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Abstract A weak character signal with low fre-

quency can be detected based on the mechanism of

vibrational resonance (VR). The detection perfor-

mance of VR is determined by the synergy of a weak

low-frequency input signal, an injected high-fre-

quency sinusoidal interference and the nonlinear

system(s). In engineering applications, there are many

weak fault signals with high character frequencies.

These fault signals are usually submerged in strong

background noise. To detect these weak signals, an

adaptive detection method for a weak high-frequency

fault signal is proposed in this paper. This method is

based on the mechanics of VR and cascaded varying

stable-state nonlinear systems (VSSNSs). Partial

background noise with high frequency is regarded as

a special type of high-frequency interference and an

energy source that protrudes a weak fault signal. In

this way, high-frequency background noise is utilized

in a VSSNS. To improve the detection ability,

manually generated high-frequency interference is

injected into another VSSNS. The VSSNS can be

transformed into a monostable state, bistable state or

tristable state by tuning the system parameters. The

proposed method is validated by a simulation signal

and industrial applications. The results show the

effectiveness of the proposed method to detect a weak

high-frequency character signal in engineering

problems.

Keywords Vibrational resonance � Varying stable-

state nonlinear system � Cascaded nonlinear systems �
Weak high-frequency character signal � Rotating
machine

1 Introduction

Vibrational resonance (VR) is a phenomenon in which

the amplification of a weak low-frequency signal can

be enhanced by injecting a high-frequency periodic

force [1]. This phenomenon shows many similarities

to the phenomenon of stochastic resonance (SR),

except that the high-frequency periodic force replaces

random noise [2]. The mechanics of both VR and SR

require noise injection rather than noise cancellation
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when detecting a weak low-frequency signal. Here,

the high-frequency periodic force in VR can be

regarded as special noise. Therefore, both VR and

SR can be deemed noise utilization methods.

Traditional VR and SR perform well when detect-

ing a weak signal whose frequency is lower than 1 Hz.

However, if the frequency of a weak signal is much

greater than 1 Hz, improvements are needed due to the

restriction of adiabatic approximate theory. By using

the scale transformation method, a high-frequency

signal can be transformed into a low-frequency signal

[2]. Based on the scale transformation method, Tan

et al. [3] proposed a frequency-shifted and rescaling

transfer method (FSRTM) and combined it with SR to

detect bearing faults. This FSRTM is efficient if the

fault characteristic frequency is known in advance.

Wang et al. [4] developed an adaptive multiscale

noise-tuning SR for diagnosing bearing faults.

An incipient fault in an operating rotating machine

causes a typical weak high-frequency character signal

with a frequency greater than 1 Hz. Detecting such a

weak fault signal is an important issue in engineering

applications. Researchers have shown great interest in

producing different useful methods, such as spectral

kurtosis [5, 6], empirical model decomposition (EDM)

[7], wavelet transform [8] and S transform [9]. These

methods are known as noise cancellation methods

because their main goal is to extract fault-induced

signatures by removing or suppressing background

noises. Most noise utilization and noise cancellation

methods can be regarded as frequency-based methods.

In addition to these frequency-based methods, model-

based methods are also important tools used in fault

reconstruction [10–12].

Qiao et al. [13] stressed that weak fault character-

istics can be weakened or even destroyed during the

noise cancellation process; thus, they proposed an

adaptive unsaturated bistable SR to detect bearing

faults. Zhang et al. [14] proposed a nonlinear system

resonance method to diagnose bearing faults. Li et al.

[15] developed an adaptive SR method based on

coupled bistable systems. Dong et al. [16] developed a

second-order matched SR to improve the signal-to-

noise ratio (SNR) of a weak period signal. Zhang et al.

[17] constructed a new exponential bistable potential

function in second-order underdamped SR to detect

rolling bearing faults. Lai et al. [18] developed a

multiparameter-adjusting SR in a standard

tristable system. Additional works on SR applications

in rotating machine fault detection are contained in

Refs. [19, 20].

The above noise utilization methods for weak fault

detection were mainly based on SR [13, 15–20].

Another noise utilization method, VR, is easier to

control than SR [21]. The concerns related to added

noise intensity, noise type and noise distribution that

must be considered in SR need not be considered in

VR [22]. Even though VR has been successfully

applied to analogue electronic circuits [23, 24],

excitable neurons [25, 26] and optical devices

[27, 28], its application in weak fault detection on a

rotating machine is relatively less common compared

to SR. Here, only a limited number of recent and

relevant publications are listed below. Gao et al. [29]

proposed a VR-based weak fault detection method and

compared the detection performance with envelope

spectrum analysis. Liu et al. [29] proposed a step-

varying VR based on a duffing oscillator nonlinear

system to enhance the detection ability of bearing

faults. In the methods proposed in Refs. [29, 30], only

one nonlinear system was adopted. Xiao et al. [22]

constructed an array of nonlinear systems for a VR-

based weak fault detection method. In the above

detection methods, the classic bistable state potential

well function was adopted in nonlinear systems

[22, 29, 30].

In addition to the above works, the classic

bistable system (CBS) was commonly adopted in

most fault detection methods that were based on VR

[2, 4, 16, 22, 29, 30]. However, output saturation may

occur when adopting a CBS. In addition, only one

nonlinear system is adopted in most of the existing

VR-based fault detection methods for rotating

machines. Even though there are two or more nonlin-

ear systems outlined in some publications, the non-

linear systems are presented in second-order, parallel

or coupled formats [14, 17, 18].

Given the above analysis, an adaptive VR method

for detecting a high-frequency character signal based

on cascaded varying stable-state nonlinear systems

(VSSNSs) is proposed for detecting a fault on a

rotating machine. The proposed method integrates the

following advantages:

(1) The proposed detection method deploys the

easy control advantage of VR compared with

SR, since the concerns related to noise intensity,

noise type and noise distribution need not be
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considered. Furthermore, the FSRTM proposed

by Tan et al. [3] is introduced to overcome the

restriction of adiabatic approximation theory

when processing a high-frequency fault signal.

(2) Cascaded nonlinear systems use background

noise and manually injected high-frequency

sinusoidal interference. Different from the

existing noise cancellation methods, the back-

ground noise is used rather than filtered in our

proposed method. Since the frequencies of

background noises exist in a wide range, partial

noises whose frequencies are very high can be

regarded as special energy for resonance in a

nonlinear system.

(3) The potential well function in the nonlinear

systems exists in a varying stable state rather

than a fixed state; the nonlinear system can be

transferred in different stable states by tuning

system parameters. Therefore, there are more

possibilities for a nonlinear system to achieve

resonance.

The above aspects are considered in an integrated

manner, which is the main contribution of this paper.

The cascaded nonlinear systems that detect a high-

frequency character signal are formulated using vary-

ing stable-state potential well functions and VR

mechanisms. The proposed detection method is

oriented to mechanical applications that have heavy

strong background noise to enrich the limited number

of VR-based fault detection methods in the existing

publications.

