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Abstract In this paper, outcomes of the study on the
Bäcklund transformation, Lax pair, and interactions of
nonlinear waves for a generalized (2 + 1)-dimensional
nonlinear wave equation in nonlinear optics, fluid
mechanics, and plasma physics are presented. Via the
Hirota bilinear method, a bilinear Bäcklund transfor-
mation is obtained, based on which a Lax pair is con-
structed. Via the symbolic computation, mixed rogue–
solitary and rogue–periodic wave solutions are derived.
Interactions between the rogue waves and solitary
waves, and interactions between the rogue waves and
periodic waves, are studied. It is found that (1) the one
roguewave appears between the two solitarywaves and
thenmergeswith the two solitarywaves; (2) the interac-
tion between the one roguewave and one periodicwave
is periodic; and (3) the periodic lump waves with the
amplitudes invariant are depicted. Furthermore, effects
of the noise perturbations on the obtained solutionswill
be investigated.
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1 Introduction

Within the past few years, analysis of the nonlinear
evolution equations (NLEEs) has been proven to be a
nice methodology to explore the machine learning for
advancing fluid mechanics [1–3], an organically func-
tionalized surface with major emphasis on microcav-
ity nonlinear optics [4], generalized Konopelchenko–
Dubrovsky–Kaup–Kupershmidt equation for fluid me-
chanics [5], nonlinear Schrödinger (NLS) equation [6],
unsteady flow motion equations for the fluid flow and
heat transfer [7], and Zakharov–Kuznetsov equation
in plasma physics [8]. Recently, the NLEEs suitable
to analyze quartic autocatalysis on the dynamics of
water conveying [9], thermophoresis and Brownian
motion [10] and bioconvection in the MHD nanofluid
flow [11] have been presented.

As the localized waves, rogue waves [12–14], soli-
tons [15,16], lumps [17,18] and breathers [19,20] have
been linked to the NLEEs with such relevant experi-
mental observations as those on the solitary waves on a
coastal-bridge deck [21], rogue waves in a water wave
tank [22] and periodic photonic filters [23].

Correspondingly, researchers have searched the ana-
lytic solutions using the Bäcklund transformation (BT)
for the dispersive long-wave system [24] and modi-
fied Kadomtsev–Petviashvili (KP) system [25], inverse
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scattering method for a coupled Gerdjikov–Ivanov
derivative NLS equation [26], generalized unified
method for a KP equation [27], KP hierarchy reduc-
tion for the nonlinear evolution equation [28] and B-
type KP equation [29], Darboux transformation for
the generalized AB system [30] and Gerdjikov–Ivanov
equation [31], Hirota bilinear method for a quin-
tic time-dependent coefficient derivative NLS equa-
tion [32,33], Bilinear neural network method for a B-
type KP equation [34,35], homotopy analysis method
for the damped Duffing equation [36] and Airy equa-
tion [37]. There have been such numerical meth-
ods to solve the NLEEs as the analytic approximate
method [38], shooting method [39], Runge–Kutta–
Fehlberg method [40], finite difference method [41],
hybrid block method [42,43], etc.

Among the NLEEs, Ref. [44] has proposed a (3 +
1)-dimensional Hirota bilinear equation,

uyt − uxxxy − 3
(
uxuy

)
x − 3uxx + 3uzz = 0, (1)

which admits the similar physical meaning as the
Korteweg–de Vries (KdV) equation1 and describes the
nonlinearwaves in fluidmechanics, plasmaphysics and
weakly dispersive media [46], where u is a real differ-
entiable function of the independent variables x , y, z
and t , and the subscripts denote the partial derivatives.

