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Abstract Due to the near monopoly held by nonlin-

ear energy sinks in the study of targeted energy

transfer, little research has been done on the flow of

mechanical energy between oscillators with compa-

rable mass. The goal of the present paper is to

investigate the flow of mechanical energy between

two nonlinearly coupled oscillators with comparable

mass that arise due to the breaking of dynamic

reciprocity. The first oscillator represents the proto-

typical linear oscillator (LO), whereas the second

oscillator represents a nonlinear oscillator (NO) that is

nonlinearly coupled to the LO only. By breaking

dynamic reciprocity, one-way energy propagation is

achieved in the system, such that energy can only be

irreversibly transferred from the NO to the LO. As

such, the NO is isolated from the LO for physically

reasonable energies whenever it is not directly excited.

Moreover, when the NO is directly excited, there exist

regimes where the LO, despite being linear and of

comparable mass to the NO, behaves like a nonlinear

energy sink and parasitically and irreversibly absorbs

energy from the NO. The theoretical portion of this

works employs direct numerical simulation of the

structure to explore the strongly nonreciprocal dynam-

ics and resulting energy transfers. The theoretical

results are then verified through experimental mea-

surements of a comparable structure. The present

study promotes a new paradigm for investigating

energy transfer in mechanical structures and opens the

way for passively controlling the flow of energy in

complex mechanical systems.

Keywords Energy transfer � Vibration isolation �
Nonlinear normal modes � Nonlinear dynamics �
Nonreciprocity � Nonlinear energy sink

1 Introduction

Recent research on energy transfer in mechanical

systems has been dominated by the phenomena of

targeted energy transfer, which is a form of passive,

directional energy transfer [1, 2]. More specifically,

targeted energy transfer is traditionally defined as an

irreversible transfer of mechanical energy from a

primary structure to a set of local attachments called

nonlinear energy sinks (NESs). A NES typically

possesses a linear viscous damper, low mass relative

to the primary structure, and an essential nonlinearity,

i.e., a strong nonlinearity (of order 1) and no linear

stiffness. Although the NES is typically studied

theoretically without any linear stiffness, zero linear

stiffness often cannot be achieved in experimental

implementations and, in this case, any linear stiffness
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must be weak enough that the frequency associated

with the NES at low excitation levels is less than that

of the modes of the primary structure. Since its

inception, the phenomena of targeted energy transfer

and the study of NESs have blossomed into a rich field

of research with many applications [3–13] and many

different types including those with polynomial non-

linearities [14–17], bi-stable elements [18–20], and

vibro-impacts [21–24].

More recent research has implemented NESs into

hierarchical lattices as a means to break dynamic

reciprocity and achieve uni-directional propagation of

energy [25–27]. In these studies, a lattice structure was

constructed using a combination of large scales

(oscillators with large mass) and small scales (NESs).

Specifically, each unit cell in the lattice possessed a

single large scale that was linearly coupled to the

ground and nonlinearly coupled to the small scale.

Individual unit cells were connected to each other by

coupling the small scale in the left cell to the large

scale in the right cell. Thus, all small scales were

coupled to two larges scales except for the rightmost

scale, which was only nonlinearly coupled to the large

scale in its unit cell. For this lattice, it was found that

when the leftmost unit cell was excited, energy was

able to freely propagate across the lattice where it was

reflected back. However, when the rightmost unit cell

was excited, the energy became trapped in that unit

cell and was unable to propagate across the lattice. The

emergence of uni-directional energy propagation in

this lattice arose because the energy became localized

in the small scale due to irreversible energy transfers.

Further studies have revealed that the presence of a

NES in the system is not necessary to break dynamic

reciprocity and create preferential directions of energy

transfer [28–32].

Despite these recent developments in realizing uni-

direction propagation of energy through the breaking

of dynamic reciprocity, research into energy transfer

mechanisms is still dominated by the phenomena of

targeted energy transfer through the use of NESs.

Consequently, few studies have been done on the

mechanisms that govern energy transfers in systems

with components with comparable mass. For example,

the studies performed in [33, 34] investigated energy

transfers between two oscillators, a linear oscillator

(LO) and a nonlinear oscillator (NO), with equal mass

and both weak and strong nonlinearities. In both

studies, weak nonlinearity was used to couple the two

oscillators together and in [33] a strong grounding

nonlinearity was included in the NO. The authors

found that energy could be transferred from both the

LO to the NO and the NO to the LO. However, the

authors proved that these energy exchanges could only

occur during internal resonances (IRs) and, outside of

IRs, no energy could be exchanged between the two

oscillators. However, as demonstrated in the phenom-

ena of targeted energy transfer, the presence of strong

coupling nonlinearity often results in nonlinear energy

exchanges and transfers both during and away from

IRs. Thus, further research into the mechanisms of

energy transfer between components of equal mass is

necessary.

Multiple analytical and experimental methods have

been developed to study the flow of mechanical energy

throughout the structure. In [14], the authors used the

method of nonsmooth temporal transformations [35]

to study the transfer of energy that arises due to a 1:1

subharmonic resonance between two oscillators.

Vakakis and Gendelman [15] investigated energy

transfers in two oscillators with weak linear coupling

where one oscillator had strong linear grounding

stiffness and the other had strong nonlinear grounding

stiffness. They transformed the equations of motion

using action-angle variables and studied the energy

transfer that arises on a 1:1 resonance manifold.

Second, they employed the method of complexifica-

tion averaging [36] under the assumption of 1:1

resonance and computed approximate solutions to the

strongly nonlinear equations of motion. Using the

results from both methods, they showed that the 1:1

resonance leads to energy pumping from the linear

oscillator into the nonlinear oscillator. The method of

complexification averaging has been used in many

studies of energy transfer under internal resonances

including [37–43]. In [33], the authors employed the

method of regular perturbations to analytically study

the nonlinear energy transfers between oscillators, but

as mentioned before they found that transfers only

arose during internal resonances and resonance cap-

tures. The method of multiple scales [44] has also been

used to study energy transfers such as in [45, 46] and,

combined with the method of harmonic balance, in

[47].

Several approaches have been implemented to

study nonlinear energy transfers directly from exper-

imental measurements. In [48], the authors derived a

method to compute the instantaneous energy in each
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degree of freedom by picking successive peaks in the

kinetic energy and fitting a shape preserving spline

from these points. One issue with this approach is that

if any degrees of freedom exchange energy at any

time, then a beating pattern will appear in the kinetic

energy that will not be captured by the method

proposed in [48]. Moreover, the sum of the estimated

total energies in each degree of freedom will be larger

than the actual total energy in the system. In [25, 26],

the authors identified representative mathematical

models for each oscillator studied in the experimental

system and then estimated the instantaneous energy in

each mass using both the kinetic and potential

energies. Any potential energy that arose from

coupling springs was shared evenly between the

connected oscillators without regard for how much

each oscillator contributed to that potential energy.

The issue with this approach is that one oscillator

might have a large displacement, whereas the other

might have a small displacement resulting in large

relative displacement. However, it is unclear which

oscillator is contributing the most to the resulting

potential energy and whether dividing the energy

equally is physically accurate. Another approach to

studying energy transfers that is commonly used when

an NES is installed on a primary linear system is to

assign all of the potential energy that arises from the

coupling to the NES [49–52]. The instantaneous

energy in the NES is then defined as the sum of the

kinetic energy of the NES and all potential energies

that involve the displacement of the NES. This

approach incurs the same issue as the previous in that

some of the energy contributed by the primary system

is included in the energy of the NES. Recently, Silva

et al. [52] investigated the flow of energy from a

primary linear system into an NES using power flow

calculated using the derivative of the kinetic, potential,

and dissipated energies. Using the power flow, the

authors found that low damping results in a backflow

of energy from the NES into the primary structure,

such that the two masses exchange energy instead of

irreversibly transferring it. With large enough damp-

ing, the authors found that no backflow from the NES

occurs, such that the energy is irreversibly transferred

from the primary system into the NES.

