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Abstract In this paper, on the background of general
periodic travelling wave solutions, we construct rogue
wave solutions of the fifth-order Ito equation. In par-
ticular, those solutions cover the known results in the
literature. Bymeans of theDarboux transformation, we
derive one-, two- and three-fold rogue wave solutions
on the periodic travelling wave solutions background.
We provide several illustrations of such rogue waves
and analyze their generation mechanisms.
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1 Introduction

Rogue waves (also called freak waves, giant waves
and extreme waves) are unexpectedly large-amplitude
waves which are much higher than those of the sur-
rounding waves [1]. They appear from nowhere and
disappear without a trace [2] and can exist in dif-
ferent physical contexts including in the open ocean
and in coastal areas [1,3,4]. Over the years, many
progresses have been achieved in the study of the
physical mechanisms of the rogue wave phenomenon.
Many physical models of the rogue wave phenomenon
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have been intensively developed, and various labo-
ratory experiments have been conducted, such as in
optical fibers [5,6] and water wave tank [7]. It is
believed that the occurrence of rogue waves is related
to the modulation instability of the plane waves or
periodic waves [8]. Mathematically, the rational solu-
tion of the nonlinear Schrödinger (NLS) equation can
be used to described the mechanisms of rogue wave
phenomenon [9]. This kind of rogue wave solution
has a localized hump with a peak amplitude and
approaches a nonzero constant background as time
goes to ±∞. Since the NLS equation is completely
integrable, the hierarchy of rational solutions in this
equation can be constructed by the Darboux trans-
formation (DT) from a nonzero plane wave back-
ground [10–12].

Recently, it has been shown that rogue waves can
also arise from the periodic wave background [13–
19]. These waves (referred as rogue periodic waves)
can be used to illustrate interesting nonlinear phe-
nomena in various physical contexts, such as rogue
waves in the water wave flume and in nonlinear
fibers with oscillating background [6,20–22]. Recent
study by Pelinovsky and Chen shows that rogue
periodic wave solutions on the periodic wave back-
ground for many nonlinear evolution equations can
be constructed by combining the nonlinearization of
spectral problem with the DT method [14,16,17],
such as the NLS equation [14,15], the modified
Korteweg–de Vries (mKdV) equation [16,17], the
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Hirota equation [18,19] and the sine-Gordon equa-
tion [23].

In this paper, we consider the fifth-order Ito equa-
tion

qt +
(
6q5 + 10

(
qq2x + q2qxx

)
+ qxxxx

)
x

= 0, (1)

which was firstly proposed by Ito in Ref. [24]. Eq. (1)
is the second member in the mKdV hierarchy of equa-
tions, and its many integrable properties have been
studied [24–27]. The spectral problem of Eq. (1) can
be written as

Φx = U(q; λ)Φ,U(q; λ) = λσ3 + Q, (2a)

Φt = V(q; λ)Φ,V(q; λ) = −16λ5σ3 − 16λ4Q

+ λ3V3 + λ2V2 + λV1 + V0, (2b)

with

σ3 =
(
1 0
0 −1

)
, Q =

(
0 q

−q 0

)
,

V3 = 8σ3
(
Q2 − Qx

)
, V2 = 4

(
2Q3 − Qxx

)
,

V1 = −2
(
6Q4 + 2Q2

x − 4QQxx

− 12Q2Qx + 2Qxxx

)
,

V0 = −6Q5 + 10QQ2
x + 10Q2Qxx − Qxxxx ,

where Φ = (ϕ1, ϕ2)
T (the superscript T represents

matrix transpose) is the vector eigenfunction and λ

is the spectral parameter. The zero curvature equa-
tion Ut − Vx + [U, V ] = 0 is exactly equivalent to
Eq. (1).

It is easy to check that Eq. (1) admits two families of
the normalized periodic travellingwave solutions given
by

q(x, t) = dn(x − cdnt; k), cdn = 6 − 6k2 + k4,

(3)

q(x, t) = kcn(x − ccnt; k), ccn = 1 − 6k2 + 6k4,

(4)

where dn and cn are Jacobian elliptic functions and k
∈ (0, 1) is the elliptic modulus.