(2 + 1)-dimensionally, Ref. [47] has studied the
lumps for Eq. (1) under z = y, and Ref. [48] has
extended the one in Ref. [47] to a generalized (2 +
1)-dimensional Hirota bilinear equation,

uyt + c1

[
uxxxy + 3

(
2uxuy + uuxy

)

+ 3uxx

∫ x

−∞
uydx

]
+ c2uyy = 0, (2)

where c1 and c2 represent the real constants and
∫
is

the integral operation.
Reference [49] has further extended Eq. (2) to a gen-

eralized (2 + 1)-dimensional nonlinear wave equation,

uyt + c1

[
uxxxy + 3

(
2uxuy + uuxy

)

1 Under the transformation, t = −T , x = X , y = X , z = X
and −ux = U , Eq. (1) has been reduced to the KdV equation,

UT +UXXX − 6UUX = 0,

for the acoustic waves in an anharmonic crystal, hydromagnetic
waves in a cold plasma or shallow-water waves, whereU (X, Y )

denotes the wave height, X and T are the independent vari-
ables [45,46].

+ 3uxx

∫ x

−∞
uy dx

]
+ c2uyy + c3uxx = 0, (3)

for certain nonlinear phenomena in nonlinear optics,
fluid mechanics and plasma physics, where c3 is a real
constant. Lump, breather and N -soliton solutions as
well as their hybrid ones for Eq. (3) have been con-
structed via the Hirota bilinear method [49], where N
is a positive integer. Lump, lumpoff, and rogue wave
solutions for Eq. (3) have been investigated [50].

Via the transformation

u = 2 (ln f )xx , (4)

bilinear form for Eq. (3) has been obtained as [49]
(
c1D

3
x Dy + c2D

2
y + c3D

2
x + Dt Dy

)
f · f = 0, (5)

where f is a real function of x , y and t , Dx , Dy and Dt
are the bilinear derivative operators defined by [51]

Dm1
x Dm2

y Dm3
t γ (x, y, t) · β(x, y, t) ≡

(
∂

∂x
− ∂

∂x ′

)m1
(

∂

∂y
− ∂

∂ y′

)m2

(
∂

∂t
− ∂

∂t ′

)m3

γ (x, y, t)β(x ′, y′, t ′)
∣∣
∣∣
x ′=x,y′=y,t ′=t

, (6)

with γ (x, y, t) and β(x ′, y′, t ′) as the differentiable
functions, x ′, y′ and t ′ as the independent variables
and m1, m2 and m3 being the nonnegative integers.

However, to our knowledge, bilinear BT, Lax pair,
mixed rogue–solitary and rogue–periodic wave solu-
tions for Eq. (3) have not been reported. In Sect. 2,
bilinear BT will be given, based on which the Lax pair
for Eq. (3) will be constructed. In Sect. 3, the mixed
rogue–solitary wave solutions for Eq. (3) and inter-
actions between the rogue waves and solitary waves
will be studied. In Sect. 4, the mixed rogue–periodic
wave solutions for Eq. (3) and interactions between the
rogue waves and periodic waves will be discussed. In
Sect. 5, effect of the noise perturbations on the obtained
solutions will be investigated. Our conclusions will be
drawn in Sect. 6.

2 Bilinear BT and Lax pair for Eq. (3)

In order to obtain the bilinear BT between the solutions
f and g of Bilinear Form (5) for Eq. (3), motivated by
the method in Ref. [51], the following expression is
introduced:

P =
[(

c1D
3
x Dy + c2D

2
y + c3D

2
x + Dt Dy

)
g · g

]
f 2

− g2
[(

c1D
3
x Dy + c2D

2
y + c3D

2
x + Dt Dy

)
f · f

]
, (7)
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where g is a real function of x , y and t . Using the
following exchange formulas for the Hirota bilinear
operators [51]:
(
D2
x f · f

)
g2 − f 2

(
D2
x g · g

)

= 2Dx (Dx f · g) · g f,
(Dx Dt f · f ) g2 − f 2 (Dx Dt g · g)

= 2Dx (Dt f · g) · g f,
(
D3
x Dt f · f

)
g2 − f 2

(
D3
x Dt g · g

)

