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Abstract This paper presents the extended Kalman
filter (EKF) and moving horizon estimation (MHE)
approach-based nonlinear stochastic filtering of
fractional-order complementary metal oxide semicon-
ductor (CMOS) circuit. The fractional-order calculus is
used to get better reliability of the circuit. The twometal
oxide semiconductor field-effect transistors of CMOS
circuit are modeled using Enz–Krummenacher–Vittoz
(EKV) model, and Kirchhoff’s current law (KCL) is
then applied to obtain the state-space model. Ornstein–
Uhlenbeck (O.U.) process is used to model the input
source, which is a white Gaussian noise and Brownian
process. Following are the advantages of the proposed
method: (1) State estimation using EKF and MHE
is real-time and can be used for the estimation pur-
pose when parameters are slowly varying with time.
(2) Fractional-order calculus leads to better flexibil-
ity in circuits. (3) Application of Kronecker product
gives better and more accurate nonlinear mathematical
representation. The estimated output values obtained
using the proposed techniques have been compared
with the wavelet transform (WT) method when nonlin-
ear dynamics are represented usingKronecker product-
based representation. The estimated output voltage
using estimation algorithms is then compared with
PSPICE simulated values. Simulation results validate
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the better disturbance rejection ability of the proposed
methods.

Keywords Extended Kalman filter · Moving horizon
estimation · Wavelet transform · Fractional-order
calculus · Kronecker product

1 Introduction

Complementary metal oxide semiconductor (CMOS)
circuit is basic building block component and used in
many complex circuit as it override the power dissi-
pation and speed constraints. They are widely use in
field of biomedical engineering [1,2], wireless com-
munication [3], low power high frequency genera-
tors [4,5], converters [6,7], digital circuits [8,9]. Well-
known Enz–Krummenacher–Vittoz (EKV) model is
used to model theMOSFETs of CMOS due to its desir-
able merits such as low power design and flexibility to
use in any mode of inversion, i.e., weak, moderate and
strong inversion [10–12].

In the last few decades, fractional-order calculus
have attracted amongst the researchers in the arena of
mathematical analysis in classical andmodern physics,
relative to their integer-order counterparts. Fractional-
order calculus has several advantages over conven-
tional calculus; therefore, it became popular amongst
researchers over a few decades. Several phenomena
are better explained using fractional-order calculus for
many systems. Moreover, estimation of the states in
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many electrical systems are investigated in a better way
using fractional-order differential equations due to its
property of huge global memory. Recently, significant
progress can be seen due to its importance in engi-
neering science [13–15]. Several variants of fractional-
order calculus have been used in a wide range of appli-
cations. Radwan et al. [16] generalized the fundamen-
tal resistor–capacitor (RC) circuit and resistor-inductor
(RL) circuit. In [17], Nezzari et al. used fractional-
order sinusoidal functions for analog circuits. Radwan
[18] analyzed the series fractional-order circuit which
has the advantage of an improved degree of freedom.
Fractional-order capacitor was first introduced byCarl-
son andhalijak [19] followedbyRoy [20]. They consid-
ered impedance using a capacitor as semi-infinite self-

similarRC treeswhich is expressed as Z = 1
C s

1
2 ,where

s is the complex variable. This was further modified
as Z = 1

C s
α for more flexibility and reliability [21].

Moreover, novel fractional calculus-based Atangana–
Baleanu approach have been proposed by researchers
for different applications [22–25]. The recent applica-
tions of fractional-order calculus in circuits are shown
in Table 1.

In the literature, several techniques has been
employed for state estimation, each having its pros
and cons [41–58]. Broadly, we classify the state esti-
mation as static state estimation (SSE) and dynami-
cal state estimation (DSE). Summary of different state
estimation methods and their applications in circuits
and systems are discussed in Table 2. SSE is employed
when the estimated state is at a quasi-steady state in
terms of magnitude and phase. Weighted least squares
(WLS)method is themost commonly usedSSEmethod
[41,42]. However, this method is limited to static-state
estimation only, but when states are dynamical, DSE is
preferred. DSEmethod includes variants of theKalman
filtering method, H∞ filtering method, particle filter-
ing (PF) method. For the state and parameter estima-
tion of linear systems, Kalman filter (KF) is employed
[43–47]. Though, KF method has the advantages as:
(1) It takes both, measurement noise and process noise
into consideration, therefore, gives better accuracy. The
process noise and the measurement noise are assumed
as Gaussian distribution. (2) It is a real-time algorithm,
so it can be implemented using hardware. (3) It has
less complexity, thus requires less time and memory to
process. However, it has several disadvantages also: (1)
KFmethod is only applicable for linear dynamical sys-

tems; it fails for estimation of nonlinear dynamical sys-
tems. (2) The external noise is assumed to be stationary
Gaussian in KF method. To overcome these disadvan-
tage, several other nonlinear dynamical state estimation
methods are used.H∞ filters have awide range of appli-
cations for the state and parameter estimation in differ-
ent nonlinear dynamical systems. Tang et al. [48] pro-
posedmodel switching algorithm for the state of charge
(SOC) estimation based on H-infinity filter. In [49],
Chen et al. presented H-infinity filtering-based SOC
estimation in varying environmental temperature and
battery current. Song et al. [51] proposedPF-based state
estimation of joint lithium-ion battery taking advantage
of least square support vector machine (SVM). The
main advantage of H∞ filter is that it gives more accu-
rate output estimation even when the system is highly
nonlinear, i.e., process and measurement noises are
non-Gaussian. Besides these advantages, it has some
limitations, too: (1) implementation of H∞ has sig-
nificant difficulty when resources are constraints. (2)
Fundamental time-domain is not addressed when deal-
ing with the frequency-domain process. Recently, PF
has also been used for the state/parameter estimation
of the nonlinear system. For non-Gaussian signals,
Bayesian conditional probabilities using non-Gaussian
probability density functions (PDFs) have been used
for updating the weights involved in state estimation.
Thismethod canbe applied forMarkovian state dynam-
ics, i.e., input is represented usingOrnstein–Uhlenbeck
(O.U.) process [52], and then it is added to the state pro-
cess to obtain a greater size non-Gaussian Markov pro-
cess. In [53], the authors presented a detailed SOC esti-
mation and remaining discharge time estimation based
on PF. Chen et al. [54] observed voltage-based SOC
and open-circuit voltage (OCV) estimation using PF.
In order to improve the convergence of error in the
estimation, Ding et al. [55] proposed PF appended
with output error model, which is advantageous to esti-
mate the parameters for strongly nonlinear systems.
However, PF method has the disadvantage that parti-
cle degradation leads to an increase in estimation error.
Extended Kalman filter (EKF) is an extensively used
state estimation method which can be used for nonlin-
ear dynamical systems [56–59]. It is derived from the
Kushner Kallainpur filter, which is a real-time estima-
tor. The major advantage of EKF is that it considers the
stochastic approach for estimation, i.e., it takes mea-
surement noise and process noise into consideration;
therefore, it gives less estimation error, and it is the real-
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Table 1 Recent fractional-order calculus applications in circuits and systems

S. No. Applications References

1. State/parameter estimation Mawonou et al. [26], Hidalgo et al. [27], Wang et al. [28], Huang et al. [29]

2. Oscillators Elwy et al. [30], Said et al. [31], Radwan et al. [32], Kavyanpoor et al. [33]

3. Active and passive filters AbdelAty et al. [34], Hamed et al. [35]

4. Integrator/differentiator Tolba et al. [36], Bertsias et al. [37]

5. Power converters Radwan et al. [38], Wei et al., [39], Kumar et al. [40]

time estimator. For non-Gaussian measurement noise
also, the Bayesianmethod-based nonlinear EKF can be
developed.Wavelet transform (WT) (block processing)
method has been used for state, and parameter estima-
tion of circuit and systems [60]. The main advantage of
WT estimation method is that minimum and maximum
frequencies are varied for different time slots. Also, we
do not require all the wavelet coefficients as its reso-
lution can be adjusted to get the best estimates, i.e.,
best estimates can be obtained using lesser data. How-
ever, WT has the disadvantage that estimation using
WT is not real time. The computational complexity of
Kronecker-based EKF algorithm is less, i.e., O(n3x ), as
compared to the computational burden of Kronecker-
based WT, which is O(n5x ), where nx denotes the state
vector per iteration size [57]. Recently, moving horizon
estimation (MHE) approachhas beenused for state esti-
mation of nonlinear systems [62–65]. This method has
the advantage that the MHE method is less sensitive to
the poor initial values and has faster convergence to the
actual output values. But large value of horizon length
leads to increase in the computational complexity.