In Ref. [25], the rogue wave solutions of Eq. (1)
have been derived on the background of Jacobi ellip-
tic function solutions (3) and (4). In the present
work, we plan to make a further study on rogue
wave solutions of Eq. (1). Firstly, we derive the gen-
eral periodic travelling wave solutions of Eq. (1)

by reducing this high-order equation to a solvable
first-order ordinary differential equation. In particu-
lar, these solutions include the elliptic function solu-
tions (3) and (4). Secondly, on the background of
the general periodic travelling wave solutions, our
main aim is to construct rogue wave solutions of
Eq. (1), which cover the known results in the liter-
ature [25]. Thirdly, based on obtained solutions, we
analyze the generation mechanisms of rogue periodic
waves.

The rest of this paper is arranged as follows. In
Sect. 2, we derive general periodic travelling wave
solutions of Eq. (1). Particularly, these solutions can
reduce to the elliptic function solutions (3) and (4).
In Sect. 3, on the periodic travelling wave solutions
background, we determine eigenvalues and eigenfunc-
tions of spectral problem. In Sect. 4, we construct
the N -fold DT of Eq. (1) and present the one-, two-
and three-fold transformation formulas. In Sect. 5,
we provide the second solution of spectral problem.
In Sect. 6, we construct rogue wave solutions on
the periodic travelling wave solutions background.
Section 7 is devoted to the conclusion and discus-
sion.

2 General periodic travelling wave solutions

We assume that the travelling wave solution of Eq. (1)
takes the form

q(x, t) = q(ξ), ξ = x − c t, (5)

where c is a real constant representing the wave speed.
Substituting Eq. (5) into Eq. (1) and integrating the
resulting equation once with respect to ξ , we have

q(4) + 10(q2q ′′ + qq ′2) − cq + 6q5 = c0, (6)

where c0 is a real integral constant and the prime sign
denotes the differentiation with respect to ξ . By virtue
of the sub-equationmethod [28], Eq. (6) can be reduced
to the following elliptic equation

q2ξ = P(q), P(q) = −q4 + a2q
2 + a1q + a0, (7)

with c = a22 − 2a0 and c0 = − 1
2a1a2. Taking the

derivative of Eq. (7) with respect to ξ successively, we
have

q ′′ + 2q3 − a2q − 1

2
a1 = 0, (8)

q(3) + 6q2q ′ − a2q
′ = 0, (9)
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where two constants a1 and a2 are to be undetermined.
It is known that Eq. (7) admits two explicit families

of periodic solutions [29], namely: (I) the polynomial
P(q) has four simple real roots Q1, Q2, Q3 and Q4.
Without loss of generality, one can order the roots as
Q4 ≤ Q3 ≤ Q2 ≤ Q1; (II) the polynomial P(q) has
two simple real roots b ≤ a (a, b ∈ R), and a pair of
complex conjugate roots α ± iβ (α, β ∈ R).

For the first case, the exact periodic travelling wave
solution of Eq. (1) can be expressed as

q(ξ) = Q4 + (Q1 − Q4)(Q2 − Q4)

(Q2 − Q4) + (Q1 − Q2)sn2(ρξ ; κ)
,

(10)

with

{
4ρ2 = (Q1 − Q3)(Q2 − Q4),

4ρ2κ2 = (Q1 − Q2)(Q3 − Q4),
(11)

where ρ > 0 and the parameter κ ∈ (0, 1) is the elliptic
modulus. Moreover, by Viète’s formulas, we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a2 = −(Q1Q2 + Q1Q3 + Q1Q4 + Q2Q3

+ Q2Q4 + Q3Q4),

a1 = Q1Q2Q3 + Q1Q2Q4 + Q1Q3Q4

+ Q2Q3Q4,

a0 = −Q1Q2Q3Q4,

Q1 + Q2 + Q3 + Q4 = 0.

(12)

Remark 1 For a1 = 0, we can obtain Q4 = −Q1 and
Q3 = −Q2 because P(q) is an even function. Thus,
one immediately has a2 = Q2

1 + Q2
2, a0 = −Q2

1Q
2
2

and Q1 = ρ(1 + κ), Q2 = ρ(1 − κ) from Eqs. (11)
and (12). Accordingly, the periodic travelling wave
solution (10) can reduce to

q(ξ) = Q1dn(Q1ξ ; k), k =
√
1 − Q2

2

Q2
1

. (13)

For the particular case of Q1 = 1 and Q2 = √
1 − k2,

the solution (13) becomes the normalized dnoidal wave
solution (3).