The purpose of the present paper is to investigate

the flow of energy between two oscillators of equal

mass. The first oscillator represents the prototypical

LO, whereas the second represents a NO that is

nonlinearly coupled to the LO only. Throughout this

research, we explore how energy flows and is shared

between these two oscillators by analyzing the

instantaneous energy in each oscillator, which is

estimated from the kinetic energies. The advantage of

this approach is that it can be applied directly to

experimental measurements provided the mass of each

oscillator is known and, more importantly, it avoids

mixing the contributions of each oscillator in the

potential energies. We also use nonlinear normal

modes (NNMs) [53, 54] to explain the various

transfers of energies observed. We adopt the definition

that NNMs are time-periodic oscillations that may be

regarded as nonlinear extensions of linear normal

modes. They are synchronous in the absence of

internal resonances (IR); however, when IRs arise,

the NNMs interact with each other through strongly

nonlinear energy exchanges and the resulting oscilla-

tions are nonsynchronous with multiple NNMs

participating.

To enhance clarity, we provide a summary of the

novel findings of this research here. First, we demon-

strate that irreversible targeted energy transfer (TET)

can be achieved in the opposite direction that is

normally observed in TET studies. Specifically, we

show that, when the NO is excited in this system, the

LO can behave like a parasite and irreversibly steal

energy from the NO. Such behavior is the opposite of

the traditional TET that is observed in LO–NES

systems where energy is irreversibly transferred from

the LO to the NES. Second, studies of nonlinear

energy transfer and IRs typically focus on low-to-high

frequency transfers of energy; however, we show that

both low-to-high and high-to-low frequency energy

transfers arise due to a 3:1 IRs in the system. We also

show that the high-to-low transfers always result in an

exchange of energy between the two masses, whereas

the low-to-high transfers can result in either an

exchange of energy or an irreversible transfer of

energy from the NO to the LO. Third, we demonstrate

that there is a preferential direction of energy flow,

from the NO to the LO, below a certain excitation

threshold. This preference is result from nonlinear

localization where the energy prefers to remain

isolated in the LO when it is excited below that

threshold instead of transferring into the NO. The NO

exhibits similar localization if it is excited, but the

threshold for this behavior is much lower than for the

LO, which gives rise to the preferential direction of
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energy transfer. The rest of this paper is divided as

follows: Sect. 2 presents a theoretical study of the LO–

NO system along with an explanation of how the

instantaneous energy in each oscillator is computed;

Sect. 3 presents the design of the experimental

systems, the system identification procedure

employed, and the resulting mathematical model,

and an experimental verification of the theoretical

results; and, finally, Sect. 4 provides some concluding

remarks.

2 Theoretical investigation of targeted vibration

isolation

2.1 Theoretical system

In this research, we investigate the strongly nonlinear

energy transfers that arise in a system composed of

two oscillators with comparable mass as depicted in

Fig. 1. The first oscillator is linearly coupled to the

ground and represents the typical linear oscillator

(LO) in the system, whereas the second oscillator is

nonlinearly coupled to the LO and is termed the

nonlinear oscillator (NO). Note that, in typical TET

studies, the LO is considered to be the primary system

and NO is considered to be a strongly nonlinear

attachment that is installed on the LO to mitigate

unwanted vibrations. However, we caution the reader

that this is not our objective in this research and this

viewpoint should not be adopted. Rather, our objective

is to passively control the flow of energy between the

two masses, such that energy is allowed to transfer

from the NO to the LO, but not from the LO to the NO.

The nondimensional equation of motion governing the

LO is

€xþ d1 _xþ k1xþ d2 _x� _yð Þ þ k2 x� yð Þ þ a x� yð Þ3¼ F1 tð Þ;
ð1Þ

and the nondimensional equation of motion governing

the NO is

e€yþ d2 _y� _xð Þ þ k2 y� xð Þ þ a y� xð Þ3¼ F2 tð Þ;
ð2Þ

where x tð Þ and y tð Þ are the displacements of the LO

and NO, respectively.

In typical studies of targeted energy transfer, the

mass of the NO is chosen to be relatively small

compared to the mass of the LO, usually e\0:1Þ;
which enables energy to irreversibly transfer from the

LO to the NO. In this research, we consider the case

where the mass of the NO is comparable to that of the

LO and will show that this results in an energy-transfer

scheme that is the exact opposite of what is observed

when the mass of the NO is small. Specifically, we

consider the case where the mass of the NO is e ¼ 1;

such that the two parameters have equal masses. The

values of the rest of the parameters are chosen as

follows: k1 ¼ 1; d1 ¼ 0:01, d2 ¼ 0:001, k2 ¼ 0; a ¼
1: Additionally, we consider two impulsive loading

scenarios: first, only the LO is impulsively excited for

zero initial conditions such that F1 tð Þ ¼ v0d tð Þ and

F2 tð Þ ¼ 0 (loading scenario I); second, only the NO is

impulsively excited for zero initial conditions such

that F1 tð Þ ¼ 0 and F2 tð Þ ¼ v0d tð Þ. The implementa-

tion of the impulsive forcing is discussed in the next

subsection.

To help facilitate the discussion of the behavior of

this system, we compute the nonlinear normal modes

(NNMs) of the corresponding Hamiltonian system

(i.e., without damping or external forces) using

numerical continuation [54, 55]. We adopt the defini-

tion that NNMs are time-periodic oscillations that may

be regarded as nonlinear extensions of linear normal

modes. They are synchronous in the absence of

internal resonances (IR); however, when IRs arise,

the NNMs interact with each other through strongly

nonlinear energy exchanges and the resulting oscilla-

tions are nonsynchronous with multiple NNMs par-

ticipating. The resulting NNMs are presented in Fig. 2

along with two subharmonic branches shown as the

dashed and dash-dotted lines. The first and second

NNMs are labeled using the notation S11 ? and S11–,

respectively, where the letter S represents a symmetricFig. 1 The theoretical schematic of the system, with

g dð Þ ¼ a x� yð Þ3þk x� yð Þ
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NNM, the indices represent that each mass oscillates

with the same dominant frequency, and the ? (–)

represents in-phase (out-of-phase) motion. The sub-

harmonic branches are labeled as S33– and S55–, and

they are obtained by dividing the frequency of the

second NNM by 3 and 5, respectively. Note that the

first NNM can be partitioned into two linear limiting

regions at low and high energies and a single nonlinear

transition region that connects the two linear portions.

In contrast, the second NNM can only be divided into

two separate regimes: first a linear limiting regime at

low energy and a nonlinear region where the fre-

quency increases to infinity. We note further that

although a 5:1 IR is the first tongue to emerge, the

addition of damping in the system prevents this IR

from materializing. However, the damping does not

prevent the first 3:1 IR from occurring in the dynamics

and we will investigate the effect of this 3:1 IR in the

following sections.

2.2 Estimation of instantaneous energy in each

mass

Due to the strong dependence of energy a nonlinear

system has, it is crucial for us to investigate the

behavior of the system under different energy levels.

To this end, we implement the impulsive forcing

described in the previous subsection as an initial

velocity, such that the loading scenarios (LSs) are

converted to the following initial conditions: LS I—

x 0ð Þ ¼ y 0ð Þ ¼ _y 0ð Þ ¼ 0; _x 0ð Þ ¼ v0; and LS II—

x 0ð Þ ¼ _x 0ð Þ ¼ y 0ð Þ ¼ 0; _y 0ð Þ ¼ v0: To explore the

energy-dependent dynamics of the system, we simu-

lated its response for each LS for 2000 linearly spaced

values of v0 from 0.001 to 1. Rather than analyzing the

behavior of the system for each initial velocity

individually, we are interested in investigating

changes in the overall behavior of the system,

especially the flow of energy between the two masses.