In the literature, a very few of the Bayesian estima-
tion methods used been applied to fractional-order cir-
cuits [26,27] but none of the previousworks have inves-
tigated the performance using fractional-order calcu-
lus based stochastic filtering methods by transforming
the dynamical state equations using Kronecker product
(tensor product) [66,67] into a form,where the gradient
algorithm can be applied. Moreover, fractional-order
calculus-based block processing method has also not
been used in the literature. The importance of these
models lies in the fact that these models can accom-
modate conventional filtering method. Therefore, an
investigation is essential in the estimation as fractional-
order calculus leads to better flexibility in the parameter
and state estimation. Motivated by the aforementioned
merits of fractional-order systems, a detailed analysis

of fractional-order calculus-based EKF,WT, andMHE
methods have been performed for the output voltage
estimation of fractional-order CMOS circuit.

We can summarize the key contributions of the paper
as:

1. EKF and MHE method-based output voltage esti-
mation of fractional-order CMOS circuit is pro-
posed. The main advantage of FOC based circuit
representation is that it can be considered as a super
set of integer-order calculus.

2. To improve the accuracy of nonlinear dynami-
cal systems, Kronecker product-based modeling of
fractional-order circuit is presented.

3. Estimated output using FOC-based EKF and MHE
is then compared with estimation using FOC-based
WTmethod. In the literature, wavelet-based param-
eter estimation (block processing) is usually applied
to linear models. Here, we applied to a fractional-
order nonlinear dynamical systemwhere Kronecker
products is used to represent nonlinear terms.

4. Thisworkpresents fractional-ordermodelingmethod
for CMOS circuit based on Grünwald–Letnikov
fractional calculus definition. The proposed model
is more accurate for fractional calculus method
than the other integer-order modeling method in the
literature. Moreover, the proposed fractional-order
model is not only the simplified model structure,
but the computational complexity is also reduced
without affecting the accuracy of the model.

The remaining paper is organized as follows: A
brief introduction to EKF and MHE methods has been
presented in Sects. 2 and 3 respectively. Section 4
introduces the fundamentals of fractional-order cal-
culus. In Sect. 5, EKV modeled Kronecker product-
based fractional-order Modeling of CMOS circuit
is illustrated in detail. Section 6 covers Kronecker
product-based fractional-order system representation
using WT method. Section 7 presents application of
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Table 2 State estimation literature survey

Method Merits Limitations Applications

WLS∗ Real-time modeling (1) Inaccurate estimations (1) Electrical power systems [41]

(2) Limited to static systems (2) Smart grid [42]

KF∗∗ (1) Least computational burden (1) Limited to linear systems as (1) SOC estimation [43]

(2) Ideal linear systems it fails for nonlinear systems (2) Electromagnetic field estimation [44]

(3) Real-time estimation (2) Epidemic disease estimation [45]

(3) Power system state estimation [47]

H∞ filter (1) Accurate estimation even for (1) Real-time implementation (1) SOC estimation [48,49]

strongly nonlinear system constraints (2) Robotics [50]

(2) Process and measurement noise (2) Frequency domain

are non-Gaussian process limitations

PF∗∗∗ (1) Better estimation for strongly (1) More estimation error (1) Li-ion battery system [51]

nonlinear system (2) OCV and SOC estimation [54]

(2) Better accuracy for

non-Gaussian process

EKF# (1) Real-time estimations (1) Fails for strongly (1) Circuit and system state

(2) Moderate computational burden nonlinear system and parameter estimation [56,57]

(3) Ideal for weakly and (2) Charge estimation in Li-ion batteries [26]

mildly nonlinear systems

WT## (1) Lesser data stored (1) Fails for strongly (1) Circuit and system

(2) Compressed data nonlinear system parameter estimation [57,60]

(3) Better for weakly and (2) Not real-time estimation (2) Wireless communication [61]

mildly nonlinear systems

MHE### (1) Real-time estimation (1) Greater computational burden (1) State of charge estimation [62,63]

(2) Greater robustness (2) Wireless communication network [64]

(3) Faster convergence to true state

∗Weighted least squares, ∗∗Kalman filter, ∗∗∗ particle filter, #extended Kalman filter, ##wavelet transform, ###moving horizon estimation

EKF to fractional-order-basedCMOScircuit expressed
in terms of Kronecker product. Finally, simulation
results and conclusions are detailed in Sects. 8 and 9,
respectively.

2 Extended Kalman filter

Following notations have been used throughout the
paper:-

1. Cap on letters denotes estimated value, e.g., x̂.
2. Randomvariables (xk, zk, vk,wk) are denoted using

bold lower case letters.
3. Bold italic lower case letters denote deterministic

vectors (uk).
4. Bold italic capital letters denote matrices (Fk,Hk,

Qk,Rk,Bk , Pk , Lk ,Mk).

EKF is widely used nonlinear filter used for parameter
and state estimation of the nonlinear systems [56–59].
Block diagram representation of dynamical system is
shown in Fig. 1. A nonlinear system has general form

xk = fk−1(xk−1,uk−1, vk−1), (1)

zk = hk(xk,wk), (2)

where xk denotes the state vector, fk(.) and hk(.) are the
deterministic nonlinear functions of input and noises.
uk is the known input. zk is the measured output vector.
vk and wk denote the process and measurement noise
vector, respectively. They are Gaussian process with
zero mean and covariance Qk and Rk , respectively. vk
is the process noise, and it is zero mean white Gaussian
noise with covariance matrix Qk .

E[vkvTi ] = Qk δ(k − i), (3)
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Fig. 1 Representation of nonlinear dynamical system

whereE is the expectation taken. δ(k− i) is dirac delta
function. It has nonzero value at k = i , otherwise zero
everywhere, i.e.,

δ(k − i) =
{
1, if k = i;
0, Otherwise,

(4)

and

E[wkwT
i ] = Rk δ(k − i). (5)

The two noises vk and wk are mutually uncorrelated
and also uncorrelated with the state, and thus, we can
formulate them as

E[vkwT
i ] = 0, (6)

E[xkvTi ] = 0, (7)

E[xkwT
i ] = 0. (8)

Following steps are involved in the EKF algorithm:-

1. Initialization:-
First, initialize the estimate of the state x̂k−1|k−1,
error covariance matrix Pk−1|k−1, Qk and Rk .

2. Prediction step:-
The state vector is predicted as

x̂k|k−1 = E[xk |zk−1]. (9)

From (1) and (9), we have

x̂k|k−1 = E[fk−1(xk−1,uk−1, vk−1)|zk−1] (10)

= E[fk−1(xk−1,uk−1|zk−1)] (11)

as E[vk−1)|zk−1] = 0. Now, expanding nonlinear
function fk−1(.) using Taylor series expansion, we
have

fk−1(xk−1,uk−1) = fk−1(x̂k−1|k−1,uk−1)

+Fk−1x̃k−1 + �f(x̃2k−1),

(12)

where Fk−1 is the Jacobian matrix obtained using

Fk−1 = ∂fk−1(x̂k−1|k−1,uk−1)

∂xk−1
(13)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂f(1)k−1(.)

∂x1

∂f(1)k−1(.)

∂x2
. . .

∂f(1)k−1(.)

∂xn
∂f(2)k−1(.)

∂x1

∂f(2)k−1(.)

∂x2
. . .

∂f(2)k−1(.)

∂xn
...

...
. . .

...

∂f(n)
k−1(.)

∂x1

∂f(n)
k−1(.)

∂x2
. . .

∂f(n)
k−1(.)

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎦

, (14)

where fk−1(.) =
[
f(1)k−1(.) f

(2)
k−1(.) . . . f(n)

k−1(.)