For the second case, we can easily know that Eq. (1)
has the following periodic travelling wave solution

q(ξ) = a + (b − a)(1 − cn(ρξ ; κ))

1 + δ + (δ − 1)cn(ρξ ; κ)
, (14)

with

⎧
⎪⎪⎨
⎪⎪⎩

δ2 = (b−α)2+β2

(a−α)2+β2 ,

ρ2 =
√(

(a − α)2 + β2
) (

(b − α)2 + β2
)
,

2ρ2κ2 = ρ2 − (a − α)(b − α) + β2,

(15)

where δ > 0, ρ > 0. In a similar procedure, by Viète’s
formulas, we have the following relations

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a2 = −(ab + 2α(a + b) + α2 + β2),

a1 = 2abα + (a + b)(α2 + β2),

a0 = −ab(α2 + β2),

a + b + 2α = 0.

(16)

Remark 2 If a1 = 0, we can obtain b = −a, α = 0
and δ = 1. The periodic travelling wave solution (14)
can reduce to

q(ξ) = acn(ρξ ; κ), ρ =
√
a2 + β2,

κ = a√
a2 + β2

. (17)

In the case of a = k and β = √
1 − k2, Eq. (17)

becomes the normalized cnoidal wave solution (4).

3 Eigenvalues and eigenfunctions of spectral
problem

3.1 Nonlinearization of spectral problem

By introducing the followingBargmannconstraint [30]:

q = φ2
1 + φ2

2 + ψ2
1 + ψ2

2 , (18)

where the vector function (φ j , ψ j )
T corresponds to the

solution of spectral problem (2a) and (2b) with λ =
λ j ( j = 1, 2), one can derive the finite-dimensional
Hamiltonian system from Eq. (2a)

dφ j

dx
= ∂H0

∂ψ j
,
dψ j

dx
= −∂H0

∂φ j
, ( j = 1, 2), (19)
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where H0(φ1, φ2, ψ1, ψ2) = λ1φ1ψ1 + λ2φ2ψ2 +
1
4 (φ

2
1 + φ2

2 + ψ2
1 + ψ2

2 )2. By direct calculation, then
another conserved quantity can be derived fromHamil-
tonian system (19)

H1(φ1, φ2, ψ1, ψ2)

= 4(λ31φ1ψ1 + λ32φ2ψ2)

− 4(λ1φ1ψ1 + λ2φ2ψ2)
2

− (λ1(φ
2
1 − ψ2

1 ) + λ2(φ
2
2 − ψ2

2 ))2

+ 2
(
φ2
1 + φ2

2 + ψ2
1 + ψ2

2

)

×
(
λ21(φ

2
1 + ψ2

1 ) + λ22(φ
2
2 + ψ2

2 )
)

. (20)

For convenience, we introduce F0 = 4H0 and F1 =
4H1.

Taking the derivative of Eq. (18) with respect to x
successively, we can derive the differential equations
about q(ξ)

q ′ = 2λ1(φ
2
1 − ψ2

1 ) + 2λ2(φ
2
2 − ψ2

2 ), (21)

q ′′ + 2q3 = a2q − 4λ22(φ
2
1 + ψ2

1 )

−4λ21(φ
2
2 + ψ2

2 ), (22)

q(3) + 6q2q ′ − a2q
′ = −8λ1λ2

×
(
λ2(φ

2
1 − ψ2

1 ) + λ1(φ
2
2 − ψ2

2 )
)

, (23)

q(4) + 10q2q ′′ + 10qq ′2 + 6q5

−a2
(
q ′′ + 2q3

)
+ 2a0q = 0, (24)

where

a2 = 2F0 + 4λ21 + 4λ22, (25)

a0 = 4F0(λ
2
1 + λ22) + 8λ21λ

2
2 − F2

0 − F1, (26)

F0 = 4λ1φ1ψ1 + 4λ2φ2ψ2 + q2, (27)

F1 = 16(λ31φ1ψ1 + λ32φ2ψ2) − (F0 − q2)2

+2q
(
q ′′ + 2q3 − 2F0q

)
− q ′2. (28)

It is known that the Hamiltonian system (19) allows
the following Lax representation [30,31]

