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Abstract This work deals with the solution of a non-
convex optimization problem to enhance the perfor-
mance of an energy harvesting device, which involves
a nonlinear objective function and a discontinuous con-
straint. This optimization problem, which seeks to find
a suitable configuration of parameters that maximize
the electrical power recovered by a bistable energy har-
vesting system, is formulated in terms of the dynam-
ical system response and a binary classifier obtained
from 0 to 1 test for chaos. A stochastic solution strat-
egy that combines penalization and the cross-entropy
method is proposed and numerically tested. Computa-
tional experiments are conducted to address the per-
formance of the proposed optimization approach by
comparison with a reference solution, obtained via an
exhaustive search in a refined numerical mesh. The
obtained results illustrate the effectiveness and robust-
ness of the cross-entropy optimization strategy (even in
the presence of noise or in moderately higher dimen-
sions), showing that the proposed framework may be
a very useful and powerful tool to solve optimiza-
tion problems involving nonlinear energy harvesting
dynamical systems.
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1 Introduction

Energy harvesting is a process of energy conversion
in which a certain amount of energy is pumped from
an abundant source (e.g., the sun, wind, ocean, envi-
ronmental vibrations, electromagnetic radiation, etc.)
into another system that stores and/or use this energy
for its self-operation [24,48,59]. This type of technol-
ogy has a broad field of applicability, that includes:
(i) large-scale devices such as ocean thermal energy
converters [38], magnetic levitators [52], etc.; (ii) mid-
dle size applications like electromechanical systems
[26,37], sensors/actuators [5,23,61], living trees [66]
etc.; (iii) small or very small systems, namely medical
implants [47], micro/nano-electro-mechanical systems
(MEMS/NENS) [44,58], graphene structures [42], bio
cells [8], etc.

Enhance the amount of energy collected by an
energy harvester is a key problem in the operation of
these kind of devices, being the object of interest of
several research works among the last decade, with
efforts divided essentially in two fronts: (i) approaches
with great physical appeal, which seek to explore com-
plex geometric arrangements and nonlinearities in a
smart way to improve the performance of the sys-
tem [1,3,18,21,32,33,50,62,68]; (ii) works that look
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at this task from amoremathematical perspective, con-
ducting theoretical analysis in mathematical models
[51], using control theory to optimize the underlying
dynamics [2,20,60,65] or formulating and solving
non-convex optimization problems to find the optimal
system design [27,39,40,46,67].

The approaches that seek to optimize energy har-
vesters exploring their physics, in general, try to take
advantage of a key (and very particular) characteristic
of the dynamics, oftenneglected in anaive look, in favor
of better performance. Although they can produce very
efficient solutions for certain types of systems, they lack
generality, which makes them, in a sense, an “art,” as
it requires a high level of knowledge about the system
behavior by the designer’s part.

On the other hand, approaches based on numerical
optimization have a good level of generality; however,
they come up with theoretical and computational diffi-
culties inherent to the solution of non-convex optimiza-
tion problems defined by objective functions that are
constructed from observations of the nonlinear dynam-
ical systems.

These difficulties are faced not only when dealing
with energy harvesters, but they can also be seen in the
optimization of several types of nonlinear dynamical
systems, generally being circumvented with the use of
computational intelligence-based algorithms [43,49],
since traditional gradient-based methods have no guar-
antee of finding global extremes in the absence of con-
vexity [6,7,45].

Among the computational intelligence algorithms
available in the literature, the most frequently used
for optimization in nonlinear dynamics include genetic
algorithms (and their variants), particle swarm opti-
mization, differential evolution, artificial neural net-
works (and other machine learning methods), etc [49].
As they are global search methods, they are often suc-
cessful in overcoming the (local) difficulties faced by
gradient-based methods, at the price of losing compu-
tational efficiency. But the loss of efficiency is not the
only weakness of these global methods, most of then
need to have the underlying control parameters tuned
for proper functioning. This task is usually done man-
ually, in a trial and error fashion, which is not at all
practical, as the meaning of many of these parameters
is often not intuitive. This peculiarity practically “con-
demns” these tools to be used in the black-box format,
without much control by the user, which may induce
significant losses in performance and accuracy.

However, the computational intelligence literature
has at least one global search algorithm that is robust
and simple, for which the control parameters are very
intuitive, it is known as the cross-entropy (CE) method,
proposed by R. Rubinstein in 1997 [53,54,56] for rare
events simulation. Soon after it was realized that it
could be a very appealing global search technique for
challenging combinatorial and continuous optimiza-
tion problems [36,57]. It is a sampling technique, from
the family of Monte Carlo methods, which iteratively
attacks the problem, refining the candidates solution
according to a certain optimality criterion.

Surprisingly, the nonlinear dynamics literature has
been neglecting the CE method, although it is a rela-
tively known technique in the combinatorial optimiza-
tion community. To the best of the author’s knowl-
edge, there are few studies in the open literature apply-
ing the CE method for numerical optimization prob-
lems involving nonlinear mechanical systems [15–
17,25,34,63], which leaves space for new contribu-
tions in this line. In particular, the development of a
simplistic and robust optimization framework, easily
customizable, which can be used by naive users with-
out major performance losses.

In this context, this work deals with the numeri-
cal optimization of nonlinear energy harvesting sys-
tems, trying to find a strategy to increase the perfor-
mance of a bistable energy harvesting device subjected
to a periodic excitation. For this purpose, a non-convex
optimization problem, with a nonlinear objective func-
tion and discontinuous constraint, is formulated and
a stochastic strategy of solution that combines penal-
ization and the CE method is proposed and numeri-
cally tested. As this method has a theoretical guarantee
of convergence and evidence in the literature proving
its effectiveness [36,57], the proposed cross-entropy
framework for optimization of dynamical systems has
the potential to be a very general and robust numerical
methodology.

