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Abstract This paper presents a thermomechanical
model for pseudoelastic shape memory alloys (SMAs)
accounting for internal hysteresis effect due to incom-
plete phase transformation. The model is developed
within the finite-strain framework, wherein the defor-
mation gradient is multiplicatively decomposed into
thermal dilation, rigid body rotation, elastic and trans-
formation parts. Helmholtz free energy density com-
prises three components: the reversible thermodynamic
process, the irreversible thermodynamic process and
the physical constraints of both. In order to capture the
multiple internal hysteresis loops in SMA, two inter-
nal variables representing the transition points of the
forward and reverse phase transformation, φ f

s and φr
s ,

are introduced to describe the incomplete phase trans-
formation process. Evolution equations of the internal
variables are derived and linked to the phase transfor-
mation. Numerical implementation of the model fea-
tures an Euler discretization and a cutting-plane algo-
rithm. After validation of the model against the experi-
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mental data, numerical examples are presented, involv-
ing a SMA-based vibration system and a crack SMA
specimen subjected to partial loading–unloading case.
Simulation results well demonstrate the internal hys-
teresis and free vibration behavior of SMA.

Keywords Shapememory alloys · Internal hysteresis ·
Incomplete phase transformation ·Constitutivemodel ·
Numerical implementation

1 Introduction

Shapememory alloys (SMAs) are a kind of smartmate-
rials that exhibit large reversible deformation under
appropriate thermomechanical loadings, characterized
by shape memory effect (SME) and pseudoelasticity
(PE) [1–4]. Their thermomechanical response displays
profound hysteresis effect during phase transforma-
tion. This hysteresis is physically attributed to the fric-
tional slipping between austenite and martensite vari-
ants at microscopic scale, while highly influenced by
the macroscopic loading conditions [5,6]. In engineer-
ing applications, SMAs are usually used as functional
devices such as sensors [7–10], actuators [11–15] and
dampers [16–19]. For the sake of structural stability
and functional fatigue, most of them are designed to
service in the process of incomplete phase transforma-
tion, which may give rise to complex internal hystere-
sis loops in their thermodynamic response [20,21]. For
example, some SMA actuators are designed to gen-
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erate repeated motions against the externally applied
force. At different loading rates and amplitudes, such
repeated loading–unloading cycles may result in inter-
nal hysteresis loops [22,23]. Therefore, the study on
the internal hysteresis of SMA is of high importance
from the perspective of engineering application.

Over the last decades, great efforts were made to
investigate the internal hysteresis response in SMA.
From experimental point of view, [24] examined the
stress–strain–temperature hysteresis behavior in an Fe-
Cr-Ni-Mn-Si polycrystalline SMA during thermome-
chanical cyclic loading and drew transformation start
and finish lines in the stress–temperature plane. The
internal hysteresis behavior exhibited strong depen-
dence on stress and temperature range. [25] carried out
isothermal tensile tests on polycrystalline NiTi SMAs
and observed two distinct forward and reverse trans-
formation lines, which represented the initiation and
completion of the internal hysteresis loops. [26] exper-
imentally investigated the internal hysteresis behav-
ior of NiTi SMA under various loadings. The internal
loops were highly affected by the loading–unloading
path, especially under stress-controlled loadings. [6]
revealed that the main hysteresis loop may be defined
as the envelope of all internal hysteresis loops. In order
to gain a better understanding on the nucleation and
progress of the incomplete phase transformation, [27]
performeduniaxial tensile tests onNiTi SMAsubjected
to various partial loading–unloading conditions. It was
observed that the strain on internal hysteresis loops
increased during unloading while decreased during
reloading. [28] used a digital camera and amotion anal-
ysis microscopic to observe the stress-induced marten-
site transformation (SIMT) bands on the SMA spec-
imen subjected to complex internal loops. The inter-
nal hysteresis loops on the pseudoelastic stress–strain
curves were related to the spreading and shrinking of
the SIMT bands on the specimen. [29] presented exper-
imental results of the torsion responses of SMA wires
under incomplete phase transformation, and the return
point memory for different internal loops was inves-
tigated. The shape and size of internal loops showed
great dependence on the phase transformation history.
These contributions indicated that the internal hystere-
sis is related to the incomplete phase transformation
in SMA, while the initiation, growth and completion
of martensite phase transformation depend on the ther-
momechanical loading conditions.

Based on the experimental findings, a few consti-
tutive models were proposed to describe the internal
hysteresis response of SMA. [24] carried out a phe-
nomenological analysis on internal hysteresis loops
due to incomplete phase transformation, in which the
phase transformation start conditions were assumed
to be dependent on the extent of prior transforma-
tion. Lagoudas et al. [30,31] developed a constitutive
model for the internal hysteresis response of polycrys-
talline SMAs under cyclic loading, by combination
of “thermomechanical models” and “control hystere-
sis models.” A “re-visited” phase transformation crite-
rion was introduced to properly account for incomplete
phase transformation. [32] studied internal hysteresis
in SMAs by means of the following procedure: (i) the
subdivision of the system into units; (ii) the assign-
ment of a critical driving force for phase transforma-
tion to each units; (iii) the definition of the interaction
between units; and (iv) the specification of the initial
conditions and the external field. [33] extended the con-
cept of phase interaction energy function and proposed
a microscopic approach to describe the internal hys-
teresis in SMAs. Polycrystalline SMA was assumed
to be composed of a large number of single crystal
grains, and the hysteresis behavior in each grain was
represented by the Preisach model. [34] proposed a so-
called shift-skip model to consider the internal hys-
teresis loops in SMA. The core concept of the model is
the polycrystalline SMAwhich is composed of infinite
number of grains, and the martensite phase transfor-
mation takes place grain by grain. [35] constructed a
constitutivemodel of SMAswithin the Ziegler–Green–
Naghdi framework, which is able to capture the inter-
nal hysteresis due to both incomplete phase transfor-
mation and martensite reorientation. [36] introduced a
“dissipationless band” to model the internal hystere-
sis response in SMAs. It is assumed that the mechani-
cal dissipation is proportional to the magnitude of the
product phase formation. [37] employed the theory of
thermally activated processes to describe the kinetics
of phase transformations responsible for the hystere-
sis behavior in single crystal SMA and generalized it
to polycrystalline SMAs by incorporating the concept
of inhomogeneities and effective stresses. The inter-
nal hysteresis in polycrystalline SMAs was associated
with the inhomogeneous phase transformation and the
stress concentration at grain boundaries. [38] presented
a thermodynamic argument to interpret the observed
internal hysteresis in CuAlNi SMA in terms of interfa-
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cial energies. [29] presented a revised Preisach model
to capture the complex internal loops in pseudoelastic
SMAs by modeling the relationship between the driv-
ing force for phase transformation and the martensite
volume fraction.