Lx = [U, L], (29)

with

L =
⎛
⎜⎝

1 − 2λ1φ1ψ1

λ2−λ21
− 2λ2φ2ψ2

λ2−λ22

φ2
1

λ−λ1
+ ψ2

1
λ+λ1

+ φ2
2

λ−λ2
+ ψ2

2
λ+λ2

− φ2
1

λ+λ1
− ψ2

1
λ−λ1

− φ2
2

λ+λ2
− ψ2

2
λ−λ2

−1 + 2λ1φ1ψ1

λ2−λ21
+ 2λ2φ2ψ2

λ2−λ22

⎞
⎟⎠ . (30)

From the determinant of above matrix L , the follow-
ing two important differential constraints on q can be
derived as below:

(q ′′ + 2q3 − 2F0q)2 − 16λ21λ
2
2q

2 − 2q ′

× (q(3) + 6q2q ′ − a2q
′)

− 2(F0 − q2)(8λ21λ
2
2 + q ′2

− 2qq ′′ − 3q4 + a2q
2 − a0)

− 4(λ21 + λ22)
(
q ′2 + (F0 − q2)2

)
= 0, (31)

and

(q(3) + 6q2q ′ − 2F0q
′)2 +

(
F2
0 + F1 + q ′2

−2qq ′′ − 3q4 + 2F0q
2
)2

− 4(λ21 + λ22) × (q ′′ + 2q3 − 2F0q)2

− 16λ21λ
2
2

(
q ′2 + (F0 − q2)2

)

+ 32λ21λ
2
2q(q ′′ + 2q3 − 2F0q) = 0. (32)

Note that the detailed derivation process of the above
two constraints can be seen in Ref. [17].

3.2 Eigenvalues

In this subsection, we will determine the location
of eigenvalues of spectral problem (2). Inserting the
second-order derivative of Eq. (7) into Eq. (24), we
obtain

q ′2 − 2q ′′ − 3q4 + a2q
2 − a0 = 0. (33)

With the use of Eqs. (23) and (33), we can rewrite
Eqs. (31) and (32) in the following forms:

(q ′′ + 2q3 − 2F0q)2 − 4(λ21 + λ22)
(
q ′2

+(F0 − q2)2
)

− 16λ21λ
2
2F0 = 0, (34)

4(λ41 + λ21λ
2
2 + λ42)

(
q ′2 + (F0 − q2)2

)

+16λ21λ
2
2(λ

2
1 + λ22)(F0 − q2) + 16λ41λ

4
1

−(λ21 + λ22)(q
′′ + 2q3 − 2F0q)2

+8λ21λ
2
2q(q ′′ + 2q3 − 2F0q) = 0. (35)
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Substituting Eqs. (21)–(22) into Eqs. (34)–(35), we get

a21 = 16(λ21 + λ22)(F
2
0 + a0) + 64λ21λ

2
2F0, (36)

16(λ41 + λ21λ
2
2 + λ42)(F

2
0 + a0)

+64λ21λ
2
2(λ

2
1 + λ22)F0

+64λ41λ
4
2 − (λ21 + λ22)a

2
1 = 0. (37)

Furthermore, from Eqs. (36) and (37), we know that

a0 = 4λ21λ
2
2 − F2

0 , (38)

a21 = 64λ21λ
2
2(F0 + λ21 + λ22). (39)

From Eqs. (26) and (38), we can easily derive the fol-
lowing relation

F1 = 4F0(λ
2
1 + λ22) + 4λ21λ

2
2. (40)

By virtue of Eqs. (26), (38) and (39), the following form
about F0 is obtained

4(F2
0 + a0)(2F0 + a2) = a21 , (41)

which can be viewed as a cubic equation with respect
to F0.

