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Abstract This manuscript explores the effect of
viscoelasticity on static bifurcations: such as pitch-
fork, saddle-node, and transcritical bifurcations, of a
single-degree-of-freedom mechanical oscillator. The
viscoelastic behavior ismodeled via a differential form,
where the extra degree of freedom represents the inter-
nal force providedby theviscoelastic element. Thegov-
erning equations are derived from a simplified lumped
parameter model consisting of a rigid rod incorporat-
ing a viscoelastic element and subjected to axial and
transverse forces at the free end, in addition to an
external time-varying moment applied to the rod. In
order to study the effect of viscoelasticity on bifur-
cation diagrams, the equations of motion are non-
dimensionalized. Next, a review of static bifurcations
in the absence of viscoelasticity is conducted, followed
by an examination of the effect of viscoelasticity on the
bifurcation diagrams. Finally, this paper investigates
the effects of viscoelasticity on the transient behav-
ior of the oscillator. Results show that the Deborah
number, which measures the ratio of the viscoelastic
time constant to the natural periodic time of the sys-
tem, controls the duration of time needed to maintain
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oscillations around an unstable point before jumping to
a stable equilibrium point.
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1 Introduction

In recent years, many industries: such as the automo-
tive, submarine, aviation, and aerospace, have continu-
ously invested in the development of viscoelastic mate-
rials. Due to their damping characteristics, viscoelas-
tic materials have been exploited to dissipate vibration
energy inmany systems. In particular,whenhighdamp-
ing is required for lightweight applications. A simple
way to understand a viscoelastic structure is by viewing
a typical viscoelastic element consisting of a sandwich
construction of a viscoelastic layer in between two elas-
tic layers, as depicted in Fig. 1a.

Material scientists emphasize that all materials can
be considered viscoelastic elements under certain con-
ditions. Various levels of viscoelastic response behav-
ior can be obtained by controlling the operating tem-
perature. For lightweight and sensitive applications, a
small alteration in the viscoelastic behavior may affect
the dynamics of the system. One promising avenue of
research is the development of mechanical metamate-
rials. These material systems may exhibit a viscoelas-
tic response. In addition, they have tunable mechan-
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ical properties that allow the structure to undergo
programmable responses [1,2]. Figure 1b depicts a
schematic of a flexible metamaterial structure incor-
porating an elastomeric structure with an embedded
square arrangement of circular openings.

Note that due to a simple harmonic excitation, a
purely elastic material’s strain and stress are in-phase.
On the other hand, for viscoelastic materials, the strain
lags the stress in the material. In a linear viscoelas-
tic material, this lag is evident in the elliptical hys-
teresis loops seen by plotting stress–strain under har-
monic excitation. The hysteresis is also evident when
examining the stress in the material versus time due to
compressive loading. In a purely elastic material, the
loading and unloading curve coincides,while in the vis-
coelastic case the material experiences hysteresis caus-
ing the two curves to deviate significantly. Creep is a
phenomenon that can occur in viscoelastic materials.
It happens when strain increases with time as stress
is held constant. On the other hand, if the strain is
held constant, and stress is found to be decreasing with
time, the material exhibits what is called a viscoelas-
tic relaxation. During slow loading, the relaxation of a
viscoelastic material lasts for a longer period in time.
Therefore, the peak stress due to a low loading rate is
less than that of faster loading. These characteristics
of a viscoelastic material, i.e., hysteresis, creep, stress
relaxation, and loading rate effect, are shown in Fig. 1c.

Previous literature on viscoelasticity has focused on
many aspects, including but not limited to: (i) examin-
ing the behavior of viscoelastic structures such as creep
bending and creep buckling, (ii) obtaining mathemati-
cal models to describe the nonlinear stress–strain rela-
tion of viscoelastic elements, (iii) exploiting viscoelas-
tic materials in vibration control applications, and (iv)
studying the effect of damping of viscoelasticmaterials
on the dynamic of snap-through criteria.

