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Abstract This paper proposes a new approach to
investigate the nonlinear dynamics in a (3 + 1)-
dimensional nonlinear evolution equation via Wron-
skian condition with a free function. Firstly, a Wron-
skian condition involving a free function is introduced
for the equation. Secondly, by solving the Wronskian
condition, some exact solutions are presented. Thirdly,
the dynamical behaviors are analyzed by choosing spe-
cific functions in the Wronskian condition. In addi-
tion, some exact solutions are graphically illustrated
by using Mathematica symbolic computations. The
dynamical behaviors include stationary y-breather,
line-soliton resonance, line-soliton-like phenomenon,
parabola–soliton interaction, cubic–parabola–soliton
resonance, kink behavior, and singular waves. These
results not only illustrate the merits of the proposed
method in deriving new exact solutions but also novel
dynamical behaviors in the (3 + 1)-dimensional non-
linear evolution equation.

Keywords (3 + 1)-Dimensional nonlinear evolution
equation ·Wronskian condition ·Dynamical behaviors

1 Introduction

Recently, the (3+1)-dimensional partial differential
equations have been widely studied in the literature [1–
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4] since they are usually more accurate in describing
nonlinear phenomena in the real space-time. Among
these models, the (3 + 1)-dimensional nonlinear evolu-
tion equation

3wxz − (2wt + wxxx − 2wwx )y + 2(wx∂
−1
x wy)x = 0 (1.1)

is a celebrated one, which was first derived in Ref. [5]
to study the algebro-geometric solutions. Here, w is a
real function of x, y, z, t . The symbol ∂−1

x is defined
as (∂−1

x f )(x) = ∫ x
−∞ f (t)dt under the decaying prop-

erty at infinity. Up to date, Eq. (1.1) has been stud-
ied by many researchers from different aspects. For
example, in Ref. [5], algebro-geometric solutions were
explicitly obtained for it. In Ref. [6], N -soliton solu-
tions and the Wronskian forms were constructed by
using the Hirota method and the Wronskian technique.
More results on soliton solutions, rogue waves, linear
superposition principle, lump and higher-order lump
solutions, interaction solutions, rational solutions, and
others for Eq. (1.1) can be found in Refs. [7–14].

It is known that the Wronskian technique [15–22]
is a fruitful method to derive multi-soliton solutions
for soliton equations. In this method, the key process
is a proper choice of the Wronskian condition, i.e., a
system of linear partial differential equations that the
generating functions satisfy. In the literature, Wron-
skian conditions have been given for many impor-
tant soliton equations, such as the Korteweg-de Vries
(KdV) equation [17], the Boussinesq equation [18], the
(2+1)-dimensional extended shallow water wave equa-
tion [19], the (2+1)-dimensional breaking soliton equa-
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tion [20], the generalized KP and BKP equations [21],
and the AKNS equations [22], and so on. Additionally,
there are some developments in the field of soliton solu-
tions as well as its applications recently [23–26]. In this
paper, our principle aim is to propose a new approach
to investigate the nonlinear dynamics of Eq. (1.1) via
Wronskian condition with a free function.

The present paper is organized as follows. In Sect. 2,
we introduce a system of three linear partial differen-
tial equations with a free function q(y, z), and then, we
verify that the system is a Wronskian condition for Eq.
(1.1). In Sect. 3, with the aid of the bilinear transforma-
tion, some new exact solutions will be derived. More-
over, some novel dynamical behaviors will be analyzed
and illustrated. The concluding remarks are given in
Sect. 4.

2 Wronskian condition with a free function

We proceed by introducing the transformation [6]

w = −3(ln f )xx , (2.1)

from which Eq. (1.1) can be cast into the bilinear form

(D3
x Dy + 2DyDt − 3Dx Dz) f · f = 0, (2.2)

where D is the known Hirota operator defined as [16]

Dm
x Dn

y D
l
z D

k
t P(x, y, z, t) · Q(x, y, z, t)

≡
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂y
− ∂

∂y′

)n (
∂

∂z
− ∂

∂z′

)l (
∂

∂t
− ∂

∂t ′

)k

P(x, y, z, t)Q(x ′, y′, z′, t ′)|x ′=x,y′=y,z′=z,t ′=t .

In what follows, we shall propose a Wronskian condi-
tion involving a free function for the bilinear Eq. (2.2).
For clarity, we give a proposition as follows.