The rest of this manuscript is organized as follows.
Section 2 presents the energy harvesting device of inter-
est and the underlying dynamical system. An optimiza-
tion problem associated with this nonlinear system is
defined in Sect. 3, and the CE method strategy of solu-
tion is presented in Sect. 4. Numerical experiments,
conducted to test the effectiveness and robustness of
the stochastic solution strategy, are shown in Sect. 5.
Finally, in Sect. 6, final remarks are set out.
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Fig. 1 Illustration of the bistable piezo-magneto-elastic energy
harvesting system

2 Nonlinear dynamical system

2.1 Physical system

The energy harvesting system of interest in this work
is the (sinusoidal excited) piezo-magneto-elastic beam
presented by Erturk et al. [22], which is based on the
(stochastically excited) inverted pendulum energy har-
vester proposed by Cottone et al. [9]. An illustration
of this bistable energy harvesting system is shown in
Fig. 1, where it is possible to see that it consists of a ver-
tical fixed-free beam made of ferromagnetic material,
a rigid base and a pair of magnets. In the beam upper
part, there is a pair of piezoelectric laminae coupled to a
resistive circuit. The rigid base is periodically excited
by a harmonic force, which, together with the mag-
netic force generated by magnets, induces large ampli-
tude vibrations. The piezoelectric laminae convert the
energy ofmovement into electrical power, which is dis-
sipated in the resistor.

Although this system dissipates energy, instead of
using it to supply some secondary system, it is a typical
prototype of a piezoelectric energy harvesting system.
In an application of interest, the resistor is replaced by a
more complex electrical circuit, which stores (and pos-
siblymanipulates) the voltage delivered by themechan-
ical system.

2.2 Initial value problem

The dynamic behavior of the system of interest is
described by the following initial value problem

ẍ + 2 ξ ẋ − 1

2
x

(
1 − x2

)
− χ v = f cos (Ω t), (1)

v̇ + λ v + κ ẋ = 0, (2)

x(0) = x0, ẋ(0) = ẋ0, v(0) = v0, (3)

where ξ is the damping ratio; χ is the piezoelectric
coupling term in mechanical equation; λ is a reciprocal
time constant; κ is the piezoelectric coupling term in
electrical equation; f is the external excitation ampli-
tude;Ω is the external excitation frequency. The initial
conditions are x0, ẋ0 and v0, which respectively rep-
resent, the beam edge initial position, initial velocity
and the initial voltage over the resistor. Also, t denotes
the time, so that the beam edge displacement at time
t is given by x(t), and the resistor voltage at t is rep-
resented by v(t). The upper dot is an abbreviation for
time-derivative, and all of these parameters are dimen-
sionless.

2.3 Mean output power

Since the objective in this work is to maximize the
amount of energy recovered by an energy harvesting
process, the main quantity of interest (QoI) associated
with the nonlinear dynamical system under analysis is
the mean output power

P = 1

T f − T0

∫ T f

τ=T0
λ v2(τ ) dτ, (4)

which is defined as the temporal average of the instan-
taneous power λ v2 over a given time interval [T0, T f ].
This QoI plays the role of objective function in the
optimization problem defined in Sect. 3.

2.4 Dynamic classifier

Due to dynamical system nonlinearity, the steady-state
dynamical response (over a given time interval) of the
energy harvesting device may be chaotic or regular
(non-chaotic), such as illustrated in Fig. 2, which shows
typical voltage time-series for this kind of bistable
oscillator.

To distinguish between the chaotic and regular
dynamic regimes, the 0–1 test for chaos by Gottwald
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(a) regular dynamics

0 1000 2000 3000 4000 5000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time

vo
lta

ge

(b) chaotic dynamics

Fig. 2 Two typical voltage time-series for the bistable energy
harvesting system. The time-series in a has a regular steady-state
dynamics, while in b a chaotic steady-state dynamics is observed

and Melbourne [28–31] is employed. This test, which
is based on an extension of the dynamical system to
a two-dimensional Euclidean group [4], uses a binary
classifier K to identify the dynamic regime of oper-
ation underlying the system of interest. This classi-
fier is constructed from a dynamical system observa-
tion (time-series) φ(t). In fact, it is sufficient to use
Φ = (φ(t1), φ(t2), . . . , φ(tN )), a discrete version of
the observable φ(t) that is obtained through a numeri-
cal integration (sampling) process.

Receiving thediscrete observation (time series) as an
input, the analytical procedure of the 0–1 test consists
of the following steps:

1. A real parameter c ∈ [0, 2π) is chosen and, for
n = 1, 2, . . . , N , the discrete version of φ(t) is
used to define the translation variables

pn(c) =
n∑
j=1

φ(t j ) cos ( j c), (5)

qn(c) =
n∑
j=1

φ(t j ) sin ( j c). (6)

2. Then, for n = 1, 2, . . . , N , the time-averagedmean
square displacement of the dynamics trajectory in
(pc, qc) space is computed by

Mn(c) = lim
N→∞

1

N

N∑
j=1

M̃n(c), (7)

where

M̃n(c) = (
p j+n(c) − p j (c)

)2

+ (
q j+n(c) − q j (c)

)2
. (8)

3. Finally, defining the mean-square vector

Mn = (M1, M2, . . . , Mn) , (9)

and the temporal mesh vector

tn = (t1, t2, . . . , tn) , (10)

the dynamic classifier is constructed through the
correlation

Kc = lim
n→∞

cov (tn,Mn)√
var (tn) var (Mn)

, (11)

where cov (·, ·) and var (·) respectively denote
the covariance and variance statistical operators.