]T
,

x̃k = xk − x̂k−1 and �f(x̃2k−1) is the higher order
terms in Taylor series expansion.
From (1) and (12), we have

xk = fk−1(x̂k−1|k−1,uk−1) + Fk−1x̃k−1

+�f(x̃2k−1) + vk−1. (15)

Expected value of (12), by considering the higher-
order terms equal to zero, is

E[fk−1(xk−1,uk−1)] = E[fk−1(x̂k−1|k−1,uk−1)]
+Fk−1 E[x̃k−1]. (16)

AsE[x̃k−1] = 0, therefore, from (11) and (16), time
updated state estimate is

x̂k|k−1 = fk−1(x̂k−1|k−1,uk−1). (17)

Error in updated state estimate is

x̃k|k−1 = xk − x̂k|k−1. (18)

Therefore, from (15) and (18), we have

x̃k|k−1 = fk−1(x̂k−1|k−1,uk−1) + Fk−1x̃k−1

+ vk−1 − fk−1(x̂k−1|k−1,uk−1) (19)

= Fk−1x̃k−1 + vk−1. (20)

Time updated error covariance is

Pk|k−1 = E[(x̃k|k−1)(x̃k|k−1)
T ]. (21)

From (20) and (21), we have

Pk|k−1 = Fk−1 E[(x̃k−1)(x̃k−1)
T ]FT

k−1

+ E[(vk−1)(vk−1)
T ] (22)
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= Fk−1Pk−1|k−1FT
k−1 + Lk−1Qk−1L

T
k−1
(23)

where

Lk−1 = ∂fk−1(x̂k−1|k−1)

∂vk−1
. (24)

3. Update step:-
The main objective is to obtained the best unbiased
state. Consider

x̂k|k = xak + Kkzk, (25)

where Kk is the Kalman gain for EKF. From unbi-
asedness condition

E[xk − x̂k|k |zk] = 0. (26)

Therefore, from (2), (18) and (26), we have

E[(x̃k|k−1 + x̂k|k−1) − (xak + Kk (hk(xk)

+ wk)) |zk] = 0, (27)

E[(x̃k|k−1] + E[x̂k|k−1)] − E[xak + Kk (hk(xk)]
− E[wk))|zk] = 0. (28)

As E[(x̃k|k−1] = 0, E[wk] = 0, (28) yields

x̂k|k−1 − xak − E[Kk (hk(xk)] = 0, (29)

xak = x̂k|k−1 − Kk E[(hk(xk)]. (30)

Now, substituting the value of xak from (30) in (25),
we get

x̂k|k = x̂k|k−1 + Kk (zk − E[hk(xk)]). (31)

Now, expanding hk(.) using Taylor series expan-
sion, we get

hk(xk) = hk(x̂k|k−1) + Hk x̃k−1 + �h(x̃2k−1), (32)

where

Hk = ∂hk(fk−1(x̂k−1|k−1))

∂xk
(33)

=
[

∂hk (fk−1(.))
∂x1

∂hk (fk−1(.))
∂x2

. . .
∂hk (fk−1(.))

∂xn

]
(34)

and �h(x̃2k−1) is the higher-order term. Expected
value of (32), by considering the higher-order terms
equal to zero, is

E[hk(xk)] = E[hk(x̂k|k−1)] + Hk E[x̃k−1]
+E[�h(x̃2k−1)]. (35)

As E[x̃k−1] = 0, E[�h(x̃2k−1)], then (35) gives

E[hk(xk)] = hk(x̂k|k−1). (36)

Substituting the value of E[hk(xk)] from (36) in
(31), we get

x̂k|k = x̂k|k−1 + Kk (zk − hk(x̂k|k−1)). (37)

The error in the updated measured value is

x̃k|k = xk − x̂k|k . (38)

From equations (2), (15) and (38), we have

x̃k|k = {fk−1(x̂k−1|k−1,uk−1) + Fk−1x̃k−1

+ �f(x̃2k−1) + vk−1} − {x̂k|k−1

+ Kk ((hk(xk) + wk) − hk(x̂k|k−1))}. (39)

Substituting thevalueof x̂k|k−1 andhk(xk)from (17)
and (32), respectively, to (39), we get

x̃k|k = {fk−1(x̂k−1|k−1,uk−1) + Fk−1x̃k−1

+ �f(x̃2k−1) + vk−1} − {fk−1(x̂k−1|k−1,uk−1)

+ Kk (hk(x̂k|k−1) + Hk x̃k|k−1

+ �h(x̃2k−1) + wk)) − hk(x̂k|k−1))}. (40)

Simplifying equation (40) and substituting x̃k|k−1

from (20) to (40), we get

x̃k|k = Fk−1x̃k−1 + vk−1 − KkHk(Fk−1x̃k−1 + vk−1)

− Kkwk (41)
= (I − KkHk)Fk−1x̃k−1

+ (I − KkHk)vk−1 − Kkwk . (42)

Posteriori error covariance is

Pk|k = E[(x̃k|k)(x̃k|k)T ]. (43)

From (42)

Pk|k = E[((I − KkHk)Fk−1x̃k−1 + (I − KkHk)vk−1

− Kkwk)((I − KkHk)

× Fk−1x̃k−1 + (I − KkHk)vk−1 − Kkwk)
T ] (44)

= Pk|k−1 − KkHk − Pk|k−1HT
k K

T
k

+ KkHkPk|k−1HT
k Kk

T

+ KkMkRkMT
k K

T
k , (45)

where

Mk−1 = ∂fk−1(x̂k−1|k−1)

∂wk−1
. (46)
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Fig. 2 EKF algorithm flowchart

Kalman gain is optimized by minimizing tr(Pk|k)
with respect to Kk , i.e.,

∂Pk|k
∂Kk

= 0 (47)

(HkPk|k−1)
T − Pk|k−1HT

k + 2KkHkPk|k−1HT
k

+ 2KkMkRkMT
k = 0. (48)

Thus, the Kalman gain is

Kk = Pk|k−1HT
k (HkPk|k−1HT

k + MkRkMT
k )−1.

(49)

From (49) and (45), we have

Pk|k = (I − KkHk)Pk|k−1 − (I − KkHk)Pk|k−1

HT
k K

T
k + KkMkRkMT

k K
T
k (50)

= (I − KkHk)Pk|k−1 − (Pk|k−1HT
k

− Pk|k−1HT
k )Kk

T (51)

= (I − KkHk)Pk|k−1. (52)

Summary of the steps involved in EKF algorithm is
given in Table 3. (k|k − 1) denotes prior estimate and
(k|k) is the post estimate. I denotes identity matrix.
Figure 2 shows the block diagram representation of the
steps involve in EKF algorithm.

Table 3 EKF algorithm for nonlinear dynamical system

Algorithm 1: Extended Kalman filter

Initialization:

Initialize Pk−1|k−1, x̂k−1|k−1, Qk−1 and Rk .

Prediction step:

Calculate Fk−1 and Lk−1 using (13) and (24) respectively.

Calculate predicted mean x̂k|k−1

x̂k|k−1 = fk−1(x̂k−1|k−1,uk−1).

Evaluate the predicted covariance Pk|k−1:

Pk|k−1 = Fk−1Pk−1|k−1FT
k−1 + Lk−1Qk−1L

T
k−1.

Update step:

Calculate Hk and Mk using (33) and (46) respectively.

Compute the Kalman gain Kk :

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + MkRkMT
k

]−1
.

Compute estimated mean x̂k|k :
x̂k|k = x̂k|k−1 + Kk [zk − hk(x̂k|k−1)].
Compute the estimated covariance Pk|k :
Pk|k = [I − KkHk ]Pk|k−1.

3 Moving horizon estimation

MHE is widely used estimation method for linear and
nonlinear systems. In this method, the computational
burden is reduced by considering finite horizon of mea-
surement data. Also, it is non-trivial to summarize the
effect of discarded data on the current states,which is so
called arrival cost. As real-time implementation of full
information estimation is not feasible. To get over infi-
nite dimensionality, data size is bounded using moving
horizon approach. Formalism of MHE has following
form

lim
x0,{vk }τ−1

k=0

�τ (x0, {vk}) = lim
z,{vk }τ−1

k=τ−M

τ−1∑
k=τ−M

v′
kQ

−1vk

+w′
kR

−1wk + θτ−M (z),

(53)

where M denotes the horizon length.When (53) is sub-
jected to (1) and (2), it gives the solution of (2) i.e.,
xk := x(k; z at time k, {vk}k−1

k=τ−M ), vk is the process
noise vector which is varied from time τ −M to k − 1.
θτ−M (z) is the arrival cost, that summarizes the output
data zτ−m−1

k=0 which is a function of the state xτ−M . M
is the key parameter in MHE. Lower value of M leads
to large estimation error and larger value of horizon
length, on the other hand, corresponds to high computa-
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tional burden. Problem formulation forMHE is approx-
imated by the above filtering scheme and its posteriori
states and covariance matrix are recursively updated by
EKF method to obtain the optimal estimates.