The rest of the paper is organized as follows:

Section 2 introduces the proposed method for detect-

ing a high-frequency character signal. Validation of

the proposed method is conducted on different faults

of rotating machines in Sect. 3. The detection perfor-

mance is assessed by using different nonlinear systems

in Sect. 4, and the paper is concluded in Sect. 5.

2 Detection method for a high-frequency

character signal based on VR

VR occurs when a high-frequency sinusoidal interfer-

ence of appropriate amplitude can optimally amplify a

weak low-frequency periodic signal in a nonlinear

system. Let s(t) and I(t) represent the weak periodic

signal and high-frequency sinusoidal interference,

respectively. The frequency of the weak signal is

usually lower than 1 Hz. The governing equation in

VR is as follows:

dx

dt
¼ � dUðxÞ

dx
þ sðtÞ þ IðtÞ ð1Þ

where s(t) = Acoswt, and the amplitude and frequency

of the weak periodic signal are A and w/2p. I(t) =
BcosXt, the amplitude and frequency of the high-

frequency sinusoidal interference are B and X/2p,
respectively. X � 2p. U(x) is the potential well

function in the nonlinear system.

2.1 Saturation phenomenon in a CBS

In classic VR, the nonlinear system is a CBS. Its

potential well function can be written as

UðxÞ ¼ � ac
2
x2 þ bc

4
x4; ac; bc [ 0 ð2Þ

where ac and bc are the system parameters in the CBS.

Without external interference, the CBS has two

potential wells with bottoms located at �xs ¼
�

ffiffiffiffiffiffiffiffiffiffiffi

ac=bc
p

and one unstable point located at xu ¼ 0.

The height of the barrier is DU ¼ a2c=4bc.

Assuming there is no input force in the CBS (i.e.,

A = 0 and B = 0), the output x can be calculated by

substituting Eq. (2) into Eq. (1) according to the

Bernoulli differential equation, and Eq. (3) is

obtained. Considering two situations, t = 0 and

t ???, the output x is given in Eq. (4).

x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac exp 2actð Þ
1þ bc exp 2actð Þ

s

ð3Þ

x ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac= 1þ bcð Þ
p

t ¼ 0

�
ffiffiffiffiffiffiffiffiffiffiffi

ac=bc
p

t ! þ1

�

ð4Þ

From Eqs. (3) and (4), the absolute values of the

output x are limited in a range between
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ac= 1þ bcð Þ
p

and
ffiffiffiffiffiffiffiffiffiffiffi

ac=bc
p

. A simplified illustration is given in

Fig. 1, where different system parameters are consid-

ered. In Fig. 1, no matter what values these parameters

are set to, abs(x) always asymptotically approaches a

fixed value with the continuous increase in time t. For

example, when ac= 1 and bc= 3, abs(x) approaches

0.57 as time t increases. This phenomenon is caused by

the intrinsic characteristic of a CBS and is defined as
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output saturation. The output signal x varies with the

input signals accordingly. Once the output signal

x reaches a certain value, the output saturation

phenomenon is about to occur.

2.2 The construction of a VSSNS

Since a CBS may generate output saturation, the

detection ability is thus restricted. In addition, the

fixed stable state may need more time for system

parameter adjustment to achieve resonance. There-

fore, a reflection-symmetric sextic potential well

function is adopted as

UðxÞ ¼ 1

6a
x6 � 1þ b

20
x4 þ b

2
x2 ð5Þ

where a and b are the system parameters in a VSSNS.

We set a to a positive real value, but b can be an

arbitrary real value.

If
dUðxÞ
dx

¼ 0, Eq. (5) can be rewritten as

x
1

a
x4 � 1þ b

5
x2 þ b

� �

¼ 0 ð6Þ

One of the real roots of Eq. (6) is x = 0.
1
a x

4 � 1þb
5
x2 þ b ¼ 0 can be rewritten as

5x4 þ 0x3 � að1þ bÞx2 þ 0xþ 5ab ¼ 0 ð7Þ

The root discriminant D of Eq. (7) is calculated as

ax ¼ 5; bx ¼ 0; cx ¼ �að1þ bÞ; dx ¼ 0; ex ¼ 5ab

E1 ¼ 3b2x � 8axcx

E2 ¼ �b3x þ 4axbxcx � 8a2xdx

E3 ¼ 3b4x þ 16a2xc
2
x � 16axb

2
xcx þ 16a2xbxdx � 64a3xex

D1 ¼ E2
1 � 3E3

D2 ¼ E1E3 � 9E2
2

D3 ¼ E2
3 � 3E1E

2
2

D ¼ D2
2 � 4D1D3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð8Þ

Under the synergistic effects of the input signal, the

outer force and the system parameters, the potential

well function shows different stable states. Therefore,

the resonance ability is enhanced by employing the

VSSNS. Here, a simplified example is given in Fig. 2

with the following parameters: a = 20, b = - 4,

b = 1, and b = 4. In Fig. 2, the stable-state types of

the VSSNS are bistable (b = - 4), monostable (b = 1)

and tristable (b = 4). Furthermore, if system param-

eter a is set to a constant (here a is set to 20) but b is

changed from - 4 to 4, the potential well of the

VSSNS is changed accordingly, and the stable-state

types of the VSSNS are changed as follows:

bistable ? monostable ? tristable.

If high-frequency interference is considered, let

x(t) = X(t) ? W(s, Xt), where X(t) and W(t) are slow

and fast variables according to Ref. [31]. Assume that

the mean value ofW, hWi, with respect to time s = Xt
is

wh i¼ 1

2p

Z 2p

0

wds ð9Þ
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t

ab
s(
x)

Fig. 1 Output saturation phenomenon in a CBS
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Fig. 2 Illustration of potential well functions with different

system parameters
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wmh i ¼ 1

2p

Z 2p

0

wmds ð10Þ

The equation for the slow motion can be regarded

as the equation of the motion of a system with the

effective potential well function as

UeffðXÞ ¼
1

2
R1X

2 þ 1

4
R2X

4 þ 1

6a
X6 ð11Þ

where

R1 ¼ b2 � 3ð1þ bÞB2

10X4
þ 15B4

8aX4

R2¼� 1þ b

5
þ 5B2

aX4

8

>

>

<

>

>

:

ð12Þ

The equilibrium points for the slow motion are

given by

X�
1 ¼ 0

X�
2;3 ¼ � �a2R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2R2
2 � 4aR1

p

2a

 !1=2

X�
4;5 ¼ � �a2R2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2R2
2 � 4aR1

p

2a

 !1=2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð13Þ

When X* = 0, let Y = X - X* where Y = AL-

cos(wt ? U) in the limit t ? ?. If the nonlinear

terms are neglected, AL and the response amplitude Q

are obtained as

AL ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
r þ w2

p ð14Þ

w2
r ¼ R1 þ 3R2X

�2 þ 5

a
X�4 ð15Þ

Q ¼ AL

A
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
r þ w2

p ð16Þ

2.3 The detection method for a weak high-

frequency character signal

The original VR method only focuses on the detection

of a weak signal whose frequency is much lower than

1 Hz due to the restriction of the adiabatic approxi-

mation theory. However, the frequency of a weak

target signal is usually greater than 1 Hz in engineer-

ing circumstances. Here, FSRTM is adopted to

overcome the restriction of the adiabatic approxima-

tion theory.