The aforementioned models show certain capabil-
ities to address the internal hysteresis of SMA sub-
jected to partial loading conditions. However, most of
them have potential limitations. For example, the early
one-dimensional model is limited to describe hystere-
sis curves from the phenomenological point of view
[24]. The “single crystal to polycrystal” models nor-
mally have a tedious modeling procedure [32,37]. The
“shift-skip” and “dissipationless band” models intro-
duced some fictitious assumptions, such as the dissipa-
tionless or “grain-by-grain” martensite phase transfor-
mation [34,36]. The “Preisach-based” models consist
of many relay hysterons connected in parallel, and the
prediction precision is highly dependent on the num-
ber of hysterons used in the model [29,33]. In the
model of [29],more than 20,000 hysteronswere used to
capture the internal hysteresis loops, while the stress–
strain curve still shows jagged response. Besides, all of
them were developed under assumption of infinitesi-
mal strain, though the strain levels in internal hysteresis
loops have definitely entered finite-strain regime. Last
and most important, the recent representative SMA
models were focused on either pseudoelasticity [2,39]
or plasticity [4,40] upon complete phase transforma-
tion, but overlooked the complex internal hysteresis
whenSMAsundergo incomplete phase transformation.

To address the above concerns, this paper develops a
new constitutive model, within a finite-strain and ther-
modynamically consistent framework, to describe the
complex internal hysteresis in pseudoelastic SMA. It
is organized as follows: Sect. 2 presents the kinematic
hypothesis. Section 3 gives the Helmholtz free energy
density. Section 4 discusses the thermodynamic con-
sistency. Section 5 derives the constitutive equations.
Section 6 details the numerical implementation proce-
dure of themodel. Section 7 validates themodel against
the experimental data. Section 8 studies the free vibra-
tion behavior of SMA. Section 9 provides a numeri-
cal example involving a crack SMA specimen. Finally,
Section 10 draws a conclusion of this paper.

2 Kinematics

Consider a homogeneous body B that occupies an open
region of the three-dimensional Euclidean space B, the
material particle in the body B is identified with p. The
motion of the body B within an open time interval t is
a smooth one-to-one function ϕ that maps the material
particle p to its spatial point x at time t . The deforma-
tion gradient of the motion ϕ is the second-order tensor
F, defined by

F = ∇mϕ with J ≡ det F > 0 and Fi j = ∂xi
∂p j

,

(1)

where ∇m denotes the material gradient of a general
field, J denotes the determinant of F, and Fi j are the
Cartesian components of F.

The velocity field v and the velocity gradient L of
the motion ϕ are defined by

v = ϕ̇ and L = ∇sv = ḞF−1, (2)

where ∗̇ denotes the material time derivative of a gen-
eral field ∗, and ∇s denotes the spatial gradient of a
general field. The symmetric and skew parts of L are
referred to, respectively, as the stretching and spin ten-
sors, given by

D = sym(L) = 1

2
(L + LT ) and

W = skew(L) = 1

2
(L − LT ). (3)

Generally, the existing SMA models using finite
strain formulation are developed based on two kine-
matic assumptions: the additive split of the stretch-
ing tensor D [41–43] or the multiplicative decomposi-
tion of the deformation gradient F [44–46] into elas-
tic and inelastic components. The former approach is
expressed directly in rate form and would be consis-
tent with the latter if appropriate integrability condi-
tions are satisfied. Here, to model the internal hystere-
sis response of SMA due to incomplete phase transfor-
mation, we introduce a tripartite decomposition of the
deformation gradient into elastic, phase transformation
and thermal parts [47]

F = FeFtFθ (4)
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where Fe is defined on a local stress-free intermedi-
ate configuration, Ft is defined on a thermally dilated
configuration, and Fθ is defined on the reference con-
figuration. With regard to the deformations, we make
the following kinematic assumptions:

• For general inhomogeneous inelastic deformation,
the stress-free intermediate configuration obtained
by unloading a body is, in general, not uniquely
determined since the superposition of an arbitrary
rigid body rotation still leaves it at zero stress state.
In order to overcome this uniqueness problem, all
the rigid body rotation is separated from the elas-
tic and transformation deformations, such that the
elastic and transformation deformation gradients,
Fe and Ft , include only stretch tensors [48]. As a
result, they are written

Fe = V e and Ft = V t, (5)

where V e and V t are the symmetric stretch tensors.
• The polycrystalline SMAs are commonly consid-
ered as isotropic materials. In view of this, we
assume (i) the thermal deformation is an isotropic

thermal dilation, i.e., Fθ = J θ
1
3 1; (ii) the trans-

formation deformation is incompressible and irro-
tational (zero transformation spin) [49], i.e., J t ≡
det V t = 1 and W t = 0.

• We split the elastic deformation gradient into vol-
umetric and isochoric components, i.e., V e =
J e

1
3 V̄

e
. By combination of these assumptions, we

then have the isochoric/volumetric split of the

deformation gradient F = J
1
3 F̄, where J = J e J θ

denotes the pure volumetric component and F̄ =
V̄

e
V t denotes the pure isochoric component.

Using the above kinematic assumptions, the decom-
position of the deformation gradient inEq. (4) iswritten

F = J
1
3 V̄

e
V tR, (6)

where R is a proper orthogonal tensor (local rotation)
obtained by the polar decomposition of the deforma-
tion gradient F = V R. Figure 1 schematically illus-
trates the four-tier decomposition in Eq. (6). For the
material particle p, it first undergoes an isotropic ther-
mal dilation. Then, the local rotation tensor R rotates
the reference configuration into a new configuration

that includes all the rigid body motion. Subsequently,
martensite transformation and reorientation take place
on the intermediate stress-free configuration. Finally,
martensite variants are distorted under elastic loading,
and the material particle p gets to the spatial point x.

The substitution of Eq. (6) into Eq. (2)2 results in an
additive split of the velocity gradient

L = L̄
e + V̄

e
Lt V̄

e−1 + V̄Ω V̄
−1 + 1

3
δ̇1 (7)

where L̄
e = ˙̄V eV̄

e−1

and Lt = V̇
t
V t−1 denote,

respectively, the elastic and transformation velocity
gradients, Ω = ṘRt is a skew tensor representing
the spin of the reference configuration, and δ = ln J
denotes the spherical component of the logarithmic
strain tensor.

TheEulerianHencky strainmeasures and their spec-
tral decompositions are defined as

h = ln V =
3∑

i=1

ln λi ei ⊗ ei

h̄
e = ln V̄

e =
3∑

i=1

ln λ̄ei e
e
i ⊗ eei

ht = ln V t =
3∑

i=1

ln λti e
t
i ⊗ eti (8)

whereλi is the eigenvalue ofV namedprinciple stretch,
and ei is the eigenvector of V . The trial {e1, e2, e3}
forms orthonormal bases for the tensor fields on the
spatial configuration and defines the Eulerian principle
directions of the stretches.