4 Fractional-order calculus

Fractional-order modeling of the systems deals with
the modeling of the systems using fractional-order
derivative (FOD) of the state functions. FOC was
first introduced in 1695 by Leibniz, but it got atten-
tion amongst the researchers recently. In the litera-
ture, mainly, Grünwald–Letnikov, Riemann–Liouville
and Caputo defined FOC in the form of integer-
order derivatives [68]. Among these three, Grünwald–
Letnikov definition for FOD can be utilized for state
estimation of any system due to its compatibility with
Kalman filter and its variants [69]. Mathematically, it
can be formulated as

Dαx(t) = lim
τ→0

1

τα

t
T∑
j=0

(−1)α〈α, j〉x(t − jτ), (54)

where Dα and α are the integral-differential operator
and integral–differential-order, respectively. t

T is the
memory length. 〈α, j〉 is the Newton binomial coeffi-
cient which is formulated as

〈α, j〉 = 	(α + 1)

	( j + 1)(α − j + 1)
, (55)

where 	(.) is the Gamma function. Mathematically, it
is expressed as

	(α) =
∫ ∞

ζ=0
ζ α−1 e−ζdζ. (56)

Continuous time Grünwald–Letnikov FOD has the dis-
advantage that it can not be operated and implemented
on computer software as it is infinite dimensional. To
get over infinite dimensionality, Grünwald–Letnikov
FOD is converted to discrete form and truncated to
finite dimensional. Therefore, equation (54) is repre-
sented as

Dαxk = 1

τα
xk + 1

τα

L∑
j=0

(−1)α〈α, j〉xk− j . (57)

5 Kronecker product-based fractional-order
modeling of CMOS circuit

Figures 3 and 4 show the CMOS circuit and its equiv-
alent EKV model, respectively. Applying Kirchhoff’s

Fig. 3 CMOS circuit diagram

voltage law (KVL) and Kirchhoff’s current law (KCL)
and replacing the MOS transistor by EKV model, we
have

(C (1)
GS + C (1)

GS0
)

(
dαx3
dtα

− dαx1
dtα

)
+ (C (1)

GD + C (1)
GD0

)

×
(
dαx6
dtα

− dαx1
dtα

)

+ (C (1)
GB + C (1)

GB0
) ×

(
dαx2
dtα

− dαx1
dtα

)
= 0, (58)

(C (1)
GD + C (1)

GD0
)

(
dαx1
dtα

− dαx6
dtα

)

+ C (1)
BD

(
dαx2
dtα

− dαx6
dtα

)
= I (1)

DS + I (1)
DB, (59)

(CGS + C (1)
GS0

)

(
dαx1
dtα

− dαx3
dtα

)

+ C (1)
BS

(
dαx2
dtα

− dαx3
dtα

)
= −I (1)

DS, (60)

(C (2)
GS + C (2)

GS0
)

(
dαx5
dtα

− dαx1
dtα

)
+ (C (2)

GD

+ C (2)
GD0

)

(
dαx6
dtα

− dαx1
dtα

)

+ (C (2)
GB + C (2)

GB0
) ×

(
dαx4
dtα

− dαx1
dtα

)
= 0, (61)

(C (2)
GD + C (2)

GD0
)

(
dαx1
dtα

− dαx6
dtα

)
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Fig. 4 EKV equivalent circuit for CMOS

+ C (2)
BD

(
dαx4
dtα

− dαx6
dtα

)
= −I (2)

DS − I (2)
DB, (62)

(CGS + C (2)
GS0

)

(
dαx1
dtα

− dαx5
dtα

)

+ C (2)
BS

(
dαx4
dtα

− dαx5
dtα

)
= I (2)

DS, (63)

CGX

(
dαvin

dtα
− dαx1

dtα

)
+ VI N − x1

RI N
= 0, (64)

where x1, x2. . .x6 are the state variables such that x1 =
vG , x2 = v

(1)
B , x3 = v

(1)
S , x4 = v

(2)
B , x5 = v

(2)
S and x6 =

vD . CGD , CGS and CGB denote the drain to channel
capacitance, source to channel capacitance and base
to channel capacitance for MOSFETs used in CMOS.
COX is oxide capacitance. Drain currents I (1)

D and I (2)
D

for n-type and p-type MOSFET are

I (1)
D = I (1)

DS + I (1)
DB, (65)

I (2)
D = I (2)

DS + I (2)
DB . (66)

As I (1)
DB

∼= 0, I (2)
DB

∼= 0, therefore I (1)
D

∼= I (1)
DS ,

I (2)
D

∼= I (2)
DS . Expression of drain current in weak inver-

sion using EKV model [10–12] for n-type and p-type
MOSFETs are

I (1)
D = I (1)

DS = I0
W (1)

L(1)
e

v
(1)
GB−VT0

ηVT

(
e
− v

(1)
SB
VT − e

− v
(1)
DB
VT

)
,

(67)

I (2)
D = I (2)

DS = I0
W (2)

L(2)
e

v
(2)
BG−VT0

ηVT

(
e
− v

(2)
BS
VT − e

− v
(2)
BD
VT

)
,

(68)

where W (1)

L(1) and W (2)

L(2) represent the aspect ratio, VT0 is
the equilibrium threshold voltage and VT denotes the
thermal voltage, respectively. I0 and η are the unary
specific current and subthreshold slope factor, respec-
tively.

Equations (67) and (68) are expanded usingMaclau-
rin series while keeping the quadratic terms as

I (1)
D = I0

W (1)

L(1)

{(
x6 − x3
VT

)
(
1 − VT0

η1VT
+ V 2

T0

2η21V
2
T

− 1

6

V 3
T0

η31V
3
T

)}

+ I0W (1)

V 2
T L

(1)
{(x3x3 − x6

×x6 − 2x3x2 + 2x6x2 − x6x3 + x3x6)

×
(
1 − VT0

η1VT
+ V 2

T0

2η21V
2
T

− 1

6

V 3
T0

η31V
3
T

)}

+ I0W (1)

VT L(1)
{(x1x6 − x2x6 − x1x3 + x2x3)

×
(

1

η1VT
− 2VT0

η21V
2
T

+ 3V 2
T0

η31V
3
T

)}
, (69)
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I (2)
D = I0

W (2)

L(2)

{(
x5 − x6
VT

)

×
(
1 − VT0

η2VT
+ V 2

T0

2η22V
2
T

− 1

6

V 3
T0

η32V
3
T

)}

+ I0W (2)

V 2
T L

(2)
{(x5x5 − x6

× x6 − 2x4x5 + 2x4x6 − x5x6 + x6x5)

×
(
1 − VT0

η2VT
+ V 2

T0

2η22V
2
T

− 1

6

V 3
T0

η32V
3
T

)}

+ I0W (2)

VT L(2)
{(x6x1 − x6x4 − x5x1 + x5x4)

×
(

1

η2VT
− 2VT0

η22V
2
T

+ 3V 2
T0

η32V
3
T

)}
. (70)

Now, the input is modeled as O.U. process [52] as

dvin

dt
= −γ j vin + σ j ρ j N j , (71)

where γ j , σ j and ρ j are the constants values. N j

denotes the Gaussian process with zero mean and vari-
ance is equal to unity. The input is modeled such that it
accounts the Gaussian process and the Brownian pro-
cess. Thus,

dvin = −γ j vindt + σ j ρ j dβ j , (72)

where β j (t) is the Brownian motion process. Using

C (1)
GS + C (1)

GS0
= C (1)

S , C (1)
GD + C (1)

GD0
= C (1)

D , C (1)
GB +

C (1)
GB0

= C (1)
B , C (2)

GS + C (2)
GS0

= C (2)
S , C (2)

GD + C (2)
GD0

=
C (2)
D , C (2)

GB + C (2)
GB0

= C (2)
B . Now, the differential

equations (58)–(64) are converted to fractional-order
stochastic differential equations (SDE) as

dαx1
dtα

= − x1
RI NCGX

+ VI N

RI NCGX
− γ1vin + σ1ρ1N1,

(73)
dαx3
dtα

=
[
− k2x1
RI NCGX

+ k1k7 (x6 − x3) − k1k7
VT

x3x2

+ k1k7
VT

x6x2 + k1k7
2VT

(−x6x3 + x3x6)

+ k1k8(x1x6 − x1x3) + k1k8(x2x3 − x2x6)

+ k1k7
2VT

(x3x3 − x6x6)

]