Thus, for each simulation, we calculate the instanta-

neous total energy in the system and estimate the

instantaneous total energy in each mass.

The instantaneous total energy in each mass is

computed using a similar approach to that described

by Sapsis et al. [48], which consists of fitting a spline

curve to the peaks of the kinetic energies to obtain the

instantaneous total energy in each mass. Instead of

fitting splines to the peaks of the kinetic energies, we

estimate the instantaneous energy in each mass by first

estimating the instantaneous amplitude of the kinetic

energies using the imdilate function in MATLAB�
and low-pass filter the result. The imdilate function is

Fig. 2 The two NNMs for

the corresponding

Hamiltonian system. The

dashed and dash-dotted line

are created by dividing the

frequency of the second

NNM by 3 and 5,

respectively, and show

which tongues correspond to

3:1 and 5:1 IRs
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actually intended for image dilation, which is an

operator in mathematical morphology that grows

regions around white pixels and shrinks regions

around black pixels. In our implementation, the

imdilate function produces a nonsmooth estimate of

the instantaneous amplitude of the kinetic energy and

the low-pass filter is applied to smooth the estimate.

The low-pass filter is implemented using a third-order

Butterworth filter with a cutoff frequency of 0.1. An

example of the estimated total energies in each mass is

presented in Fig. 3 for LS I and an initial velocity of

v0 ¼ 0:5: A major benefit of this approach is that it

captures any exchanges of energy that occur between

the two masses, which appear as slow modulations of

the amplitude of the kinetic energies and slow

oscillations in the estimated energies. In fact, the slow

oscillations in the estimated energies observed after a

time of 100 in Fig. 3 indicate a strongly nonlinear

exchange of energy where energy is transferred from

the LO to the NO. A second benefit of this approach is

that it avoids having to partition and shares the

potential energy between the two masses as was done

in previous research such as in [25, 26].

2.3 Loading scenario I: LO excited

As stated previously, our overall objective is to study

how the flow of energy between the two masses

evolves as the excitation amplitude increases. To

achieve this objective, we estimate the instantaneous

total energy in each mass for each initial velocity and

LS. Next, we normalize the instantaneous energies by

dividing by the corresponding initial energy 1
2
v20

� �
and

multiply by 100% to obtain the instantaneous percent

energy in each mass. The instantaneous percent

energies are preferable over the instantaneous total

energies because they are on the same scale (0 to

100%) and provide a fair comparison across all initial

velocities. By placing the energies on the same scale

for all initial velocities, the instantaneous percent

energies provide the means to study the evolution of

the energy flows and the behavior of the system

without bias toward simulations with higher initial

energy. To this end, we depict the instantaneous

percent energies in each mass as functions of the initial

energy and time in Figs. 3 and 5 for LSs I and II,

respectively. We will use the remainder of this

subsection to discuss the results for LS I, and we

discuss the results for LS II in the next subsection.

Fig. 3 Example of the

estimated instantaneous

total energy in each mass for

LS I and v0 ¼ 0:5
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Considering LS I, we find that the energy distribu-

tion can be partitioned into two separate regimes of

behavior. Specifically, Regime I encloses the behavior

for initial velocities below 0.32 and Regime II

corresponds the behavior for initial velocities above

0.32. We find that, in Regime I, the energy isolates

almost entirely in the LO for the entire duration of the

response. The fact that no energy flows from the LO to

the NO in this regime implies that the NO is strongly

isolated from the LO and barely participates in the

response. To verify that NO is isolated from the LO in

this regime, we present a comparison of the displace-

ment responses of the LO and NO for v0 ¼ 0:15 in

Fig. 5a. The comparison of the displacement

responses shows that the NO moves significantly

slower than the LO (at a much lower frequency) and

with a significantly lower amplitude. In fact, the

maximum displacement of the LO is 0.148, whereas

the maximum displacement of the NO is only 0.027,

such that the NO displaces only 18.2% as much as the

LO. In addition to the displacement time series, we

also include the corresponding wavelet transform

(WT) spectra [56] and comparisons of the instanta-

neous energy in each mass and the total grounding and

coupling forces. The WT spectra depict the temporal

evolution of the nonlinear normal modes (NNM)

[52, 53] governing the dynamics and are shaded such

that darker shading indicates higher energy content

and the light-blue background indicates zero energy

content. Note that theWT spectra are normalized to be

on the same scales for both the LO and NO for this

simulation, such that the WT spectrum of the LO can

be compared with the NO for this initial velocity, but

the spectra should not be compared for different initial

velocities. The WT spectra reveal that the response of

the LO is governed by a single component with a

frequency of 1, which represents the second NNM of

this system. In contrast, the response of the NO is

governed by two components: the second NNM at a

frequency of 1, which quickly exits the response, and

the first NNM with an extremely low frequency that

decreases with time to zero frequency (not shown

here). Moreover, the lack of variation is in the

frequency. It turns out that, in the absence of

resonances, the first and second NNMs represent local

modes that govern the response of the NO and LO,

respectively, which explains why the NNMs are

isolated to their respective masses in this response.

Without any IRs to give rise to strongly nonlinear

energy exchanges between the LO and the NO, the

energy should remain isolated in the LO for the

duration of the response. This prediction is confirmed

by the comparison of the instantaneous energies in the

LO and NO, where, indeed, we find that the energy is

isolated in the LO for the entire response. In fact, the

LO and NO have maximum energy values of 0.0113

and 8.9 9 10–6, respectively, such that the NO

possesses at most only 0.079% of the maximum total

energy. As a final validation of the isolation of the NO

from the LO, we compare the total grounding force,

which acts only on the LO, with the total coupling

force, which is the only for acting on the NO.

Moreover, the coupling force captures the force

transfer (or in some sense the transmissibility) from

the LO to the NO. As can be seen in the bottom of

Fig. 5a, the coupling force is significantly smaller than

the grounding force, such that very little of the applied

force is transferred to the NO. The maximum ampli-

tudes of the grounding and coupling forces are 0.148

and 0.0039, respectively, such that only 2.6% of the

input force magnitude (0.15) is transferred to the NO.

Considering Fig. 4 again, but now for Regime II

and initial velocities above 0.32, we find that the

energy is no longer strictly isolated in the LO, but also

flows from the LO into the NO for certain bands of

initial velocities. To study these energy transfers, we

consider the response of the system for an initial

velocity of 0.34 (applied to the LO) and present a

comparison of the displacement response of the LO

and NO in Fig. 5b. Note that this initial velocity

corresponds to the center of the first energy-transfer

band in Fig. 4 and should also correspond to the

largest amount of energy transfer in that band. The

displacement response reveals that, initially, the

motion of the NO is small and slow compared to that

of the LO; however, after a time of approximately 50,

the NO suddenly grows in amplitude followed by the

appearance of a beating pattern in responses of both

the NO and LO. Note that a similar beating pattern is

also observed in the energy exchanges depicted in

Fig. 4. Since the linear frequencies of the two NNMs

are not close together, the appearance of beating in the

displacement response indicates that the LO and NO

are engaged in an IR which leads to the exchange of

energy between the masses.