3 Helmholtz free energy

The Helmholtz free energy density ψ is assumed to
depend on the following state variables:

• Spherical tensor of total logarithmic strain δ1.
• Deviatoric tensor of elastic Eulerian Hencky strain

h̄
e
.

• Transformation Eulerian Hencky strain tensor ht .
• Martensite volume fraction φ and absolute temper-
ature θ .

• Transition point of forward phase transformation
φ

f
s (A → M).
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Fig. 1 Multiplicative
decomposition of the
deformation gradient
according to the different
deformation mechanisms

θ

• Transition point of reverse phase transformation φr
s

(M → A).

According to the thermodynamic mechanisms in
SMA, we consider that the Helmholtz free energy den-
sity per unit volume on spatial configuration is addi-
tively decomposed into three components:

ψ(δ, h̄
e
, ht, θ, φ, φ

f
s , φrs ) = ψr (δ, h̄

e
, θ, φ) + ψ ir (ht, φ)

+ψ pc(ht, φ, φ
f
s , φrs ), (9)

whereψr represents the reversible thermodynamic pro-
cess, ψ ir the irreversible thermodynamic process, and
ψ pc the physical constraints of the both processes.

The first componentψr includes two reversible ther-
modynamic processes: elastic deformation and temper-
ature change, given as

ψr = 1

2
K δ2 + μ

3∑

i=1

(h̄ei )
2 − 3αK δ(θ − θ0)

︸ ︷︷ ︸
elastic deformation

+ e0 − η0θ + φ
η(θ − θ0) + c

[
(θ − θ0) − θ ln

(
θ

θ0

)]

︸ ︷︷ ︸
temperature change

,

(10)

where K and μ are the bulk and shear moduli, h̄ei =
ln λ̄ei is the eigenvalue of the elastic Eulerian Hencky
strain, α is the thermal expansion coefficient, θ0 is the
reference temperature, e0 and η0 denote the internal
energy and entropy at the reference temperature, 
η

denotes the entropy difference between the austenite
and martensite phases, and c is the specific heat capac-
ity.

The second component ψ ir refers to the free energy
density due to the stress- or temperature-induced phase
transformation, given as

ψ ir = gt(φ) + 1

2
μt

3∑

i=1

(hti )
2, (11)

where the first term gt represents the interface energy
between austenite and martensite, the second term rep-
resents the energy increase due to martensite orienta-
tion/reorientation, μt denotes the hardening modulus
of martensite phase transformation, and hti = ln λti is
the eigenvalue of the transformation Eulerian Hencky
strain.

The last component ψ pc is a Lagrangian potential,
andwe introduce it to guarantee the physical constraints
that the state variables must obey, which is given as

ψ pc = I[0,1](φ) + I[0,H](ht) + I(0,1)(φ
f
s , φr

s ), (12)

where the first term I[0,1] is set to enforce the physical
constraint on φ as

I[0,1](φ) =
{
0 if 0 ≤ φ ≤ 1
+∞ otherwise

(13)

the second term I[0,H] is set to enforce the physical
constraint on ht as

I[0,H](ht) =
{
0 if 0 ≤ ‖ht‖ ≤ H
+∞ otherwise

(14)

the constant H denotes the saturation value of the
martensite reorientation strain, and the last term I(0,1)

is set to enforce the physical constraint on φ
f
s and φr

s
as

I(0,1)(φ
f
s , φr

s ) =
{
0 if 0 < φ

f
s , φr

s < 1
+∞ otherwise

(15)

123
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Here, it is noted that the Lagrangian potentials I∗ in
essence act as penalty functions, bywhich the state vari-
ables are confined within the constrained boundaries.
The introduction of the Lagrangian potentials into the
Helmholtz free energy turns constrained problem into
unconstrained one and also guarantees differentiability
of the free energy potential.

4 Consequences of thermodynamics

The principle of virtual power (PVP), the conservation
of energy (first law of thermodynamics) and the irre-
versibility of entropy production (second law of ther-
modynamics) are the three most important fundamen-
tals in continuum mechanics and development of con-
stitutive theories. Recalling the body B being subjected
to volume forces T v in its interior and contact forces
T c on its boundary, its deformed (spatial) configuration
occupies the region ϕ(B) with boundary ϕ(∂B). The
balance of momentum for B can be expressed in terms
of the Cauchy stress tensor σ on the spatial configura-
tion as

divsσ + T v = ρv̇ ∀x ∈ ϕ(B) and

T c = σn ∀x ∈ ϕ(∂B) (16)

where divs denotes the spatial divergence of a general
field, and n denotes the outward unit vector normal to
ϕ(∂B). Equation (16) is often referred to as the strong
equilibrium.Alternatively, theweak equilibrium (PVP)
for the body B is formulatedon the spatial configuration
as∫

ϕ(B)

[
σ : ∇sV∗ + (ρv̇ − T v) · V∗] dV

−
∫

ϕ(∂B)

T c · V∗ dS = 0, (17)

where V∗ denotes an arbitrary virtual velocity field.
Substitution of the real velocity field v and gradient L
defined in Eq. (2) into Eq. (17) produces∫

ϕ(B)

σ : L dV

︸ ︷︷ ︸
Pi t

+
∫

ϕ(B)

ρv̇ · v dV

︸ ︷︷ ︸
Pa

=
∫

ϕ(B)

T v · v dV +
∫

ϕ(∂B)

T c · v dS

︸ ︷︷ ︸
Pext

, (18)

wherePi t denotes the internal stress power,Pa denotes
the power of inertial forces, andPext denotes the power
of external forces (volume and contact forces).

The first law of thermodynamics is the require-
ment that the change in energy (kinetic and internal)
of a thermodynamic system balances the supply of
energy through external forces and heat, mathemati-
cally expressed on the spatial configuration as

˙∫

ϕ(B)

ρe dV +
˙∫

ϕ(B)

1

2
ρ|v|2 dV

=
∫

ϕ(B)

ρr dV −
∫

ϕ(∂B)

q · n dS + Pext , (19)

where ˙
( ) denotes the time derivative of a general inte-

gral, e and r are, respectively, the internal energy and
the heat production per unit mass, and q is the heat flux
per unit area.

The second law of thermodynamics postulates that
the change in entropy is never less than the supply of
entropy through heat, on the spatial configurationmath-
ematically expressed as

˙∫

ϕ(B)

ρη dV ≥
∫

ϕ(B)

1

θ
ρr dV−

∫

ϕ(∂B)

1

θ
q · n dS.

(20)

By combination of Eqs. (18), (19) and (20), these
global forms yield the fundamental inequality for every
spatial point in ϕ(B)

σ : L − ρ(ė − θη̇) − 1

θ
q · ∇sθ ≥ 0, (21)

which, with the introduction of the Helmholtz free

energy per unit mass, defined by ψ
def= e− θη, and Eq.