For the periodic travelling wave solution (10), based
on Eqs. (12), the three roots of Eq. (41) are solved as
follows:

(1)F0 = 1

2
(Q1Q4 + Q2Q3),

(2)F0 = 1

2
(Q1Q3 + Q2Q4),

(3)F0 = 1

2
(Q1Q2 + Q3Q4). (42)

Because there are three possible choices of the two
eigenvalues λ1, λ2, we only need to consider one com-
bination of the three eigenvalues, namely

λ1 = 1

2
(Q1 + Q2), λ2 = 1

2
(Q1 + Q3),

λ3 = 1

2
(Q2 + Q3). (43)

For the periodic travelling wave solution (14), from
Eqs. (16), the three roots of Eq. (41) are solved as fol-
lows:

(1)F0 = 1

8
(a2 + 6ab + b2) + 1

2
β2,

(2)F0 = −1

4
(a + b)2 ± i

2
β(a + b). (44)

Then, the eigenvalues are located at

λ1 = 1

4
(a − b) + i

2
β, λ2 = 1

4
(a − b) − i

2
β,

λ3 = 1

2
(a + b). (45)

3.3 Eigenfunctions

In this subsection, we would like to determine the
squared periodic eigenfunctions of spectral problem.
We collect what have been obtained above and rewrite
Eqs. (18), (21), (22) and (23) as a system of linear equa-
tions
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ2
1 + φ2

2 + ψ2
1 + ψ2

2 = q,

2λ1(φ2
1 − ψ2

1 ) + 2λ2(φ2
2 − ψ2

2 ) = q ′,
4λ21(φ

2
1 + ψ2

1 ) + 4λ22(φ
2
2 + ψ2

2 ) = q ′′

+2q3 − 2F0q,

8λ31(φ
2
1 − ψ2

1 ) + 8λ32(φ
2
2 − ψ2

2 ) = q(3)

+6q2q ′ − 2F0q ′.

(46)

By solving linear system (46) with Cramer’s rule, we
obtain the relations of the squared eigenfunctions

φ2
1 + ψ2

1 = q ′′ + 2q3 − 2F0q − 4λ22q

4(λ21 − λ22)
, (47)

φ2
1 − ψ2

1 = q(3) + 6q2q ′ − 2F0q ′ − 4λ22q
′

8λ1(λ21 − λ22)
. (48)

φ2
2 + ψ2

2 = q ′′ + 2q3 − 2F0q − 4λ21q

4(λ22 − λ21)
, (49)

φ2
2 − ψ2

2 = q(3) + 6q2q ′ − 2F0q ′ − 4λ21q
′

8λ2(λ22 − λ21)
. (50)

By use of Eqs. (8), (9) and (25), Eqs. (47)-(50) can be
simplified to the following forms

φ2
1 + ψ2

1 = a1 + 8λ21q

8(λ21 − λ22)
, (51)

φ2
1 − ψ2

1 = λ1q ′

2(λ21 − λ22)
, (52)

φ2
2 + ψ2

2 = a1 + 8λ22q

8(λ22 − λ21)
, (53)

φ2
2 − ψ2

2 = λ2q ′

2(λ22 − λ21)
. (54)

Further, we can also rewrite Eqs. (27) and (28) as a
linear system:

⎧
⎪⎨
⎪⎩

4λ1φ1ψ1 + 4λ2φ2ψ2 = F0 − q2,

16λ31φ1ψ1 + 16λ32φ2ψ2 = F1 + F2
0 + q ′2

−2qq ′ − 3q4 + 2F0q2.

(55)
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Solving Eqs. (55) with Cramer’s rule, we have

φ1ψ1 = F1 + F2
0 + q ′2 − 2qq ′′ − 3q4 + 2F0q2 + 4λ22q

2 − 4λ22F0
16λ1(λ21 − λ22)

, (56)

φ2ψ2 = F1 + F2
0 + q ′2 − 2qq ′′ − 3q4 + 2F0q2 + 4λ21q

2 − 4λ21F0
16λ2(λ22 − λ21)

. (57)

By use of Eqs. (25), (33), (38) and (40), Eqs. (56) and
(57) are simplified to the forms

φ1ψ1 = λ1(a2 − 4λ21 − 2q2)

8(λ21 − λ22)
, (58)

φ2ψ2 = λ2(a2 − 4λ22 − 2q2)

8(λ22 − λ21)
. (59)

4 Darboux transformation

TheDTmethod is a very important tool to construct the
exact solutions of nonlinear integrable equations [32–
36]. Assume that Φ j = [ f j (x, t), g j (x, t)]T (1 ≤
j ≤ N ) are N sets of linearly independent solutions
of Eqs. (2a) and (2b) with different spectral parameters
λ j (1 ≤ j ≤ N ). The N -fold DT of Eq. (1) can be
constructed by the eigenfunction transformation

Ψ[N ] = T[N ]Ψ, T[N ]