To study the IR in the dynamics, we turn to the WT

spectra of the LO and NO in Fig. 5b, which reveal that
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the responses of both the LO and NO are governed by

multiple frequencies. The first and second NNMs

correspond to the components with the lowest

frequency and a frequency of approximately 1,

whereas the other components found in the WT

spectra are actually harmonics of the first NNM. As

Percent Energy in NO, LO Excited

0 200 400 600 800 1000
Time [ ]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
iti
al

V
el
oc

ity
[ ]

Percent Energy in LO, LO Excited

0 200 400 600 800 1000
Time [ ]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

In
iti
al

V
el
oc

ity
[]

0 20 40 60 80 100
Percent Energy [%]

(b)(a)

R
eg
im

e
I

R
eg
i m

e
II

Fig. 4 The percent distribution of energy in the a LO and b NO as functions of time for LS I

(a) (b)

Fig. 5 Comparison of the displacement response, corresponding WT spectra, instantaneous energies for the LO and NO, and the

grounding and coupling forces for LS I and initial velocities of a 0.15 and b 0.34
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stated previously, the darker the shading in the WT

spectra, the higher the energy content at a particular

time and frequency. Since the WT are normalized to

the same scale, comparing them provides the means to

assess where the energy is concentrated at a given

time. TheWT spectra reveal that, up until a time of 50,

the majority of the energy is concentrated in the LO

and in the second NNM; however, after a time of 50,

the energy suddenly concentrates in the NO and in the

first NNM. Moreover, right after a time of 50, a

beating pattern appears in the WT spectrum of the LO,

which further confirms the presence of an IR in the

dynamics. Around a time of 50, the frequencies of the

first and second NNMs are approximately 0.35 and

1.05, respectively, such that the frequency of the first

NNM is one-third of that of the LO. The IR in the

dynamics must, therefore, be a 3:1 IR between the first

and second NNMs. Typically, IRs result in the

scattering or transfer of energy from low to high

frequencies in the response [1, 2, 53], but, in this case,

energy is actually transferred down from a high-

frequencymode (the second NNM) to a low-frequency

mode (the first NNM).

The hypothesis that a 3:1 IR arises in the dynamics

and gives rise to significant energy transfer from the

LO to the NO is further supported by the comparison

of the instantaneous total energy in each mass and the

comparison of the total grounding and coupling forces.

Specifically, from the comparison of the energies, we

find that the majority of the energy is concentrated in

LO with almost no energy stored in the NO up until a

time of 50. After a time of 50, a rapid transfer of

energy from the LO to the NO occurs followed by an

extreme oscillating exchange of energy that corre-

sponds with the beating pattern observed in the time

series and WT spectra. A comparable pattern emerges

in the comparison of the forces where, up until a time

of 50, the grounding force is large in amplitude,

whereas the coupling force is low in amplitude.

However, after a time of 50, the coupling force grows

in amplitude and a beating pattern emerges where the

grounding and coupling forces have large amplitudes

when the energy is concentrated in the LO and NO,

respectively.

Finally, to verify that a 3:1 IR arises in the

dynamics, we depict the WT spectra of both the LO

and NO displacement responses as functions of total

mechanical energy for initial velocities of 0.15 and

0.34 in Fig. 6a, b, respectively. On top of the WT

spectra, we superimpose the NNMs of the underlying

Hamiltonian system shown in Fig. 2. For an initial

velocity of 0.15, shown in Fig. 6a, we find that the NO

does not participate strongly in the response and that

none of the IRs are activated. Although the response is

close to the 5:1 IR tongue, the damping in the system

most likely prevents this IR from materializing and

affecting the response of the system. In contrast, for an

initial velocity of 0.34, the NO initially participates

weakly in the response for the highest energies, but

quickly begins to participate strongly after its domi-

nant frequency aligns with and passes the tongue

associated with the 3:1 IR of the underlying Hamil-

tonian system. This result verifies that the interactions

and energy exchanges studied previously in this

section are the result of a strongly nonlinear 3:1 IR

between the LO and NO.

2.4 Loading scenario II: NO excited

In this subsection, we present the discussion and

analysis of the energy flows between the LO and NO

for loading scenario (LS) II. Recall that LS II

corresponds to the case where the NO is excited using

an initial velocity and all other initial conditions are

zero. The response of the system was simulated for

2000 linearly spaced initial velocities in the range

[0.001 1]. For each simulation, we estimate the total

instantaneous energy in each mass using the procedure

described in Sect. 2.1. The estimated energies are then

normalized by the initial energy 1
2
v20

� �
and multiplied

by 100% to obtain the instantaneous percent energy in

each mass. We present the instantaneous percent

energy as a function of initial velocity and time in

Fig. 7a, b for the LO and NO, respectively. In contrast

to LS I, where a large regime of energy isolation was

observed, only a small regime of exists where the

energy isolates in the NO. In fact, this regime only

exists in the range of initial velocities of [0.001 0.1]

compared to the range of [0.001 0.32] for the LS I. We

refer to this regime as Regime I in the remainder of this

subsection, and this is labeled in Fig. 7b. Outside of

Regime I, the energy is shared between both the NO

and the LO; however, this regime can be further

divided into two separate regimes: first, we define

Regime II as the portion corresponding to initial

velocities of approximately 0.1 to 0.315; and, second,

we define Regime III as the portion corresponding to
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initial velocities of approximately 0.315 to 1. These

regimes are labeled in Fig. 7b. The major difference

between Regimes II and III is the amount of energy

shared between the LO and NO and which mass the

energy concentrates in. In Regime II, the energy is

primarily concentrated in the NO with only some of

the energy being transferred to the LO. In contrast, in

Regime III, significantly more energy is transferred to

the LO and this results in faster dissipation than in

Regime II. Furthermore, some initial velocities in

Regime III result in an irreversible transfer of energy

from the NO to the LO and these are represented by the

appearance of the narrow white bands in Fig. 7b. For

example, an initial velocity of 0.317 results in a

complete and irreversible transfer of energy from the

NO to the LO and we will study this case after further

investigating Regime II.

(a) (b)

Fig. 6 Comparison of the NNMs of the underlying Hamiltonian system (shown in Fig. 2) with the wavelet spectra of the displacement

response of the LO and NO for LS I and initial velocities of a 0.15 and b 0.34
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To investigate Regime II, we consider the response

of the system for an initial velocity of v0 ¼ 0:15 and

plot the resulting displacement response in Fig. 8a.

The comparison of the time series shows that the NO

moves at a slower rate than the LO but achieves a

significantly higher amplitude. In fact, the maximum

displacement of the NO is 0.486, whereas that of the

LO is 0.130, such that the NO displaces almost four

times as much as the LO. Note that a similar trend can

be observed for the velocities of the LO and NO, but

we have excluded these here due to space consider-

ations. To investigate the NNMs and harmonics that

govern the response of each mass, we depict the

corresponding WT spectra for each mass below the

time series in Fig. 8a. The WT spectra reveal that the

response of the LO is governed by multiple harmonics

and NNMs. Specifically, the component with the

lowest frequency corresponds to the first NNM of the

system, which is primarily localized to the NO. The

next two components are second sub- and third super-

harmonics of the second and first NNMs, respectively.

The next component is the second NNM with a

frequency of approximately 1, and the last component

is the fifth super-harmonic of the first NNM. Although

the response of the NO is governed by the same

components as the response of the LO, it is dominated

by the first NNM and the other components only

weakly participate in the response.

The WT reveal that, for this initial velocity, the

frequencies of the first NNM and its harmonics are not

high enough to interact with the second NNM, such

that no IR arises in the dynamics. Consequently, only a

some of the energy is transferred from the NO to the

LO and a majority of the energy remains localized to

the NO. To validate this conclusion, we present a

comparison of the instantaneous total energy in each

mass beneath the WT spectra in Fig. 8a. The compar-

ison of the instantaneous total energies shows that a

majority of the energy is localized to the NO and only

a small amount is shared with the LO, which is

indicated by the beating pattern in the two energies.