The flowchart of the proposed VR-based detection

method is illustrated in Fig. 3, where the raw data from

a sensor contain the weak high-frequency character

signal fT(t) and background noise D(t). Here, fT(t) is

defined to distinguish the difference between a weak

high-frequency character signal and a weak low-

frequency input signal (s(t)). The weak high-fre-

quency character signal fT(t) after processing by

FSRTM can be regarded as a weak periodic signal

s(t); however, the frequency of fT(t) before processing

by FSRTM is much higher than that of s(t). The mixed

signal y(t), which contains background noise, is

processed by FSRTM and then imported into cascaded

nonlinear systems with varying stable states. In this

first VSSNS, the high-frequency background noise is

regarded as the high-frequency interference for reso-

nance. In the second VSSNS, manually injected high-

frequency sinusoidal interference is used for reso-

nance. In the two VSSNSs, particle swarm optimiza-

tion (PSO) is adopted to optimize the system

parameters along with the parameters of the injected

high-frequency interference. The output from the

second VSSNS is processed by fast Fourier transform

(FFT); consequently, the frequency of the output

signal can be obtained, and the high-frequency

character signal can be detected by comparing the

resonated frequency with the target frequency.

Note that the frequencies of the background noises

usually exist in a wide range. Some of the frequencies

are very high, but some are low. Even though FSRTM

is conducted on the mixed signal that contains the

fT(t)

D
(t)

y(t)
FSRTM VSSNS VSSNS

Raw data from a sensor

FFT Frequency spectrum 
of signal x(t)

x(t)

PSO I(t) PSO
Fig. 3 The procedure of the

proposed VR-based

detection method
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target signal and the background noise, the frequencies

of some noises are still very high after processing by

FSRTM. Therefore, the noises whose frequencies are

very high even after processing by FSRTM can be

regarded as the high-frequency interference for reso-

nance, and it is unnecessary to inject a high-frequency

interference into the first VSSNS.

The fourth-order Runge–Kutta discretization

method is used to calculate the discretized output

from the two VSSNSs as Eq. (17), where h is the time

calculation step, which is usually the reciprocal of the

sampling frequency (fs). Note that h should be

recalculated due to the rescaling process in the

FSRTM. P[n] and O[n] are the discretization forms

of P(t) and O(t). P(t) is the data before processing in a

VSSNS, andO(t) is the output data from the VSSNS. n

is the data series.

2.4 Parameter optimization by PSO

The resonance phenomenon and the stable type of a

VSSNS are determined by the system parameters and

the high-frequency interference. As shown in Fig. 3,

PSO is adopted twice to optimize the system param-

eters in VSSNSs and the parameters of the injected

high-frequency interference in the second VSSNS.

PSO is a random searching algorithm and does not

require the gradient information of an objective

function. Here, the objective is to maximize the SNR

of a target signal defined as

SNR ¼ 10 log10
g2T

g2 � g2T
ð18Þ

where g is the FFT amplitude of the output from a

nonlinear system; gT is the FFT amplitude of the

resonated frequency. Note that the definition of SNR is

not standard in Eq. (18). To avoid the impact caused

by the positive or negative values of the amplitudes of

the target signal and noise, the square operator is

utilized in Eq. (18).

Since there is no general guidance or theoretical

standard about the parameter settings of a high-

frequency interference in VR, the amplitude and

frequency of a high-frequency interference signal is

empirically set to be more than 100 times greater than

the amplitude and frequency of the target signal

according to Refs. [21, 22, 32, 33]. PSO is adopted to

optimize the frequency and amplitude of an injected

high-frequency interference.

When optimizing the system parameters in the first

VSSNS, a particle is constructed with two dimensions

that represent the calculation of parameters a and

b. Some basic settings for PSO are given, including the

positions and velocities of particles along with their

associated maximum and minimum values, the

k1 ¼ h � 1

a
O½n�5 þ ð1þ bÞ

5
O½n�3 � bO½n� þ P½n�

� �

k2 ¼ h � 1

a
O½n� þ k1

2

� �5

þ 1þ b

5
O½n� þ k1

2

� �3

�b O½n� þ k1
2

� �

þ P½n�
 !

k3 ¼ h � 1

a
O½n� þ k2

2

� �5

þ 1þ b

5
O½n� þ k2

2

� �3

�b O½n� þ k2
2

� �

þ P½n�
 !

k4 ¼ h � 1

a
O½n� þ k3

� �5

þ 1þ b

5
O½n� þ k3

� �3

�b O½n� þ k3ð Þ þ P½n�
 !

O½nþ 1� ¼ O½n� þ 1

6
k1 þ k2 þ k3 þ k4ð Þ

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð17Þ
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population size of particles (Psize), terminal iteration

epoch (Tgen) and learning factors C1 and C2.

The velocities and positions of particles are updated

according to Eqs. (19–20).

Pa;i ¼ Pa;i�1 þ Va;i

Pb;i ¼ Pb;i�1 þ Vb;i

�

ð20Þ

In Eqs. (19–20), Va,i is the velocity of parameter

a in the ith iteration; r1 and r2 are the random

values in the interval of (0, 1); La,i is the local best

parameter a in the ith iteration; Ga,i is the global

best parameter a in the ith iteration; and Pa,i is the

current position of parameter a in the ith iteration.

Vb,i, Lb,i, Gb,i and Pb,i are the velocity of parameter

b, the local best parameter b, the global best

parameter b and the current position of parameter

b in the ith iteration. If the position or velocity of a

parameter exceeds its predetermined upper or lower

bound, a new value is generated and replaces the

unqualified value.

The terminal condition of optimization is that the

optimal SNR is unchanged in the continued Tgen
iterations. Once the terminal condition is met, the

output from the first VSSNS is mixed with an injected

high-frequency interference and then imported into

the second VSSNS. During the optimization in the

second VSSNS, a particle has four dimensions that

represent the system parameters a and b and the

amplitude B and frequency F of an injected high-

frequency interference signal where 2pF = X. The

velocities and positions of the particles in the second

VSSNS are updated according to Eqs. (21–22).