+ k2{−γ2vin + σ2ρ2N2} + k2VI N

RI NCGX
, (74)

dαx2
dtα

=
[
− k4x1
RI NCGX

+ k3k7 (x6 − x3) − k3k7
VT

x3x2

+ k3k7
VT

x6x2 + k3k7
2VT

(−x6x3 + x3x6)

+ k3k8(x1x6 − x1x3) + k3k8(x2x3 − x2x6)

+ k3k7
2VT

(x3x3 − x6x6)

]

+ k4{−γ3vin + σ3ρ3N3} + k4VI N

RI NCGX
, (75)

dαx5
dtα

=
[
− k10x1
RI NCGX

+ k9k13 (x5 − x6)

− k9k13
VT

x4x5 + k9k13
VT

x4x6

+ k9k13
2VT

(−x5x6 + x6x5)

+ k9k14(x6x1 − x5x1) + k9k14(x5x4 − x6x4)

+ k9k13
2VT

(x5x5 − x6x6)

]

+ k10{−γ4vin + σ4ρ4N4} + k10VI N

RI NCGX
, (76)

dαx4
dtα

=
[
− k12x1
RI NCGX

+ k11k13 (x5 − x6)

− k11k13
VT

x4x5 + k11k13
VT

x4x6

+ k11k13
2VT

(−x5x6 + x6x5)

+ k11k14(x6x1 − x5x1) + k11k14(x5x4 − x6x4)

+ k11k13
2VT

(x5x5 − x6x6)

]

+ k12{−γ5vin + σ5ρ5N5} + k12VI N

RI NCGX
, (77)

dαx6
dtα

=
[
− k6x1
RI NCGX

+ k5k7 (x6 − x3) − k5k7
VT

x3x2

+ k5k7
VT

x6x2

+ k5k7
2VT

(−x6x3 + x3x6) + k5k8(x1x6 − x1x3)

+ k5k8(x2x3 − x2x6)

+ k5k7
2VT

(x3x3 − x6x6)

]
+ k6{−γ6vin

+ σ6ρ6N6} + k6VI N

RI NCGX
, (78)

z = x6, (79)

where
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k1 = C(1)
D (C(1)

BS + C(1)
BD){

C(1)
S C(1)

BD(C(1)
S + C(1)

BS) + C(1)
S C(1)

BS(C
(1)
S + C(1)

BD)
} ,

k2 = C(1)
D

C(1)
S

{
C(1)
S C(1)

D C(1)
BS − C2

SC
(1)
BD + C(1)

BD(C(1)
S + C(1)

BS)(C
(1)
S + C(1)

D + C(1)
B )

C(1)
D C(1)

BD(C(1)
S + C(1)

BS) + C(1)
S C(1)

BS(C
(1)
D + C(1)

BD)

}
+ C(1)

S + C(1)
D + C(1)

B

C(1)
S

,

k3 = C(1)
D (C(1)

S + C(1)
BS)(C

(1)
S C(1)

BS + C(1)
S C(1)

BD)

C(1)
S C(1)

BS(C
(1)
BDC

(1)
S (−C(1)

S − C(1)
BS) + C(1)

S C(1)
BS(−C(1)

D − C(1)
BD))

− 1

C(1)
BS

,

k4 =
[

C(1)
D (C(1)

S + C(1)
BS){−C(1)

S C(1)
D C(1)

BS − C(1)
S C(1)

BD(C(1)
S + C(1)

BS)}
C(1)
S C(1)

BS{C(1)
S C(1)

BD(−C(1)
S − C(1)

BS) + C(1)
S C(1)

BS(−C(1)
D − C(1)

BD)}
− C(1)

S

C(1)
BS

+ (C(1)
S + C(1)

B + C(1)
D )(C(1)

S + C(1)
BS)

C(1)
S C(1)

BS

+ C(1)
D (C(1)

S + C(1)
BS){−C(1)

BD(C(1)
S + C(1)

D + C(1)
B )(C(1)

S + C(1)
BS)}

C(1)
S C(1)

BS{C(1)
S C(1)

BD(−C(1)
S − C(1)

BS) + C(1)
S C(1)

BS(−C(1)
D − C(1)

BD)}

]
,

k5 = C(1)
S (C(1)

BS + C(1)
BD)

C(1)
D C(1)

BD(−C(1)
S − C(1)

BS) + C(1)
S C(1)

BS(−C(1)
D − C(1)

BD)
,

k6 = −C(1)
S C(1)

D C(1)
BS + C2

SC
(1)
BD + C(1)

BD(−C(1)
S − C(1)

BS)(C
(1)
S + C(1)

D + C(1)
B )

C(1)
D C(1)

BD(−C(1)
S − C(1)

BS) + C(1)
S C(1)

BS(−C(1)
D − C(1)

BD)
,

k7 = I0
VT

W (1)

L(1)

(
1 − VT0

η1VT
+ V 2

T0

2η21V
2
T

− 1

6

V 3
T0

η31V
3
T

)
,

k8 = I0
VT

W (1)

L(1)

(
1

η1VT
− VT0

η21V
2
T

+ V 2
T0

2η31V
3
T

)
,

k9 = C(2)
D (C(2)

BS + C(2)
BD){

C(2)
S C(2)

BD(C(2)
S + C(2)

BS) + C(2)
S C(2)

BS(C
(2)
S + C(2)

BD)
} ,

k10 = C(2)
D

C(2)
S

{
C(2)
S C(2)

D C(2)
BS − C2

SC
(2)
BD + C(2)

BD(C(2)
S + C(2)

BS)(C
(2)
S + C(2)

D + C(2)
B )

C(2)
D C(2)

BD(C(2)
S + C(2)

BS) + C(2)
S C(2)

BS(C
(2)
D + C(2)

BD)

}
+ C(2)

S + C(2)
D + C(2)

B

C(2)
S

,

k11 = C(2)
D (C(2)

S + C(2)
BS)(C

(2)
S C(2)

BS + C(2)
S C(2)

BD)

C(2)
S C(2)

BS(C
(2)
BDC

(2)
S (−C(2)

S − C(2)
BS) + C(2)

S C(2)
BS(−C(2)

D − C(2)
BD))

− 1

C(2)
BS

,

k12 =
[

C(2)
D (C(2)

S + C(2)
BS){−C(2)

S C(2)
D C(2)

BS − C(2)
S C(2)

BD(C(2)
S + C(2)

BS)}
C(2)
S C(2)

BS{C(2)
S C(2)

BD(−C(2)
S − C(2)

BS) + C(2)
S C(2)

BS(−C(2)
D − C(2)

BD)}
− C(2)

S

C(2)
BS

+ (C(2)
S + C(2)

B + C(2)
D )(C(2)

S + C(2)
BS)

C(2)
S C(2)

BS

+ C(2)
D (C(2)

S + C(2)
BS){−C(2)

BD(C(2)
S + C(2)

D + C(2)
B )(C(2)

S + C(2)
BS)}

C(2)
S C(2)

BS{C(2)
S C(2)

BD(−C(2)
S − C(2)

BS) + C(2)
S C(2)

BS(−C(2)
D − C(2)

BD)}

]
,

k13 = I0
VT

W (2)

L(2)

(
1 − VT0

η2VT
+ V 2

T0

2η22V
2
T

− 1

6

V 3
T0

η32V
3
T

)
, k14 = I0

VT

W (2)

L(2)

(
1

η2VT
− VT0

η22V
2
T

+ V 2
T0

2η32V
3
T

)
.
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Vector form are obtained using Taylor series expan-
sion to retain the quadratic terms from the nonlinear
function f(.) to give

Dαx(t) =A1x(t) + A2(x(t) ⊗ x(t)) + A3u1(t)

+ A4u2(t) + A5(x(t) ⊗ u(t))

+ A6N(t) + A7(x(t) ⊗ N(t)), (80)

where x(t) = [
x1 x2 x3 x4 x5 x6

]T
,

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1
RI N CGX

0 0 0 0 0

− k2
RI N CGX

−k1k7 0 0 0 k1k7
− k4

RI N CGX
−k3k7 0 0 0 k3k7

− k10
RI N CGX

0 0 k9k13 0 −k9k13
− k12

RI N CGX
0 0 k11k13 0 −k11k13

− k6
RI N CGX

−k5k7 0 0 0 k5k7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 −k1k8 0 0 k1k8 0 0 k1k8 0 0 −k1k8 0 − k1k7