It can be proved that Kc ∈ {0, 1}, being Kc = 0
for regular dynamics and Kc = 1 for chaotic dynam-
ics [4,30]. For numerical implementation purposes, the
above procedure is performed several times, for several
randomly chosen values of c ∈ [0, 2π), and consid-
ering the voltage time-series as the system observa-
tion, i.e., φ(t) = v(t). The discrete version of φ(t) is
constructed through temporal integration via the stan-
dard fourth-order Runge–Kuta method. The limit pro-
cesses in Eqs. (7) and (11) are replaced by the condition
n � N , and the classifier K is calculated as themedian
of Kc realizations, i.e., K = median (Kc). Indeed, for
a careful done numerical simulation one has K ≈ 0 or
K ≈ 1. See [4,31] for further details.
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3 Non-convex optimization problem

3.1 Problem definition

The objective of this work is to find a set of parame-
ters that maximize the mean output power dissipated
in the resistor. For this purpose, the electromechani-
cal system properties (ξ , χ , λ and κ) sound as natural
choices for the design variables, once they are intrinsic
to the energy harvester embedded physical characteris-
tics, something a designermightwant tomodify for bet-
ter performance. However, the present work uses, first,
the dynamical system excitation parameters, namely
the amplitude f and the frequency Ω , as design vari-
ables. Although this choice sounds quite artificial at
first since, in general, the designer does not have con-
trol of the level (or frequency) of vibration in which the
energy harvester is operating, it is also of interest in the
optimization of these systems to know in which vibra-
tion settings the device can recover more energy. As the
numerical methodology developed here is completely
general, it can be easily applied in the cases where the
other parameters are used as the design variables, but
by using f and Ω to test the proposed methodology,
an advantage is gained in terms of physical intuition
about underlying physics, as the literature presents bet-
ter knowledge about the effect of these two parameters
on the behavior of this bistable energy harvesting sys-
tem.

Many combinations of ( f,Ω) lead the dynamical
system to operate in the chaotic regime, an undesir-
able condition for electric power usage in principle,
since the process of rectifying the chaotic electrical
signal, which is necessary to enable its use in applica-
tions, can consume a significant part of the available
energy. Although it is possible to explore the chaotic
dynamics in favor of greater efficiency of the system
[2,18], as done by the author and collaborators in [20],
through the use of chaos control techniques, this is not
the approach followed in the present work, which seeks
to develop a very general numerical framework.

Thus, as not every pair ( f,Ω) is an acceptable
choice for the optimal design, it is necessary to impose
a constraint that ensures the regularity (non-chaoticity)
of the system dynamics. Taking advantage of the 0–1
test for chaos, described in Sect. 2.4, the constraint to
ensure a regular (non-chaotic) dynamic regime can be
formulated as K = 0. Note that the optimization prob-

lem is extremely nontrivial, once the constraint presents
jump-type discontinuities since K ∈ {0, 1}.

3.2 Constrained problem formulation

In an abstract way, one can formulate the constrained
nonlinear optimization problemdescribed above asfind
a feasible vector of design variables x
 that maximize
a certain objective function x ∈ D �→ S(x) ∈ R, i.e.,

x
 = argmax
x∈D

S(x), (12)

where the set of admissible (feasible) parameters is
defined by the bounded region

D = {x | xmin ≤ x ≤ xmax and G(x) = 0} . (13)

In this context, it is straightforward to see that the
design variables vector is x = ( f,Ω), the objective
function is S(x) = P( f,Ω), the binary constraint is
G(x) = K ( f,Ω), and the limits of the design variables
are xmin = ( fmin,Ωmin) and xmax = ( fmax,Ωmax).

In the case of a problem with more variables, or
with different objective function and/or constraints, the
adaptations to be made are straightforward.

3.3 Penalized problem formulation

A penalized version of this constrained nonlinear opti-
mization problem is introduced here in order to facili-
tate the computational implementation of the solution
algorithm. In this formulation, the constraint G(x) = 0
is replaced by the weaker condition G(x) ≤ ε � 1,
once in practice the best one has is K ≈ 0. In this
way, the problem defined by (12) is replaced by the
penalized problem which seeks a pair x
 such that

x
 = argmax
x∈D

S̃(x), (14)

where the set of feasible parameters is now defined by

D = {x | xmin ≤ x ≤ xmax} , (15)

and the penalized objective function is given by

S̃(x) = S(x) − α max {0,G(x) − ε} . (16)

The penalty parameter is heuristically chosen, being
α = 10 the value used in all simulations reported in
this work. In the same way, ε = 1/10 is adopted.
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4 The cross-entropy method

4.1 The general idea of CE method

The key idea of the CE method is to transform the
given non-convex optimization problem into an “equiv-
alent” rare event estimation problem that can be effi-
ciently treated by a Monte Carlo like algorithm. The
only requirement is that the problem has a single solu-
tion, i.e., the global extreme is unique.

In this framework, the feasible region is sampled
according to a given probability distribution chosen by
the user, and the low-order statistics (mean and standard
deviation) of these samples are used to update the opti-
mum point estimation, and the stopping criteria metric
(respectively). This is a two-step iterative process:

1. Sampling First, the feasible region is sampled
according to a given probability distribution, and
then the objective function is evaluated in each one
of these samples. The information embedded in
these samples are used in the algorithm adaptive
process;

2. LearningAspecial subset of these samples, dubbed
the elite sample set, is defined by the samples that
produced the highest values for the objective func-
tion. The parameters of the probability distribution
are updated using statistics obtained from this elite
sample set, modifying the given distribution in a
sense that tries to make it as close as possible to a
Dirac delta centered on the global optimum.

Throughout this process, the distribution mean pro-
vides the approximation for the global optimum. Its
update is done in the sense of moving the distribu-
tion center toward the optimization problem optimum,
while the standard deviation is reduced, thus “shrink-
ing” the distribution around its central value. The con-
tinuous composition of these effects of translation and
“shrinking” characterizes the process in which the dis-
tribution is “shaped” toward a point mass Dirac distri-
bution centered on the optimal.