Pa;i ¼ Pa;i�1 þ Va;i

Pb;i ¼ Pb;i�1 þ Vb;i

PB;i ¼ PB;i�1 þ VB;i

PF;i ¼ PF;i�1 þ VF;i

8

>

>

<

>

>

:

ð22Þ

In Eqs. (21–22), VB,i is the velocity of B in the ith

iteration; r1 and r2 are the random values in the

interval of (0, 1); LB,i is the local best B in the ith

iteration; GB,i is the global best B in the ith iteration;

and PB,i is the current position of B in the ith iteration.

VF,i, LF,i, GF,i and PF,i are the velocity of parameter F,

the local best parameter F, the global best parameter

F and the current position of parameter F in the ith

iteration, respectively. If the position or velocity of a

parameter exceeds its upper or lower bound, a new

value is generated and replaces the unqualified one.

The optimization terminal condition in the second

VSSNS is the same as that in the first VSSNS. After

optimization, the optimal output signal from the

Va;i ¼ Va;i�1 þ C1 � r1;i � La;i�1 � Pa;i�1

� �

þ C2 � r2;i � Ga;i�1 � Pa;i�1

� �

Vb;i ¼ Vb;i�1 þ C1 � r1;i � Lb;i�1 � Pb;i�1

� �

þ C2 � r2;i � Gb;i�1 � Pb;i�1

� �

�

ð19Þ

Va;i ¼ Va;i�1 þ C1 � r1;i � La;i�1 � Pa;i�1

� �

þ C2 � r2;i � Ga;i�1 � Pa;i�1

� �

Vb;i ¼ Vb;i�1 þ C1 � r1;i � Lb;i�1 � Pb;i�1

� �

þ C2 � r2;i � Gb;i�1 � Pb;i�1

� �

VB;i ¼ VB;i�1 þ C1 � r1;i � LB;i�1 � PB;i�1

� �

þ C2 � r2;i � GB;i�1 � PB;i�1

� �

VF;i ¼ VF;i�1 þ C1 � r1;i � LF;i�1 � PF;i�1

� �

þ C2 � r2;i � GF;i�1 � PF;i�1

� �

8

>

>
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second VSSNS is adapted by FFT to determine the

resonated frequency.

3 Validation by a simulation dataset and faults

on rotating machines

3.1 Validation by a simulation dataset

A simulation signal is generated, which is y(t) = 0.1

9 sin(2p 9 0.02t) ? D(t), where D(t) is additive

white Gaussian noise with an intensity of 1.5 V. The

amplitude and frequency of the target signal are 0.1 V

and 0.02 Hz, respectively. The sampling frequency fs
is set to 20 Hz. The sampling lasts 250 s. The time-

domain waveform and FFT frequency spectrum of

y(t) are shown in Fig. 4, where the target frequency

0.02 Hz is submerged in the strong background noise.

The frequency with the maximum FFT amplitude

(AFFT), which is marked by fmax, is 6.32 Hz. The SNR

of the target signal (SNRFFT), which is calculated

according to Eq. (18) as - 27.30 dB.

Since the frequency of the target signal is lower

than 1 Hz, FSRTM is unnecessary. However, PSO is

adopted to optimize the system parameters and the

amplitude and frequency of the injected high-fre-

quency interference. The basic settings are given as

follows: Psize = 30, Tgen = 20, and C1 = C2 = 1.5.

The rest of the settings are listed in Table 1.
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Fig. 4 a Time-domain waveform and b FFT frequency spectrum of y(t)

Table 1 Particle settings in the simulation dataset

Settings Bound a b B (m/s2) F (Hz)

Position Upper 30 10 500 1000

Lower 0 - 10 100 500

Velocity Upper 2 2 50 100

Lower - 2 - 2 - 50 - 100
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Fig. 5 a Time-domain waveform and b FFT frequency spectrum of the output signal from our proposed method
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Fig. 6 a Time-domain waveform and b FFT frequency spectrum of the output signal if the VSSNSs are replaced by the CBSs
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The output signal x(t) from the second VSSNS is

shown in Fig. 5, where the target frequency 0.02 Hz is

obvious from the perspective of the frequency spec-

trum. The AFFT of the target frequency is 0.92 V, and

the SNRFFT is- 0.36 dB. The optimal parameters are

as follows: a = 20.88, b = 0.67, B = 390 V and

F = 789 Hz. According to parameters a and b, the

VSSNS is monostable.

To compare the detection performance using the

VSSNSs, each VSSNS in our proposed method is

replaced by a CBS. After PSO optimization, the output

signal from the second CBS is shown in Fig. 6, where

the target frequency is detected with AFFT 0.43 V, and

the SNRFFT is- 3.26 dB. The optimal parameters are

ac= 0.66, bc= 0.93, B = 286 V and F = 767 Hz.

In the above comparison, two CBSs are adopted in

cascaded format. As analyzed in the Introduction,

some researchers have successfully detected target

signals based on VR and only one CBS. To demon-

strate the detection performance by using only one

CBS and VR, another comparison example is given.

After PSO optimization, the output signal is shown in

Fig. 7. In Fig. 7, the target signal is detected. The AFFT

and SNRFFT of the target frequency are 0.20 V and

- 4.92 dB. The optimal parameters are ac= 1.79,

bc= 8.69, B = 227 V and F = 809 Hz.
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Fig. 7 a Time-domain waveform and b FFT frequency spectrum of the output signal if only one CBS is adopted

Table 2 Results from different nonlinear systems for the simulation dataset

Comparison criteria Raw signal Cascade VSSNSs Cascade CBSs One CBS

AFFT (V) 0.038 0.92 0.43 0.20

SNRFFT (dB) - 27.30 - 0.36 - 3.26 - 4.92

Load Coupling Planetary Gearbox Coupling Coupling AC Motor

Torque-Speed Sensor

S1

S2

S3

S4

Fig. 8 Schematic of the planetary gearbox test rig

Fig. 9 The implanted fault on the sun gear
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In the above comparison examples, the target

frequency of 0.02 Hz is detected by adopting different

nonlinear system(s), but by adopting our proposed

method, the target frequency shows the highest AFFT

along with the maximum SNRFFT. The detection

results are compared in Table 2.

3.2 Validation by a gear fault on a planetary

gearbox

A dataset for an implanted gear fault is used for

validation. It is well known that the vibration sources

in a planetary gearbox are very complex due to the

meshing among different components. Therefore, the

detection of a weak fault in a planetary gearbox is

complex and difficult. The schematic of a planetary

gearbox test rig is given in Fig. 8, which includes a

single-stage planetary gearbox, a 4-kW three-phase
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Fig. 10 The time-domain waveforms, FFT spectra and zoomed spectra of the sun gear data collected from a S1, b S2, c S3 and d S4

Table 3 Partial PSO settings for detecting rotating machine

faults

Settings Bound a b B (m/s2) F (Hz)

Position Upper 30 10 500 10,000

Lower 0 - 10 100 5000

Velocity Upper 2 2 50 100

Lower - 2 - 2 - 50 - 100
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asynchronous motor for driving the gearbox and a

magnetic powder brake for loading. An NI data

acquisition system is employed, including four IEPE

accelerometers, a PXI-1031 mainframe, PXI-4472B

data acquisition cards and LabVIEW software. In

Fig. 8, S1, S2, S3 and S4 are the sensor locations for

monitoring the gearbox condition. Additional infor-

mation on the test rig is provided in Ref. [34].