Numerous research efforts have focused on exam-
ining the behavior of viscoelastic elements. Kempner
[3] studied numerically and experimentally the creep
bending and buckling of linearly viscoelastic columns.
In his study, a derived model was employed to estimate
the creep bending deflection of a beamwith initial sinu-
soidal deviation, where creep buckling of viscoelastic
structures has been studied both experimentally and
analytically by Minahen and Knauss [4]. The theory of
linear viscoelasticity has been utilized to model poly-
meric column specimens under constant compressive
loads.

Scientists have been developing nonlinear mathe-
matical models that can be employed to understand
the behavior of viscoelastic materials. A rheological
model describing the nonlinear stress response for a
viscoelastic material under a nonlinear strain history
has been proposed byMonsia [5]. Results have demon-
strated that the proposed model can be utilized to pre-
dict the stress–strain curve as a second-order polyno-
mial. Nachbar and Huang [6] introduced two methods
that can be applied to estimate buckling loads using
potential energy curves and phase plane diagrams. The
energy integral method was used to approximate the
buckling load, while exact values were calculated by
numerical integration of the governing equation. A
study on understanding the nonlinear response of elas-
tomeric materials under critical constraints has been
conducted by Cui and Harne [7]. In their research, they
have introduced an analytical approach to predict the
response of elastomeric materials.

Due to the superior capability of viscoelastic struc-
tures in energy absorption, viscoelastic elements have
been utilized in vibration and control applications.
Flexural vibrations of sandwich beams with clamped
ends have been studied theoretically and experimen-
tally by Kovac et al. [8]. In their research, Galerkin’s
procedure and the method of harmonic balance have
beenutilized toobtain a theoretical frequency–amplitude
relation and then compared against experimental find-
ings. An elementary theory of nonlinear vibrations of
viscoelastic beams has been developed by Daya et al.
[9]. They have exploited the method of harmonic bal-
ance coupled with a single-mode Galerkin’s analysis to
study the response of free and forced vibrations of a vis-
coelastic beam. Furthermore, the change in damping of
a post-buckled beam having geometric imperfections
has been investigated by Kosmatka [10].

The role of damping in controlling vibration lev-
els and its effect on the snap-through behavior has
been studied by Murray and Gandhi [11]. It has been
observed that applying the load for a longer time will
allow energy to dissipate, as the system was not able
to escape the energy barrier and continued in one sta-
ble state. Recently, Che et al. [12] presented an exper-
imental and numerical study on a 3D printed vis-
coelastic meta-structures with snap-through instabil-
ity. It has been demonstrated that the tunability of the
time-dependent response behavior permits designing a
meta-structure with the ability to alter its size, shape,
or even its properties.
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(a)

(b) (c)

Fig. 1 a Illustration of a viscoelastic element, b schematic diagram of a metamaterial structure incorporating an elastomeric matrix
with a square array of circular openings, and c characteristics of a viscoelastic material

The influence of damping on snap-through dynam-
ics has been examined by many researchers. It has
been investigated by Johnson [13] for an impulsively
loaded shallow circular arch by using Kelvin–Voigt
representation. The influence of damping on oscilla-
tion’s response in the vicinity of various bifurcations of
nonlinear systems has been investigated by Virgin and
Wiebe [14]. It has been demonstrated that the damping
ratio can be employed to predict the change in stability
of the oscillator. Moreover, Weibe et al. [15] investi-
gated the snap-through buckling of a single degree of
freedom system. In their research, they introduced a
method that can be used to distinguish between large
and low amplitudes of the response based on the aver-
age total energy approach.

Reviewing the available literature, it is clear that
various structural systems exhibit different instabili-
ties, i.e., whether a fixed point or periodic solution
behaves as an attractor or repeller to the flow. Incor-
porating a viscoelastic element increases the mathe-
matical complexity of any model, by increasing the
order of a mechanical system from a second-order sys-
tem to third-order or higher. Depending on the number
of differential equations used to capture the material
response, or even change themathematicalmodel of the
system to contain fractional derivatives, the prediction
of the onset of the bifurcation in the system is compli-
cated by balancing inertial forces and time-dependent

elastic forces which may gradually creep until stabil-
ity is lost. Not understanding the implications of the
increased order of the system may lead to confusion.

