not lead to any peak reduction at the
first one. Even for |kl | increases up to 250, with los-
ing the performance at mode 2, the sharp peak at mode
1 remains unchanged, the BNES become very badly
designed with both peaks the same hight as the ones
without an absorber.

The key conclusion could be drawn from Fig. 12
Fig. 13 is that the nonlinear stiffness kn dominates the
negative stiffness kl in the resonant dynamics in the
following two aspects: first, if the nonlinear stiffness
is appropriately designed near one of the resonance
modes, the effect of varying kl is then similar to the
nonlinear stiffness. Second, when the nonlinear stiff-
ness is inappropriately chosen that acts ineffective at
one of the resonant modes, then changing the nega-
tive stiffness can not improve the performance of the
BNES. Hence, to design the BNES, the nonlinear stiff-
ness should be carefully arranged, otherwise, the tuning
of other parameters would be meaningless.

To support this statement, the effect of the damping
coefficient is then investigated under two different sit-
uations. The first situation with kn = 50 and for SMR
targeting mode 1 is shown in Fig. 14a. On increasing
ξ , the response regime near the first natural frequency
changes from SMR to periodic, and generally a weak
damping is enough once the stiffness is well designed,
increasing properly the damping ξ = 0.04 can reduce

the dynamical instability and eliminate the additional
nonlinear resonance peak at around ω = 30 to bring
considerable improvement on the overall performance.
For ξ > 0.04, the SMR at the first mode reduces and
eventually degenerates to periodic response with peak
value increases continuously, leads to a deterioration
of the performance. At mode 2, the bifurcations van-
ish at a very low damping level and the response is
periodic intra-well regime at most of the damping val-
ues, the performance improves at first for ξ < 1 and
decreases at ξ > 1. In the case of kn = 50, one can
find that the damping ratio has significant effects on
both modes, for whatever SMR or intra-well response.
At mode 1, a smaller ξ is recommended for the BNES
to take advantage of its strong nonlinearity to achieve
SMR in this frequency range for suppression, while for
mode 2with intra-well dynamics, a linear characteristic
is shown and requires a larger ξ to ensure the reduc-
tion performance. As a balanced reduction for mode
1 and 2, ξ = 0.2 could be observed with the peak of
mode 1 and 2 at a similar hight. A second situation for
kn = 4000, tuning to the second mode is depicted in
Fig. 14b, varying the damping now has quite a differ-
ent effect. Although the damping effect is remarkable
for the second mode, this is not the case near the first
one: whatever the damping varies, the sharp resonance
peaks always exist and the BNES remains ineffective.

The next parameter considered in this section is xc,
the location of the BNES on the beam. Fig. 15a and
b show the dependence of the response curves on dif-
ferent xc, for kn tuned targeting respectively mode 2
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Fig. 13 Frequency
responses of uc for damping
kl varies, a: with nonlinear
stiffness kn = 50, the BNES
pre-tuned to have SMR near
the first mode, b: with
kn = 4000, with SMR
pre-tuned tuned to the
second mode. Other
parameters are selected as
ξ = 0.1,ε = 0.1, σ = 0.1,
xc = 0.7, xF = 0.3, F = 5

and mode 1. The result confirms again the rule that,
when the nonlinear stiffness kn is pre-tuned to mode
2, the subsequent influence of xc is observable only
around mode 2, while for kn tuned to the first mode,
xc affects significantly the performance at both mode
1 and mode 2. A clear grasp related to the underlying
mode shape functions can be revealed. More precisely,
for the peak reduction of mode 2, an optimal location
xc = 0.75 together with a worst location xc = 0.5 can
be respectively addressed,with clear correspondence to
the local maximum (xc = 0.75) and node (xc = 0.5) of
the shape function of mode 2. Along with that for mode
1, an optimal location at xc = 0.5 is also observed. This
is to say that, the tuning of the location xc is to put the
BNES in the local maximum of the mode functions,

whose combined effect between mode 1 and mode 2
resulting in the value xc = 0.7 for a balanced overall
performance. Always keep in mind that the nonlinear
stiffness should be appropriately chosen at first, other-
wise therewould be no effects by changing the location.