The single-stage planetary gearbox consists of a sun

gear with 13 teeth, 3 planet gears with 64 teeth and a

fixed ring gear with 146 teeth. The sun gear, which is

mounted on the input shaft and driven by an electric

motor, rotates around its own center. The planet gears

mesh with the sun gear and ring gear. In addition, the

planet gears not only rotate around their own centers

but also rotate around the center of the sun gear. A

wear tooth fault is implanted on one sun gear tooth.
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Fig. 11 The time-domain waveforms and FFT spectra of the output signals from the second VSSNS using the data from a S1, b S2,

c S3 and d S4

Table 4 The amplitudes and SNRs of the sun gear fault before

and after processing by the proposed method

Data source AFFT (m/s2) SNRFFT (dB)

Originally collected data

S1 1 9 10-3 - 59.17

S2 3.64 9 10-4 - 68.00

S3 1.64 9 10-4 - 74.97

S4 3.89 9 10-4 - 67.39

After processing by our proposed method

S1 0.42 - 2.68

S2 0.26 - 2.47

S3 0.07 - 2.50

S4 0.08 - 4.07
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The tooth wear fault is shown in Fig. 9. The fault

characteristic frequency is 55.34 Hz, as calculated

according to Ref. [34].

The time-domain waveforms, FFT spectra and

zoomed spectra of the originally collected condition

monitoring data from S1, S2, S3 and S4 are given in

Fig. 10. The frequency that has the maximum FFT

amplitude (AFFT) is marked by fmax. As shown in

Fig. 10, the background noise is significant, and the

frequencies exist in a wide range. The fault frequency

of 55.34 Hz cannot be found directly from the

frequency spectra.

The proposed method is used to detect the sun gear

fault, and PSO is adopted to optimize the parameters.

The basic settings for PSO, which are Psize, Tgen, C1

and C2, are the same as those in the simulation dataset

validation. Other settings are given in Table 3. The

stop-band cutoff frequency in the FSRTM is set to

52 Hz, and the rescaling ratio is 600.

The resonated signals from the second VSSNS are

given in Fig. 11, where the detected frequencies are

54 Hz (from S1), 54.83 Hz (from S2), 54.83 Hz (from

S3) and 55.83 Hz (from S4). These detected frequen-

cies are close to the calculated fault characteristic

frequency (55.34 Hz). In this paper, if the absolute

frequency error between the fault characteristic

frequency and detected frequency is lower than 2 Hz

when considering the vibration impact caused by the

operating environment and meshing among compo-

nents, in addition, the output signal from the second

VSSNS shows obvious periodicity. In such a case, the

detected frequency is regarded as the frequency

caused by a defective component, and the fault signal

is detected. Otherwise, the fault signal is not detected.

As shown in Fig. 11, the output signal shows obvious

periodicity, and the frequency of the fault signal is

exposed. The amplitude and SNR of the fault signal

are listed in Table 4. In Table 4, the amplitudes and

SNRs of the sun gear fault from our proposed method

are derived by order of magnitude compared with the

originally collected data.

3.3 Validation by a fixed-axis gearbox test rig

Bearings are typical components in rotating machines.

A bearing with several naturally developed faults is

used to validate our proposed method. The fault signal

is collected from a fixed-axis gearbox test rig. It is

widely accepted that a weak naturally developed fault

is hard to detect because the characteristic fault

frequencies related to the damage are usually sub-

merged in heavy background noise due to the mashing

Load Coupling Gearbox 

Coupling Coupling

Torque-
Speed Sensor

AC Motor
81T

18T64T

35T S1S2

S3S4

Fig. 12 Schematic of the

fix-axis gearbox test rig

Fig. 13 The faults on the right-hand bearing mounted on the HS shaft: a the outer race faults, b the inner race faults and c the ball faults
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gears. The background noise contains abundant

disturbance frequencies that may be generated due to

the faults on other components, the meshing among

components, and the vibration of an input shaft or the

operational conditions. The SNR of a weak naturally

developed fault is usually very small.

The information for the fixed-axis gearbox test rig

is referenced in Ref. [9]. The test rig shown in Fig. 12

includes a two-stage fixed-axis gearbox, a 4-kW three-

phase asynchronous motor for driving the gearbox and

adjusting different speeds and a magnetic powder

brake for loading. In the gearbox, there are three

shafts: a high-speed (HS), intermediate-speed (IS) and

low-speed (LS) shaft. The gear, which has 81 teeth

mounted on the LS shaft, is meshed with a gear with 18

teeth mounted on the IS shaft. Another gear with 64

teeth mounted on the IS shaft is meshed with a gear

with 35 teeth mounted on the HS shaft. The HS and IS

shafts are supported by SKF 6205 bearings, and the LS

shaft is supported by SKF 6208 bearings.

The positions of the sensors are marked as S1, S2,

S3 and S4. The NI data acquisition system is adopted,

including four IEPE accelerometers, a PXI-1031

mainframe, PXI-4472B data acquisition cards and

LabVIEW software. The experimental conditions are

as follows: 20 Hz HS rotation, 20 kHz signal vibration

sampling frequency, 12 s sampling duration with two

different loads: 199 Nm and 405 Nm.

After the data acquisition, all the bearings and gears

have faults at different levels. The bearings that are

mounted on the HS shaft have many outer race

damages. In addition, the inner race damages and ball

damages presented simultaneously on the right-hand

bearing. These damages are illustrated in Fig. 13. Due

to the presence of three types of damage on different

elements of a bearing simultaneously, the bearing

mounted on the right-hand side of the HS shaft is

selected. Therefore, the data collected from the S1

position are used to validate the proposed method. S1

is close to the source of the bearing faults.