(7), results in the following Clausius–Duhem inequal-
ity in terms of dissipation per unit reference volume
as

pδ̇ + s :
(
L̄e + V̄ eLt V̄ e−1 + V̄Ω V̄−1

)
− ρ̄(ψ̇ + ηθ̇)

− J

θ
q · ∇sθ ≥ 0, (22)

where p and s are the spherical and deviatoric com-
ponents of the Kirchhoff stress tensor, i.e., τ = Jσ =
p1+ s, and the reference mass density ρ̄ = Jρ denotes
the mass per unit reference volume.
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Now, by substituting Eq. (9) into Eq. (22), one
obtains the dissipation inequality

(p − ∂δψ) · δ̇ + (
s − ∂h̄

eψ
) : D̄e

+
(
V̄

e
sV̄

e−1 − ∂htψ

)
: Dt − (η + ∂θψ) · θ̇

+ V̄ sV̄
−1 : Ω − ∂φψ · φ̇ − ∂

φ
f
s
ψ · φ̇

f
s

− ∂φr
s
ψ · φ̇r

s − J

θ
q · ∇sθ ≥ 0, (23)

where ∂∗ψ denotes the partial differential with respect
to the state variables of the free energy function ψ .
The principle of thermodynamic determinism requires
that the above inequality holds for arbitrary thermody-
namic process. Thus, for reversible process, any choice
of {δ̇, D̄e

, θ̇} implies the constitutive equations

p = ∂δψ, s = ∂h̄
eψ and η = −∂θψ, (24)

and, for irreversible process, the following inequalities
guarantee the nonnegative intrinsic dissipation in arbi-
trary evolution of {Dt,Ω, φ̇, φ̇

f
s , φ̇r

s }

At : Dt+Aω : Ω+Aφ ·φ̇+A f ·φ̇ f
s +Ar ·φ̇r

s ≥ 0, (25)

where {At, Aω, Aφ, A f , Ar } are the conjugate thermo-
dynamic forces, defined as

At = V̄
e
sV̄

e−1 − ∂htψ, Aω = V̄ sV̄
−1

,

Aφ = −∂φψ, A f = −∂
φ

f
s
ψ, Ar = −∂φr

s
ψ, (26)

finally, for heat conduction process, the Fourier’s law,
q = −k∇sθ , is taken to govern the heat flux and we
obtain

k J

θ
|∇sθ |2 ≥ 0, (27)

where k is the nonnegative thermal conductivity, giv-
ing rise to an unconditional sanctification of the above
inequality.

Further, by substituting the constitutive equations
for the reversible processes, as shown in Eq. (24), into
the Helmholtz free energy function, we obtain the fol-
lowing Gibbs relation in terms of the internal energy
and entropy [50]:

ė − θη̇ = p · δ̇ + s : D̄e + ∂htψ : Dt + ∂φψ · φ̇

+∂
φ

f
s
ψ · φ̇ f

s + ∂φr
s
ψ · φ̇r

s . (28)

Using the above equation, along with the definitions
in Eq. (26), the conservation of energy can be written
as the following entropy balance

θη̇ = At : Dt+Aω : Ω+Aφ ·φ̇+A f ·φ̇ f
s +Ar ·φ̇rs+r−∇s ·q.

(29)

For the sake of thermodynamic consistency, we pos-
tulate that the entropy potential depends on the same
state variables as the Helmholtz free energy ψ , i.e.,
η = η(δ, h̄

e
, ht, θ, φ, φ

f
s , φr

s ), and obtain its time
derivative

η̇ = ∂δη · δ̇ + ∂h̄
eη : D̄e + ∂htη : Dt + ∂φη · φ̇

+∂
φ

f
s
η · φ̇ f

s + ∂φr
s
η · φ̇r

s + ∂θη · θ̇ , (30)

which, along with the introduction of the specific heat
capacity c = θ∂θη and Eq. (29), gives the following
partial differential equation for the temperature:

cθ̇ = At : Dt + Aω : Ω + Aφ · φ̇ + A f · φ̇
f
s

+ Ar · φ̇r
s + r − ∇s · q

− θ
(
∂δη · δ̇ + ∂h̄

eη : D̄e + ∂htη : Dt + ∂φη · φ̇

+∂
φ

f
s
η · φ̇ f

s + ∂φr
s
η · φ̇r

s

)
. (31)

Equation (31) describes the temperature change in
SMA due to the evolutions of the state variables and
the heat supplies.

5 Constitutive equations

By substituting the Helmholtz free energy (9) into Eq.
(24), we derive the spherical and deviatoric parts of the
stress tensor, p and s, as well as the entropy η:

⎧
⎨

⎩

p = K [δ − 3α(θ − θ0)] ,
s = ∑3

i=1 si e
e
i ⊗ eei where si = 2μh̄ei ,

η = 3αK δ + c (ln θ − ln θ0) − φ
η + η0.

(32)

In analogy, the substitution of the Helmholtz free
energy (9) into Eq. (26) gives the explicit expressions
of the thermodynamic forces
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⎧
⎪⎨

⎪⎩

At = V̄
e
sV̄

e−1 − μtht − ιtnt,
Aφ = −
η(θ − θ0) − zt(φ) − ιφ,

A∗ = −ι∗ where ∗ ∈ { f, r},
(33)

where nt = ht

‖ht‖ denotes the direction of the transfor-

mation strain, and zt = ∂φgt is the phase transforma-
tion hardening function, given as

zt = κtanm
[
1

2
(aφ + b)π

]
+ w, (34)

where the hardening parameters {κ,m, a, b, w} con-
trol the smoothness at initiation and completion of
phase transformation, and they obey the constraints:
κ > 0, 0 < m < 1, a > 0, b > 0, a + b < 1. For
details, please refer to the authors’ previous paper [47].

TheLagrangianmultipliers {ιt, ιφ, ι∗} in Eq. (33) are
defined as:

ιt = ∂I[0,H](ht) =
⎧
⎨

⎩

ιt− ≤ 0 if ‖ht‖ = 0
0 if 0 < ‖ht‖ < H
ιt+ ≥ 0 if ‖ht‖ = H,

(35)

ιφ = ∂I[0,1](φ) =
⎧
⎨

⎩

ιφ− ≤ 0 if φ = 0
0 if 0 < φ < 1
ιφ+ ≥ 0 if φ = 1,

(36)

ι∗ = ∂I(0,1)(φ
f
s , φrs ) =

⎧
⎨

⎩

ι∗− ≤ 0 if φ∗
s − 0(φ∗

s ) = 0
0 if 0 < φ∗

s < 1
ι∗+ ≥ 0 if φ∗

s + 0(φ∗
s ) = 1,

(37)

where 0(φ∗
s ) is an same-order infinitesimal of φ∗

s , and
the above three Lagrangian multipliers and their corre-
sponding physical constraints obey the classical Kuhn–
Tucker conditions.