= 2Dt

(
D3
x f · g

)
· g f

− 6Dx (Dx Dt f · g) · (Dx f · g) , (8)

Expression (7) can be transformed into

P =
[(

c1D
3
x Dy + c2D

2
y + c3D

2
x + Dt Dy

)
g · g

]
f 2

−g2
[(

c1D
3
x Dy + c2D

2
y + c3D

2
x + Dt Dy

)
f · f

]

= c1
[(

D3
x Dyg · g

)
f 2 − g2

(
D3
x Dy f · f

)]

+c2
[(

D2
yg · g

)
f 2 − g2

(
D2
y f · f

)]

+ c3
[(

D2
x g · g

)
f 2 − g2

(
D2
x f · f

)]

+
[(
Dt Dyg · g) f 2 − g2

(
Dt Dy f · f

)]

= 2c1Dy

(
D3
x g · f

)
· g f

−6c1Dx
(
Dx Dyg · f

) · (Dxg · f )

+ 2c2Dy
(
Dyg · f

) · g f
+ 2c3Dx (Dxg · f ) · g f + 2Dt

(
Dyg · f

) · g f
= 2Dy

[(
c1D

3
x + c2Dy + Dt

)
g · f

]
· g f

− 2Dx
(
3c1Dx Dyg · f + c3g f

) · (Dxg · f ) . (9)

Then, bilinear BT for Eq. (3) is obtained as
(
c1D

3
x + c2Dy + Dt

)
g · f = ξ1g f,

3c1Dx Dyg · f + c3g f = ξ2Dxg · f, (10)

with ξ1 and ξ2 as the constants, since P = 0 under
Bilinear BT (10).

Two solutions of Bilinear Form (5) for Eq. (3) are
chosen as

f = 1, g = 1 + εe�1x+�2 y+�3t , (11)

where ε, �1, �2 and �3 are all the constants to be deter-
mined. With the substitution of Expressions (11) into
Bilinear BT (10), the related constraints are obtained,
i.e.,

�3 = −�3
1c1 − �2c2, ξ2 = 3�2c1, ξ1 = c3 = 0.

(12)

Soliton solutions for Eq. (3) are derived as

u = 2 (ln g)xx = 2�2
1εe

�31c1t+�2c2t+�1x+�2 y

(
e�31c1t+�2c2t + εe�1x+�2 y

)2 , (13)

which are in accord with the solitons given in Ref. [49].
Via Bilinear BT (10), under the transformations φ =

g
f and v = 2 (ln f )x , Lax pair

Lφ = 0, Mφ = 0, (14)

is derived, where

L = c1∂xxx + 3c1vx∂x + c2∂y + ∂t − ξ1,

M = 3c1∂xy + 3c1vy + c3 − ξ2∂x .

Eq. (3) can be derived via [L , M] = LM − ML = 0
when u = vx .

3 Mixed rogue–solitary wave solutions for Eq. (3)

Motivated by the method in Ref. [52], mixed rogue–
solitary wave solutions for Eq. (3) can be assumed, i.e.,

f = 	2
1 + 	2

2 + ζ1e
r1x+r2 y+r3t+r4

+ ζ2e
−r1x−r2 y−r3t−r4 + α1,

	1 = a1x + a2y + a3t + a4,

	2 = a5x + a6y + a7t + a8, (15)

where ai1 ’s (i1 = 1, 2, . . . , 8), r1, r2, r3, r4, α1, ζ1 and
ζ2 are all the real parameters to be determined.