Table 5 The fault characteristic frequencies of bearings in the test rig

Shaft Bearing type BPFO (Hz) BPFI (Hz) BSF (Hz) FTF (Hz)

HS SKF 6205 71.70 108.30 47.17 7.96

LS SKF 6208 8.70 13.19 5.68 0.96
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Fig. 14 a Time-domain waveform, b FFT spectrum and c zoomed spectrum of the collected data from S1 on a fixed-axis gearbox

Table 6 The FFT

amplitudes and SNRs of the

bearing faults before and

after processing by the

proposed method

Data source Fault AFFT (m/s2) SNRFFT (dB)

From originally collected data BPFO 2.83 9 10-5 - 89.97

BPFI 7.07 9 10-5 - 82.01

BSF 6.35 9 10-5 - 82.93

After the proposed VR BPFO 0.17 - 2.02

BPFI 0.38 - 3.28

BSF 0.43 - 0.62
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The characteristic frequencies of the bearing faults

can be calculated according to Ref. [35]. The calcu-

lation of fault characteristic frequencies is given in

Eq. (23), and the results are listed in Table 5. In

Table 5, BPFO, BPFI, BSF and FTF represent the ball

pass frequency outer race, ball pass frequency inner

race, ball spin frequency and fundamental train

frequency, respectively.

fBPFO ¼ NB

2
FR 1� DB cosðhÞ

DP

� �

fBPFI ¼
NB

2
FR 1þ DB cosðhÞ

DP

� �

fBSF ¼ DP

DB

FR 1� D2
B cos

2ðhÞ
D2

P
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fFTF ¼ 1

2
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>
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ð23Þ

In Eq. (23), NB is the number of rolling elements in

a bearing, FR is the shaft speed,DB is the ball diameter,

DP is the pitch diameter and h is the ball contact angle.
The originally collected data from S1 are used for

validation. The time-domain waveform and FFT

spectrum of the collected data from S1 are shown in

Fig. 14, where the fault characteristic frequencies are

totally lost in the disturbance frequencies. However,

the gear meshing frequency (Fmesh) and its harmonics

are obvious. Fmesh refers to the meshing of gears

mounted on the HS and IS shafts. This can be

calculated according to the rotating speed of a gear

(Rs) and its tooth number (NT) as Eq. (24). According

to Eq. (24), Fmesh = 700 Hz.

Fmesh ¼ Rs � NT ð24Þ

PSO is used to optimize the parameters. The

settings for PSO are the same as those when using

the planetary gearbox dataset for validation. When

adopting FSRTM, the stop-band cutoff frequencies for

the three types of faults are set as follows: 66 Hz (for

BPFO), 104 Hz (for BPFI) and 43 Hz (for BSF). The

rescaling ratio is 600. The detection results are given

in Table 6.

The detected frequencies are 72.33 Hz, 108.58 Hz

and 46.25 Hz. These detected frequencies are close to

the calculated fault characteristic frequencies when

considering the vibrational circumstances; therefore,
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Fig. 15 The time-domain waveforms and frequency spectra of the detected signals for a BPFO, b BPFI and c BSF
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Table 7 Detection results of the implanted sun gear fault under different scenarios

Fault characteristic frequency (Hz) Scenario Sensor Detected frequency (Hz) AFFT (m/s2) SNRFFT (dB) Iteration epochs

Fgear = 55.34 Scenario 1 S1 54 0.22 - 4.32 29

S2 54.83 0.01 - 7.67 21

S3 79.45 0.01 - 10.86 22

S4 241.50 0.02 - 11.97 37

Scenario 2 S1 54 0.28 - 4.03 35

S2 54.83 0.01 - 7.96 24

S3 54.83 0.02 - 6.03 41

S4 241.50 0.02 - 10.81 23

Scenario 3 S1 104 0.07 - 11.37 39

S2 54.83 0.02 - 7.63 65

S3 54.83 0.02 - 6.05 57

S4 241.50 0.02 - 11.04 39

Scenario 4 S1 54 0.54 - 4.40 75

S2 54.83 0.08 - 7.20 78

S3 54.83 0.10 - 5.91 53

S4 55.83 0.06 - 8.89 53

Scenario 5 S1 54 0.93 - 3.62 103

S2 54.83 0.10 - 4.80 58

S3 54.83 0.35 - 1.64 77

S4 55.83 0.07 - 4.46 52

Table 8 Detection results of the naturally developed bearing faults under different scenarios

Fault characteristic frequency (Hz) Scenario Fault Detected frequency (Hz) AFFT (m/s2) SNRFFT (dB) Iteration epochs

FBPFO = 71.70

FBPFI = 108.30

FBSF = 47.17

Scenario 1 BPFO 66.25 0.02 - 12.17 22

BPFI 108.58 0.02 - 10.36 23

BSF 46.25 0.05 - 3.27 45

Scenario 2 BPFO 72.33 0.02 - 11.01 41

BPFI 108.58 0.03 - 8.34 37

BSF 46.25 0.05 - 2.23 40

Scenario 3 BPFO 72.33 0.02 - 10.97 41

BPFI 108.58 0.03 - 8.32 30

BSF 46.25 0.06 - 2.09 37

Scenario 4 BPFO 72.33 0.07 - 6.42 51

BPFI 108.58 0.12 - 7.26 51

BSF 46.25 0.25 - 0.82 63

Scenario 5 BPFO 72.33 0.18 - 5.44 60

BPFI 108.58 0.37 - 2.37 58

BSF 46.25 0.73 0.40 55
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the detected frequencies are regarded as the fault

frequencies.

The outputs from the second VSSNS are given in

Fig. 15, where the output signal shows obvious

periodicity compared with the originally collected

data (in Fig. 14). In Fig. 14, no fault can be detected

directly from the frequency spectrum, but the fault

frequencies are obvious from the perspective of the

frequency spectrum in Fig. 15. Therefore, the fault

frequencies are exposed, and the amplitudes and SNRs

are greatly improved.

4 Comparison and discussion

In the proposed method, two VSSNSs are adopted.

The background noise and manually injected high-

frequency interferences are used to achieve resonance

in the first and second VSSNSs, respectively. As

analyzed before, some researchers have successfully

detected a target signal using only one nonlinear

system based on the VR mechanism. There is no

general guidance or theoretical standard on how to

determine the number of nonlinear systems. To

demonstrate the impacts caused by the number of

nonlinear systems on the detection performance, a

series of scenarios are considered and compared as

follows.

Scenario 1. Only one CBS is adopted, and high-

frequency interference is injected.

Scenario 2. Only one VSSNS is adopted, and high-

frequency interference is injected.

Scenario 3. Only one VSSNS is adopted, but high-

frequency interference is not injected; only the

background noise is used for achieving resonance.

Scenario 4. Two CBSs are used, and high-frequency

interference is injected; the VSSNSs in our pro-

posed method are replaced by CBSs.
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Fig. 16 The time-domain waveforms and zoomed FFT spectra of the output signals from Scenario 1 using the data collected from a S1,
b S2, c S3 and d S4
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Scenario 5. Our proposed method.

In the above five scenarios, datasets for the

implanted sun gear fault in the planetary gearbox

and the naturally developed bearing faults in the fixed-

axis gearbox are used. PSO is adopted to optimize the

related parameters. The detection results from the

different scenarios are compared in Tables 7 and 8,

where Fgear, FBPFO, FBPFI and FBSF denote the fault

characteristic frequencies, which are calculated

according to the operating and shape parameters of a

component.

In Tables 7 and 8, the gray color indicates an

undetected fault in a scenario. In Tables 7 and 8, all

the faults can be detected in Scenarios 4 and 5, which

demonstrates that using two nonlinear systems is

beneficial for fault detection. From the perspective of

AFFT and SNRFFT, the detection results from our

proposed method (Scenario 5) are better than those

using the CBSs (Scenario 4).