According to the literature of [51] and [52], the prin-
ciple of maximum dissipation implies the transforma-
tion strain is solely linked to the martensite volume
fraction when martensite reorientation is suppressed.
Thus, we assume the following evolution equation:

Dt = φ̇HΛ, Λ =
{ s

‖s‖ if φ̇ ≥ 0
nt if φ̇ < 0

(38)

which means during forward transformation, the trans-
formation strain grows by the direction of the deviatoric
stress tensor, while during reverse transformation, the
transformation strain recovers in its own direction.

With regard to the internal variables φ
f
s and φr

s , we
introduce the following indicator function to control
them

φ̇
f
s = I f φ̇, I f =

{
0 if φ̇ ≥ 0
1 if φ̇ < 0

(39)

φ̇r
s = Ir φ̇, Ir =

{
1 if φ̇ > 0
0 if φ̇ ≤ 0

(40)

The above two evolution laws imply that φ f
s decreases

during the reverse phase transformation, while φr
s

increases during the forward phase transformation,
which get initialized at each turning point of the phase
transformation

{
φ

f
s = φr

s if φ̈ < 0

φr
s = φ

f
s if φ̈ > 0

(41)

According to the above rules, φ
f
s jumps to φr

s when
the phase transformation turns from “Forward” to
“Reverse” (the second-order derivative of the marten-
site volume fraction φ̈ is less than zero), whileφr

s jumps

to φ
f
s in the opposite case (R → F).
Now,with all internal variables linked to the changes

of martensite volume fraction φ as formulated above,
the inequality (25) reads

(
HAt : Λ + Aφ + A f I f + ArIr

)

︸ ︷︷ ︸
Γ

·φ̇ ≥ 0, (42)

which is guaranteed by the following choice of the evo-
lution equation associated with the phase transforma-
tion

φ̇ = γ̇S(Γ ), (43)

where γ̇ is a nonnegative multiplier, and S(·) is a sign
function to extract the sign of the total thermodynamic
force Γ .

By substituting Eqs. (32)3 and (42) into Eq. (31), we
obtain the temperature evolution equation as

cθ̇ = (
Γ + 
ηθ

) · φ̇ − 3αK θ δ̇ + r − ∇s · q. (44)

To determine the boundary between the elasticity
and phase transformation, we define a yield criterion,
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in terms of the thermodynamic force, for the initiation,
growth and saturation of the phase transformation

� = |Γ | − Y (φ, φ
f
s , φr

s ), (45)

whereY (φ, φ
f
s , φr

s ) is the threshold for the phase trans-
formation, depending on the martensite volume frac-
tion φ as follows:

• if thematerial is locatedon themainhysteresis loop,
the parameter Y takes the reference value

Y = Y0 (46)

• if the material is located on the forward internal
hysteresis loop, the parameter Y takes

Y (φ) =
[
1 − φ

f
s

(
1 − φ

1 − φ
f
s

)]
Y0, 0 < φ

f
s < 1

(47)

• if the material is located on the reverse internal hys-
teresis loop, the parameter Y takes

Y (φ) =
(
1 + φ − φ

φr
s

)
Y0, 0 < φr

s < 1 (48)

where Y0 is the model parameter. The above logic
expression describes the change of internal hysteresis
loopwhen SMA is subjected to incomplete phase trans-
formation. The evolution Eq. (43) and the yield func-
tion (45) are complemented by the following loading–
unloading conditions

γ̇ ≥ 0, � ≤ 0, γ̇� = 0. (49)

In summary, the overall phase transformation laws
are as follows:

• If the yield function � < 0, and martensite phase
transformation does not occur, then the internal
variables φ̇ = 0, Dt = 0, φ̇r

s = 0, φ̇r
s = 0.

• If the yield function � = 0, the thermodynamic
driving force Γ > 0 and the martensite volume
fraction φ < 1, and the forward martensite phase
transformation occurs (A→M), then the internal
variables evolve as φ̇ = γ̇ , Dt = Hφ̇ s

‖s‖ , φ̇r
s =

0, φ̇r
s = φ̇.

• If the yield function � = 0, the thermodynamic
driving force Γ < 0 and the martensite vol-
ume fraction φ > 0, and the reverse marten-
site phase transformation occurs (M→A), then the
internal variables evolve as φ̇ = −γ̇ , Dt =
Hφ̇nt, φ̇r

s = φ̇, φ̇r
s = 0.

Here, it is noted that once the internal variables,
ht , φ, φ

f
s and φr

s , arrive their boundaries, the Kuhn–
Tucker complementary conditions will be activated
to compute the Lagrangian multipliers, ιt , ιφ , ι f and
ιr . For example, when the transformation strain ht

arrives the boundary H, the complementary condition
{ιt ≥ 0, ‖ht‖ − H ≤ 0, ιt (‖ht‖ − H) = 0} is solved
to obtain ιt . Through Eqs. (38)–(40), evolutions of the
internal variables, ht , φ

f
s and φr

s , have been linked to
phase transformation process. Thus, the issue comes
down to the solution of the transformation multiplier
γ̇ , which will be addressed in the following section,
and the iterative formula is given in Eq. (59).

6 Numerical implementation

In this section, we present a numerical integration algo-
rithm for the proposed constitutive equations so that the
model can be used as computational tool for the analy-
sis of SMA boundary value problems. First, we adopt
a backward Euler scheme to discretize the constitu-
tive equations to obtain the corresponding incremental
forms within a pseudotime interval. Then, we solve the
return-mapping scheme using the cutting-plane algo-
rithm, which is an iterative procedure for numerical
solution of the return-mapping problem.

6.1 Euler discretization: the incremental
elastic-transformation constitutive problem

The deformation-driven initial value problem of the
proposed constitutive model is described as: Given the
deformation gradient Fn , the internal state variables
htn , φn , φ

f
s n , φ

r
s n , and the temperature θn at the begin-

ning of the pseudotime interval [tn, tn+1], and given the
incremental deformation gradient F
 for this interval,
find the solutions for the state variables and tempera-
ture at the end of this interval satisfying the discretized
constitutive equations.

The numerical discretization of the evolution Eq.
(38), bymeans of the backward exponential integration
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scheme, leads to the update formula for the transforma-
tion deformation gradient

V t
n+1 = exp

[

γS(Γn+1)HΛn+1

]
V t

n . (50)

The temperature evolution Eq. (44) is discretized
using the conventional backward Euler scheme, given
as

θn+1 = cθn + Γn+1
γS(Γn+1) + rn+1 − ∇s · qn+1

c − 
η
γS(Γn+1) + 3αK
δ
.