With the substitution of Expression (15) into Bilin-
ear Form (5), the related constraints are obtained as
Case 1

a2 = −a1r2
r1

, a3 = a1

(
−a6c2
a5

− 3c1r
2
1

4

)

,

a4 = −a5a8
a1

, a7 = −a6c2 − 3

4
a5c1r

2
1 , r2 = −a6r1

a5
,

r3 = a6c2r1
a5

− c1r
3
1

4
, ζ2=

(
a21 + a25

)2

r41 ζ1
, c3= 3a6c1r

2
1

4a5
, (16)

with r1 �= 0, ζ1 �= 0, a1 �= 0 and a5 �= 0;
Case 2

r2 = c3 = 0, a3 = −a2c2, a5 = −a1a2
a6

,

a7 = −a6c2, r3 = −c1r
3
1 , (17)

with a6 �= 0;
Case 3

r2 = r3 = c1 = c3 = 0, a3 = −a2c2,

a6 = a2a5
a1

, a7 = −a6c2, a8 = −a1a4
a5

, (18)
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with a1 �= 0 and a5 �= 0.
Under Constraints (16)–(18), via Expression (15),

themixed rogue–solitarywave solutions canbederived.
As an illustration, some three-dimensional plots to

study the interactions between the rogue waves and
solitary waves are presented. With the substitution of
Constraints (16) into Expression (15), when α1 > 0
and ζ1 > 0, a class of the positive solutions for Bilinear
Form (5) is derived as

f =
(

1 + a25
a21

)

a28 +
(
a21 + a25

)
A2
2

4
+ α1

+
(
a21 + a25

)2
e−B1

r41 ζ1
+ ζ1e

B1 ,

which yields the mixed rogue–solitary wave solutions
through Transformation (4) for Eq. (3),

u = 2 (ln f )xx

=
2

[

−
(
A1A2 + 1

r31 ζ1
A2
1e

−B1 − r1ζ1eB1
)2

+ 1
r21 ζ1

e−B2−B3C1
(
A1eB2 + r21 ζ1eB3

)2
]

C2
1

, (19)

where

C1 = A3 + A21
r41 ζ1

e−B1 + ζ1e
B1 ,

B1 = r4 + a6c2r1t

a5
− 1

4
c1r

3
1 t + r1x − a6r1y

a5
,

B2 = a6r1y

a5
,

B3 = r4 + a6c2r1t

a5
+ r1x − 1

4
c1r

3
1 t,

A1 = a21 + a25 , A2 = 4a6c2t + 3a5c1r
2
1 t − 4a5x − 4a6y

2a5
,

A3 =
(

1 + a25
a21

)

a28 + 1

16a25

(
a21 + a25

)
(4a6c2t

+3a5c1r
2
1 t − 4a5x − 4a6y

)2 + α1.

Figure 1 shows the interaction among the two soli-
tary waves and one rogue wave via Solutions (19) with
t = −5, t = 0 and t = 5. The rogue wave spreads
together with the two solitary waves. During the inter-
action, two solitary waves and one rogue wave keep
their shapes unchanged.

With the substitutionofConstraints (17) intoExpres-
sion (15), when α1 > 0 and ζ1, ζ2 > 0, a class of the
positive solutions for Bilinear Form (5) is derived as

f = [a4 + a1x + a2 (−c2t + y)]2

+
[
a8 − a1a2x

a6
+ a6 (−c2t + y)

]2

+α1 + ζ1e
r4−c1r31 t+r1x + ζ2e

−r4+c1r31 t−r1x ,

which yields the mixed rogue–solitary wave solutions
through Transformation (4) for Eq. (3),

u = 2 (ln f )xx

=
2

[
− (A4+r1C21)

2+
(
A25+A26+α1 + C22

) (
A7+r21C22

)]

(
A25 + A26 + α1 + C22

)2 ,

(20)
where

B4 = r4 − c1r
3
1 t + r1x, C21 = ζ1e

B4 − ζ2e
−B4 ,

C22 = ζ1e
B4 + ζ2e

−B4 ,

A4 = 2a1
[
a4a26 − a2a6a8 + a1

(
a22 + a26

)
x
]

a26
,

A5 = a4 + a1x + a2 (−c2t + y) ,

A6 = a8 − a1a2x

a6
+ a6 (−c2t + y) ,

A7 = a21

(

2 + 2
a22
a26

)

.