VT
k1k7
2VT

0 0 k1k7
2VT

0 0 0 0 0 0 0 0 0 0 0 0 0 k1k7
VT

− k1k7
2VT

0 0 − k1k7
2VT

0 0 −k3k8 0 0 k3k8 0 0 k3k8 0 0 −k3k8 0 − k3k7
VT

k3k7
2VT

0 0 k3k7
2VT

0 0 0 0 0 0 0 0 0 0 0 0 0 k3k7
VT

− k3k7
2VT

0 0 − k3k7
2VT

0 0 0 0 0 0 0 0 0 0 0 k9k13
VT

0 0 0 0 0 0 0 0 − k9k13
VT

0 0 0 −k9k14 0 0 k9k14
k9k13
2VT

− k9k13
2VT

k9k14 0 0 −k9k14
k9k13
2VT

− k9k13
2VT

0 0 0 0 0 0 0 0 0 0 0 k11k13
VT

0 0 0 0 0 0 0 0 − k11k13
VT

0 0 0 −k11k14 0 0 k11k14
k11k13
2VT

− k11k13
2VT

k11k14 0 0 −k11k14
k11k13
2VT

− k11k13
2VT

0 0 −k5k8 0 0 k5k8 0 0 k5k8 0 0 −k5k8 0 − k5k7
VT

k5k7
2VT

0 0 k5k7
2VT

0 0 0 0 0 0 0 0 0 0 0 0 0 k5k7
VT

− k5k7
2VT

0 0 − k5k7
2VT

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

A3 =
[

−γ1 −γ2k2 −γ3k4 −γ4k10 −γ5k12 −γ6k6
]T

,

A4 =
[

1
RI N CGX

k2
RI N CGX

k4
RI N CGX

k10
RI N CGX

k12
RI N CGX

k6
RI N CGX

]T
,A5 = 0, ,

A6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ1σ1 0 0 0 0 0
0 ρ2σ2 0 0 0 0
0 0 ρ3σ3 0 0 0
0 0 0 ρ4σ4 0 0
0 0 0 0 ρ5σ5 0
0 0 0 0 0 ρ6σ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and A7 = 0. Input source u1 = vin , u2 = VI N .

N j (t) = [
N1(t) N2(t) N3(t) N4(t) N5(t) N6(t)

]T
.

6 Kronecker product-based fractional-order
system representation using WT method

The measurement model is expressed as:

dy(t)
dt

= Gx(t) + σN(t), (81)

where

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

σ is the nonzero constant value and N(t) denotes the
zero mean white Gaussian process. x(t) is represented

using wavelet basis and selecting minimum and max-
imum frequency of operation. The wavelet method is
applied either directly to estimate the entire set of the
state variables or another way is to formulate a square
non-singular matrix. Representing dα(.)

dtα = Dα(.), thus,
the latter case is formulated as

x(t) ≈ G−1Dαy(t) (82)

and so

D2αy(t) ≈ G Dαx(t)

≈ GA1x(t) + GA2(x(t) ⊗ x(t))

+ G(A3u1(t) + A4u2(t))

+ GA5(x(t) ⊗ u(t)). (83)

The signalsDαy(t) andD2αy(t) are expressed using
wavelets as

Dαy(t) ≈
∑
i,k

cDαy(t)[i, k]�i,k(t), (84)

D2αy(t) ≈
∑
i,k

cD2αy(t)[i, k]�i,k(t). (85)

Substituting (84) and (85) into (83) and omitting noise
terms, we have

∑
i,k

cD2αy(t)[i, k]�i,k(t)

≈
∑
i,k

GA1G−1cDαy(t)[i, k]�i,k(t)
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+
∑
i,k

GA2(G−1 ⊗ G−1)(cDαy(t)[i, k] ⊗ cDαy(t)[i, k])

× �i,k(t)�m,r (t) + GA3u1(t) + GA4u2(t)

+
∑
i,k

GA5(G−1 ⊗ I)(I ⊗ u(t))

× cDαy(t)[i, k]�i,k(t), (86)

where

cDαy(t)[i, k] ≈
∫ T

0
Dαy(t)�i,k(t)dt

= < Dαy, �i,k >= Dαy[i, k]. (87)

Now, the inner product is computed with �p,q on (86)
as

∑
i,k

cD2αy[i, k] < �i,k , �p,q >

≈
∑
i,k

GA1G−1cDαy[i, k] < �i,k , �p,q >

+
∑

n,k,m,r

GA2(G−1 ⊗ G−1)

cDαy[i, k] ⊗ cDαy[m, r ] < �i,k , �m,r , �p,q >

+ GA3u1[p, q] + GA4u2[p, q]
+

∑
i,k

GA5(G−1 ⊗ I)(I ⊗ u(t))cDαy[i, k] < �i,k , �p,q >,

(88)

where the inputu(t) = ∑
u[i, k]�i,k(t), i.e.,u[i, k] =<

u, �i,k >. Equation (88) can be formulated as

cD2αy[p, q] =
∑
i,k

m1[p, q|i, k] cDαy[i, k]

+ δ
∑

i,k,m,r

m2[p, q|i, k,m, r ](cDαy[i, k]

⊗ cDαy[m, r ]) +
∑
i,k

m3[p, q|i, k]u[i, k],

(89)

where m1, m2 and m3 are formulated in terms of G,
A1, . . . ,A5. m1, m2 depend on �, so we write

cD2αy[p, q] =
∑
i,k

m1[p, q|i, k,�]cDαy[i, k]

+ δ
∑

i,k,m,r

m2[p, q|i, k,m, r,�]

× (cDαy[i, k] ⊗ cDαy[m, r ])
+

∑
n,k

m3[p, q|i, k]u[i, k]. (90)

Now, the perturbation method is applied and O(δ2)

terms are retained as

cD2αy[i, k] = c(0)
D2αy[i, k] + δc(1)

D2αy[i, k]
+ δ2c(2)

D2αy[i, k] + O(δ3). (91)

Comparing the coefficients of δ(0), δ(1), δ(2) respec-
tively gives

c(0)
D2αy[p, q] =

∑
i,k

m1[p, q|i, k,�]c(0)
Dαy[i, k]

+
∑
i,k

m3[p, q|i, k,�]u[i, k], (92)

c(1)
D2αy[p, q] =

∑
i,k,m,r

m2[p, q|i, k,m, r ](c(0)
Dαy[i, k]

⊗ c(0)
Dαy[m, r ]) + m1c

(1)
Dαy[p, q|i, k]

�=m2(c
(0)
Dαy ⊗ c(0)

Dαy)[p, q]
+ m1c

(1)
Dαy[p, q], (93)

c(2)
D2αy[p, q] = m1c

(2)
Dαy[p, q] + m2(c

(0)
Dαy ⊗ c(1)

Dαy

+ c(1)
Dαy ⊗ c(0)

Dαy)[p, q], (94)

where c(0)
Dαy[i, k], c(1)

Dαy[i, k] and c(2)
Dαy[i, k] are obtained

fromWTofDαy(0)[i, k],Dαy(1)[i, k] andDαy(2)[i, k],
respectively, by equatingO(δ0),O(δ1) andO(δ2) vari-
ations expressed in y(t).

The gradient search algorithm can also be used esti-
mate � to minimize

ξ(�) =
∑
p,q

||cD2αy[p, q] −
∑
n,k

m1[p, q|i, k,�]cDαy[i, k]

−
∑

i,k,m,r

m2[p, q|i, k,m, r,�]

× (cDαy[i, k] ⊗ cDαy[m, r ])
−

∑
i,k

m3[p, q|i, k]u[i, k]||2. (95)

7 Applying EKF to MOSFET circuit

Discrete time equations of (73)–(79) in the form of
state space model can be formulated as

xk = fk−1(xk−1,uk−1,Nk−1), (96)

zk = hk(xk). (97)
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Kronecker product-based representation of the equa-
tion (96) in terms of fractional-order CMOS model is
represented as

xk = F(1)
k−1xk−1 + F(2)

k−1(xk−1 ⊗ xk−1) + B(1)
k−1u1

+ B(2)
k−1u2 + Zk−1Nk−1

+
L∑

l=2

(−1)l�α
l xk−l+1, (98)

where

xk =
[
x1 x2 x3 x4 x5 x6

]T
,

F(1)
k−1 = ∂α fk−1 (x̂k−1|k−1 ,uk−1 )