Therefore, this paper aims to study the effect of vis-
coelasticity on static bifurcations such as saddle node
(SN), subcritical pitchfork (PF), and transcritical (TC)
bifurcations. To this end, the rest of the paper is orga-
nized as follows: Sect. 2 presents the governing equa-
tions of a lumped parameter model used to study the
nonlinear behavior of a mechanical oscillator incorpo-
rating a viscoelastic element. A non-dimensionalized
analysis using the Taylor series expansion of the gov-
erning equations is presented. Section 3 discusses static
bifurcations of the system: first, in the absence of linear
viscoelasticity and thenwith including linear viscoelas-
ticity into the analysis. Section 4 explores the effect of
the Deborah number on the duration of time needed to
maintain oscillations around an unstable point before
jumping to a stable equilibrium branch. Finally, Sect. 5
presents the relevant conclusions.

2 Governing equations

This manuscript presents a survey of the effects of vis-
coelasticity on different local bifurcations; saddle node,
pitchfork, and transcritical bifurcations. These bifurca-
tions establish the foundation to describe the nonlin-
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ear behavior of a single degree of freedom mechanical
oscillator for finite amplitudes around an equilibrium.

In order to gain insight into the effect of viscoelas-
ticity on stability, we consider the model depicted in
Fig. 2 The lumped parameter model is chosen to avoid
restricting the analysis to a given geometry and a given
set of geometric boundary conditions. The model con-
sists of a rigid rod subjected to an axial force, Fc, and
a transverse force, P , applied at the free end of the
rod , and it can be viewed as the imperfection param-
eter. The viscoelastic material behavior is represented
by the two-spring damper element attached to the free
end of the rod. Additionally, an external time-varying
moment, M(t), is applied to the rod along with a non-
linear rotational spring with nonlinear restoring kNL
[16–19]. The equation of motion for the system can be
written as

I θ̈ + M̄(θ; k1, k2, k3) = − fvL cos θ + FC L sin θ

− PL cos θ + M cosΩt, (1)

where I is the mass moment of inertia of the rod, L is
the length of the rod, Ω is the frequency of the applied
moment, t denotes the time, and M̄(θ; k1, k2, k3) =
k1θ + k2θ2 + k3θ3 is the nonlinear restoring moment.
Here, k1 is the linear stiffness of the rod, k2 is the
quadratic stiffness term which can account for non-
linearities due to asymmetries [20], k3 is a cubic stiff-
ness coefficient which accounts for geometric nonlin-
earities, and θ is the angular displacement of the rod.
Finally, fv is the internal force provided by the vis-
coelastic element, i.e., the force on the rod due to the
two-spring dashpot element.

2.1 Linear viscoelasticity

The examination will consider a system with geo-
metric nonlinearity and linear viscoelastic material
behavior. This behavior is found in applications rang-
ing from elastomeric metamaterials [21,22], which
undergo large deflections but experience infinitesimal
strain, viscoelastic strings [23,24], skeletal muscles
[25], and viscoelastic damping treatment of nonlinear
beams [26]. Also, the results can be applied to sys-
tems that exhibit nonlinear elastic material behavior
but linear viscoelasticity such as some polymer foams
[27–31].

Fig. 2 Lumped parameter viscoelastic model with nonlinear
stiffness, kNL is the nonlinear restoring

The viscoelastic behavior is modeled as a standard
linear solid (SLS) element [32]. The SLS model con-
sists of a spring with stiffness (1 − β)k and dashpot
with damping coefficient η connected in series. These
two elements are connected in parallel to another spring
of stiffness βk, where k represents the unparameterized
stiffness coefficient of the SLS element and the variable
β is a dimensionless constant that lies in the interval
0 ≤ β ≤ 1, representing the difference in spring stiff-
nesses of the elastic elements in the SLS model. The
viscoelastic force is described by the following differ-
ential equation

ḟv
(1 − β)k

+ fv
η

=
˙̄δ

(1 − β)
+

(
βk

η

)
δ̄,

and δ̄ = L sin θ. (2)

The symbol δ̄ denotes the displacement at the tip
of the rod, and the dot represents a derivative with
respect to time. It should be noted that the SLS model
captures the behavior of two less-complex viscoelas-
tic models: (i) the Kelvin–Voigt model, which captures
the creep response, and (ii) the Maxwell model which
accounts for both the stress relaxation and high loading
rate response. Note that at β = 0 the viscoelastic ele-
ment becomes that of a Maxwell material.1 However,

1 At β = 0, Eq. (2) reduces to ḟv
k + fv

η
= k ˙̄δ, the force dis-

placement relationship for a Maxwell material. At β = 1 Eq. (2)

reduces to ḟv = k ˙̄δ or equivalently fv = kδ̄ a purely elastic
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A new perspective on static bifurcations 1349

representing the material in this form can never capture
the behavior of the Kelvin Voight material.