4.2 Theoretical framework

Without loss of generality, suppose that the problem
of interest is to maximize an objective function x ∈
D �→ S(x) ∈ R, as stated in Eq. (12). If the penalized
formulation from Eq. (14) is adopted, just consider x ∈
D �→ S̃(x) ∈ R instead of S(x).

Denote the global optimal by x
 and the corre-
sponding maximum value by γ 
 = S(x
), i.e., γ 
 =
max S(x) for all x ∈ D.

Using this global maximum as a reference value,
and considering a randomized version of the vector x,
denoted by X, it is possible construct the random event
S(X) ≥ γ 
, which represents the scenarios where the
random variable S(X) is bigger or equal to the (deter-
ministic) scalar value γ 
. In other words, this random
event considers the possibility of choosing, randomly,
points in the feasible region D that produce values
greater than or equal to the global maximum. Note
that this random event is related to the optimization
problem defined in Eq. (12), it can be thought of as its
randomized version.

Since γ 
 is the maximum value of S(x), no realiza-
tion of X can produce S(X) > γ 
 and only X = x
 can
make S(X) = γ 
. Therefore, the probability of this
random event is zero, i.e., P {S(X) ≥ γ 
} = 0.

Relaxing the reference value for a scalar γ < γ 
,
one has the random event S(X) ≥ γ , which defines a
rare event if γ ≈ γ 
, for which P {S(X) ≥ γ } ≈ 0.

In his 1997 seminal work [53], R. Rubinstein con-
ceived the CE method as a tool to efficiently esti-
mate such type of probabilities, associated with events
located at the distribution tail. Sometime later [54], due
to the connection between the random event and the
optimization problem described above, he noticed that
this rare event estimation process could be used as a
global search method to optimize the given objective
function.

Notice that, with the aid of the expected value oper-
ator E {·}, and the indicator function

1A(x) =
{
1, if x ∈ A
0, if x /∈ A ,

(17)

the probability of the random event S(X) ≥ γ can be
written as

P {S(X) ≥ γ } = E

{
1S(X)≥γ

}
, (18)

which provides a practical way of estimating its value.
Once the right side of Eq. (18) is the mean value of
the random event 1S(X)≥γ , it can be easily computed
through the sample mean of Ns samples of X, i.e.,

E

{
1S(X)≥γ

}
≈ 1

Ns

Ns∑
k=0

1S(Xk )≥γ , (19)

where the realizations Xk (k = 1, . . . , Ns) are drawn
according to g (x; v), the probability density function
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of X, parametrized by the hyper-parameters vector v.
Very often, v = (μ, σ ), where μ and σ are the mean
the standard deviation vectors of X, respectively.

The idea of the CE method is to approximate the
solution of the underlying optimization problem by
solving the rare event probability estimation from Eq.
(18). For this purpose, it employs amultilevel approach,
that generates an optimal sequence of statistical estima-
tors for the pair (γ, v), denoted by (γ̂�, v̂�), such that

γ̂�
a.s.−−−→ γ 
 and g (x, v̂�)

a.s.−−−→ δ
(
x − x


)
, (20)

i.e., the reference level γ tends with probability 1 to the
maximumvalue, and the family of distributions g(· , v)
goes (almost sure) towards a point mass distribution,
centered on the optimization problem global optimum.

This sequence of estimators is optimal in the sense
that it minimizes the Kullback–Leibner divergence
between 1S(X)≥γ and g(· , v) [57].

More concretely, the feasible region D is sampled
with Ns independent and identically distributed (iid)
realizations of the random vector X, drawn from its
density g (x; v). For each of these samples, the objec-
tive function is evaluated, generating the sequence of
values S(X1),S(X2), . . . ,S(XNs ).

Then, an elite sample Et = {Xk : S(Xk) ≥ γ̂t } is
defined by lumping the Ne < Ns points that better per-
formed, i.e., those which produced the highest values
for S(x). Note that this elite set is defined in terms of
the maximum value statistical estimator, given by

γ̂t = S(Ns−Ne+1). (21)

The hyper-parameters vector v is updated using the
maximum likelihood estimator so that, with the aid of
the elite set Et , it is written as
v̂t = arg max

v

∑

Xk∈Et
ln (g (Xk; v)) . (22)

Depending on the distribution chosen for X, the
stochastic program from Eq. (22) needs to be solved
numerically. However, for the distributions of the expo-
nential family, which includes the Gaussian and its
truncated version, this estimator can be calculated in a
analytic way, with each component of mean and devi-
ation given by the formulas

μ̂t =
∑

Xk∈Et Xk

Ne
, (23)

and

σ̂t =

√√√√
∑

Xk∈Et (Xk − μ̂t )
2

Ne
, (24)

respectively.

Although this process has a theoretical guarantee of
converging to a point mass distribution centered on the
global optimum, in computational practice it is com-
mon to see the updated distribution numerically degen-
erating before it “reaches the target.” Sometimes the
standard deviation decreases very quickly, causing the
distribution to “shrinks” in a region far from the global
optimum. In this scenario, only samples far from the
optimum point are drawn, producing poor estimates for
the optimization problem solution.

At the theoretical level,where it is possible to sample
an infinite number of times, this pathological situation
is bypassed, because at some moment a sample on the
tail is drawn, moving the distribution center out of the
“frozen region,” as this outlier has a lot of weight in the
mean estimate. However, in computational terms, as
any robust implementation requires a maximum num-
ber of iterations (levels), the algorithm may stop with
the distribution center within a “frozen region.”