The effect of the mass ratio ε is shown in Fig. 15, it
is also clear that when the SMR is targeted near mode
1, effective peak reduction could be observable around
bothmodes by selecting an appropriate ε. There exists a
critical value of ε = 0.1, aroundwhich the SMR is acti-
vated. Beyond this critical value, increasing ε causes a
slight performance decrease, hence ε = 0.1 is recom-
mended. With kn = 4000 and the BNES pre-tuned to
mode 2, the variation of ε only has effects near mode 2
and now a smaller critical value ε = 0.02 is observed,
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Fig. 14 Frequency
responses of uc for damping
ξ varies, a: with nonlinear
stiffness kn = 50 and
negative stiffness kl = −5,
the BNES pre-tuned to have
SMR near the first mode, b:
with kn = 4000 and
kl = −20, SMR pre-tuned
to the second mode. Other
parameters are selected as
ε = 0.1, σ = 0.1, xc = 0.7,
xF = 0.3, F = 5

while the performance at mode 1 remains ineffective,
there is no evident peak reduction as compared to the
case without an absorber.

4.4 Appropriate design procedure of BNES

As the parameters affecting the steady-state response
of the beam have been investigated, the appropriate
design of the BNES could now be possible. We are
aiming at proposing some simple criteria in order to
take advantage of its strong nonlinearity and bi-stability
to flat the response curves and reduce the resonance
peaks over an interested frequency range that cover
multi-mode vibrations.As such, the effectiveness of the
BNES is represented by the gains on peak reductions

at each beam mode, as compared to the case without
an absorber.

There are five parameters to be designed in the
BNES: the nonlinear stiffness kn , the negative linear
stiffness kl , the damping ratio ξ , the location xc, and
the mass ratio ε. Among these, the effect of xc and ε

are obvious and direct. The selection of xc relies on the
insight of the mode shape functions of the considered
modes, which, as illustrated in Fig. 15, results in the
arrangement of xc = 0.7 as a balance between mode 1
andmode 2.And for ε, one only needs to reach a critical
threshold for activating the SMR. Following an idea of
suppressing the vibration using a mass as small as pos-
sible, ε = 0.1 is selected as a result of Fig. 16. Having
these at hand, it is therefore natural to fix xc = 0.7 and
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Fig. 15 Effect of the
position xc to uc, amplitude
of the beam at checking
point x = 0.7, a: with
nonlinear stiffness kn = 50
and negative stiffness
kl = −5, the BNES
pre-tuned to have SMR near
the first mode, b: with
kn = 4000 and kl = −20,
SMR pre-tuned to the
second mode. Other
parameters are selected as
ε = 0.1, σ = 0.1, ξ = 0.2,
xF = 0.3, F = 5

ε = 0.1 during the tuning procedures, for the remain-
ing parameters kn , kl and ξ , the following rules could
be summarized:

– The nonlinear stiffness kn should be highlighted at
first as it is crucial for the nonlinearity and dom-
inates the other parameters. The trick here is to
adjust kn near the critical working point as shown in
Fig. 12 to maximize the effect of SMR at the lowest
natural frequency to flat the resonance curve. This
rule is important from the following: first, if kn is
too small as compared than this critical value, then
the SMR is not exhibited and the resonance peak
is not flattened enough; second, if kn is above this

critical value, a set of bifurcations will appear in the
resonant frequency and leads to undesired periodic
responses with peaks as high as the one without an
absorber; third, if the kn is not tuned targeting the
lowest natural frequency but the higher modes or
other frequencies, then, there exists either nonlinear
resonance peaks at some frequency region (see the
ellipse in Fig. 12) or undesired periodic responses
at the lowest mode, in either case, the performance
deteriorates.