2.2 Dimensional analysis

The analysis of Eqs. (1) and (2) begins by using aTaylor
series expansion of the trigonometric terms. The goal
is to retain geometric nonlinearities while maintaining
linear material behavior, a one-term expansion of sin θ

and cos θ is required, i.e., sin θ = θ and cos θ = 1. The
result of this expansion can be written as

I θ̈ + (k1 − FC L)θ + k2θ
2 + k3θ

3 =
= − fvL − PL + M cosΩt, (3)

ḟv
(1 − β)k

+ fv
η

= L θ̇

(1 − β)
+

(
βk

η

)
Lθ. (4)

Equations (3) and (4) can be non-dimensionalized in
time using the following quantity

T = t

τ
, (5)

where τ = η/k is the time constant of the viscoelastic
system. Introducing the state variable x = θ , we obtain
the following system of governing equations that can
be written as

D−2
e x ′′ − f (x; λ, α2, α3, γ ) + αvFv = M∗ cosωT,

(6)

F ′
v

(1 − β)
+ Fv = x ′

(1 − β)
+ βx . (7)

where the constants are defined as

De = ωnτ, λ = FC L

k1
, α2 = k2

k1
, α3 = k3

k1
,

αv = kL

k1
, γ = PL

k1
, M∗ = M

k1
, and ω = Ωη

k
.

where ωn = √
k1/I is the natural frequency of the

elastic system. The symbols f (x; λ, α2, α3, γ ) = (λ−
1)x − α2x2 − α3x3 − γ represent the nonlinear restor-
ing force function, (·)′ denotes the derivative d(·)/dT ,
and α2 and α3 are the non-dimensional quadratic and

material. The damping is ignored, and the damping element is
not grounded and thus will experience no deformation.

cubic stiffness of the system, respectively. The sym-
bol α2 accounts for nonlinearities due to asymmetries,
and α3 represents geometric nonlinearities. The term
De denotes the Deborah number [33,34]; it is a ratio of
the timescale of stress relaxation to the characteristic
timescale of the elastic oscillations of an effective lin-
earized translational stiffness in terms of the length of
the rod. It can be also viewed as the product of the
time constant of the viscoelastic system, τ , and the
natural frequency of the elastic system. Fv is the non-
dimensional viscoelastic force which can be defined as
Fv = fv/(kL). The non-dimensional quantity λ rep-
resents the loading bifurcation parameter, and γ rep-
resents external loading and imperfections. Finally, αv

may be viewed as the relative stiffness of the sum of the
elastic components in the SLS element to an effective
stiffness of the linear equivalent translation stiffness of
the rotational spring. The Deborah number, De, con-
trols the time-dependent behavior of the system, and
D−2
e can be viewed as the effective mass of the system.

The influence of the Deborah number on the dynamics
of the system is discussed in Sect. 4.

3 Static bifurcations

Here, we utilize the non-dimensional analysis of the
governing equations to generate and study various
generic bifurcationdiagrams.To this end,wedivide this
section into twofold: first, we start with the autonomous
system, M∗ = 0, in the absence of viscoelasticity, i.e.,
αv = 0; and then we analyze the effect of viscoelastic-
ity on the bifurcation diagrams.

3.1 Static bifurcations without linear viscoelasticity

It is important to recall that the nonlinear restoring force
is described as

f (x; λ, α2, α3, γ ) = (λ − 1)x − α2x
2 − α3x

3 − γ.