This problem may be solved through the use of a
smooth updating scheme for the hyper-parameters

μ̂t := α μ̂t + (1 − α) μ̂t−1, (25)

σ̂t := βt σ̂t + (1 − βt ) σ̂t−1, (26)

βt = β − β

(
1 − 1

t

)q

, (27)

where the smooth parameters are such that 0 < α ≤ 1,
0.8 ≤ β ≤ 0.99 and 5 ≤ q ≤ 10 [35,56], and the esti-
mations at t and t − 1 are obtained by solving the Eq.
(22), which defines the nonlinear program that gives
rise to the vector v.

4.3 The computational algorithm

The geometric idea of the CE method is described at
the beginning of this section, being complemented by
the theoretical formalismpresented in the previous sub-
section. The compilation of these ideas in the form of
an easy to implement computational algorithm is pre-
sented below:

1. Define the number of samples Ns , the number of
elite samples Ne < Ns , a convergence tolerance
tol, themaximumof iteration levels �max, a family
of probability distributions g (·, v), an initial vec-
tor of hyper-parameters v̂0 for g, and set the level
counter � = 0;

2. Update the level counter � = � + 1;
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Fig. 3 Schematic
representation of the CE
algorithm for optimization

3. Generate a total of Ns independent and identically
distributed (iid) samples from g (·, v̂�−1), denoted
by X1, . . . ,XNs ;

4. Evaluate the objective function S(x) at the samples
X1, . . . ,XNs , sort the results S(1) ≤ · · · ≤ S(Ns ),
and define the elite sample set Et with the Ne points
which better performed;

5. Update the estimators γ̂� and v̂� with aid of the
elite sample set, using order and maximum likeli-
hood statistic estimators, given by the Eqs. (21) and
(22), respectively. If necessary, apply the scheme of
smooth updating;

6. Repeat the steps (2) up to (5) of this algorithmwhile
a (standard deviation dependent) stopping criterion
is not met. For instance, max {σ } < tol.

A schematic representation of this algorithm, illus-
trating all the stages of the sampling and learning
phases, is shown in Fig. 3.

4.4 Remarks about CE method

Among the several characteristics that make this rela-
tively novel technique interesting, the following can be
highlighted:

– SimplicityVery intuitive algorithmwith few control
parameters (Ns , Ne, �max and tol), each of then
with a very clear interpretation;

– Robustness Theoretical results ensure that, under
typical conditions, themethod is guaranteed to con-
verge if the problem has a single global extreme;

– Efficiency The method typically presents fast con-
vergence in comparison with classic global search
meta-heuristics, such as genetic algorithms;

– Generality The method does not require any regu-
larity of the objective function and can be applied to
almost any type of non-convex optimization prob-
lem (even non-differentiable or discontinuous);

– Extensibility The theory is general, in principle it
can be applied to problems of any finite dimension,
the computational cost and the “curse of dimen-
sionality” being the limiting factors in practice;

– Easy implementation The algorithm can be imple-
mented with a few lines of code in a high level
programming language.

The mathematical development associated with the
formalism described above is relatively non-trivial, but
it has been well established throughout the first decade
of the method, including theorems that strictly estab-
lish the conditions where the method has guaranteed
convergence. These details are suppressed from this
paper as they are outside the scope of the journal. But
for the interested reader, the following references are
recommended [19,35,56,57].

The computational experiments in the next section
illustrate the efficiency and robustness of this frame-
work in solving a non-trivial problem of optimizing an
energy harvesting device.

5 Numerical experiments

For the numerical experiments conducted here, the fol-
lowing numerical values are adopted for the dynamical
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Fig. 4 Bidimensional case contour maps: a constraint function
defined by the 0–1 test for chaos, and b normalized objective
function, defined by the mean output power

system parameters: ξ = 0.01, χ = 0.05, κ = 0.5 and
λ = 0.05. The initial condition is defined by x0 = 1,
ẋ0 = 0 and v = 0. The dynamics is integrated over
the time interval [0, 2500], and the mean output power
is computed over the last 50% of this time series, i.e.,
[T0, T f ] = [1250, 2500].

5.1 Reference solution

In order to analyze the effectiveness and robustness of
the stochastic solution strategy proposed here, a ref-
erence solution is computed by a standard exhaustive
search on a fine grid over the domain

D = {( f,Ω) | 0.08 ≤ f ≤ 0.1, 0.75 ≤ Ω ≤ 0.85}.
In this standard approach, a structured 256 x 256 uni-
form numerical grid is used to discretizeD. The system
dynamics is then integrated for each grid point, with
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Fig. 5 Magnification of the contour maps in bi-dimensional
case: a constraint function defined by the 0–1 test for chaos,
and b normalized objective function, defined by the mean output
power

the optimization constraint being evaluated next. The
objective function is evaluated at all feasible points,
and the extreme value is updated at each step of the
grid screening process. Two contour maps, associated
with the reference solution, are shown in Fig. 4: (a)
constraint function, and (b) objective function normal-
ized by PDS

max. The pair ( f,Ω) = (0.0999, 0.7786) that
corresponds to the globalmaximum is indicated in both
contour maps by a red cross, being associated with a
mean output power PDS

max = 0.0172. Figure 5 shows a
magnification of the global maximum neighborhood,
where it is possible to better appreciate the contour
levels shape, and verify that it corresponds to a regu-
lar dynamic regime configuration. Note also that this
result is compatible with the literature, which points to
a better performance of piezoelectric harvesters for low
frequencies and high amplitudes of excitation [40,62].
For sake of reference, this solution was obtained in 3.6
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hours in a Dell Inspiron Core i7-3632QM
2.20 GHz RAM 12GB.

5.2 Cross-entropy solution

In the approach based on the CE method, the domain
is randomly sampled using for this Ns = 50 points.
This sampling is done according to a truncated Gaus-
sian distribution, parameterized by mean vector μ =
(μ f , μΩ) and standard deviation vectorσ = (σ f , σΩ).
The number of elite samples is chosen as Ne =
round(Ns/10), maximum number of levels is set
tmax = 100, while the convergence criterion is adopted
as max

{
σ f , σΩ

}
< tol, for a tolerance tol =

1 × 10−3. The smoothing parameters are α = 0.7,
β = 0.8 and q = 5.