=

⎛
⎜⎜⎜⎝

λN −
N∑
j=1

a j (x, t)λ j−1 −
N∑
j=1

b j (x, t)(−λ) j−1

−
N∑
j=1

c j (x, t)λ j−1 λN −
N∑
j=1

d j (x, t)(−λ) j−1

⎞
⎟⎟⎟⎠ ,

(60)

and the potential transformation

q[N ](x, t) = q(x, t) + 2(−1)N−1bN

= q(x, t) + 2
τN+1,N−1

τN ,N
, (61)

with

τM,L =
∣∣∣∣
FN×M GN×L

GN×M −FN×L

∣∣∣∣ , (M + L = 2N ) (62)

where the block matrices FN×M = [λm−1
j f j (x, t)]

1� j�N
1�m�M

andGN×L = [(−λ j )
m−1g j (x, t)]1� j�N

1�m�L
.

For N = 1, N = 2 and N = 3 in Eq. (61), the one-,
two- and three-fold potential transformation formulas
can be represented as

q[1](x, t) = q(x, t) + 2

∣∣∣∣
f1 λ1 f1
g1 −λ1g1

∣∣∣∣
∣∣∣∣
f1 g1
g1 − f1

∣∣∣∣
, (63)

q[2](x, t) = q(x, t) + 2

∣∣∣∣∣∣∣∣

f1 λ1 f1 λ21 f1 g1
f2 λ2 f2 λ22 f2 g2
g1 −λ1g1 λ21g1 − f1
g2 −λ2g2 λ22g2 − f2

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

f1 λ1 f1 g1 −λ1g1
f2 λ2 f2 g2 −λ2g2
g1 −λ1g1 − f1 −λ1 f1
g2 −λ2g2 − f2 −λ2 f2

∣∣∣∣∣∣∣∣

,

(64)

q[3](x, t) = q(x, t)

+2

∣∣∣∣∣∣∣∣∣∣∣∣

f1 λ1 f1 λ21 f1 λ31 f1 g1 −λ1g1
f2 λ2 f2 λ22 f2 λ32 f2 g2 −λ2g2
f3 λ3 f3 λ23 f3 λ33 f3 g3 −λ3g3
g1 −λ1g1 λ21g1 −λ31g1 − f1 −λ1 f1
g2 −λ2g2 λ22g2 −λ32g2 − f2 −λ2 f2
g3 −λ3g3 λ23g3 −λ33g3 − f3 −λ3 f3

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

f1 λ1 f1 λ21 f1 g1 −λ1g1 λ21g1
f2 λ2 f2 λ22 f2 g2 −λ2g2 λ22g2
f3 λ3 f3 λ23 f3 g3 −λ3g3 λ23g3
g1 −λ1g1 λ21g1 − f1 −λ1 f1 −λ21 f1
g2 −λ2g2 λ22g2 − f2 −λ2 f2 −λ22 f2
g3 −λ3g3 λ23g3 − f3 −λ3 f3 −λ23 f3

∣∣∣∣∣∣∣∣∣∣∣∣

.

(65)

5 The second solution of spectral problem

In this section, in order to obtain new solutions of
Eq. (1) on the periodic background, we construct the
second linearly independent solution Φ = (φ̃1, ψ̃1)

T

of spectral problem (2a) and (2b) with the same eigen-
value λ = λ1.

When q(x, t) = q(x − ct) is a periodic travelling
wave solution to Eq. (1), we need to consider that the
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eigenfunction Φ(x, t) = Φ(x − ct) also satisfies the
time evolution in spectral problem (2). Substituting the
eigenfunction Φ = (φ1(x − ct), ψ1(x − ct))T into
Eq. (2b), we have

∂φ1

∂t
+ c

∂φ1

∂x
= ∂φ1

∂t
+ (a22 − 2a0)

∂φ1

∂x

= 1

2
(a2 + 4λ21)

(
8λ31φ1 − ψ1(a1 + 8λ21(φ

2
1 + ψ2

1 ))

+8λ21(φ
2
1ψ1 + ψ3

1 − ∂φ1

∂x
)

)
= 0,

where Eqs. (51), (52) and (58) have been used for sim-
plification. In a similar procedure as above, we can also
verify that

∂ψ1

∂t
+ c

∂ψ1

∂x
= 0.