Proposition 1 Suppose that the sufficiently smooth
functions φi = φi (x, y, z, t) (1 ≤ i ≤ N ) satisfy the
following linear partial differential equations

φi,y = q(y, z)φi,xx ,

φi,z = q(y, z)φi,xxxx ,

φi,t = φi,xxx , (2.3)

where q(y, z) is a free function of y, z. Then, the Wron-
skian determinant

fN =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ
(0)
1 φ

(1)
1 · · · φ

(N−1)
1

φ
(0)
2 φ

(1)
2 · · · φ

(N−1)
2

...
...

. . .
...

φ
(0)
N φ

(1)
N · · · φ

(N−1)
N

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

with φ
( j)
i

= ∂ jφi

∂x j
(1 ≤ i ≤ N , 0 ≤ j ≤ N − 1), (2.4)

under the bilinear transformation (2.1), gives a Wron-
skian solution for Eq. (1.1)

w = −3(ln fN )xx . (2.5)

Proof It suffices to verify that the Wronskian determi-
nant fN in (2.4), under the linear conditions in (2.3),
satisfies Eq. (2.2), i.e.,

( fN ,xxx fy − 3 fN ,xy fN ,xx + 2 fN ,y fN ,t )

− ( fN ,xxxy + 2 fN ,yt − 3 fN ,xz) fN

+ 3( fN ,xxy − fN ,z) fN ,x = 0. (2.6)

We use the method in Ref. [16] where the Wron-
skian determinant fN is rewritten in a compact nota-
tion f = |̂N − 1|. In fact, using the linear conditions in
(2.3), the corresponding derivatives of the Wronskian
determinant fN can be computed, respectively, which
are

fN ,x = | ̂N − 2, N |, (2.7)

fN ,y = q(y, z)(| ̂N − 2, N + 1| − | ̂N − 3, N − 1, N |), (2.8)

fN ,z = q(y, z)(−| ̂N − 5, N − 3, N − 2, N − 1, N |
+ | ̂N − 4, N − 2, N − 1, N + 1|),

fN ,t = | ̂N − 4, N − 2, N − 1, N |
− | ̂N − 3, N − 1, N + 1|
+ | ̂N − 2, N + 2|
− | ̂N − 3, N − 1, N + 2|
+ | ̂N − 2, N + 3|, (2.9)

fN ,xx = | ̂N − 3, N − 1, N | + | ̂N − 2, N + 1|, (2.10)

fN ,xxx = | ̂N − 4, N − 2, N − 1, N |
+ 2| ̂N − 3, N − 1, N + 1|
+ | ̂N − 2, N + 2|, (2.11)

fN ,xy = q(y, z)(| ̂N − 2, N + 2|
− | ̂N − 4, N − 2, N − 1, N |), (2.12)

fN ,xxy = q(y, z)(−| ̂N − 5, N − 3, N − 2, N − 1, N |
− | ̂N − 4, N − 2, N − 1, N + 1|
+ | ̂N − 3, N − 1, N + 2|
+ | ̂N − 2, N + 3|), (2.13)

fN ,xxxy = q(y, z)(−| ̂N − 6, N − 4, N − 3, N − 2, N − 1, N |
− | ̂N − 4, N − 2, N , N + 1|
− 2| ̂N − 5, N − 3, N − 2, N − 1, N + 1|
+ | ̂N − 3, N , N + 2|
+ | ̂N − 2, N + 4| + 2| ̂N − 3, N − 1, N + 3|), (2.14)

fN ,yt = q(y, z)(| ̂N − 5, N − 3, N − 2, N − 1, N + 1|
− | ̂N − 6, N − 4, N − 3, N − 2, N − 1, N |
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− | ̂N − 4, N − 2, N , N + 1|
− | ̂N − 3, N − 1, N + 3|
+ | ̂N − 3, N , N + 2| + | ̂N − 2, N + 4|), (2.15)

fN ,xz = q(y, z)(−| ̂N − 6, N − 4, N − 3, N − 2, N − 1, N |
+ | ̂N − 4, N − 2, N , N + 1|
+ | ̂N − 2, N + 4| − | ̂N − 3, N , N + 2|), (2.16)

With these derivatives, we arrive at

fN ,xxx fN ,y − 3 fN ,xy fN ,xx + 2 fN ,y fN ,t

= 6q(y, z)(|̂N − 4, N − 2, N − 1, N |
× |̂N − 2, N + 1| − |̂N − 3, N − 1, N |
× |̂N − 2, N + 2|), (2.17)

fN ,xxxy + 2 fN ,yt − 3 fN ,xz

= −6q(y, z)(|̂N − 4, N − 2, N , N + 1|
− |̂N − 3, N , N + 2|), (2.18)

fN ,xxy − fN ,z

= −2q(y, z)(|̂N − 4, N − 2, N − 1, N + 1|
− |̂N − 3, N − 1, N + 2|). (2.19)