A visual illustration of the CE method is presented
in Fig. 6, which shows the domain sampling at differ-
ent levels (iterations) of the algorithm. The reader can
also appreciate the evolution of this random algorithm
in Table 1, where each line displays the level index,
the value of the means and standard deviations of f
and Ω in addition to the optimal value obtained for the
objective function P and the corresponding constraint
K . In this case, the optimum value obtained by the CE
method, with aid of the estimation from Eq. (21), is
PCE
max = 0.0170, at the optimal point x
 = ( f 
,Ω
)

where f 
 ≈ 0.10 and Ω
 ≈ 0.77.
Note that the approximation obtained is very close

to the reference value of Sect. 5.1, obtained after 26
iterative steps (1300 function evaluations), which cor-
responds to a speed-upofmore than40,when compared
with the exhaustive search (see in Table 2 the CPU time
spent). The accuracy can still be slightly improved as
shown in Table 3, which presents the CE results with
Ns = 75, obtaining PCE

max = 0.0171. In this case, the
price paid for this additional gain of accuracy is a loss
of performance, which makes the speed-up fall from
more than 40 to 26 (see Table 2). However, an exper-
iment with only Ns = 25 samples is also conducted,
obtaining a result with no loss of accuracy and more
than doubling the speed-up to an impressive value of
123. An experiment with Ns = 100 is also reported in
Table 2, although no figure or table from this simula-
tion is shown in the text. This experiment shows that
different sampling strategies can produce good results.

The speed-up shown in Table 2 is defined as the ratio
between the calculation time between direct search

(reference) and the CE solution. Although this metric
provides a good measure of efficiency for large values
of CPU times, it is extremely dependent on themachine
used. Thus, to provide a machine-independent perfor-
mance measure, this table also lists the number of eval-
uations of the objective function, since this is the most
expensive operation to be performed by the optimiza-
tion algorithm. Note that in this new metric, the ratio
between the objective function evaluations in the ref-
erence and the CE solution produces values very close
to the speed-ups obtained previously, confirming the
computational efficiency of the proposed approach in
a machine-independent fashion.

An animation of the algorithm in action with Ns =
50 is available in [11],where the reader can see the algo-
rithm stops after just � = 17 levels (850 function evalu-
ations). The difference concerning the numerical exper-
iment reported in Table 1 is because the CE method is
stochastic so that at each simulation, a different approx-
imation for the global optimum is constructed. Despite
these variations, the speed-up and function evaluation
values reported in Table 1 are typical, with some fluc-
tuation around them each new simulation, but with no
change in the order of magnitude. Animations for the
cases where Ns = 25 and Ns = 75 can be seen in [10]
and [12], respectively, where it is possible to note that
the accuracy and speed-ups obtained are comparable to
those results shown in Tables 3 and 4.

5.3 Noise robustness

In the practical operation of a vibratory device, noise
is inevitable, so considering its effect on the dynamics
of energy harvesting systems is good modeling prac-
tice [41]. Therefore, robustness to noise is a desirable
feature in any optimization methodology in problems
involving dynamical systems. To test the robustness
of the CE solution to noise disturbances, this section
slightly modifies the reference solution from Sect. 5.1.
For that, the output voltage signal is corrupted with
Gaussian white noise component (zero-mean and stan-
dard deviation equal to 5% of the maximum voltage
amplitude). In this way, the objective function of the
optimization problem becomes noisy, providing amore
stringent test for the optimizer.

The contour maps of the constraint and the noisy
objective function, with their respective magnifica-
tions, both constructed on the same 256 × 256 numer-
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Fig. 6 Illustration of CE method in the bi-dimensional case, using Ns = 50 samples, at different levels (iterations) of the algorithm.
The reference solution is indicated with a red cross
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Table 1 Evolution of CE algorithm in the bi-dimensional case using Ns = 50 samples

� P K μ f μΩ σ f σΩ

01 0.0151 0.1115 0.0858 0.7845 0.0260 0.1107

02 0.0003 0.0195 0.0872 0.7804 0.0115 0.0498

03 0.0004 0.0956 0.0901 0.7687 0.0084 0.0260

04 0.0003 0.0610 0.0913 0.7674 0.0061 0.0205

05 0.0004 0.0969 0.0914 0.7706 0.0059 0.0208

06 0.0003 0.0054 0.0917 0.7635 0.0053 0.0152

07 0.0004 0.0444 0.0916 0.7601 0.0048 0.0104

08 0.0169 0.0264 0.0955 0.7643 0.0036 0.0068

09 0.0167 0.0662 0.0966 0.7618 0.0031 0.0058

10 0.0167 0.0121 0.0975 0.7629 0.0024 0.0053

11 0.0168 0.0437 0.0977 0.7649 0.0021 0.0042

12 0.0169 0.0208 0.0981 0.7671 0.0018 0.0035

13 0.0169 0.0230 0.0985 0.7684 0.0016 0.0028

14 0.0169 0.0151 0.0990 0.7686 0.0013 0.0023

15 0.0170 0.0338 0.0989 0.7702 0.0011 0.0022

16 0.0170 0.0476 0.0990 0.7716 0.0010 0.0020

17 0.0171 0.0319 0.0994 0.7731 0.0009 0.0018

18 0.0170 0.0001 0.0995 0.7724 0.0008 0.0017

19 0.0171 0.0088 0.0994 0.7729 0.0007 0.0016

20 0.0171 0.0053 0.0994 0.7736 0.0007 0.0014

21 0.0171 0.0825 0.0994 0.7739 0.0006 0.0014

22 0.0171 0.0109 0.0995 0.7741 0.0006 0.0013

23 0.0171 0.0165 0.0995 0.7741 0.0006 0.0012

24 0.0150 0.3716 0.0994 0.7730 0.0005 0.0011

25 0.0171 0.0033 0.0995 0.7734 0.0005 0.0010

26 0.0170 0.0578 0.0995 0.7732 0.0004 0.0010

ical grid from Sect. 5.1 (CPU time 3.8 h), are shown
in Fig. 7. Note that the noise disturbance changes the
geometry of the constraint contour map, expanding the
regions of chaotic configuration. It also affects themean
power isolines, thus changing a little bit the objec-

tive function, so that PDS
max = 0.0173 at ( f,Ω) =

(0.0998, 0.7763).
In this noisy experiment, the CE method uses Ns =

50, tolerance tol = 1/512, and all other parame-
ters set as in the noiseless case. In this way, the CE