Therefore, φ1(x, t) = φ1(x − ct) and ψ1(x, t) =
ψ1(x − ct) satisfy the time evolution in spectral prob-
lem (2).

According to the work in Ref. [17], the second lin-
early independent solution Φ = (φ̃1, ψ̃1)

T of spectral
problem (2a) and (2b) with λ = λ1 has the following
explicit form:

φ̃1 = φ1θ1 − 2ψ1

φ2
1 + ψ2

1

, ψ̃1 = ψ1θ1 + 2φ1

φ2
1 + ψ2

1

,

(66)

where θ1 is a function of x and t to be determined.
Substituting Eqs. (66) into Eq. (2a) with λ = λ1, we
obtain
dθ1
dx

= − 8λ1φ1ψ1

(φ2
1 + ψ2

1 )2
. (67)

With the use of Eqs. (51) and (58), we can rewrite
Eq. (67) as

dθ1
dx

= 64λ21(λ
2
1 − λ22)(−a2 + 4λ21 + 2q2)

(a1 + 8λ21q)2
, (68)

which can be integrated to the form

θ1 = −16(λ21 − λ22)

[
4λ21

∫ x

0

a2 − 4λ21 − 2q2

(a1 + 8λ21q)2
dy

+ θ0(t)

]
, (69)

where θ0(t) is a undetermined integral constant depend-
ing on t .

Next, substituting both solutions Φ = (φ1, ψ1)
T

and Φ = (φ̃1, ψ̃1)
T into Eq. (2b) with λ = λ1, we

arrive at

dθ1
dt

= 16λ1(−a0 + 8λ41 + a2q2 + 4λ21q
2)

(Φ2
1 + ψ2

1 )2

−8λ1(a2 + 4λ21)q
′

(Φ2
1 + ψ2

1 )2

= 8λ1(c − a22 + 16λ41 + 2a2q2 + 8λ21q
2)

(Φ2
1 + ψ2

1 )2

−8λ1(a2 + 4λ21)q
′

(Φ2
1 + ψ2

1 )2
.

Further, substituting Eqs. (52), (58) and (67) into the
above expression, we have

dθ1
dt

+ c
dθ1
dx

= −16(λ21 − λ22)(a2 + 4λ21).

Finally, we obtain the exact expression for θ1(x, t):

θ1(x, t) = −16(λ21 − λ22)

×
[
4λ21

∫ x

0

a2 − 4λ21 − 2q2

(a1 + 8λ21q)2
dy + τ t

]
,

(70)

with τ = a2 + 4λ21.
For the non-periodic solutions (φ̃2, ψ̃2)

T and
(φ̃3, ψ̃3)

T , they can be obtained by the transformation
(φ1, ψ1)

T → (φ2, ψ2)
T , (φ1, ψ1)

T → (φ3, ψ3)
T and

θ1 → θ2, θ1 → θ3 with the interchanges λ1 ↔ λ2 and
λ1 ↔ λ3, respectively.

6 Rogue waves

In this section, we will construct the rogue wave solu-
tions of Eq. (1) on the periodic background by using
the second linearly independent solutions of spectral
problem (2a) and (2b) for the eigenvalues λ1, λ2 and
λ3.

Substituting f1 = φ̃1 and g1 = ψ̃1 given by
Eqs. (66) into the one-fold DT formula (63), we obtain
a new solution of Eq. (1)

q[1] = q + 4λ1A1(
φ2
1 + ψ2

1

)2
θ21 + 4

. (71)

with

A1 = φ1ψ1

φ2
1 + ψ2

1

[
(φ2

1 + ψ2
1 )2θ21 − 4

]
+ 2(φ2

1 − ψ2
1 )θ1.

Substituting ( f1, g1)T = (φ̃1, ψ̃1)
T and ( f2, g2)T =

(φ̃2, ψ̃2)
T into the two-foldDT formula (64), we derive

a new solution of Eq. (1)
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q[2]

= q + 4(λ21 − λ22)(λ1A1B2 − λ2A2B1)

(λ21 + λ22)B1B2 − 8λ1λ2A1A2 − 2λ1λ2C1C2
,

(72)

where for j = 1, 2

A j = φ jψ j

φ2
j + ψ2

j

[
(φ2

j + ψ2
j )

2θ2j − 4
]

+2(φ2
j − ψ2

j )θ j ,

Bj = (φ2
j + ψ2

j )
2θ2j + 4,

C j = φ2
j − ψ2

j

φ2
j + ψ2

j

[
(φ2

j + ψ2
j )

2θ2j − 4
]

− 8φ jψ jθ j .