Consequently, using the Plücker relation [16] for deter-
minants, the left-hand side of (2.6) is nothing but zero.
This completes the proof of the proposition. ��

Remark 1 Since the system (2.3) involves a free func-
tion q(y, z), the calculations of the derivatives require
the consideration of the role of the functionq(y, z). The
free function q(y, z) gives us more freedom to derive
novel exact solutions for Eq. (1.1). In fact, different
functions q(y, z) will affect the generating functions
φi and thus affect the features of the Wronskian deter-
minant fN .

3 Nonlinear dynamics

Due to the arbitrariness of the function q(y, z) in the
Wronskian condition (2.3), abundant generating func-
tionsφi formulating theWronskian determinant fN can
be obtained in principle. Therefore, novel dynamical
behaviors might be discovered by solving the Wron-
skian condition (2.3) with a specific function q(y, z).
To achieve this goal, we shall consider the Wronskian
condition (2.3) with

q(y, z) = mψ ′(my + mk2z)

k2ψ(my + mk2z)
.

Here, m and k �= 0 are two real constants, ψ = ψ(ξ)

is a smooth function of ξ , and ψ ′(my + mk2z) =
dψ
dξ |ξ=my+mk2z .

With q(y, z) above, it is not difficult to obtain a special
solution for the Wronskian condition (2.3) with N = 1

φ1 = a + b cosh(kx + k3t)ψ(my + mk2z), (3.1)

where a, b are real constants. Therefore, in view of
(3.1), the Wronskian determinant in (2.4) can be deter-
mined. Then, using (2.5), we obtain a new Wronskian
solution for Eq. (1.1)

w = −3k2b

×a cosh(kx + k3t)ψ(my + mk2z) + bψ2(my + mk2z)
[
a + b cosh(kx + k3t)ψ(my + mk2z)

]2 . (3.2)

In what follows, we shall illustrate the novel dynam-
ical behaviors described by the new Wronskian solu-
tion (3.2). For clarity, we focus on the situation that
k > 0, m > 0, a = 1 and b = 2 in the following five
cases.

Case 1 ψ(ξ) = esinξ .
In this case, in the (x, y)-plane by setting t = z = 0,

Eq. (3.2) can be rewritten as

w = −6k2
2e2sin(my) + cosh(kx)esin(my)

[
1 + 2 cosh(kx)esin(my)

]2 . (3.3)

From the expression (3.3),we know that it represents
a breather wave which is localized along the direction
of the x-axis and periodic along the direction of the y-
axis with a period 2π

m . This solution is shown in Fig. 1.
Obviously, the center of the breather is parallel to the
y-axis. In other words, it is a stationary y-breather.

Moreover, setting y = z = 0 in the (x, t)-plane, we
have from Eq. (3.2) that

w = −6k2
cosh(kx + k3t) + 2

[1 + 2 cosh(kx + k3t)]2 . (3.4)

In addition, in the (y, z)-plane by setting x = t = 0,
Eq. (3.2) is turned into

w = − 3k2√
2
e

sin(my + mk2z)

2 sech

[
sin(my + mk2z)

2
+ ln

√
2

]

.

(3.5)
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1798 J. Wu

Fig. 1 The stationary
y-breather via (3.3) in the
(x, y)-plane, where
k = m = 1. a 3D plot, b
density plot

Fig. 2 The bell-soliton
behavior via (3.4) in the
(x, t)-plane, where k = 1. a
3D plot, b density plot

Fig. 3 The periodic
behavior via (3.5) in the
(y, z)-plane, where
k = m = 1. a 3D plot, b
density plot

Obviously, from the expression (3.4), we know that
(3.2) gives a bell-soliton wave with an amplitude 2k2

in the (x, t)-plane, while from the form of (3.5), we
know that (3.2) gives a periodic wave with a period 2π

m
in the (y, z)-plane. These characteristics are demon-
strated in Figs. 2 and 3. Moreover, we can see clearly
from (3.2) that the solution dynamics in the (x, z)-
plane, the (t, y)-plane and the (t, z)-plane are similar
to that in the (x, y)-plane.

Case 2 ψ(ξ) = eξ .