(8)

In the absence of viscoelasticity, the system can exhibit
four generic static bifurcations of the fixed points when
λ is varied. The nature of these bifurcations, depending
upon the values of α2, α3, and γ , can be identified
by examining the shape of the potential function, i.e.,∫

− f (x; λ, α2, α3, γ )dx , which can be written as
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(a)

(b)

Fig. 3 Bifurcation diagram for Case 1 with α2 = γ = 0, and
α3 = 0.1. Subplot a indicates λ, x , V space, unstable branch
is not indicated, blue lines represent the potential energy, purple
lines represent the bifurcation diagram, and the red circles repre-

sent pitchfork bifurcation points. Subplot b indicates λ, x0 space,
and unstable branch is indicated by the dashed line . (Color figure
online)

Table 1 Bifurcations types, control parameters, and Deborah number

Cases Bifurcation types λ α2 α3 γ αv β De

Case 1 Pitchfork Varied =0 > 0 =0 > 0 > 0 > 0

Case 2 Saddle node and transcritical Varied > 0 > 0 =0 > 0 > 0 > 0

Case 3 Pitchfork imperfect case Varied =0 > 0 < 0 > 0 > 0 > 0

Case 4 Saddle node =0 < 0 > 0 =0 Varied > 0 > 0

V (x; λ, α2, α3, γ ) = (1 − λ)
x2

2
+ α2

x3

3
+ α3

x4

4
+ γ x,

(9)

and are described in the following paragraphs. Specif-
ically, the manuscript examines four cases outlined in
Table 1 and is detailed in the following paragraphs.
When discussing the bifurcations in Case 1–3 in terms
of linear elasticity, the parameters αv, β, and De are
not relevant. In Case 4, Eqs. 6 and 7 are modified so
that αv represents an elastic stiffness, and the damper
no longer has an effect on the system.

– Case 1 The system can exhibit both subcritical
and supercritical pitchfork bifurcations. However,
this work will focus on the supercritical bifurcation
which occurs when α2 = γ = 0 and α3 > 0. Equa-
tion (8) has one real solution for λ < 1 and three

real solutions for λ > 1. As depicted in Fig. 3, the
potential evolves fromhaving one globalminimum,
i.e., a single-well potential when λ < 1, to having
one local maximum and two global minimum, i.e.,
a double-well potential for λ > 1. The maximum
occurs at x = 0 indicates that this fixed point is
unstable.

– Case 2 These parameters give rise to a com-
pound bifurcation diagram consisting of both a sad-
dle node and transcritical bifurcations. The sad-
dle node bifurcation occurs when γ = 0, and
α3, α2 > 0 as depicted inFig. 4.Under these condi-
tions, when λ < 1 the system is global-stable with
one fixed point. At λ = 1−α2

2/(4α3), the potential
function loses symmetry creating two additional
fixed points, one stable and one unstable, at the
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(a)

(b)

Fig. 4 Bifurcation diagram for Case 2 with α2 = 0.5, γ = 0,
and α3 = 0.1. Subplot a indicates λ, x , V space, unstable
branches are not indicated, blue lines represent the potential
energy, and purple line represents the bifurcation diagram. Sub-

plot b indicates λ, x0 space, and unstable branches are indicated
by dashed lines. Orange circles represent saddle node bifurcation
points, and blue circles represent transcritical bifurcation points.
(Color figure online)

(a)

(b)

Fig. 5 Bifurcation diagram for Case 3 with α2 = 0, γ = −0.1,
and α3 = 0.1. Subplot a indicates λ, x , V space, unstable branch
is not shown, blue lines represent the potential energy, and pur-
ple lines represent the bifurcation diagram. Subplot b indicates

λ, x0 space, and unstable branch is indicated by the dashed line.
Orange circles represent saddle node bifurcation points. (Color
figure online)
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(a)

(b)

Fig. 6 Bifurcation diagram for Case 4 with α2 = −1.5, γ =
0.0, α3 = 0.5, and β = 1. Subplot a indicates αv, x , V space,
unstable branch is not indicated, blue lines represent the poten-
tial energy, and purple lines represent the bifurcation diagram.