If only one nonlinear system is used, the faults

cannot always be detected (Scenarios 1–3 in Table 7

and Scenario 1 in Table 8). In particular, the faults

cannot be detected by using only one CBS. The sun

gear fault also cannot be detected by using only one

VSSNS with or without injected high-frequency

interference if the data collected from S4 are used

(Scenarios 2 and 3 in Table 7). However, naturally

developed bearing faults can be detected by using only

one VSSNS with or without injected high-frequency

interference (Scenarios 2–3 in Table 8). In Scenario 3

in Table 8, the effectiveness of the background noise

on resonance is demonstrated. Even though some

faults can be detected by using only one VSSNS with

or without injected high-frequency interference, the

detection performance is not as good as the perfor-

mance of our proposed method (Scenario 5) from the

perspective of AFFT and SNRFFT.

The positive effect on resonance caused by the

background noise is illustrated by comparing Tables 5
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Fig. 17 The time-domain waveforms and zoomed FFT spectra of the output signals from Scenario 2 using the data collected from a S1,
b S2, c S3 and d S4

123

An adaptive vibrational resonance method 731



and 6 with Tables 7 and 8. In Tables 5 and 6, the SNRs

of naturally developed bearing faults are lower than

the SNR of the implanted sun gear fault; the

background noise in the fixed-axis gearbox is stronger

than the noise in the planetary gearbox. However, the

naturally developed bearing faults in the fixed-axis

gearbox can be detected, and the SNRs are improved

more (Scenario 3 in Table 8) than the SNR improve-

ment of the implanted sun gear fault (Scenario 3 in

Table 7). The output signals from the last nonlinear

systems under different scenarios are given in

Figs. 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25, where

the frequency with maximum amplitude in the zoomed

frequency spectrum is marked by fmax. The output

signals in Figs. 16, 17, 18, 19 and 20 focus on the

detection of sun gear faults. The output signals in

Figs. 21, 22, 23, 24 and 25 focus on the detection of

naturally developed bearing faults.

In these zoomed frequency spectra, some faults are

not detected under Scenarios 1–3. Even though all the

faults can be detected under Scenarios 4 and 5, the

amplitudes of these detected faults under Scenario 4

are lower than the values from our proposed method

(Scenario 5). In view of the time-domain waveforms,

the output signals still contain considerable back-

ground noise with high amplitudes even though the

faults are detected under Scenarios 1–3. In addition,

the output signals from our proposed method (Sce-

nario 5) show more obvious periodicity in the view of

time-domain waveforms than the output signals under

Scenario 4.

The barrier height (BH) of a nonlinear system has

an important impact on resonance. The BH, which is

related to the stability type of a nonlinear system, is

determined by the system parameters. Considering the

above scenarios, all the faults can be detected in only

Scenarios 4 and 5; therefore, the BHs of these

nonlinear systems are listed in Tables 9 and 10, where

BHs are calculated according to the system parameters

of the second nonlinear system.
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Fig. 18 The time-domain waveforms and zoomed FFT spectra of the output signals from Scenario 3 using the data collected from a S1,
b S2, c S3 and d S4
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In Tables 9 and 10, ‘‘–’’ means that a BH is

incalculable due to the stability type. MS, TS and BS

stand for monostable, tristable and bistable. During

detecting the sun gear fault and bearing faults, the

stability type in the second VSSNS can be either MS,

BS or TS in Table 9. If the stability type is MS, BH is

not necessary for calculation. In Table 10, the second

VSSNS can be TS or BS. If parameter b is negative,

the stability type in the VSSNS is BS in both Tables 9

and 10. However, negative parameter b is meaningless

from the physical view of a CBS. The BH is difficult to

calculate if the VSSNS is transformed into BS or TS,

but it can be obtained according to the output signal

and potential well function. In Tables 9 and 10, even

though the BHs in the CBSs are lower than those in the

VSSNSs, the detection performance of our proposed

method is better in view of the enhancement of AFFT

and SNRFFT in a fault signal (regardless of whether the

fault is an implanted gear fault or naturally developed

bearing faults). Moreover, the adopted VSSNS pro-

vides more probability to achieve resonance by tuning

system parameters.

Through all validations, the effectiveness of our

proposed method, which focuses on the detection of a

high-frequency character signal, is demonstrated.

First, our proposed method shows better performance

than the VR-based CBS(s) regardless of using only

one CBS or cascade CBSs. This is demonstrated in

Tables 7 and 8. Second, our proposed method is

effectively employed to detect faults on rotating

machines, including naturally developed bearing

faults and an implanted gear fault. The frequencies

of these faults are much greater than 1 Hz. Therefore,

our proposed method can overcome the restriction of

adiabatic approximation theory. Third, different rotat-

ing machines are considered: a fixed-axis gearbox and

a planetary gearbox. Fourth, our proposed method

shows improvements in amplitude, SNR and
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Fig. 19 The time-domain waveforms and zoomed FFT spectra of the output signals from Scenario 4 using the data collected from a S1,
b S2, c S3 and d S4
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periodicity of the detected signals, which is demon-

strated in Tables 7 and 8 and Figs. 16, 17, 18, 19, 20,

21, 22, 23, 24 and 25. Fifth, the VSSNS can be

transferred into MS, BS or TS by tuning the system

parameters; therefore, the possibility of resonance

achievement is gained. Sixth, even though some faults

can be detected by using only one nonlinear system,

the detection performance is insufficient. There are

still many disturbance frequencies with high FFT

amplitudes, and the time-domain waveform of a

resonated signal shows less periodicity than the one

from our proposed method. Last, the background

noises are not always undesirable; they are beneficial

to resonance in the proposed method.

5 Conclusions

In this paper, a detection method for a high-frequency

character signal is proposed based on the VR

mechanism and cascaded VSSNSs. In this method,

the background noise is used rather than suppressed,

which is different from existing noise cancellation

methods. The stability type of a VSSNS can be easily

and adaptively changed into MS, BS or TS by tuning

the system parameters. To deploy the VR mechanism,

the background noise, which has been mixed when

collecting data from the sensors, and the manually

injected high-frequency interference are used to

achieve resonance for the two cascaded VSSNSs. To

achieve adaptive detection and optimization, the

parameters related to the nonlinear systems and the

injected high-frequency interferences are optimized

by PSO. Through a validation conducted on the

simulation dataset and rotating machines, the good

performance of our proposed method is demonstrated

in terms of the enhancement on FFT amplitude, SNR

and periodicity of a resonated signal.