In this case, we use the coordinate frame (kx +
my, y) to perform the asymptotic analysis. On the one
hand, keeping kx +my = X as constants, we find that
the asymptotic form of (3.2) is

w →
{

− 3k2
4 sech2 X

2 , y → −∞,

0, y → +∞.
(3.6)

On the other hand, using the coordinate frame (kx −
my, y) and keeping kx − my = X as constants, the
asymptotic form of (3.2) is
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Fig. 4 The line-soliton
resonance via (3.2) with
ψ(ξ) = eξ in the
(x, y)-plane, where
k = m = 1, t = z = 0. a
3D plot, b density plot

Fig. 5 The kink behavior
via (3.9), where k = m = 1.
a 3D plot, b density plot

w →
{

− 3k2
4 sech2 X

2 , y → −∞,

0, y → +∞.
(3.7)

Moreover, using the coordinate frame (kx, y) andkeep-
ing kx = X as constants, the asymptotic form of (3.2)
will be

w →
{
0, y → −∞,

−3k2sech2X, y → +∞.
(3.8)

The dynamical behaviors in this case are illustrated
in Fig. 4 where a line-soliton resonance occurs dur-
ing the interaction. There are two line-solitons before
the collision. Far after the collision, a stationary line-
solitonwhose amplitude is four times of that before col-
lision appears. In fact, this phenomenon can be clearly
seen from (3.6) to (3.8).

Furthermore, in view of the form of (3.2), the non-
linear dynamics in the (x, t)-plane are similar to that
shown in case 1. Additionally, in this case where
ψ(ξ) = eξ , the Wronskian solution (3.2) in the (y, z)-
plane when x = t = 0 will be

w = −3k2√
2
e
my+mk2z

2 sech

(
my + mk2z

2
+ ln

√
2

)

,(3.9)

which exhibits a kink behavior shown in Fig. 5.

Case 3 ψ(ξ) = eξ2 .
In this case, we introduce the coordinate frame

(kx, y) and keep kx = X as constants. Then, the
asymptotic form of (3.2) is found to be

w →
{−3k2sech2X, y → −∞,

−3k2sech2X, y → +∞.
(3.10)

This means that whether y tends to the negative
or the positive infinity, the Wronskian solution (3.2)
approaches to the same stationary sech2-type of soli-
tons. To see it more clearly, we give the correspond-
ing three-dimensional plots in Fig. 6. To our knowl-
edge, this type of line-soliton-like phenomenon has
not been reported before for Eq. (1.1). Additionally,
if restricted in the (y, z)-plane, the Wronskian solu-
tion (3.2) will exhibit a downward soliton-like behav-
ior, which is shown in Fig. 7.

Case 4 ψ(ξ) = e−ξ2 .
In this case, on the one hand, in the coordinate frame

(kx+my2, y) and keeping kx+my2 = X as constants,
the asymptotic form of (3.2) is

w →
{

− 3k2
4 sech2 X

2 , y → −∞,

− 3k2
4 sech2 X

2 , y → +∞.
(3.11)
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Fig. 6 The line-soliton-like
wave via (3.2) with
ψ(ξ) = eξ2 in the
(x, y)-plane, where
k = m = 1, t = z = 0. a
3D plot, b density plot

Fig. 7 The downward
soliton-like behavior via
(3.2) with ψ(ξ) = eξ2 in the
(y, z)-plane, where
k = m = 1, x = t = 0. a
3D plot, b density plot

Fig. 8 The
parabola–soliton interaction
with four arms via (3.2)
with ψ(ξ) = e−ξ2 in the
(x, y)-plane, where
k = m = 1, t = z = 0. a
3D plot, b density plot

On the other hand, in the coordinate frame (kx −
my2, y) and keeping kx − my2 = X as constants, the
asymptotic form of (3.2) is

w →
{

− 3k2
4 sech2 X

2 , y → −∞,

− 3k2
4 sech2 X

2 , y → +∞.
(3.12)

We give these characteristics in Fig. 8, which shows
that a parabola–soliton interaction with four arms
occurs. Different from the usual two-soliton interac-
tion with line behaviors, the four arms are all of the
parabola types. Moreover, in this case, if restricted

in the (y, z)-plane, the Wronskian solution (3.2) will
exhibit a upward soliton-like behavior, which is shown
in Fig. 9.