Figure 2 depicts the interaction among the one rogue
wave and two solitary waves via Solutions (20). When
t = −3, Fig. 2a shows the two solitary waves move
along the same direction. As t goes on, it is observed
that the one rogue wave appears between the two soli-
tary waves, as shown in Fig. 2b.When t = 3, one rogue
wave merges with the two solitary waves, as shown in
Fig. 2c.

With the substitutionofConstraints (18) intoExpres-
sion (15), when α1 > 0 and ζ1, ζ2 > 0, a class of the
positive solutions for Bilinear Form (5) is derived as

f = a24

(

1+ a21
a25

)

+
(
a21+a25

)
[a1x+a2 (−c2t+y)]2

a21

+α1 + ζ1e
r4+r1x + ζ2e

−r4−r1x ,

which yields the mixed rogue–solitary wave solutions
through Transformation (4) for Eq. (3),
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u = 2 (ln f )xx = 2
− 1

a21

(
2A1A8 + a1r1ζ1eB5 − a1r1ζ2e−B5

)2 + C3
(
2A1 + r21 ζ1eB5 + r21 ζ2e−B5

)

C2
3

, (21)

where

B5 = r4 + r1x, A8 = a1x + a2 (−c2t + y) ,

C3 = a24

(

1 + a21
a25

)

+ A1A2
8

a21
+ α1 + ζ1e

B5 + ζ2e
−B5 .

Figure 3 shows that one roguewave spreads together
with the two solitary waves via Solutions (21). Two
solitary waves and one rogue wave move from nega-
tive y axis to positive y axis, as shown in Fig. 3. During
the propagation, two solitarywaves and one roguewave
keep their shapes unchanged.

4 Mixed rogue–periodic wave solutions for Eq. (3)

Motivated by the method in Ref. [52], mixed rogue–
periodic wave solutions for Eq. (3) can be assumed that

f = (b1x + b2y + b3t + b4)
2 + (b5x + b6y + b7t

+ b8)
2 + κ cos[ι1x + ι2y + ι3t + ι4] + b9, (22)

where bi2 ’s (i2 = 1, 2, . . . , 9), κ, ι1, ι2, ι3 and ι4 are all
the real parameters to be determined.

With the substitution of Expression (22) into Bilin-
ear Form (5), the related constraints are obtained as
Case 1

b2 = b5ι2
ι1

, b3 = −b22c2 + b25c3
b2

, b6 = − b1b2
b5

,

b7 =
b1

(
b22c2 − b25c3

)

b2b5
, b9 = − ι21κ

2

2
(
b21 + b25

) ,

ι3 = −c3ι
2
1 + c1ι

3
1ι2 − c2ι

2
2

ι2
, c1 = 2c3

3ι1ι2
, (23)

with b2 �= 0, b5 �= 0, ι1 �= 0 and ι2 �= 0;
Case 2

c3 = ι2 = 0, ι3 = c1ι
3
1, b3 = −b2c2,

b6 = −b1b2
b5

, b7 = b1b2c2
b5

, (24)

with b5 �= 0;
Case 3

c3 = ι2 = b1 = b5 = 0, ι3 = c1ι
3
1,

b3 = −b32c2 − b2b26c2
b22 + b26

,

b7 = −b22b6c2 − b36c2
b22 + b26

, (25)

with b22 + b26 �= 0.
Under Constraints (23)–(25), via Expression (22),

themixed rogue–periodicwave solutions canbe obtain-
ed.