∂xα
k−1

(99)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α − T α
s

RI N CGX
0 0 0 0 0

− T
α2
s k2

RI N CGX
α − T α

s k1k7 0 0 0 T α
s k1k7

− T α
s k4

RI N CGX
−T α

s k3k7 α 0 0 T α
s k3k7

− T α
s k10

RI N CGX
0 0 α + T α

s k9k13 0 −T α
s k9k13

− k12 T α
s

RI N CGX
0 0 T α

s k11k13 α −T α
s k11k13

− k6 T α
s

RI N CGX
−T α

s k5k7 0 0 0 α + T α
s k5k7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (100)

F(2)
k−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 −T α
s k1k8 0 0 T α

s k1k8 0 0 T α
s k1k8 0 0 −T α

s k1k8 0 − T α
s k1 k7
VT

T α
s k1 k7
2VT

0 0 T α
s k1 k7
2VT

0 0 0 0 0 0 0 0 0 0 0 0 0 T α
s k1 k7
VT

− T α
s k1 k7
2VT

0 0 − T α
s k1 k7
2VT

0 0 −T α
s k3k8 0 0 T α3

s k3k8 0 0 T α
s k3k8 0 0 −T α

s k3k8 0 − T α
s k3 k7
VT

T α
s k3 k7
2VT

0 0 T α
s k3 k7
2VT

0 0 0 0 0 0 0 0 0 0 0 0 0 T α
s k3 k7
VT

− T α
s k3 k7
2VT

0 0 − T α
s k3 k7
2VT

0 0 0 0 0 0 0 0 0 0 0 T α
s k9 k13
VT

0 0 0 0 0 0 0 0 − T α
s k9 k13
VT

0 0 0 −T α
s k9k14 0 0 T α

s k9k14
T α
s k9 k13
2VT

− T α
s k9 k13
2VT

T α
s k9k14 0 0 −T α

s k9k14
T α
s k9 k13
2VT

− T α
s k9 k13
2VT

0 0 0 0 0 0 0 0 0 0 0 T α
s k11 k13
VT

0 0 0 0 0 0 0 0 − T α
s k11 k13
UT

0 0 0 −T α
s k11k14 0 0 T α

s k11k14
T α
s k11 k13
2VT

− T α
s k11 k13
2VT

T α
s k11k14 0 0 −T α

s k11k14
T α
s k11 k13
2VT

− k11 k13
2VT

0 0 −T α
s k5k8 0 0 T α

s k5k8 0 0 T α
s k5k8 0 0 −T α

s k5k8 0 − T α
s k5 k7
VT

T α
s k5 k7
2VT

0 0 T α
s k5 k7
2VT

0 0 0 0 0 0 0 0 0 0 0 0 0 T α
s k5 k7
VT

− T α
s k5 k7
2VT

0 0 − T α
s k5 k7
2VT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B(1)
k−1 = ∂α fk−1 (x̂k−1|k−1 ,uk−1 )

∂uα
1

(101)

=
[

−γ1T α
s −γ2k2T α

s −γ3k4T α
s −γ4k10T α

s −γ5k12T α
s −γ6k6T α

s

]T
, (102)

B(2)
k−1 = ∂α fk−1 (x̂k−1|k−1 ,uk−1 )

∂uα
2

(103)

=
[

T α
s

RI N CGX

k2 T α
s

RI N CGX

k4 T α
s

RI N CGX

k10 T α
s

RI N CGX

k12 T α
s

RI N CGX

k6 T α
s

RI N CGX

]T
, (104)

Zk−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1σ1T α
s 0 0 0 0 0

0 ρ2σ2T α
s 0 0 0 0

0 0 ρ3σ3T α
s 0 0 0

0 0 0 ρ4σ4T α
s 0 0

0 0 0 0 ρ5σ5T α
s 0

0 0 0 0 0 ρ6σ6T α
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (105)

where Ts is sampling time period. βk is the Brownian
motion noise which is expressed as

N j = [
N1 N2 N3 N4 N5 N6

]T
,

and �α
l = diag[〈α, l〉, 〈α, l〉, 〈α, l〉, 〈α, l〉, 〈α, l〉,

〈α, l〉].
Measurement model is

zk = Hkxk, (106)

where

Hk = ∂αhk(fk−1(x̂k−1|k−1))

∂xα
k

(107)

= [
0 0 0 0 0 1

]
. (108)

EKFmethod has been applied to the equations by intro-
ducing process noise vk and measurement noise wk to
(98) and (106), respectively, which can be expressed as

xk = F(1)
k−1xk−1 + F(2)

k−1(xk−1 ⊗ xk−1) + B(1)
k−1u1

+ B(2)
k−1u2 + Zk−1Nk−1

+
L∑

l=2

(−1)l�α
l xk−l+1 + vk−1, (109)

zk = Hkxk + wk . (110)

8 Results and discussion

In this paper, output voltage of CMOS circuit has
been estimated using EKF inMATLAB software when

nonlinear dynamics are represented using Kronecker
product. The estimated output using EKF has been
compared with WT method which is based on Kro-
necker product. For this, the least mean squaresmethod
is used for the estimation using Kronecker product-
based WT method. In both the cases, CMOS circuit
is modeled using fractional-order calculus. Maximum
input voltage is 10 mV. Following are the parame-
ters which has been used for PSPICE simulations:
VT = 0.0256V , VT0 = 0.5V , RI N = 3 k�, CGX =
1.0 × 10−11, C (1)

S = C (2)
S = 1.5 × 10−10F , C (1)

D =
C (2)
D = 1.5 × 10−10F , C (1)

B = C (2)
B = 4 × 10−10F ,

C (1)
BS = C (2)

BS = 0.99 × 10−11F , C (1)
BD = C (1)

BD =
1.0 × 10−11F , I0 = 1.0 × 10−9A, η1 = η2 = 1,
ρ j = 1 and γ j = 1. The covariance of process noise,
Qk = diag[10−8 10−6 10−8 10−6 10−8 10−5],
the covariance ofmeasurement noise,Rk = 0.5×10−6.
Covariance matrix Pk|k should not be singular as it
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Fig. 5 Output voltage estimation (1) EKF (2) LMS on WT-based Kronecker product. Input voltage frequency is 1000 Hz. Fractional-
order parameter α = 1
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Fig. 6 Output voltage estimation (1) EKF (2) LMS on WT-based Kronecker product. Input voltage frequency is 1000 Hz. Fractional-
order parameter α = 0.8

will affect the convergence. Covariance matrix P0|0 =
Cov(x(0)) = Qk . Initial state estimate x0|0 = 0.

From Figs. 5 and 6, it can be seen that Kronecker
product-based EKF smoothens better when compared
with WT method based on Kronecker product-based
representation for different value of fractional-order
parameter α and white Gaussian noise with μ = 0,
σ 2 = 0.001 is added with input. Figures 7 and 8 show
the estimated output using MHE approach for differ-
ent values of α. Their estimation error is compared
in terms of root-mean-square error (RMSE). RMSE is
computed using

RMSE =
√√√√ 1

N

N∑
k=1

e2k (111)

where ek denotes the estimation error. It is the differ-
ence between the actual output value (simulated output
values) and the estimated output value. Total number
of samples are N .

Table 4 shows the RMSE of estimated output using
EKF and WT method when maximum CMOS input
is 10 mV for different value of fractional parameter
α. Table 5 shows the RMSE of estimated output using
MHEapproach for different values of fractional param-
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Fig. 7 Output voltage estimation usingMHE for (1) M = 1, (2) M = 3. Input voltage frequency is 1000 Hz. Fractional order parameter
α = 1
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Fig. 8 Output voltage estimation usingMHE for (1) M = 1, (2) M = 3. Input voltage frequency is 1000 Hz. Fractional order parameter
α = 0.8

eter α and horizon length M . It can be observed that
MHE method gives better estimation for larger value
of horizon length M . Also, MHE is less sensitive to
the poor initial values and has faster convergence to
the actual output values as compared to EKF and WT
method.