Table 2 Performance of CE algorithm in the bi-dimensional case for different number of samples

Samples Levels CPU time* (s) Speed-up Function evaluation

Reference – 13,101 – 65,536

25 19 106 123 475

50 26 287 46 1300

75 30 497 26 2250

100 28 610 21 2800

∗Dell Inspiron Core i7-3632QM 2.20 GHz RAM 12GB
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Table 3 Evolution of CE algorithm in the bidimensional case using Ns = 75 samples

� P K μ f μΩ σ f σΩ

01 0.0002 0.0636 0.0868 0.7883 0.0247 0.1244

02 0.0003 0.1676 0.0901 0.7712 0.0101 0.0355

03 0.0003 0.0224 0.0883 0.7683 0.0074 0.0187

04 0.0004 0.0181 0.0936 0.7634 0.0048 0.0119

05 0.0004 0.0448 0.0966 0.7597 0.0030 0.0082

06 0.0167 0.0358 0.0974 0.7628 0.0021 0.0065

07 0.0168 0.0425 0.0978 0.7651 0.0019 0.0052

08 0.0169 0.0533 0.0986 0.7679 0.0016 0.0041

09 0.0170 0.0473 0.0987 0.7705 0.0013 0.0035

10 0.0170 0.0177 0.0988 0.7705 0.0012 0.0029

11 0.0170 0.0415 0.0991 0.7706 0.0009 0.0024

12 0.0170 0.0519 0.0991 0.7716 0.0008 0.0021

13 0.0170 0.0173 0.0992 0.7717 0.0008 0.0021

14 0.0170 0.0867 0.0992 0.7727 0.0007 0.0021

15 0.0171 0.0349 0.0992 0.7733 0.0006 0.0020

16 0.0171 0.0427 0.0992 0.7735 0.0006 0.0018

17 0.0171 0.0234 0.0991 0.7736 0.0005 0.0016

18 0.0171 0.0077 0.0991 0.7739 0.0005 0.0015

19 0.0170 0.0742 0.0991 0.7734 0.0005 0.0013

20 0.0171 0.0049 0.0993 0.7736 0.0005 0.0012

21 0.0171 0.0085 0.0994 0.7737 0.0004 0.0012

22 0.0170 0.0806 0.0995 0.7737 0.0004 0.0013

23 0.0171 0.0272 0.0995 0.7742 0.0004 0.0012

24 0.0171 0.0370 0.0996 0.7742 0.0004 0.0011

25 0.0171 0.0485 0.0996 0.7741 0.0003 0.0011

26 0.0171 0.0099 0.0995 0.7745 0.0003 0.0011

27 0.0151 0.0857 0.0996 0.7744 0.0003 0.0011

28 0.0171 0.0532 0.0996 0.7749 0.0003 0.0010

29 0.0171 0.0097 0.0996 0.7742 0.0003 0.0010

30 0.0171 0.0512 0.0995 0.7742 0.0003 0.0010

method finds, after 25 iterations, PCE
max = 0.0170 at the

pair ( f,Ω) = (0.0991, 0.7675), which is a very accu-
rate approximation of the reference solution presented
above. An illustration of this iterative process is shown
in Fig. 8. Note that here the CE algorithm constructs
the approximation for the optimum by a different path
than the one shown in Fig. 6.

Even though the presence of noise complicates the
penalized objective function assessment, the example
above shows that the CE method may be able to find

an accurate approximation for the global optimum. But
a caveat needs to be made. Depending on the chosen
tolerance value, the CE method may “froze in a certain
region.” For this experiment, for example, a solution
with an accuracy defined by tol = 0.001 < 1/512
cannot be reached in �max = 100 iterations, as the
approximations “freeze” in a region close to, but not
close enough to, the global optimum. In practical terms,
this can be a limitation, which depends on the problem
at hand.
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Table 4 Evolution of CE algorithm in the bi-dimensional case using Ns = 25 samples