Interactions between the rogue waves and periodic
waves under Constraints (24) and (25) will be studied.
With the substitution of Constraints (24) into Expres-
sion (22), when b9 > |κ|, a class of the positive solu-
tions for Bilinear Form (5) is derived as

f = b9 + [b4 + b1x + b2 (−c2t + y)]2

+
(

b8 + b1b2c2t + b25x − b1b2y

b5

)2

+ κ cos
(
xι1 + c1t ι

3
1 + ι4

)
,

which yields the mixed rogue–periodic wave solutions
through Transformation (4) for Eq. (3),

u = 2 (ln f )xx

= 2
[W1+κ cos (S1)]

[
2W2−ι21κ cos (S1)

]
−[W3+ι1κ sin (S1)]2

[W1+κ cos (S1)]2
,

(26)

where

S1 = xι1 + c1t ι
3
1 + ι4,

W1 = b9 + [b4 + b1x + b2 (−c2t + y)]2

+
(

b8 + b1b2c2t + b25x − b1b2y

b5

)2

,

W2 = b21 + b25,

W3 = −2
[
b1b4 + b21x + b5 (b8 + b5x)

]
.

Figure 4 shows the interactionbetween theone rogue
wave and one periodicwave via Solutions (26). The one
rogue wave possesses two peaks with different ampli-
tudes. The peak near the positive x axis has the bigger
amplitude than the other one, as shown in Fig. 4a. As t
goes on, amplitude of the peak near the positive x axis
increases and the other peak fades away, as shown in
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Fig. 1 Interaction among
the one rogue wave and two
solitary waves via
Solutions (19) with
r1 = r4 = 1, a1 =
a5 = a6 = 1

2 , a8 = 1,
α1 = 1, c1 = c2 = 1 and
ζ1 = 4

Fig. 2 Interaction among
the one rogue wave and two
solitary waves via
Solutions (20) with
r1 = r4 = 1, a1
= a2 = a4 = a8 = 1,
a6 = 1

2 , α1 = 1,
c1 = c2 = 1 and
4ζ1 = ζ2 = 4

Fig. 3 Interaction among
the one rogue wave and two
solitary waves via
Solutions (21) with
r1 = r4 = 1, a1
= a2 = a4 = 1, a5 = 2

3 ,
α1 = −2, c2 = 1 and
2ζ1 = ζ2 = 1

Fig. 4 Interaction between
the one rogue wave and one
periodic wave via
Solutions (26) with ι1 = 3

2 ,
ι4 = 1

2 , 2b1 = 2b2 = b4 =
2b8 = b9 = 1, b5 = 1

3 ,
c1 = 2c2 = 2 and κ = 1

4
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Fig. 5 Interaction among
the one periodic wave and
lumps via Solutions (27)
with ι1 = 7

6 , ι4 = 1
2 , 2b2 =

2b4 = b6 = 2b8 = b9 = 1,
c1 = 2c2 = 2 and κ = 1

4

Fig. 6 The same as Fig. 1a
except that λ = 1

Fig. 4b, c. A new peak near the positive x axis occurs
and the amplitude of the other peak decreases, as shown
in Fig. 4d. Finally, amplitudes of the two peaks for
the rogue wave return to the initial state, as shown
in Fig. 4a. Therefore, the interaction between the one
rogue wave and one periodic wave is periodic.

With the substitutionofConstraints (25) intoExpres-
sion (22), when b9 > |κ|, a class of the positive solu-
tions for Bilinear Form (5) is derived as

f = b9 + [b4 + b2 (−c2t + y)]2

+ [b8 + b6 (−c2t + y)]2 + κ cos
(
xι1 + c1t ι

3
1 + ι4

)
,

which yields the mixed lump-periodic wave solutions
through Transformation (4) for Eq. (3),

u = 2 (ln f )xx = −2ι21κ
[κ + W4 cos (S1)]

[W4 + κ cos (S1)]2
, (27)

where

W4 = b24 + b28 + b9 + b22c
2
2t

2 + b26c
2
2t

2

−2b22c2t y − 2b26c2t y + b22 y
2 + b26 y

2

+2b2b4 (−c2t + y) + 2b6b8 (−c2t + y) .