Subplot b indicates αv, x0 space, and unstable branch is indi-
cated by the dashed lines. Orange circles represent saddle node
bifurcation points. (Color figure online)

point of these two branches coincide is the sad-
dle node bifurcation. The transcritical bifurcation
occurs under the same parameters as the saddle
node bifurcation, i.e., γ = 0, and α3, α2 > 0.
This case again is depicted in Fig. 4. Recall, when
1 − α2

2/(4α3) ≤ λ ≤ 1, there are three solutions
present: two stable and one unstable solution. The
upper stable branch and the unstable branch col-
lide at λ = 1, where the two fixed points switch
stability.

– Case 3This is the second scenario in which the sad-
dle node bifurcation occurs. Here, α3 > 0, γ < 0
and α2 = 0. As shown in Fig. 5, this saddle node
appears as part of an asymmetrical bifurcation
loosely referred to in this manuscript as an imper-
fect pitchfork bifurcation.2 This corresponds to a
loss of symmetry of the potential associated with
the supercritical pitch fork bifurcation. The loss of
symmetry is due to the presence of imperfection,
in this case, a transverse force. Here, the primary
stable branch persists for all values of the loading

2 Typically, an imperfect bifurcation is a co-dimension 2 bifur-
cation in which both the load and imperfection parameter are
varied.

parameter, λ. As λ is increased to approach λcr , a
saddle node bifurcation occurs birthing two other
branches, one stable and one unstable.

– Case 4 The last case that is examined where a sad-
dle node bifurcation can occur is obtained by uti-
lizing Eqs. (3) and (4), and by setting γ = λ = 0,
β = 1. In this case, αv takes on a numerical value
that varies or becomes the changing control param-
eters. These parameters correspond to no compres-
sive load, and the viscoelastic element here mor-
phed into a simple spring. In this scenario, the sys-
tem behaves like a von Mises Truss [6,33]. This
purely elastic system has a potential which can be
written as

V (x;α2, α3, αv) = (1 + αv)
x2

2
+ α2

x3

3
+ α3

x4

4
= 0. (10)

Note, in this case, αv takes on the alternate defi-
nition as the measure of the strength of the elas-
tic spring at the end of the rod. Figure 6 plots
both potential energy and the bifurcation diagram
for this case. Examining the fixed points when
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αv ≤ 0.125 shows that there are three coexist-
ing solutions: two stable solutions and one unstable
solution. One stable solution is the null solution and
it persist past αv,cr = 0.125. The remaining solu-
tions stable and unstable solutions annihilate each
other at αv,cr.

This rich dynamic behavior allows a detailed study
of the effect of linear viscoelasticity on the stability of
fixed points, as presented in the next subsection.

3.2 Static bifurcations with linear viscoelasticity

It is convenient in analyzing the effect of viscoelasticity
to cast the system as a set of first order equations by
letting x1 = x , x2 = x ′, and x3 = Fv, leading to a set
of matrix equations ẋ = F(x; M) is a vector field that
can be written as

F(x; M) =
⎛
⎝ x2,

D2
e f (x1; M) − D2

eαvx3,
−(1 − β)x3 + x2 + β(1 − β)x1

⎞
⎠ ,

(11)

where x = (x1, x2, x3)T is the state vector, and M =
(λ, γ, α2, α3, αv, β) is a vector of control parameters.
The fixed points of the system are the solutions that
satisfy

F(x0; M) = 0,

where x0 = (x01, x02, x03) is the vector of equilibrium
points. Setting the vector field to zero, one finds that
x02 = 0 and x03 = βx01. Additionally, the nonlinear
restoring force can be written as

f (x01; M) = −(1 − λ + αvβ)x01 − α2x
2
01 − α3x

3
01 − γ

= 0. (12)

The quantities x01, x02, and x03 are the fixed points of
the angular position of the rod, the angular velocity of
the rod, and the force from the viscoelastic element,
respectively.