Although the energy remains mostly concentrated in

the NO, compared to LS I for the same initial velocity,

a significant amount of energy is transferred to the LO.

Recall that for LS I and an initial velocity of 0.15, the

energy was almost completely isolated in the LO with

the NO possessing at most 0.079% of the total energy

at any time. In the present case, the LO possesses at

(a) (b)

Fig. 8 Comparison of the displacement response, corresponding WT spectra and instantaneous energies for the LO and NO; and the

grounding and coupling forces for LS II and initial velocities of a 0.15 and b 0.317
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most 30.1% of the total energy in the system at any

time. The fact that so much energy transfers to the LO

when the NO is excited compared to the lack of energy

transfer when the LO is excited indicates that there is a

preferential direction of energy transfer (from the NO

to the LO) in the dynamics. Looking now at the

comparison of the total grounding and coupling forces,

we find that the forces are comparable in magnitude

even though the displacement of the NO is signifi-

cantly larger than that of the LO. Recall that for LS I

and this initial velocity, that the coupling forces was

nearly zero, such that only active force was the

grounding force which acts solely on the LO. The

disparity between the forces in LS I and LS II further

suggests that there is a preferential direction of energy

transfer from the NO to the LO.

To further explore the suggested preferential

direction of energy transfer, we turn to Regime III

and consider the dynamics for an initial velocity of

0.317. This initial velocity corresponds to the center of

the lowest white band in Fig. 7b, which represents a

case where the energy is irreversibly transferred from

the NO to the LO. Considering the displacement

responses in Fig. 8b, we find that although the NO

initially displaces more than twice as much as the LO,

its amplitude diminishes so rapidly that after less than

two cycles it displaces less than the LO. In fact, the NO

has an initial displacement amplitude of 0.717 com-

pared to 0.286 for the LO, but by a time of

approximately 26, it has an amplitude of 0.269

compared to 0.280 for the LO. Furthermore, the

amplitude of the LO actually decreases rather signif-

icantly in the beginning of the response before rapidly

increasing, which indicates a beat arising from a

nonlinear energy exchange between the NO and LO

caused by an IR in the dynamics. Note that it takes

approximately half as much time for the IR to arise in

LS II than it does in LS I, where the IR only began after

a time of 50, which further supports the claim that

there is a preferential direction of energy transfer in

the system.

To investigate the possibility of an IR in the

response, we turn to a comparison of theWT spectra of

the displacement responses of the LO and NO, which

are presented below the displacement time series in

Fig. 8b. Recall that the system is governed by two

NNMs with the first and second NNMs primarily

localized to the NO and LO, respectively. Addition-

ally, because there is no linear coupling between the

NO and the LO, the frequency of the first NNM

depends strongly on the energy in the system (though

mostly on the energy in the NO). The first and second

NNMs are represented by the darkest bands in the WT

spectrum of the displacement of the NO and LO,

respectively. The WT spectra reveal that the initial

frequencies of the first and second NNMs are approx-

imately 0.383 and 1.15, respectively, such that the

frequency of the second NNM is three times that of the

first NNM. Thus, any energy exchanges in the

response must result from a 3:1 IR between the first

and second NNMs. Note that this is the same type of

IR that was observed for in LS I for an initial velocity

of 0.34, except that in LS I the second NNM was

excited by exciting the LO and energy was transferred

from a high frequency, the second NNM (LO), to a low

frequency, the first NNM (NO). In the present case, the

first NNM is excited directly by exciting the NO and

energy is transferred from the first NNM (NO) at a low

frequency to the second NNM (LO) at a high

frequency.

Since the WT spectra are normalized to the same

scale, where darker shading indicates higher energy

content, we can directly compare the frequency

content of the LO and NO. Initially, the energy is

concentrated in the first NNM in the NO (darkest band

in the WT spectrum of the NO), but this component

rapidly decreases in not only energy (shading becomes

lighter), but also frequency. Since the frequency of the

first NNM is highly dependent on the energy in the

NO, a decrease in frequency implies that the energy in

the NO is also decreasing. Note that the rapid decrease

in frequency of the first NNM is followed by a slow

decreased in frequency starting around a time of 300

and a frequency of 0.125, which implies that the

dissipation force acting on the NO is weak after this

time. While the first NNM decreases in energy content

and frequency, the second NNM actually increases in

energy content and initially decreases in frequency

before settling on its linear natural frequency of

approximately 1. The observation that the second

NNM in the WT spectrum of the displacement of the

LO increases in energy content (shading gets darker)

further suggests that energy is transferred into the LO

from the NO.

To investigate the energy exchanges in the dynam-

ics, we now turn to a comparison of the instantaneous

total energies in the LO and NO presented below the

WT spectra in Fig. 8b. The comparison of the energies
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reveals that, although the NO begins with all of the

energy, the energy is rapidly transferred to the LO

where it remains trapped for the rest of the response.

The irreversible nature of this energy transfer mimics

that observed for a nonlinear energy sink installed on a

LO, except that, in the present case, the LO actually

behaves as a strongly nonlinear vibration absorber

instead of the mass that has been ‘‘installed’’ on the

LO. While subharmonic resonance in an LO–NES

system results in irreversible transfer of energy from

the LO to the NES [52], the 3:1 subharmonic IR results

in the opposite behavior. Furthermore, the irreversibil-

ity of the energy transfer indicates that it is easier for

the system to transfer energy from low to high

frequencies than it is to transfer from high to low

frequencies. Because it is easier for the system to

transfer energy from low to high frequencies, a

preferential direction of energy transfer from the NO

to the LO arises in the dynamics because the first and

second NNMs are localized to the NO and LO,

respectively. We note that the comparison of the total

grounding and coupling forces further reproduces and

supports the observations made from the other parts of

Fig. 8b.

Similar to Fig. 6, we verify that the 3:1 IR is

responsible for the energy exchanges observed for this

loading scenario. To this end, we superimpose the WT

spectra of both the LO and NO on top of the NNMs for

the underlying Hamiltonian system for initial

velocities of 0.15 and 0.317 in Fig. 9a, b, respectively.

For an initial velocity of 0.15, shown in Fig. 9a, the

second NNM does not participate at all in the response

and the majority of the motion is concentrated in the

NO. Furthermore, we find that none of the IRs are

activated for this velocity. In contrast, for an initial

velocity of 0.317, all of the energy is initially

concentrated in the NO, but as soon as the NO engages

in the 3:1 IR a majority of the energy is irreversibly

transferred to the LO. This result verifies that energy

exchanges studied previously in this section are the

result of a 3:1 IR between the LO and NO.

3 Experimental verification of targeted vibration

isolation

3.1 System design and construction

To corroborate the previous computational results, we

designed and constructed an experimental version of

the LO–NO system out of aluminum and present the

CAD model and resulting experimental system,

Fig. 7a, b, respectively. The LO consists of a base

platform, two sidewalls, two mounting rails, and two

anchors. The LO base platform is constructed from an

aluminum plate of dimensions

0.1524 m 9 0.1524 m 9 0.0127 m. The LO is

grounded to an optical table using two L-shaped

(a) (b)

Fig. 9 Comparison of the NNMs of underlying Hamiltonian system (shown in Fig. 2) with the wavelet spectra of the displacement

response of the LO and NO for LS II and initial velocities of a 0.15 and b 0.317
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brackets, steel flexures, and 1/400-20 UNC bolts. The

steel flexures, which serve as linear grounding springs,

are bolted to the L-shaped brackets and the LO base

platform using 10–32 UNF bolts and have length,

width, and thickness of 0.1143 m, 0.1524 m, and

0.00065 m, respectively. The LO is further composed

of two aluminum rails (gray in Fig. 10a) and two

aluminum sidewalls (purple in Fig. 7a) each equipped

with an aluminum anchor (orange in Fig. 10a). The

aluminum rails are used to mount thin steel flexures

that linearly couple the NO to the LO and have

dimensions 0.1524 m 9 0.0127 m 9 0.0127 m. The

sidewalls are bolted to the LO base platform using two

10–32 UNF bolts and are constructed using aluminum

plates with a length, width, and thickness of 0.1057 m,

0.127 m, and 0.00635 m, respectively. A large section

of the sidewall was removed to minimize the mass as

well as the friction between the sidewall and the LO

base platform. An aluminum anchor is bolted onto

each sidewall using two 10–32 UNF bolts, and these

serve as clamping points for two thin steel wires that

also clamp to the NO and introduce a strong,

hardening stiffness nonlinearity into the dynamics of

the system. The anchors are constructed out of

aluminum blocks with dimensions 0.0254 m 9

0.0126 m 9 0.0508 m, and the wires are clamped to

them using two 10–32 UNF set screws. The total mass

of the assembled LO, including the flexures used to

linearly couple the NO to the LO, is 1.370 kg.