(51)

The initial value problem of the constitutive model
is complemented by the time-discrete yield function
(45) and loading–unloading conditions (49):

{
�n+1 = |Γn+1| − Y (φn+1),


γ ≥ 0, �n+1 ≤ 0, 
γ�n+1 = 0.
(52)

To solve the above initial value problem, we adopt
a two-step elastic predictor/transformation corrector
algorithm, as follows:

• The elastic trial step.
Firstly, we assume that the transformation multi-
plier
γ = 0, that is, the step over the time interval
[tn, tn+1] is purely elastic. The elastic trial solu-
tion is obtained by setting all dissipative internal
variables unchanged. The introduction of the mul-
tiplicative decomposition V̄ = V̄

e
V t into Eq. (50)

results in the elastic trial state

V̄
e
n+1 = V̄

e trial
n+1 exp

[−
γS(Γn+1)HΛn+1
]
,

(53)

where V̄
e trial
n+1 = V̄
V̄

e
n is the trial elastic stretch

tensor, and V̄
 is the incremental stretch tensor. In
the absence of martensite reorientation, we further
assume that elastic and transformation are isotropy,
that is, V̄

e
and Λ commute. For a more rigorous

discussion of this claim and the following deriva-
tion, the reader is referred to Sect. 3.2 A Hencky
strain return-mapping algorithm in theworkof [47].
Then, by taking the tensor logarithm of Eq. (53),
we obtain an infinitesimal formula in terms of the
Eulerian Hencky strain tensors

h̄
e
n+1 = h̄

e trial
n+1 − 
γS(Γn+1)HΛn+1, (54)

where h̄
e trial
n+1 = ln V̄

e trial
n+1 denotes the trial elas-

tic Hencky strain. The corresponding trial stress is
given by

strialn+1 = 2μh̄
e trial
n+1 . (55)

The trial stress inEq. (55) is called admissible stress
if the yield function (52)1 in the trial state satisfies
�trial

n+1 ≤ 0. Namely, the elastic trial state lies inside
of the yield surface and itself is the actual solu-
tion. In this case, we update all state quantities as
(·)n+1 = (·)trialn+1, and the algorithm is terminated.
Otherwise, the elastic trial state is not admissi-
ble and the transformation corrector step presented
below will be activated to find the solution to the
initial value problem.

• The transformation corrector step.
When the phase transformation process takes place
within the time interval [tn, tn+1], the transforma-
tion multiplier has to be strictly positive 
γ > 0.
The transformation corrector step then consists in
finding the actual solution of the following alge-
braic systemwrittenwith the above elastic trial state
definition:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̄
e
n+1 − h̄

e trial
n+1 + 
γS(Γn+1)HΛn+1 = 0,

θn+1 − (c+3αK
δ)θ trialn +Γn+1
γS(Γn+1)+rn+1−∇s ·qn+1
c−
η
γS(Γn+1)+3αK
δ

= 0,

φn+1 − φtrial
n+1 − 
γS(Γn+1) = 0,

φ
f
s n+1 − φ

f trial
s n+1 − I f

n+1
γS(Γn+1) = 0,

φr
s n+1 − φr trial

s n+1 − Ir
n+1
γS(Γn+1) = 0,

�n+1 = |Γn+1| − Y (φn+1) = 0.
(56)

The nonlinear Eq. (56) are solved using the cutting-
plane return-mapping algorithm presented below.

6.2 Solution of the return-mapping equations: the
cutting-plane algorithm

The cutting-plane algorithm is an iterative procedure
for numerical solution of the return-mapping equations.
In the cutting-plane iteration k, the yield function�n+1

is linearized about the current state quantities
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�
[
h̄
e (k)
n+1 , θ

(k)
n+1, φ

(k)
n+1, φ

f (k)
s n+1, φ

r (k)
s n+1

]

+ ∂
h̄
e (k)
n+1

� :
[
h̄
e (k+1)
n+1 − h̄

e (k)
n+1

]

+ ∂
θ

(k)
n+1

� ·
[
θ

(k+1)
n+1 − θ

(k)
n+1

]

+ ∂
φ

(k)
n+1

� ·
[
φ

(k+1)
n+1 − φ

(k)
n+1

]

+ ∂
φ

f (k)
s n+1

� ·
[
φ

f (k+1)
s n+1 − φ

f (k)
s n+1

]

+ ∂
φ
r (k)
s n+1

� ·
[
φ
r (k+1)
s n+1 − φ

r (k)
s n+1

]
= 0, (57)

where {h̄e (k+1)
n+1 , θ

(k+1)
n+1 , φ

(k+1)
n+1 , φ

f (k+1)
s n+1 , φ

r (k+1)
s n+1 } are

the state quantities in a new iteration k + 1. To solve
Eq. (57), we apply the forward Euler scheme on the
constitutive Eqs. (56)1−5 and obtain the formula

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̄
e (k+1)
n+1 − h̄

e (k)
n+1 = 
γ

[
−S(Γ

(k)
n+1)HΛ

(k)
n+1

]
,

θ
(k+1)
n+1 − θ

(k)
n+1 = 
γ

[

ηS(Γ

(k)
n+1)θ

(k)
n+1+Γ

(k)
n+1S(Γ

(k)
n+1)

c−
η
γS(Γn+1)+3αK
δ

]
,

φ
(k+1)
n+1 − φ

(k)
n+1 = 
γ

[
S(Γ

(k)
n+1)

]
,

φ
f (k+1)
s n+1 − φ

f (k)
s n+1 = 
γ

[
I f (k)
n+1 S(Γ

f (k)
n+1 )

]
,

φ
r (k+1)
s n+1 − φ

r (k)
s n+1 = 
γ

[
Ir (k)
n+1 S(Γ

r (k)
n+1 )

]
.

(58)

With the substitution of Eq. (58) into (57),we obtain the
following closed form of the transformation multiplier


γ = �(k)/D(k)
n+1, (59)

where

D(k)
n+1 =∂

h̄
e (k)
n+1

� :
[
−S(Γ

(k)
n+1)HΛ

(k)
n+1

]

+ ∂
θ

(k)
n+1

� ·
⎡

⎣
ηS(Γ
(k)
n+1)θ

(k)
n+1 + Γ

(k)
n+1S(Γ

(k)
n+1)

c − 
η
γS(Γn+1) + 3αK
δ

⎤

⎦

+ ∂
φ

(k)
n+1

� ·
[
S(Γ

(k)
n+1)

]

+ ∂
φ

f (k)
s n+1

� ·
[
I f (k)
n+1 S(Γ

f (k)
n+1 )

]

+ ∂
φ
r (k)
s n+1

� ·
[
Ir (k)
n+1 S(Γ

r (k)
n+1 )

]
. (60)

By substituting the obtained 
γ into Eq. (58), we then
compute all state quantities in iteration k + 1. Starting

Fig. 2 The main hysteresis stress–strain loop in pseudoelastic
NiTi wire: model prediction and experimental data reported by
[29]; model parameters are calibrated using this input data

from the initial condition, (k = 0), of the cutting-plane
algorithm
{
h̄
e (0)
n+1 , θ

(0)
n+1, φ

(0)
n+1, φ

f (0)
s n+1, φ

r (0)
s n+1

}

=
{
h̄
e trial
n+1 , θ trialn+1, φ

trial
n+1, φ

f trial
s n+1 , φr trial

s n+1

}
, (61)

we can produce a sequence of states by repeating the
above iteration procedure

{
h̄
e (k)
n+1 , θ

(k)
n+1, φ

(k)
n+1, φ

f (k)
s n+1, φ

r (k)
s n+1

}
, k = 0, 1, 2...