Case 5. ψ(ξ) = eξ3 .
In this case, on the one hand, under themoving frame

(kx+my3, y) and keeping kx+my3 = X as constants,
the asymptotic form of (3.2) is

w →
{

− 3k2
4 sech2 X

2 , y → −∞,

0, y → +∞.
(3.13)
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Fig. 9 The upward
soliton-like behavior via
(3.2) with ψ(ξ) = e−ξ2 in
the (y, z)-plane, where
k = m = 1, t = z = 0. a
3D plot, b density plot

Fig. 10 The
cubic–parabola–soliton
resonance via (3.2) with
ψ(ξ) = eξ3 in the
(x, y)-plane, where
k = m = 1, t = z = 0. a
3D plot, b density plot

On the other hand, in the moving frame (kx −my3, y)
and keeping kx−my3 = X as constants, the asymptotic
form of (3.2) is

w →
{

− 3k2
4 sech2 X

2 , y → −∞,

0, y → +∞.
(3.14)

Moreover, using themoving frame (kx, y) and keeping
kx = X as constants, then the asymptotic form of (3.2)
is

w →
{
0, y → −∞,

−3k2sech2X, y → +∞.
(3.15)

The plot is given in Fig. 10. This figure demon-
strates that a cubic–parabola–soliton resonance occurs
during the interaction. Before the collision, there are
two cubic–parabola waves. After the collision, the two
cubic–parabola waves disappear, while a line-soliton
whose amplitude is four times of that before collision
appears. On the other hand, if restricted in the (y, z)-
plane, the Wronskian solution (3.2) will exhibit a two-
kink behavior, which is shown in Fig. 11.

Furthermore, we consider the Wronskian condition
(2.3) with N = 2 by choosing the function q(y, z) =

− 2m2

k2
(y + k2z). In this case, the corresponding gener-

ating functions in the Wronskian determinant in (2.4)
can be chosen as

φ1 = a + b cosh(kx + k3t)e−(my+mk2z)2 ,

φ2 = cx + d, (3.16)

where a, b, c, d, k,m are real constants. Utilizing (2.5)
and (3.16), a new Wronskian solution for Eq. (1.1) is
expressed as

w = −3
[
ln

(
ac + b(c cosh(kx + k3t)

−k(cx + d) sinh(kx + k3t))e−(my+mk2z)2
)]

xx
. (3.17)

To illustrate the dynamical behaviors via this solu-
tion, we give its solution characteristics in Figs. 12
and 13 in the (x, y)-plane by choosing suitable param-
eters. Interestingly, these figures show two singular
waves. At t = 0, the two waves are symmetric with
respect to x = 0. These two waves cannot interact with
each other as shown in Fig. 12. Comparing the plots
at t = ∓5, we observe that the left wave looks as if it
changes to the right wave, while the right wave changes
to the left one.
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1802 J. Wu

Fig. 11 The two-kink
behavior via (3.2) with
ψ(ξ) = eξ3 in the
(y, z)-plane, where
k = m = 1, x = t = 0. a
3D plot, b density plot

Fig. 12 The singular localizedwaves via (3.17) in the (x, y)-plane at different times,where a = 1, b = c = 2, d = 0, k = m = 1, z = 0

Fig. 13 The corresponding density plots of Fig. 12

4 Concluding remarks

In this paper, a newmethod for deriving new exact solu-
tions of Eq. (1.1) is proposed by introducing a Wron-
skian condition with a free function. The main feature
of the Wronskian condition is that it involves a free

function q(y, z). By choosing specific function q(y, z)
and solving the system (2.3), some new Wronskian
solutions are presented for Eq. (1.1). By choosing suit-
able parameters, some novel dynamical behaviors of
Eq. (1.1) are graphically illustrated, including station-
ary y-breather behavior, line-soliton resonance, line-
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A new approach to investigate the nonlinear dynamics 1803

soliton-like phenomenon, parabola–soliton interaction,
cubic–parabola–soliton resonance, kink-like behavior,
and singular waves. These results not only illustrate
the merits of theWronskian condition in deriving exact
solutions but also the novel dynamical behaviors in the
equation. These dynamical behaviors may have appli-
cations for the description of nonlinear phenomena in
the real space-time.

Before ending this paper, we further give two
remarks about the Wronskian condition (2.3) that
involves a free function. One is that Refs. [5–14] also
presented various exact solutions for Eq. (1.1). Com-
pared with these results, the method proposed in this
paper has the merits that it is based on the Wronskian
technique, which makes the construction of exact solu-
tions more convenient. Moreover, the Wronskian con-
dition (2.3) involves a free function. This free function
gives us more freedom to derive novel exact solutions
for Eq. (1.1). To our knowledge, these solutions and
the corresponding nonlinear dynamics have not been
reported before. Another remark we shall make is that
the Wronskian condition (2.3) stems from the particu-
lar structure of Eq. (1.1). It is hoped that the method in
this paper can work for other bilinear equations.
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