The NO is composed of a base platform, one

mounting rail, two sidewalls, and two anchors. The

NO base platform is constructed from an aluminum

plate of dimensions 0.1524 m 9 0.1524 m 9 0.0127

m. The NO is coupled to the LO using two thin steel

flexures bolted on the sides using 10–32 UNF bolts and

two thin steel wires clamped to the center of the NO

using an aluminum mounting rail. The steel flexures

provide a consistent linear stiffness coupling between

the NO and the LO, whereas the wires introduce a

strong stiffness nonlinearity due to geometric effects.

The steel flexures have length and thickness of

0.1143 m and 0.003048 m, respectively. A large

section was removed from the middle of the flexure

to minimize the linear stiffness contribution, such that

each flexure consists of two strips each with a width of

0.01905 m. The steel wires have a diameter of

0.000787 m, an active length of 0.127 m (i.e., the

length between the anchors), and are clamped using

10–32 UNF set screws to an aluminum mounting rail

installed on the bottom of the NO. The mounting rail is

bolted to the NO using four 10–32 UNF bolts and has

dimensions 0.1524 m 9 0.0127 m 9 0.0127 m.

Originally, the assembled mass of the NO was

1.18 kg, so two extra aluminum plates and 31 extra

washers were installed on the NO to increase its mass.

The final assembled mass of the NO is 1.370 kg, such

that the NO has as close to the same mass as the LO as

could be measured.

3.2 Experimental measurements and nonlinear

system identification

The experimental measurements consisted of two

phases: first, we measured the response of the LO

without the NO installed and used the resulting data to

identify a linear model for the LO (described in the

next paragraph). Second, we installed the NO and

measured the free response of the coupled system,

first, for loading scenario I (where the LO is excited)

and, second, for loading scenario II (where the NO is

excited). The excitation was realized by applying an

impact using a PCB Piezotronics modal hammer

(model 086C03) or PCB Piezotronics short-sledge

hammer (model 086D20). The resulting free response

was measured using PCB accelerometers (model

353B15) with nominal sensitivities of 1 mV/(m/s2)

using at a sampling rate of 16,384 Hz for 8 s using

Abacus 906 hardware (Data Physics, San Jose, CA,

USA) and the Data Physics Software Suite. The range

was set to 10 V for all sensors to avoid cutting off large

accelerations or impact forces. The accelerations were

Fig. 10 a a CAD model representation of the LO–NO system

and b the actual experimental implementation of the LO–NO

system
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numerically integrated and high-pass filtered using a

third-order Butterworth filter with a cutoff frequency

of 2 Hz to obtain the velocities of the LO and NO. This

procedure was applied to the resulting velocities to

produce the displacement response of the LO and NO.

As mentioned previously, the first experimental

phase consisted of testing the LO without the NO

installed and two measurements were performed for

impacts of 35, 60.7, and 86 N. We present the

displacement response and corresponding wavelet

transform (WT) spectra for the 86 N measurement

case in Fig. 11a and the corresponding frequency

response function (FRF) in Fig. 11b. Without the NO

installed, the LO is simply a harmonic oscillator

governed by the equation

mLO €xþ d1 _xþ k1x ¼ F tð Þ; ð3Þ

where F tð Þ is the externally applied force. Since, in

this configuration, the LO is linear and only has a

single degree of freedom, the stiffness parameter, k1;,

can be calculated from the measured natural frequency

of the oscillator, whereas the damping parameter, d1;,

can be identified directly from the FRF using proce-

dures such as the half-power method. However, when

we implemented the half-power method, it resulted in

a damping ratio that was too large, and the simulated

response decayed too quickly compared to the mea-

surements. Thus, we employed the MFDID toolbox

[57] to identify the damping ratio of the LO and

calculated the stiffness directly from the measured

natural frequency for the 86 N measurement case. The

total mass of the LO, mLO, was measured before the

LO was bolted to the grounding flexures. This resulted

in the following parameters: mLO ¼ 1:370 kg, d1 ¼
2:177 Ns/m f ¼ 0:00671ð Þ, and k1 ¼ 19239 N/m. To

validate the identified model, we present a comparison

of the simulated and measured responses of the LO for

the measurement case used in the identification in

Fig. 11a. Strong agreement is observed in both the

time series and the corresponding WT spectra. Addi-

tionally, we also present a comparison of the FRFs of

the measured and simulated responses in Fig. 11b,

which shows that the identified model accurately

reproduces the dynamics of the experimental LO.

After identifying the parameters for the LO, the NO

was installed on the LO using both the steel flexures

and the steel wires. In this configuration, the governing

equations of motion are

mLO €xþ d1 _xþ d2 _x� _yð Þ þ k1xþ k2 x� yð Þ
þa x� yð Þ x� yj jb¼ 0;

ð4Þ

for LO and

mNO €yþ d2 _y� _xð Þ þ k2 y� xð Þ þ a y� xð Þ y� xj jb¼ F2 tð Þ;
ð5Þ

(a) (b)

Fig. 11 a Displacement response and corresponding WT

spectra of the LO without the NO installed measured

experimentally and predicted using the identified model.

b Comparison of the frequency–response functions computed

using the measurement and the identified model
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for the NO. Note that this is the same equations

presented in 2.1, except that we have replaced the

cubic nonlinearity with a generic polynomial nonlin-

earity. To identify the parameters governing the

coupling between the LO and the NO, we attempted

to isolate the dynamics of the NO by bolting the LO to

the optical table using four 1/400-20 UNC bolts;

however, this introduced unwanted dynamics into

the system and we were forced to identify the

parameters using measurements where both the LO

and NO were free to move. The measurement cases

where the NO is excited are used to identify the

coupling parameters because, under this loading

scenario, the contribution of the nonlinearity is

maximized compared to loading scenario where the

LO is excited. Multiple measurements were taken for

impacts ranging from 37 to 3500 N; however, only the

case of an impact of 529 N was used for the

identification and the displacement response, WT

spectra, and FRFs for the LO and NO are presented in

Fig. 12a, b, respectively.

To identify the unknown coupling parameters, we

employed the method described in [25], which is a

time-series-based optimization approach. Specifically,

the response of the system is simulated numerically

using the equations of motion in Eq. (4) and (5), and

the coupling parameters are optimized to maximize

the R-squared value between the simulated and

measured responses for both the LO and NO. The

optimization is performed using the patternsearch

algorithm in MATLAB� with initial guesses of

k ¼ 1900 N/m, a ¼ 2:5� 107 N/m3, b ¼ 2; and d ¼
1 Ns/m. The upper and lower bounds are set such that

k2 2 0; 2500½ � N, a 2 107; 108½ � N/mbþ1, b 2
1:5; 2:5½ �; and d2 2 0; 3½ � Ns/m. The identified param-

eters are k ¼ 1980:1 N/m, a ¼ 2:539� 107 N/m3.0002,

b ¼ 2:0002, and d ¼ 1:075 Ns/m.