– Adjusting the negative stiffness kl provides a set
of trade-offs (in Eq. (19)) with minimal effects
on the performance at the critical working point.
This trade-off effect provides uswith further adjust-
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Fig. 16 Effect of the mass
ratio ε to uc, amplitude of
the beam at checking point
x = 0.7, a: with nonlinear
stiffness kn = 50 and
negative stiffness kl = −5,
the BNES pre-tuned to have
SMR near the first mode, b:
with kn = 4000 and
kl = −20, SMR pre-tuned
to the second mode. Other
parameters are selected as
xc = 0.7, σ = 0.1, ξ = 0.2,
xF = 0.3, F = 5

ments on the low-amplitude intra-well response
regimes for improving the robustness of the BNES.
Obviously, this trade-off adjustment is special only
for a BNES, but not achievable in a classical cubic
NES where kl = 0 is restricted.

– Third, tuning the damping ξ to increase the band-
width and improve the performance at othermodes,
the proper values could be quite straightforward
from the frequency response curve and balancing
the resonance peaks.

Once the above procedures are down, one could
be able to obtain several candidates of appropriately
designed BNESs with trade-offs between kl and kn , for

effective reduction over the frequency rangewithmulti-
mode beam vibrations, under an arbitrarily selected
forcing amplitude F , see in Fig. 17a. As such, a further
adjustment based on the trade-offs is to turn the atten-
tion to the performance at lower forcing amplitude level
to play on the intra-well dynamics. As an example, we
consider the BNES we optimized at F = 5, and now
check the performance at a much lower forcing ampli-
tude F = 0.2 and to see how the parameters affect the
performance, as in this case the vibration is too small
to activate the nonlinear behavior, the effect of kn is
thus neglected and the system could be approximated
to be linear with dynamics depends only on the linear
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Fig. 17 Special design procedures of BNES, a: trade-offs of kn
and kl at four different forcing amplitudes for ξ = 0.2, b: tuning
of intra-well dynamics at a low forcing amplitude F = 0.2, with
BNES parameters assigned as kl = −3.8, kn = 53, and for three
different values of damping ξ = 0.05, ξ = 0.2, and ξ = 1

stiffness kl and the linear damping ξ . Fig. 17b shows
the frequency response of the BNES for different val-
ues of ξ at this excitation level and it is apparent that a
linear characteristic is observed: there exist two fixed
points P and Q on the response curves that are inde-
pendent of the damping. The tuning procedure could
mimic the famous tuning of Den-Hartog on TMD, by
adjusting at first the stiffness kl to make P and Q in the
same hight and then modifying the damping to make
the frequency curve cross the P and Q horizontally,
one obtains kl = −3.8 and ξ = 0.2.

With these design criteria step by step, we finally
have the the parameters for an appropriately tuned
BNES with kn = 53, kl = −3.8, xc = 0.7, ξ = 0.2,
and ε = 0.1, as well as a tuned classical cubic NES as
kn = 35, xc = 0.7, ξ = 0.2, and ε = 0.1.ThisNESand
BNESare bothwell designed for the balanced vibration
suppression over the frequency range ω ∈ [0, 50], tar-
geting the forcing condition xF = 0.3, F = 5. In order
to compare their performance, the frequency response
curves of the designed BNES and the classical NES are
then plotted at three different forcing amplitude levels
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Fig. 18 Frequency response of the beam at three different forc-
ing amplitudes, compared among black: the designed BNES, and
red: the designed classical NES, andmagenta: no absorber. a: the
designedworking amplitude F = 5,b: a low amplitude F = 0.2,
c: a high amplitude F = 100

Fig. 19 Athin rectangle platewith an attachedbistable nonlinear
energy sink

in Fig. 18. It can be seen that at the designed forcing
amplitude F = 5, the BNES and the NES are almost
identical and are both effective with clear reductions of
resonance peaks at both modes. However, at the exci-
tation level either higher or lower than the designed
forcing amplitude, the BNES outperforms the classical
NES, especially in the low-amplitude case, by taking
advantage of the intra-well response, the BNES shows
a much lower peak at mode 1 than the classical cubic
NES.
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5 Application in a rectangular plate