Remarks

1. x(t) can be expanded using wavelet basis as

x(t) =
∑

N1≤i≤N2,kmin(i)≤k≤kmax(i)

c(i, k)�i,k(t),

(112)
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where resolution range [N1, N2] depends on fre-
quency of operation and the measured time duration
and the mother wavelet �i,k(t) is given by

�i ,k(t) = 2
i
2 �(2i t − k). (113)

Themother wavelet is oscillatory and has zeromean
value which can be expressed as
∫ ∞

−∞
ψ(t)dt = 0. (114)

Also, this function needs to satisfy the admissibility
condition
∫ ∞

−∞
|ψ̂(ω)|2

|ω| dω = 0. (115)

The admissibility condition allows the reconstruc-
tion of the original signal using inverse WT.
The wavelets can be classified as: (1) continuous
wavelet transform (CWT) and (2) discrete wavelet
transform (DWT). The CWT maps a function f (t)
onto time scale space by

W f < a, b >=
∫ ∞

−∞
ψa, b(t) f (t)dt (116)

= < ψa, b(t), f (t) > . (117)

The CWT uses the translations and dilations of
a prototype or mother function ψ(t). CWT is
described by the following equation

X ( a, b) = 1

|a| 12
∫ ∞

−∞
x(t)ψ∗

(
t − b

a

)
dt,

a > 0, b ∈ R, (118)

where ψ(t) is the mother wavelet. a is the scal-
ing parameter. b is the translation parameter. ∗
denotes the complex conjugate. a > 1 gives dilated
wavelet. a < 1 gives contracted wavelet. 1

|a| 12
is

the energy normalization factor. Wavelets are math-
ematical functions that decompose the data into dif-
ferent frequency components and then analyze each
component with a resolution matched to its scale.
In DWT, scaling and translation parameters are dis-
cretized, a = 2n , b = 2n k. So the DWT is

ψn, k(t) = 2
−n
2 ψ(2−nt − k), j, k ∈ Z. (119)

The orthonormal wavelets satisfy the condition:-

∫ ∞

−∞
ψn, k(t)ψn′, k′(t)dt

=
{
1, if n = n′ and k = k′;
0, Otherwise.

(120)

Mother wavelet ψ can be reconstructed from the
”scaling sequence” for different type of wavelets
(Daubechies wavelet, Haar wavelet, Shannon
wavelet etc.)which have specific properties required
for specific kinds of applications. Daubechies
wavelets are discrete time orthogonal wavelets.
The scaling and wavelet functions of Daubechies
wavelets have longer supports, which offers
improved capability of these transformations. These
transformations offer powerful tool for various sig-
nal processing such as compression, noise removal,
and image enhancement.

2. Consider that mother wavelet is concentrated on
range [a, b]. Let ωmin and ωmax are the lowest and
the highest operating frequency. Consider [0, τ ] is
the measurement time span. Then, for a specified
resolution index i , the extent of the transition index
k is chosen such that a ≤ 2i t − k ≤ b, t ∈ [0, τ ].
Therefore, 2i t − b ≤ k ≤ 2i , t − a, t ∈ [0, τ ] or
−b ≤ k ≤ 2i T − a, t ∈ [0, τ ]. Wavelet frequency
�n,k(t) is mathematically expressed as∣∣∣∣∣

d�n,k (t)
dt

�n,k(t)

∣∣∣∣∣ = 2n
∣∣� ′(2nt − k)

∣∣
|�(2nt − k)|

× ∈ [2nλmin, 2
nλmax], (121)

where

λmax = max
t

|� ′(t)|
|�(t)| , (122)

λmin = min
t

|� ′(t)|
|�(t)| , (123)

so the resolution indexes N1, N2 must be chosen
such that

2N2λmax ≈ ωmax

2π
, (124)

2N1λmin ≈ ωmin

2π
, (125)

or

N1 ≈ log2

(
ωmin

2πλmin

)
, (126)

N2 ≈ log2

(
ωmax

2πλmax

)
. (127)

Now, resolution index range is selected using this
method enables us to reserve lesser data for estima-
tion purpose, i.e., estimation is done using compres-
sion.
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3. When the non-Gaussian distribution is added with
Gaussian noise of measured output which is so
called outlier. This can be considered into EKF for-
malism. As EKF is obtained from Kushner Kallain-
pur filter of infinite dimensional when the states are
Markov process and the measurement noise con-
sidered as Gaussian process. However, for non-
Gaussian measurement noise also, the nonlinear fil-
ter can be formulatedwhich is based on theBayesian
method for computing the conditional probabilities
using non-Gaussian PDFs. The method is based on
the fact that, although themeasurement noise is non-
Gaussian, it is white and the state process is Markov
process. Consider a discrete state model

θm+1 = f(θm,um+1) + vm+1, (128)

z(m) = h(θm) + wm, (129)

zm = z(m); k ≤ m. (130)

Bayesian arguments can help in developing nonlin-
ear filter for non-Gaussian measurement noise for
which states are Markov process.

p(θm+1|zm+1) = p(θm+1, zm+1)

p(zm+1)
= p(z(m + 1), zm , θm+1)

p(zm+1)
(131)

=
∫
p(z(m + 1)|θm+1)p(θm+1|θm)p(θm |zm)dθm∫

p(z(m + 1)|θm+1)p(θm+1|xm)p(θm |zm)dθmdθm+1
(132)

=
∫
pwm+1 (z(m + 1) − h(θm+1))pvm+1 (θm+1 − f (θm ,um+1))p(θm |zm)dθm∫

pwm+1 (z(m + 1) − h(θm+1))pvm+1 (θm+1 − f(θm ,um+1))p(θm |zm)dθmdθm+1
(133)

θ̂m+1|m+1 = argmax
θ

∫
pwm+1 (z(m + 1) − h(θ))pvm+1 (θ

− f(θm ,um+1))p(θm |zm)dθm . (134)

It should be noted that z(m) denotes the instanta-
neous measurement at the time n, while zm = {zk :
k ≤ m} is the aggregate of all measurements taken
up to time m.
On the other hand, joint conditional density in case
of MHE is expressed using Bayesian rule as

p (θm |zm) ∝ p (zm |θm) p (θm |z1:k−m) , (135)

where θm be theMarkovian sequence.The joint con-
ditional density for first and second orders are

p (θm |zm) = c1

k∏
j=k−m+1

p(z j |θ j )

k∏
j=k−m+1

p(θ j+1|θ j )p(θ k−m+1|z1:k−m),

(136)

p (θm |zm) =c2

k∏
j=k−m+1

e

(
− 1

2 ||z j−h(θ j )||2R−1

)

k∏
j=k−m+1

e

(
− 1

2 ||θ j+1−f(x j )||2Q−1

)

× p(θ k−m+1|z1:k−m), (137)

respectively, where c1 and c2 are the constants,
p(z j |θ j ) is the likelihood function for each mea-
sured value around horizon. It should be noted that
state transition density function pw(θk+1− f (θk)) is
N (0,Qk) and likelihood function pv(zk+1−h(θk))

isN (0,Rk). The negative logarithmic formof (137)
is

minθm

∏k
j=k−m+1 ||z j − h(θ j )||2R−1

+ ∏k
j=k−m+1 ||θ j+1 − f(x j )||2Q−1

− ln p(θk−m+1|z1:k−m). (138)

To obtain the optimal estimates, (138) is minimized.
4. Stability of EKF depends on selection of measure-

ment noise variance Rk . If Rk is taken very small
with respect to some matrix norm, then correspond-
ing R−1

k will be very large and will cause numeri-
cal instability. Thus, Rk is chosen such that system
remains stable.

9 Conclusions

In this paper, output voltage of CMOS circuit is esti-
mated using MHE, EKF and WT method. For this,
MOSFET used in CMOS circuit are modeled using the
EKV model. Fractional-order calculus is used to get
better reliability of the circuit. To get better estimates,
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the nonlinear dynamical system is mathematically
expressed in terms of Kronecker-based representation.
The estimated output voltage usingMHE approach and
Kronecker product-based EKF method has been com-
pared with the Kronecker product-based WT method
for the nonlinear dynamical system, for which least
mean squares has been used for state estimation. RMSE
is computed for different value of fractional-order
parameter α. The simulation results validate the better
performance of MHE and EKFmethod as compared to
WTmethod and compared to the EKF, the MHE is less
sensitive to the poor initial values and has faster con-
vergence to the actual output values. Replacement of
integer-order by fractional-order element leads to sev-
eral precedences since more parameters are included.
These parameters help to improve the performance and
intensify the novel behaviorwhich lead to circuit design
and controlwith better flexibility. Theproposedmethod
is valid to any type of fractional-order nonlinear sys-
tem for the estimation purpose. It should be noted that
proposed algorithm should be analyzed by uncertain-
ties and non-Gaussian noise often peculiar to applica-
tions. Although, error divergence in estimation using
Kronecker product-based representation in EKF algo-
rithm needs further investigations. We are planning to
report the these results also in near future. Also, inves-
tigation of the non-Gaussian noise effect in the process
and measurement model of fractional-order circuit and
application of Monte Carlo particle filters to obtain the
optimal estimates is another scope for future research.
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