We present the identified parameters in Table 1

along with their corresponding nondimensional values

as well as the nondimensional values used in the

theoretical study. The nondimensionalization is set

such that the mass of the LO, the linear grounding

stiffness, and the nonlinear coupling stiffness are all

equal to unity. We find that the nondimensional values

of the identified parameters are comparable to the

parameters used in the theoretical study, which

confirms that the assembled LO–NO system is an

experimental representation of the theoretical system.

Moreover, we present the comparison of the simulated

and measured responses for the LO and NO for the

measurement case used in the identification in Fig. 12.

We observe a good agreement between the simulated

and measured responses in the time series as well as in

the WT spectra and FRFs; however, a good agreement

is expected because this measurement case was used to

identify the coupling parameters. Thus, a stronger

validation of the identified model comes from com-

paring simulated and measured responses for cases

that were not used in the identification. To this end, we

(a) (b)

Fig. 12 Comparison of the measured and predicted responses for the measurement case used in the identification for a the LO and b the
NO
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present a comparison between the simulated and

measured responses of the LO and NO for impacts of

37 N and 898 N in Fig. 13a, b, respectively. Again,

we observe good agreement between the simulated

and measured responses, especially in early times

when the nonlinearity is dominant, which validates the

accuracy of the identified mathematical model for the

experimental LO–NO system.

3.3 Experimental verification

To experimentally validate the behavior observed in

the theoretical LO–NO system, we begin by con-

structing comparable energy flows using the same

procedure described in Sect. 2.2. However, instead of

applying an initial velocity, we apply the impulsive

force

F tð Þ ¼ P sin
p

0:0011
t

� �2

H tð Þ � H t � 0:0011ð Þð Þ;

ð5Þ

where P 2 1; 4000½ � N is representative of the forces

achievable using a standard modal hammer with a soft

red tip and H �ð Þ is the Heaviside function. Note that

the impulsive force has a duration of 0.0011 s and has

zero amplitude at both t ¼ 0 s and t ¼ 0:0011 s. Just

as in the theoretical study, we consider two forcing

schemes: loading scenario (LS) I where the force is

applied to the LO and no force is applied to the NO,

and LS II where the force is applied to the NO and no

force is applied to the LO. The range of forcing

amplitudes corresponds to a range of nondimensional

initial velocities of v0 2 1:23� 10�4; 0:492½ � for both

LS I and II, such that all regimes are realizable for both

LSs. The range of nondimensional velocities is

computed using conservation of energy to obtain a

dimensional velocity then nondimensionalizing that

value. We consider 2000 linearly spaced values for P

and compute the instantaneous percent energy in each

mass using the same approach as in Sects. 2.3 and 2.4

and depict the resulting energy flows in Fig. 11a, b for

LSs I and II, respectively.

As can be seen in Fig. 14a, in LS I, the energy

localizes in the LO for P\1850 N and no energy is

transferred into the NO until P� 1850 N. Based on

this observation, we partition the behavior of the LS I

in the experimental system into the same Regimes I

and II as in the theoretical system. Note that a force of

1850 N corresponds to a nondimensional velocity of

0.2275, which is lower than the nondimensional initial

velocity of 0.32 that partitioned the behavior in the

theoretical system. The decrease in the initial velocity

needed to transition the behavior into Regime II results

from the nonzero linear coupling stiffness, k2, in the

experimental system. Specifically, when the linear

coupling stiffness is nonzero, the nonlinear mode

corresponding to the motion of the NO possesses a

nonzero natural frequency. As such, less energy is

required in the system for the frequency of the NO to

grow large enough for it to engage in a 3:1 IR with the

LO.

To verify the existence of the two regimes in the

experimental system under LS I, we compute the

instantaneous total energy in each mass using the

experimentally measured velocities and the procedure

described in Sect. 2.2. We depict the resulting

Table 1 Parameters of LO–NO system

Parameter Experimental dimensional Experimental nondimensional Theoretical nondimensional

mLO 1.370 kg 1 1

mNO 1.370 kg 1 1

k1 19,239 N/m 1 1

d1 2.177 Ns/m 0.0134 0.01

k2 1980.1 N/m 0.1029 0

a 2:539� 107 N/m3:0002 1 1

b 2.0002 2.0002 2

d2 1.075 Ns/m 0.0066 0.001

With nondimensional parameters used in computational study recorded in the second column, characterized parameters in the

experiment in the third column and the corresponding nondimensional parameters on the fourth column
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energies for impulsive forces of 701, 1446, 2742, and

3879 N in Fig. 12a–d, respectively. Note that the

energy flows shown in Fig. 14 are computed using the

identified mathematical model for the experimental

system, whereas Fig. 15 is constructed using the

experimentally measured velocities and represents the

observed behavior of the actual experimental system.

The first two cases presented in Fig. 15 depict a

localization of energy in LO with no energy being

transferred to the NO through any mechanisms. These

two cases confirm that no IR is activated in the

dynamics inside Regime I of LS I in the experimental

system, which validates that the extreme isolation of

the NO from the LO predicted by the theoretical

system can be realized physically. The last two cases

presented in Fig. 15 both depict a beating pattern that

indicates that the LO is exchanging energy with the

NO and that the transfers of energy are reversible. The

forces of these two cases correspond to first and

second bands of energy transfer in LS I as shown in

Fig. 14a and are the result of a the 3:1 IR between the

LO and NO. Thus, the experimental results confirm

the physical existence of both Regimes I and II as

predicted by the theoretical system in Sect. 2.3.

Considering LS II now in Fig. 14b, we find that all

three regimes observed in the theoretical study are

captured by the energy distributions computed using

the identified model for the experimental system.

These regimes are labeled in Fig. 14b to aid in the

discussion. Recall that, for LS II in the theoretical

(a)

(b)

Fig. 13 Comparison of the measured and predicted responses of the LO and NO for impact forces of a 37 N and b 898 N, which were

not used in the identification
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system, Regime I corresponded to complete localiza-

tion of energy in the NO, Regime II corresponded to

some sharing of energy between the two masses with

the majority of the energy remaining in the NO, and

Regime II corresponded to a significant exchange of

energy with some cases resulting in complete and

irreversible transfer of energy from the NO to the LO.

The same three regimes are observed in Fig. 14b, and

to verify the behavior in each of these regimes, we

compute the instantaneous total energy in each mass

using the procedure described in Sect. 2.2 and the

experimentally measured velocities. We depict the

resulting energies for impulsive forces of 37, 898,

1573, and 780 N (2760 N equivalent) in Fig. 13a–d,

respectively. The first three cases were achieved using

a PCB modal impact hammer (model 086C03), and

the fourth case was realized using a PCB short-sledge

hammer (model 086D20). Although the amplitude of

the applied force in the fourth case is lower that of the

second and third cases, the duration is substantially

longer, such that the resulting work done on the NO is

largest in the fourth case. Using impulse-momentum

theory, we determined that the 780 N force has an

equivalent amplitude of 2760 N if the smaller modal

hammer was used to apply the same impulse to the

NO. Note that the forcing cases of 37 N correspond to
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Fig. 14 The percent distribution of energy in the experimental LO and NO as functions of time for a LS I and b LS II
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Regime I, 898 N to Regime II, and 1573 N and 780 N

(2760 N equivalent) to Regime III. Two forcing cases

are selected for Regime III to provide examples of

complete irreversible energy transfer from the NO to

the LO and significant exchanges of energy between

the two masses leading into irreversible transfer.