(62)

The cutting-plane iterationwill be interruptedwhen the
yield function satisfies the convergence criterion

�
(
h̄
e (k)
n+1 , θ

(k)
n+1, φ

(k)
n+1, φ

f (k)
s n+1, φ

r (k)
s n+1

)
≤ εtol , (63)

where εtol is the convergence tolerance. Inequality (63)
indicates the yield function in state k is sufficiently
close to zero, and the numerical solution at present state
is in accordance with the transformation consistency.

7 Model validation

In order to use the model as a computational tool
for the SMA boundary value problem, we imple-
ment the above numerical algorithm into the com-
mercial FE software ABAQUS/Explicit by means of
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Table 1 Model parameters Parameters Values/units Parameters Values/units

K 57,390 MPa μ 26,488 MPa

α 22 × 10−6/K κ 2.2 MPa

a 0.996 b 0.002

m 0.16 ω − 6.2 MPa

Y0 1.22 MPa 
η 0.3 MPa/K

H 0.0154 θ0 265 K

(a) (b)

(c) (d)

Fig. 3 The internal hysteresis stress–strain loops under partial load–unload conditions with three twist degrees of 600, 900 and 1500;
the model predictions are compared to the experimental data [29]
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(a) (b)

(c) (d)

Fig. 4 The internal hysteresis loops during both loading and
unloading cycles: a loading path, b comparison between model
prediction and experimental data [29], c evolution of martensite

volume fraction, d change of transition points for both forward
and reverse phase transformations

a user-defined material subroutine VUMAT. Numeri-
cal efficiency and accuracy of the model are validated
against the experimental data of [29] on NiTi SMA
wires.

Figure 2 shows the main hysteresis stress–strain
loop in pseudoelastic NiTi wire, and the model pre-
diction is compared to the experimental data of [29].
Model parameters are calibrated by this experimen-
tal data and listed in Table 1, and they will be used
in the following predictions with various internal hys-
teresis loops. It is noted that the experimental data are
obtained from the twist test up to 1800 degrees on
SMA wire, at such twist degree the wire undergoes

a complete phase transformation process and displays
the main hysteresis loop with the maximum effective
strain of 2.8%. Overall, the model prediction agrees
reasonably well with the experimental data by cap-
turing the pseudoelastic hysteresis stress–strain loop,
the complete shape recovery and the smooth transition
at the initiation and completion of phase transforma-
tion.

Figure 3 shows the internal hysteresis stress–strain
loops under partial load–unload conditions. Specifi-
cally, Fig. 3a gives the loading paths, and the twist
degrees of 600, 900 and 1500 can generate the max-
imum strains of 0.93%, 1.40% and 2.32%, respec-

123



1406 J. Wang et al.

(a) (b)

(c) (d)

Fig. 5 The complex internal hysteresis loops during loading
cycle: a loading path, b comparison between model prediction
and experimental data [29], c evolution of martensite volume

fraction, d change of transition points for both forward and
reverse phase transformations

tively. Figure 3b–d compares the model predictions
to the experimental data. It can be seen from the fig-
ures that with the increase in the loading degree, both
the height and width of the hysteresis loop increase
as well; namely, the size of internal hysteresis loop
highly depends on the loading degree. The model pre-
dictions reasonably describe the simple internal loops
under the partial load–unload conditions. However,
during the reverse phase transformation from marten-
site to austenite, the model predictions deviate from the
experimental data, especially at lower loading degrees
of 600 and 900. This is mainly because the model
parameters are calibrated just using the main hystere-

sis loop data along with no internal loop informa-
tion.

Figures 4, 5 and 6 show several examples of complex
internal hysteresis loops during loading and unload-
ing cycles. In Fig. 4, sub-figure (a) shows the load-
ing path, and the effective strain varies as 0, 1.39%,
0.62%, 2.79%, 1.24%, 2.02%, 0 within the total load-
ing time of 2800 s. Sub-figure (b) plots the internal
hysteresis stress–strain loops during both forward and
reverse phase transformations. Model prediction has a
good agreement with the experimental data by captur-
ing both main and internal hysteresis loops. The only
deficiency is that the material response shows abrupt
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(a) (b)

(c) (d)

Fig. 6 The complex internal hysteresis loops during both load-
ing and unloading cycles: a loading path, b comparison between
model prediction and experimental data [29], c evolution of

martensite volume fraction, d change of transition points for both
forward and reverse phase transformations

Fig. 7 Schematic representation of the vibration system, com-
prising a mass and two antagonistic SMA wires

transitions at the initiation and completion of the inter-
nal hysteresis loops. This phenomenon is due to an

assumption in the proposed model that the incomplete
phase transformation shares the same hardening func-
tionwith the complete phase transformation, which can
be addressed by the introduction of another smooth
hardening function for the incomplete phase transfor-
mation process. Sub-figure (c) shows the evolution of
martensite volume fraction φ during the phase trans-
formation process. Likewise, the curve shows inter-
nal hysteresis loops, indicating that the internal hys-
teresis loops on the stress–strain curve can be phys-
ically attributed to the incomplete phase transforma-
tion during both forward and reverse phase transfor-
mation processes. Sub-figure (d) shows the evolution
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(a) (b)

(c) (d)

Fig. 8 Free vibration behavior of the system: a deflection, b velocity, c martensite volume fraction, d velocity versus deflection

of the internal state variables φ
f
s and φr

s during the
phase transformation process. These two variables rep-
resent the transition points of the internal hysteresis
loop during the forward and reverse phase transforma-
tions. They evolve with the martensite volume frac-
tion φ according to Eqs. (39) and (40). By combina-
tion of sub-figure (a), it is observed that at loading
period, φr

s increases, while φ
f
s remains unchanged,

vice versa. At each turning point, the unchanged one
jumps to the value of another. For example, at the first
turning point with strain of 1.39%, φ f

s jumps to 0.46,
that is, the value of φr

s . Figures 5 and 6 provide other
two more complex examples of the internal hystere-
sis loops. Overall, the model shows good predictive

capability and can be used for various complex load-
ing conditions.