Via Solutions (27), for lumps, the central positions
are located in
(

−c1t ι31 − ι4 + 2π�

ι1
,
−b2b4 − b6b8 + b22c2t + b26c2t

b22 + b26

)

,

and
(

π − c1tι31 − ι4 + 2π�

ι1
,
−b2b4 − b6b8 + b22c2t + b26c2t

b22 + b26

)

,

with the amplitude as

4
(
b22 + b26

) ∣∣[(b4b6 − b2b8)2 + (
b22 + b26

)
b9

]
ι21κ

∣∣
∣∣∣
[
(b4b6 − b2b8)2 + (

b22 + b26
)
b9

]2 − (
b22 + b26

)2
κ2

∣∣∣
,

where � is an integer.
Figure 5 depicts the periodic lump waves with the

amplitude invariant. In Fig. 5, it is obvious that the hole

is located in
(−54−343t+216π�

126 , −3+5t
5

)
and the peak

is located in
(−54−343t+108π+216π�

126 , −3+5t
5

)
with the

amplitude as 1715
1248 .

5 Effects of the noise perturbations on
Solutions (19), (20) and (27)

Stabilities of the mixed rogue–solitary and rogue–
periodic waves will be investigated. Motivated by the
method in Refs. [53,54], Mixed Rogue–Solitary Wave
Solutions (19) and (20) and Mixed Lump-Periodic
Wave Solutions (27) are perturbed by the white noises,
and the corresponding expressions are as follows:

u11 = u1 + λR(x), u12 = u1 + λR(y), (28)

u21 = u2 + λR(x), u22 = u2 + λR(y), (29)

u31 = u3 + λR(x), u32 = u3 + λR(y), (30)

where u1, u2 and u3 represent Solutions (19), (20) and
(27), respectively, R(x) and R(y) denote the standard
normal distribution about x and y, and λ means the
noise level.
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Fig. 7 The same as Fig. 2a
except that λ = 1

Fig. 8 The same as Fig. 4a
except that λ = 1

Figure 6 depicts the mixed rogue–solitary waves
via Solutions (19) under the noise perturbations. Fig-
ure 7 depicts the mixed rogue–solitary waves via
Solutions (20) under the noise perturbations. Fig-
ure 8 depicts the mixed lump-periodic waves via Solu-
tions (27) under the noise perturbations. Under the
same noise perturbations, Solutions (20) are the most
stable while Solutions (19) are the least stable among
Solutions (19), (20) and (27).

6 Conclusions

In this paper, a generalized (2 + 1)-dimensional nonlin-
ear wave equation in nonlinear optics, fluid mechanics
and plasma physics, i.e., Eq. (3), has been studied. Via
the Hirota bilinear method, Bilinear BT (10) has been
worked out, based on which Lax Pair (14) has been
constructed. Via an existing bilinear form, i.e., Bilinear
Form (5), and symbolic computation, Mixed Rogue–
Solitary Wave Solutions (19)–(21), Rogue–Periodic
Wave Solutions (26) and Lump-Periodic Wave Solu-
tions (27) have been derived.

Figure 1 has shown the interaction among the one
rogue wave and two solitary waves with their shapes
invariant via Solutions (19). Figure 2 has depicted the
interaction among the one rogue wave and two solitary
waves: Fig. 2a shows that the two solitary waves move
along the same direction; One rogue wave appears
between the two solitary waves, as shown in Fig. 2b;

One rogue wave merges with the two solitary waves,
as shown in Fig. 2c. Figure 3 has shown the interaction
among the one rogue wave and two solitary waves with
their shapes invariant via Solutions (21).

Interaction between the one rogue wave and one
periodic wave has been depicted in Fig. 4: The one
rogue wave possesses two peaks with different ampli-
tudes; It is worth concluding that the interaction
between the one rogue wave and one periodic wave is
periodic, as shown in Fig. 4e, a. Figure 5 has depicted
the periodic lump waves with the same amplitude.

Effects of the noise perturbations on Solutions (19),
(20) and (27) have been shown in Figs. 6, 7 and 8,
respectively: Under the same noise perturbations, Solu-
tions (20) are the most stable while Solutions (19) are
the least stable among Solutions (19), (20) and (27).
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