Considering Fig. 16a, we find that the energy is

localized to the NO for the duration of the measure-

ment with only a small amount of energy present in the

LO at any given time. The lack of energy exchanges

between the NO and LO indicates that no IR is present

in the response, such that the energy has no option but

to localized in the NO. Thus, this experimental case

(a) (b)

(c) (d)

Fig. 15 The instantaneous total energies of the LO and NO for LS I (LO excited) for impulsive forcing of a 701 N, b 1446 N, c 2742 N,

and d 3879 N. The modal hammer (PCB model 086D05) was used for all impulses shown

(a) (b)

(c) (d)

Fig. 16 The instantaneous total energies of the LO and NO for

LS II (NO excited) for impulsive forcing of a 37 N, b 898 N,

c 1573 N, and d 2760 N equivalent impact (780 N actual

impact). Note that a modally tuned impulse hammer (PCB

model 086D05) and a short-sledge impulse hammer (PCB

model 086D20) were used to excite the system for (a–c) and (d),
respectively
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verifies the behavior observed in Regime I of the

theoretical system and the identified model for the

experimental system. Examining Fig. 16b, which

depicts the energies for an impulsive force of 898 N,

a clear beating pattern emerges in the energies that

indicates that the NO and LO are exchanging energy.

Although NO and LO are clearly exchanging energy,

the instantaneous total energy of the NO is always

greater than that of the LO, even when the energy the

LO reaches a maximum during the beating cycle.

Furthermore, the majority of the energy remains in the

NO for the entire measurement. These two observa-

tions indicate that no IR is present in the responses,

which verifies the predictions of both the theoretical

system and the identified model for Regime II in LS II.

Looking now at Fig. 16c, which depicts the

energies for a forcing of 1573 N and is the first case

in Regime III, we find that the energy is rapidly and

irreversibly transferred to the Lo where it is quickly

dissipated. The fact that the energy is transferred to the

LO and never returns to the NO indicates that a strong

IR is present in the dynamics, which is the same 3:1 IR

between the first and second NNMs that was observed

in the investigation of the theoretical system. Further-

more, the energy transfer observed verifies that a

preferential direction of energy transfer from the NO

to the LO exists in the dynamics. The preferential

direction of energy transfer arises because it is easier

for energy to be transferred from low to high

frequencies (first to second NNM) than it is for energy

to transfer from high to low frequencies. These results

experimentally validate the predictions of the theoret-

ical system and the identified model and verify the

prediction of a preferential direction of energy trans-

fer. Finally, considering Fig. 16d, which depicts the

energies for a forcing of 780 N (2760 N equivalent)

and is also in Regime III, we find that initially a strong

beating pattern appears where the energy oscillates

between the NO and LO. However, this exchange of

energy is extremely short-lived, ceasing at a time of

0.29 s, where the energy is irreversibly transferred to

the LO. Moreover, the large transfers of energy from

the NO to the LO cause the motion to rapidly decay

compared to the observed dissipation trends in

Regimes I and II. Based on these results, we conclude

that all three regimes observed in the theoretical

system for LS II are experimentally realizable and that

the observed energy flows are indeed physical.

4 Concluding remarks

This research focused on the flow of mechanical

energy between two nonlinearly coupled oscillators

with comparable mass. The first oscillator was

connected to ground using a linear spring and damper,

and it represents the prototypical linear oscillator (LO)

that is often used in studies of energy transfer. The

second oscillator was coupled to the LO using a weak

linear spring, weak linear damper, and a strong

nonlinear spring with a polynomial restoring force

relationship, and we called this oscillator the nonlinear

oscillator (NO) in the system. The resulting system

possessed two nonlinear normal modes (NNMs) with

the first and second NNMs localized to the NO and

LO, respectively. The dynamics of the system was

investigated both theoretically using a nondimen-

sional model and experimentally using a physical

model. In both cases, we studied the dynamics for two

loading scenarios (LSs): in LS I, the LO was excited

using an initial velocity for the theoretical system and

an impulsive force in the experimental system, while

the NO began at rest; and in LS II, the NO was excited

using either an initial velocity or an impulsive force,

while the LO began at rest.

In the theoretical system for LS I, we observed that

the energy flows could be portioned into two separate

regimes. In the first regime, the energy was found to

localize in the LO and no energy was shared with the

NO. In the second regime, the energy was found to

initially localize in the LO, but was then shared and

exchanged with the NO. The energy exchanges were

the result of a 3:1 internal resonance (IR) between the

first and second NNMs where energy was transferred

from the second NNM at high frequency to the first

NNM at low frequency. Using the experimental

system, we verified the behavior in Regime I, but we

were unable to reproduce the behavior observed in

Regime II due to limitations in the force that could be

realized without damaging the structure. For LS II, we

observed that the energy flows could be partitioned

into three different regimes. In the first regime, the

energy was localized to the NO for the entire duration

of the response and no energy was transferred to the

LO. In Regime II, some of the energy was exchanged

between the NO and LO, but the majority remained

localized in the NO for the duration of the response. In

Regime III, strong energy exchanges between the NO

and LO were observed and, in some cases, all of the
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energy was irreversibly transferred to the LO. Based

on an analysis of the NNMs, we concluded that the

energy transfer in Regime III resulted from a 3:1 IR

between the first and second NNMs—the same IR as

that observed in Regime II for LS I, except that, in this

case, the energy transferred from the first NNM at low

frequency to the second NNM at high frequency. We

found that substantially more energy was transferred

by the IR in LS II than in LS I in the present case than

in the IR observed in LS I, which led to the conclusion

that it is easier for the system to transfer energy from

low to high frequencies. Moreover, because the first

and second NNMs are localized to the NO and LO,

respectively, we concluded that the system possessed a

preferential direction of energy transfer: from the NO

to the LO. All three regimes for LS II and the

accompanying observations were reproduced and

verified using the experimental system including the

case of irreversible energy transfer and the preferential

direction of energy transfer.

Typical studies of energy transfer in mechanical

oscillators focus on the phenomena of targeted energy

transfer and the use of a nonlinear energy sink (NES)

dissipates vibrations. In such studies, the NES is

assumed to be an attachment that is installed on a

linear primary structure. The NES then acts like a

parasite by irreversibly stealing energy from the

primary structure and rapidly dissipating it. In the

current research, the NO should not be thought of as an

attachment installed on a linear primary structure (i.e.,

the LO). Rather, one of two viewpoints should be

taken. First, the NO can be thought of as a vibration-

sensitive piece of equipment that we wish to isolate

from its surroundings, so long as the vibration levels

remain in Regime I of LS I. In this case, the LO acts as

a vibration isolation system that is installed between

the NO and ground with the intent to isolate the NO.

Future research is dedicated to determining the

effectiveness of this type of system for vibration

isolation under base excitation and forced harmonic

excitation. Second, we can consider both the LO and

NO to be integral components of the overall system

and, in this case, our objective is to passively

manipulate and control the flow of energy between

the two components. Another possible application is to

building design and the mitigation of seismic motion

by isolating the incoming energy to the bottom of the

building. In this context, the LO represents the second

floor of the building and the NO represents either the

third floor or all other floors lumped together as one.

The second floor then acts as an energy sink that

localizes the energy introduced by the seismic motion

in itself and prevents that energy from propagating

upward into the rest of the building. Moreover, this

approach opens the way for incorporating vibration

mitigation directly into the primary structure without

the need for additional vibration absorbers such as

NESs. Although NESs hold a near monopoly on the

discussion and research on targeted energy transfer in

mechanical oscillators, the research presented here

demonstrates that there is still much to learn about

energy transfer in general and that many more

applications beyond the standard definition of targeted

energy transfer are possible.
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