Similarly, by the substitution of ( f1, g1)T = (φ̃1,

ψ̃1)
T , ( f2, g2) = (φ̃2, ψ̃2)

T and ( f3, g3) = (φ̃3, ψ̃3)
T

into the three-fold DT formula (65), a new solution of
Eq. (1) can be derived.

For the periodic travelling wave solution (10), we
take Q1 = 2, Q2 = −0.25, Q3 = −0.75 and
Q4 = −1. Inserting them into Eqs. (43), we can obtain
three different choices for the eigenvalue. Therefore,
from one-fold DT formula (71), three new solutions of
Eq. (1) can be derived. Their profile plots are presented
in Fig. 1a–c. It is seen that they display a bright alge-
braic soliton propagating on the periodic background
of the elliptic function solution (10). For the two-fold
solution (72), there are also three different choices for
two eigenvalues expressed by Eq. (43). In Fig. 2a–c,
we display the plots of three solutions depending on
the choices of different two eigenvalues. It is shown
that two propagating solitons collide on the periodic
background. The highest points of the plots are all at
the center. These peaks at origin can be considered as
rogue waves.

For the periodic travelling wave solution (14), we
choose the parameters a = 1.5, b = −0.5, α = −0.5
and β = 2. Inserting them into Eqs. (45), the values of
three eigenvalues λ1, λ2 and λ3 can be determined. For
the one-fold transformation, there is only one possible
choice for the eigenvalue, i.e., the real eigenvalue λ3.
In this case, the profile of the solution (71) is shown
in Fig. 3a for λ3 = 0.5, from which it is seen that
the profile of the wave looks like a propagating soli-
ton on the background of the periodic travelling wave.
For the two-fold transformation, we choose a pair of
complex conjugate eigenvalues λ1 and λ2. In this case,
the solution describes a rogue wave in the center on the

Fig. 1 The one-fold transformation solution (71) on the back-
ground periodic solution (10) with three different choices of
eigenvalue

periodic background, as shown in Fig. 3b. For the three-
fold transformation, three eigenvalues are all used in
Eq. (45). From Fig. 3c, it is seen that two solitons col-
lide on the periodic background and a rogue wave is
located at the center.
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Fig. 2 The two-fold transformation solution (72) on the back-
ground of periodic solution (10) with three different choices of
two eigenvalues

Finally, it should be pointed out that the simulation
results in Figs. 1, 2 and 3 agree well with the ana-
lytic solutions of Eq. (1), which is consistent with the
theoretical analysis in Ref. [25]. Particularly for both
initial background solutions (3) and (4), we can also

Fig. 3 The one-, two-, and three-fold transformation solutions
on the background of periodic solution (14)

numerically investigate the generation mechanism of
rogue waves in Eq. (1). Of special interest, we have
found that those simulation results can reduce to the
rational and exponential solitons. Therefore, our simu-
lation experiments can support the theoretical analysis
for characteristics of rogue waves in Eq. (1).
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7 Conclusion and discussion

In this paper, we have constructed rogue wave solu-
tions of the fifth-order Ito equation on the background
of general periodic travelling wave solutions. Based on
the sub-equation method, we have presented the gen-
eral periodic travelling wave solutions. By the Darboux
transformationmethod, we have derived one-, two- and
three-fold rogue wave solutions on the background of
obtained periodic travelling wave solutions. We have
provided several illustrations of such rogue waves and
patterns of their interactions. As a result, since these
solutions can describe phenomena of rogue waves on
the periodic background, we expect that the results
obtained in this work will be useful for physical exper-
iments such as in nonlinear fiber optics with oscillating
background.

In Ref. [25], some rogue wave solutions of Eq. (1)
have been studied on the background of Jacobi elliptic
function solutions (3) and (4). Through comparing our
obtained results with those published previously, we
find that the solutions in the present paper are more
general than those. Finally, it is pointed out that the
obtained results in our paper will be useful to further
understand the generation of rogue waves, and they can
be extended to the other Ito equations and the modified
Korteweg–de Vries hierarchy of equations.
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