As mentioned earlier, one of the specific advantages of
the framework developed in Sect. 2 is that it not only
valid for the afore discussed beam system, but can also
be applied to plate structures by simply changing the
corresponding matrices Sc, SF , and �. In this section,
the methods and discussions are parallelized to the 2D
case of a thin rectangular plate coupled to a BNES, so
that to gain the insights necessary for the design. As
depicted in Fig. 19, the system investigated now con-
sists of a linear thin rectangular plate with an attached
BNES at (xc, yc), and subjected to a harmonic excita-
tion F(t) = F cosωt induced at (xF , yF ).Without loss
of generality, the governing equations can be written in
the dimensionless form as

utt + 2σut + Δ2u + f δ (x − xc, y − yc)

= F (x, y, t) (20a)

εv̈ = f (20b)

f = klw + knw3 + 2ξẇ (20c)

w = u (xc, yc, t) − v (20d)

where Δ is the 2D Laplace operator, and the other def-
initions are just the same as in the beam ones.

Assuming four-edge simply supported boundary
condition, the eigenmodes and the eigenfrequencies of
the plate can then be expressed as follows,

φi j (x, y) = 2√
η
sin (iπx) sin

(
jπy

η

)
,

Ωi j = π2
(

i2 + j2

η2

)
, i, j = 1, 2...

(21)

where η accounts for the aspect ratio of the plate, Ωi j

is the circular frequency of the mode, and φi j is the
eigenfunction. Using these expressions to derive the

Fig. 20 Response of a
four-edge simply supported
rectangular plate coupled to
a BNES, where uc: plate
response at checking point
(x, y) = (0.7, 0.5), and w:
relative motion between the
BNES and the plate. Other
parameters are selected as
η = 0.8, ε = 0.1, kn = 2e5,
kl = −10, ξ = σ = 0.1,
(xc, yc) = (0.7, 0.5),
(xF , yF ) = (0.3, 0.2),
F = 1. Nm = 10
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Fig. 21 Amplitude response for plate showing that control-
ling both the nonlinear and negative stiffness, the large ampli-
tude response do not change, but the low amplitude response
improves. black: kn = 1e4, brown: kn = 1.2e4, kl = −10,
red: kn = 1.4e4, kl = −20, blue: kn = 2e4, kl = −50,
magenta: kn = 3e4, kl = −100. Other parameters are selected
as kn = 2e5, kl = −10, ξ = σ = 0.1, xc = (0.7, 0.5),
xF = (0.3, 0.2), and ω = 25 at the first resonance frequency

corresponding Sc, SF , and � that serves the matrix
equation Eq. (7), the frequency and amplitude response
curves can then be calculated similarly to the beam
case.

The frequency response curves for different values
of kn are shown in Fig. 20. Contrary to the common
expectations in the previous beam case, the system
reveals that the strong nonlinear effects can now be
able to be activated simultaneously near all the linear
resonant modes for effective reductions on their peak
responses, as verified by the fact that as kn increases up
to a critical value of kn > 1e4, the response curves bend

to the right and flattened at all the resonance modes.
Thus, a broadband suppression is realized.

The main effect of the negative stiffness could also
be found to be significant on the amplitude responses
illustrated in Fig. 21. Clearly enough, by balancing the
negative stiffness kl and the cubic nonlinear stiffness
kn , the BNES is able to improve its low amplitude per-
formance without affecting its high amplitude effec-
tiveness, hence provides a more robust solution with
respect to the forcing amplitude than the classical cubic
NES.

6 Conclusion

The forceddynamics of a bistable nonlinear energy sink
(BNES) attached to the beam and plate structures under
harmonic excitation, is discussed. By studying the fre-
quency and amplitude responses together with their
respective trends, the criteria for the parametric design
of a BNES in such continuous systems for broadband
vibration suppression are given.

For vibrations around a certain mode, the theoreti-
cal results evidenced that, the negative stiffness kl and
nonlinear stiffness kn have a quite similar effect on
the frequency and amplitude responses, as well as on
the underlying slow invariant manifold. Realizing this
and by taking advantage of the bistability, a balanced
control between kl and kn could be found to improve
the low-amplitude performance of the BNES without
affecting too much the high-amplitude dynamics.