� P K μ f μΩ σ f σΩ

01 0.0003 0.1251 0.0883 0.7870 0.0276 0.1106

02 0.0003 0.0095 0.0867 0.7692 0.0131 0.0352

03 0.0003 0.0522 0.0889 0.7658 0.0095 0.0181

04 0.0003 0.0822 0.0891 0.7608 0.0074 0.0131

05 0.0164 0.0347 0.0938 0.7596 0.0052 0.0111

06 0.0167 0.0451 0.0960 0.7604 0.0038 0.0077

07 0.0167 0.0341 0.0981 0.7620 0.0025 0.0056

08 0.0168 0.0415 0.0986 0.7656 0.0022 0.0051

09 0.0168 0.0845 0.0985 0.7666 0.0021 0.0049

10 0.0169 0.0061 0.0987 0.7674 0.0018 0.0035

11 0.0169 0.0007 0.0986 0.7662 0.0015 0.0029

12 0.0169 0.0453 0.0988 0.7671 0.0013 0.0023

13 0.0170 0.0648 0.0993 0.7684 0.0010 0.0019

14 0.0170 0.0569 0.0993 0.7700 0.0009 0.0017

15 0.0170 0.0226 0.0992 0.7707 0.0008 0.0014

16 0.0170 0.0497 0.0993 0.7710 0.0008 0.0012

17 0.0170 0.0716 0.0992 0.7714 0.0007 0.0013

18 0.0171 0.0226 0.0996 0.7723 0.0006 0.0012

19 0.0171 0.0089 0.0996 0.7730 0.0006 0.0010

5.4 Multidimensional optimization

In principle, the CE method is extensible to any finite
dimension.However, in practice, theCEmethod suffers
from a pathology known as the “curse of dimensional-
ity,” which is the significant drop of the CE estimator
accuracy as the number of design variables increase
[55]. Although an improved CE algorithm, that can
partially mitigate this problem, exists in the literature
[55], it is not considered here since the paper aims to
explore the simplest, and most intuitive, version of the
CE method.

In the context of interest in this paper, optimal design
of an energy harvester (and in a broader sense, in
dynamic systems), the optimizationproblemsgenerally
have a few design variables, with a dimension of half a
dozen being considered high. In this case, although less
accurate than in the two-dimensional case, the solution
obtained by the CE method can still be useful.

To illustrate this point, an example with four design
variables, x = (ξ, χ, λ, κ), is considered in this sec-
tion, where f = 0.115 and Ω = 0.8 are fixed and the
feasible region is defined by

D = [0.01, 0.05] × [0.05, 0.2] × [0.05, 0.2] × [0.5, 1.5].
A reference solution is constructed via direct search

on a 16×16×16×16uniformmeshdefined inD, where
the global maximum PDS

max = 0.1761 is obtained at
(ξ, χ, λ, κ) = (0.0340, 0.0600, 0.2000, 1.5000). The
computational budget spent to obtain this solution is
similar to that of the direct search in Sect. 5.1, involv-
ing 65 536 evaluations of the objective function. As
now the feasible region has a higher dimension than
in the two-dimensional example, it is expected that the
direct search solution obtained will be less accurate.
But this is not problematic for the analyzes presented
here, even though it is less precise, this numerical solu-
tion is suitable for reference purposes.

Using the CE method in this case, it is possible to
speed-up the optimization process and obtain a approx-
imation reasonably close to the global optimum. Table
5 shows the results obtained for different values of Ns ,
tol = 0.01, and considering the other parameters
of the algorithm as in Sect. 5.2. In all scenarios, the
solution obtained by the CE method corresponds to a
mean power very close to the one obtained by the direct
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Fig. 7 Noisy case contour maps: a constraint function defined
by the 0–1 test for chaos, and b noisy objective function defined
by the mean output power

search in the numerical grid, with speed-up gains up
to 30 times approximately. These results indicate that
even though it is susceptible to “curse of dimensional-
ity,” the CE method can be a very appealing algorithm
for problems in moderately higher dimensions, since
it can provide accurate approximations and in a very
competitive processing time.

5.5 Remarks on CE solution

The above results allow one to conclude that the opti-
mization approach based on the CE method is robust
(able to find the global optimal) and efficient (computa-

tionally feasible) to address this nonlinear non-convex
optimization problem, which has non-trivial numeri-
cal solution since the existence of jump-like disconti-
nuities in the constraint prevents gradient-based algo-
rithms from being used.

Last but not least, it is worth mentioning that the
CE method has a great advantage in terms of simplic-
ity when compared to most of the meta-heuristics used
in non-differentiable optimization since the algorithm
involves only four control parameters, all ofwhich have
avery intuitivemeaning,which is a considerable advan-
tage compared to genetic algorithms for example.

6 Conclusions

Thisworkpresented the formulationof a nonlinear non-
convex optimization problem that seeks to maximize
the efficiency of a bistable energy harvesting system
driven by a sinusoidal excitation and constrained to
operate in non-chaotic dynamic regimes only. Since the
problem has jump-type discontinuities, which prevents
the use of gradient-basedmethods, a stochastic strategy
of optimization, based on the cross-entropy method,
was proposed to construct a numerical approximation
for the optimal solution.

Tests to verify the efficiency and accuracy of this
cross-entropy approach as well as its robustness to
noise and feasibility of use in larger dimensions, were
conducted. They showed that the proposed strategy of
optimization is quite robust and effective, constituting
a very appealing tool to deal with the typical (non-
convex) problems related to the optimization of energy
harvesting systems, even in the presence of noise or in
a problem with moderately high dimension.

The impressive results reported here can still be
improved in terms of performance, through the use
of parallelization strategies. In particular, it would be
interesting to test the cloud computing parallelization
strategy proposed by [13]. Besides, the optimization
framework is extremely versatile, allowing the exten-
sion to problems involving robust optimization such as
those reported by [14,64], in which the global optimum
is not sought in the strict sense, but in a sense in which
the systemperformance ismaximized in average terms,
respecting probabilistic constraints.
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Fig. 8 Illustration of CE method in the noisy case, using Ns = 50 samples, at different levels (iterations) of the algorithm. The noisy
version of reference solution is indicated with a red cross
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Table 5 Performance of CE algorithm in the multidimensional case, for different number of samples (tol = 0.01)

Samples Levels CPU time* (s) Speed-up Function evaluation Pmax ξ χ λ κ

Reference – 12,648 – 65,536 0.1761 0.0340 0.0600 0.2000 1.5000

100 75 2074 6 7500 0.1612 0.0237 0.1053 0.1953 1.4923

50 59 696 18 2950 0.1603 0.0227 0.1099 0.1938 1.4969

25 83 466 27 2075 0.1619 0.0227 0.1062 0.1955 1.4924

*Dell Inspiron Core i7-3632QM 2.20 GHz RAM 12GB
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