8 Dynamic analysis

Pseudoelastic SMA shows remarkable hysteresis effect
as shown in the figures of Sect. 7, implying that a large
amount of energy is dissipated during phase transfor-
mation process. This pseudoelastic hysteresis indicates
high damping capacity and thereby can be used for
energy absorption under dynamic loadings. To demon-
strate the superiority of SMA in vibration control, we
present a dynamic analysis of a vibration system com-
prising a mass and two antagonistic SMA wires, as
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shown in Fig. 7. The SMA wires have length of 100
mm and diameter of 1 mm, the two far ends are fixed
on hinges, and the middle ends were linked to a mass
of 0.1 kg. The mass is subjected to an initial deflection
of 20 mm within the first 0.1 s to induce free vibration
behavior of the system.

Figure 8 shows the free vibration behavior of the
above system. The mass displays a sinusoidal oscil-
lation with frequency of about 3 Hz, as shown in the
first diagram. The second diagram shows the corre-
sponding velocity of the mass, and the oscillation has a
half-cycle hysteresis compared to the deflection. Upon
the release of the applied load, the oscillation ampli-
tude gradually decreases and finally tends to be con-
stant. This vibration reduction phenomenon is mainly
because the kinetic energy of the vibration system
is continuously dissipated during the repeated phase
transformation processes. In the third diagram, the evo-
lution of martensite volume fraction on the SMA wire
is plotted. The maximum value of 1 in the first cycle
represents the complete phase transformation on the
SMA wire. Afterward, phase transformation degrades
with the number of vibration cycles and finally stops
after 3 s. The last diagram combines the velocity and
the deflection, allowing for an illustrative interpretation
of the free vibration process. During the free vibra-
tion process, the kinetic and potential energies convert
mutually and the total energy drops gradually. Even-
tually, when the decreasing energy is insufficient to
initiate phase transformation on the SMA wires, the
vibration system enters the elastic regime and reaches
a dynamic steady state.

9 Numerical example

To demonstrate the capabilities of the model in solving
SMA boundary value problem with incomplete phase
transformation case, a crack SMA specimen under
incomplete loading–unloading condition is simulated
in this section. The finite element model of the crack
SMA specimen is shown in Fig. 9, with the thickness
of 1 mm. The height and width of the specimen are 20
mm, and the opening angle of the crack is 30 degree.
In order to improve the numerical accuracy and cap-
ture the local response, the mesh around the crack tip
is refined.

During the simulation, the forces are applied on the
top and bottom ends of the specimen. The loading path

Fig. 9 Finite element model of the crack SMA specimen

is sequentially 0, 1.25 kN, 0.75 kN, 1.75 kN, 1 kN, 1.5
kN, 0, as shown in Fig. 10a. It comprises four stages:
partial loading (O→A), incomplete unloading–loading
(A→B→C), partial unloading (C→D) and incomplete
loading–unloading (D→E→O), which will generate
both main and internal hysteresis loops. Figure 10b
shows the global force–displacement response of the
crack SMA specimen. At the first stage, the force–
displacement curve shows nonlinearity indicating that
phase transformation has occurred on the specimen.
Then, at the second stage, an internal loop is observed
during the forward phase transformation process. Sub-
sequently, the partial unloading from the maximum
loading point C to point D induces reverse phase trans-
formation from martensite to austenite. Finally, the
incomplete loading–unloading leads to an internal loop
during the reverse phase transformation.Upon the com-
plete unloading, the force–displacement curve returns
to the original point O, showing a complete shape
recovery. Overall, the simulation result well demon-
strates the prime characteristics of SMA such as pseu-
doelasticity, main and internal hysteresis loops.

With regard to the local response around the crack
tip on the SMA specimen, Figs. 11 and 12 display the
martensite volume fraction and Mises stress contour
plots, respectively. The evolution of the phase trans-
formation zone and stress distribution on the SMA
specimen are well demonstrated throughout the incom-
plete phase transformation process. At point A, with
the increasing stress concentration, material around
the crack tip transforms from austenite to martensite.
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(a) (b)

Fig. 10 Force–displacement curve of the top left corner point: a the loading path, b the numerical prediction by the FE simulation
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Fig. 11 Martensite volume fraction contour plots at different loading points
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Fig. 12 Mises stress contour plots at different loading points

The red contour line near the crack tip indicates that
the stress has exceeded 1200 MPa, while the material
within this area has completely transformed to marten-
site. The blue contour line indicates the initiation of
martensite phase transformation, and the correspond-
ing transformation stress is around 400 MPa. With the
partial unloading fromA to B, stress level on the speci-
men shows an overall decrease and the region of stress
concentration shrinks back. Phase transformation zone
around the crack tip contracts, while the martensite
at the right edge disappears. Then, at the maximum
loading point C, phase transformation zone around the
crack tip grows dramatically due to the expansion of
the high-stress region, while partial phase transforma-
tion occurs at all edges. Subsequently, the unloading
to D results in shrinkage of the phase transformation

zone at the crack tip and right edge, and the disappear-
ance of the phase transformation zone at the top and
bottom edges. Finally, the incomplete loading from D
to E again leads to a slight growth of the phase trans-
formation zone. In general, the stress concentration at
the crack tip is the crucial factor to initiate phase trans-
formation, while evolution of the phase transformation
zone in turn affects the stress distribution on the spec-
imen, especially around the crack tip. It is well known
that phase transformation is the physical origin of hys-
teresis effect in SMA. Thus, by combination of Figs.
10, 11 and 12, it might be concluded that the internal
loops on the force–displacement curve are the conse-
quence of the partial phase transformation on the SMA
specimen, especially around the crack tip.
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10 Conclusion

In this paper, we studied the internal hysteresis of pseu-
doelastic SMA subjected to incomplete phase transfor-
mation and developed a finite-strain thermomechani-
cal model. The mode began with a four-tier decompo-
sition of the deformation gradient into thermal dila-
tion, rigid body rotation, elastic and transformation
parts, which overcame the uniqueness problem of
the intermediate stress-free configuration. Helmholtz
free energy function comprised the reversible, irre-
versible thermodynamic processes and physical con-
straints of both. Based on the PVP, first and second
laws of thermodynamics, we established a thermody-
namic consistent framework, wherein the dissipation
inequality and temperature evolution due to internal
heat source were well discussed. Constitutive equa-
tions were derived from the Helmholtz free energy
and established framework. A yield criterion consid-
ering the incomplete phase transformation was intro-
duced, which separately described the forward inter-
nal hysteresis, the reverse internal hysteresis and the
main hysteresis loops. Numerical implementation of
the model includes the backward Euler discretization
and the cutting-plane algorithm. The model was vali-
dated against the experimental data with various com-
plex internal hysteresis loops, followed by a free vibra-
tion analysis of antagonistic SMA wires. Finally, we
carried out a FE simulation of a SMA crack specimen
under incomplete loading–unloading conditions. Sim-
ulation results well demonstrated the global internal
hysteresis loops on the specimen, and the evolution of
local phase transformation zone at the crack tip.
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