Extending the analysis to the multi-mode beam
dynamics, we found that whether shown a bistable con-
figuration or not, the nonlinear stiffness appears to be
the most important parameter that characterizes the
behavior of the system. As such, a simple but effec-
tive tuning procedure of highlighting at first to tune the
nonlinear stiffness kn targeting the lowest mode to acti-
vate SMR around it, is proposed. Then the following
steps reside in adjusting the damping to improve the
performance for higher modes and balancing kl and kn

to improve the low-amplitude performance. Finally, by
varying the location of the BNES, it is found that the
BNES achieves impressive peak reduction at a given
mode when it is located at the local maximum of the
corresponding shape function, hence the recommended
location for multi-mode vibrations results from a com-
bined effect of themode functions.Aproperly designed
BNES following such procedure is then compared to

123



Design criteria of bistable nonlinear energy sink in steady-state dynamics of beams and plates 1495

the classical cubicNES at three different forcing ampli-
tudes, and it is found that the BNES outperforms the
classical NES at both below and above the designed
forcing amplitude, showing a better robustness.

Moreover, the key results anddesign criteria obtained
in the beam case are applied to the 2D case of a thin
rectangular plate. And it is found that the proposed
guidelines can also be well applied to multi-mode plate
vibrations to achieve its broadband suppression.

All our results have confirmed the effectiveness of
a BNES to achieve broadband vibration suppression in
continuous structures such as beams and plates.
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Appendix A: Matrices in Eq. (11)

The matrices in Eq. (11) are calculated as

N = [
NT
1 , NT

2 , · · · , NT
Nm

]T
,

Nk = [a0, ak1, ak2 · · · , akn, bk1, bk2, · · · bkn] ,

Kmc = ω2
0M + ω0C + K + 3Kn0,

R = F −
(
ω2
0M + ω0Cn0 + K + Kn0

)
N,

Rmc = − (2ω0M + C)N,

M =
∫ 2π

0
�T M̄Λ̈dτ,K =

∫ 2π

0
�T K̄Λdτ,

Kn0 =
∫ 2π

0
�T K̄n0�dτ,C =

∫ 2π

0
�T C̄Λ̇dτ,

R f =
∫ 2π

0
�T cos τdτ,F =

∫ 2π

0
�T F̄0 cos τdτ.

� = diag [D,D, · · ·D] ,
D = (1, cos τ, cos 2τ, · · · , sin τ, sin2τ, · · ·)

(A.1)

Appendix B: Stability analysis using Floquet theory

The stabilities of the periodic solutions can be analyzed
by means of the Floquet theory. LetX = X0 +ΔX and
consider the perturbation motion of Eq. (7) near the
fixed point X0 yields

ω2M̄ΔẌ + ωC̄ΔẊ + (
K̄ + 3K̄n0

)
ΔX = 0, (B.2)

or equivalently,

Ẏ = Q (τ )Y, (B.3)

with

Q (τ ) =
[

0 In

− M̄
−1

ω2

(
K̄ + 3K̄n0

) − M̄
−1

ω
C̄

]
,

Y =
[

ΔX
ΔẊ

]
.

Since the solution X0 is periodic with period T = 2π ,
the associated matrix Q (τ ) must also have the same
property, which in turn impliesQ (τ + T ) = Q (τ ) and
Y (τ + T ) solves Eq. (B.3) as well. The relationship
between Y (τ + T ) and Y (τ ) can be expressed as

Y (τ + T ) = PY (τ ) , (B.4)

where P is usually termed as the transition matrix in
the literature. Many researches have been devoted to
evaluate the transition matrix P. In this paper a precise
Hsu’s method is applied following [49,57], in which
the period T is divided equally into n intervals with
time step h, such that for the kth interval [τk, τk+1],
Q (τ ) = Qk is assumed to be constant, then the local
transition matrix Pk from τk to τk+1 writes,

Pk = ehQk = I +
n∑

j=1

(hQk)
j

j ! , (B.5)

thus the transition matrix P can be approximated by
multiplying all the local matrices Pk together as

P = n
Π

i=1
Pk . (B.6)

In the framework of the Floquet theory, the stability of
the periodic response is then determined by checking
the eigenvalues of P. If the spectral radius of P is less
than 1, then the periodic solution is asymptotic stable,
otherwise, it is unstable.
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