The main contribution of this paper is that a new

VR configuration is constructed for detecting a high-
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Fig. 20 The time-domain waveforms and zoomed FFT spectra of the output signals from Scenario 5 using the data collected from a S1,
b S2, c S3 and d S4
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frequency character signal, and its application is

extended into mechanical industry. The classic VR is

always restricted by the adiabatic approximation

theory, which cannot be directly applied to weak fault

detection because the fault character frequency of a

rotating machine is always greater than 1 Hz, espe-

cially under operating conditions. In this paper, our

proposed method has successfully detected faults on
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Fig. 21 The time-domain waveforms and zoomed frequency spectra of the output signals from Scenario 1 for detecting a BPFO,

b BPFI and c BSF
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Fig. 22 The time-domain waveforms and zoomed frequency spectra of the output signals from Scenario 2 for detecting a BPFO,

b BPFI and c BSF
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two typical rotating machines: a bearing and a gear. In

addition, two common gearboxes, a planetary gearbox

and a fixed-axis gearbox, are considered.

The frequency transform with respect to a high-

frequency signal mainly depends on FSRTM, which is

more effective if a fault characteristic frequency is

known in advance. If the fault characteristic frequency
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Fig. 23 The time-domain waveforms and zoomed frequency spectra of the output signals from Scenario 3 for detecting a BPFO,

b BPFI and c BSF

0 2 4 6 8 10 12-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

Time (s)

A
m

 (m
/s2 )

(a)

65 70 75 80 85 90 95 100 105 1100
0.02
0.04
0.06
0.08

Frequency (Hz)

A
m

 (m
/s2 ) fmax=72.33 Hz

0 2 4 6 8 10 12-0.5
-0.3
-0.1
0.1
0.3
0.5

Time (s)

A
m

 (m
/s2 )

(b)

100 105 110 115 120 125 130 135 140 145 1500
0.02
0.04
0.06
0.08
0.1

0.12

Frequency (Hz)

A
m

 (m
/s2 ) fmax=108.58 Hz

0 2 4 6 8 10 12-0.6
-0.4
-0.2

0
0.2
0.4
0.6

Time (s)

A
m

 (m
/s2 )

(c)

40 45 50 55 60 65 70 75 80 850
0.05
0.1

0.15
0.2

0.25
0.3

Frequency (Hz)

A
m

 (m
/s2 ) fmax=46.25 Hz

Fig. 24 The time-domain waveforms and zoomed frequency spectra of the output signals from Scenario 4 for detecting a BPFO,

b BPFI and c BSF
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is unknown in advance, the parameter related to the

frequency shift in the FSRTM is hard to set, and the

performance of the frequency transform may be

impacted. In the future, we will adopt a more effective

frequency transform method in which the character-

istic frequency is not necessary.
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Fig. 25 The time-domain waveforms and zoomed frequency spectra of the output signals from Scenario 5 for detecting a BPFO,

b BPFI and c BSF

Table 9 The stability types

and BHs of the second

nonlinear system when

detecting the sun gear fault

in Scenarios 4–5

Sensor VSSNS CBS

a b Stable type BH ac bc BH

S1 19.24 1.18 MS – 1.02 0.81 0.32

S2 9.87 0.15 TS 0.04 0.48 9.97 5.8 9 10-3

S3 24.35 0.16 TS 0.22 0.38 6.68 5.4 9 10-3

S4 26.49 0.30 TS 0.19 0.30 5.54 4.1 9 10-3

Table 10 The stability types and BHs of the second nonlinear system when detecting the naturally developed bearing fault in

Scenarios 4–5

Fault VSSNS CBS

a b Stable type BH ac bc BH

BPFO 13.40 0.20 TS 0.06 0.17 7.20 1.0 9 10-3

BPFI 1.49 - 0.04 BS 0.01 0.27 3.16 5.8 9 10-3

BSF 4.59 - 0.08 BS 0.05 0.47 2.71 0.02
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9. Zhang, X., Zhao, J., Bajrić, R., Wang, L.: Application of the

DC offset cancellation method and S transform to gearbox

fault diagnosis. Appl. Sci. 7, 207 (2017)

10. Liu, J., Shao, Y.: Overview of dynamic modelling and

analysis of rolling element bearings with localized and

distributed faults. Nonlinear Dyn. 93, 1765–1798 (2018)

11. Chan, J.C.L., Tan, C.P., Trinh, H.: Robust fault recon-

struction for a class of infinitely unobservable descriptor

systems. Int. J. Syst. Sci. 48, 1646–1655 (2017)

12. Chan, J.C.L., Tan, C.P., Trinh, H., Kamal, M.A.S., Chiew,

Y.S.: Robust fault reconstruction for a class of non-infinitely

observable descriptor systems using two sliding mode

observers in cascade. Appl. Math. Comput. 350, 78–92
(2019)

13. Qiao, Z., Lei, Y., Lin, J., Jia, F.: An adaptive unsaturated

bistable stochastic resonance method and its application in

mechanical fault diagnosis. Mech. Syst. Signal Process. 84,
731–746 (2017)

14. Zhang, S., Yang, J., Zhang, J., Liu, H., Hu, E.: On bearing

fault diagnosis by nonlinear system resonance. Nonlinear

Dyn. 98, 2035–2052 (2019)

15. Li, J., Zhang, J., Li, M., Zhang, Y.: A novel adaptive

stochastic resonance method based on coupled

bistable systems and its application in rolling bearing fault

diagnosis. Mech. Syst. Signal Process. 114, 128–145 (2019)
16. Dong, H., Wang, H., Shen, X., Jiang, Z.: Effects of second-

order matched stochastic resonance for weak signal detec-

tion. IEEE Access 6, 46505–46515 (2018)

17. Zhang, G., Zhang, Y., Zhang, T., Xiao, J.: Stochastic reso-

nance in second-order underdamped system with exponen-

tial bistable potential for bearing fault diagnosis. IEEE

Access 6, 42431–42444 (2018)

18. Lai, Z.H., Liu, J.S., Zhang, H.T., Zhang, C.L., Zhang, J.W.,

Duan, D.Z.: Multi-parameter-adjusting stochastic reso-

nance in a standard tri-stable system and its application in

incipient fault diagnosis. Nonlinear Dyn. 96, 2069–2085
(2019)

19. Lu, S., He, Q., Wang, J.: A review of stochastic resonance in

rotating machine fault detection. Mech. Syst. Signal Pro-

cess. 116, 230–260 (2019)

20. Qiao, Z., Lei, Y., Li, N.: Applications of stochastic reso-

nance to machinery fault detection: a review and tutorial.

Mech. Syst. Signal Process. 122, 502–536 (2019)

21. Duan, F., Chapeau-Blondeau, F., Abbott, D.: Double-max-

imum enhancement of signal-to-noise ratio gain via

stochastic resonance and vibrational resonance. Phys. Rev.

E 90, 022134 (2014)

22. Xiao, L., Zhang, X., Lu, S., Xia, T., Xi, L.: A novel weak-

fault detection technique for rolling element bearing based

on vibrational resonance. J. Sound Vib. 438, 490–505

(2019)
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