3.2.1 Linear stability

The stability of the equilibrium points can be deter-
mined by examining the linearized dynamics around
each point. This is accomplished by writing the state
vector as x = x0 + δ, where x0 is the vector of fixed

points and δ represents the perturbations around the
fixed point. Now the matrix equations ẋ = F(x; M)

can be linearized about an arbitrary fixed point as

δ̇ = DxF(x0; M)δ + O(||δ||2). (13)

Retaining only linear terms leads to linearized system
δ̇ = Aδ. ThematrixA is thematrix of partial derivatives
of the vector field F, and it can be written as

A = DxF(x0; M)

=
⎡
⎣ 0 1 0
De−2 fx (x01; M) 0 −De−2αv

β(1 − β) 1 −(1 − β)

⎤
⎦ , (14)

where fx (x01; M) = d
dx f (x01; M). The eigenvalues

of the linearized system satisfy the third-order polyno-
mial

Λ3 + a0Λ
2 + a1Λ + a2 = 0, (15)

where Λ represents the eigenvalues of the linearized
system, and the constants ai can be obtained from
Eq. (14) and are defined in A.3. The fixed points are
asymptotically stable under small perturbations pro-
vided that all eigenvalues have negative real parts.
This analysis is used to determine the stability of
the branches of the bifurcation diagrams presented in
Sect. 3.2.3.

3.2.2 Pseudo-potential

Note that the systemwith its coupledviscoelastic nature
system does not allow a true potential of the sys-
tem. However, a pseudo-potential of the system can
be formed by setting the time-dependent variables to
x ′ = x ′′ = F ′

v = 0, eliminating the viscoelastic force
in the restoring force, Fv = x3, and finally integrat-
ing with respect to x1. The pseudo-potential, V̄ , can be
written as

V̄ (x1; M) = (1 − λ + αvβ)
x21
2

+ α2
x31
3

+ α3
x41
4

+ γ x1

= 0, (16)

the corresponding viscoelastic force can be recovered
as Fv = βx1. Examining the potential, the effects of the
viscoelastic element can be captured by setting λeff =
λ−αvβ; therefore, the preceding discussion of stability
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(a)
(b)

(c)

(d) (e)

Fig. 7 Depiction of viscoelastic system with a pitchfork bifur-
cation, Case 1. Subplot a presents the bifurcation diagram in the
presence of viscoelasticity with α2 = γ = 0, α3 = 0.1, αv =
1.0 β = 0.5 and De = 1. Dashed line represents unstable solu-
tion branch, and red circle represents pitchfork bifurcation point.
Gray planes show the projections of the bifurcation diagram in
x01 − λ and x03 − λ planes; small red and green dots repre-

sent, respectively, the start and end point of the path in the range
considered. Subplot b indicates the locus of eigenvalues for equi-
librium path A. Subplot c indicates the locus of eigenvalues for
equilibriumpath B.λ is varied from0 to 3. The bifurcation occurs
at λcrit,PF = 1.5. Subplot d τeff and ζeff versus λ for stable por-
tion of equilibrium solution path A. Subplot e τeff and ζeff versus
λ for equilibrium solution path B

applies when λ is replaced by λeff . The potential is
not a function of the Deborah number, and therefore,
the Deborah number does not change the asymptotic

stability of the system. It does influence the path of the
eigenvalues on the complex plane.
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Fig. 8 Depiction of viscoelastic system with a saddle node and
transcritical bifurcation, Case 2. Subplot a presents the bifur-
cation diagram in the presence of viscoelasticity with α2 =
0.5, γ = 0, α3 = 0.1, αv = 1.0 β = 0.5 and De = 1.
Dashed lines represent unstable solutions, orange circle repre-
sents saddle node bifurcation points, and blue circle represents
transcritical bifurcation point; small red and green dots repre-
sent, respectively, the start and end point of the path in the range
considered. Gray planes show the projections of the bifurcation
diagram in x01 − λ and x03 − λ planes. Subplot b indicates the

locus of eigenvalues for equilibrium path A. Subplot c indicates
the locus of eigenvalues for equilibrium path B1. Subplot d indi-
cates the locus of eigenvalues for equilibrium path B2. λ is var-
ied from 0 to 2. The bifurcation occurs for the saddle node point
is at λcrit, SN = 0.875 and the for the transcritical point is at
λcrit,TC = 1.5. Subplot e τeff and ζeff versus λ for stable portion
of equilibrium solution path A. Subplot f τeff and ζeff versus λ

for equilibrium solution path B1. Subplot g) τeff and ζeff versus
λ for equilibrium solution path B2. (Color figure online)
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a) b)

c) d)

e) f)
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B1
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Start
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A
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B1
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Fig. 9 Depiction of viscoelastic systemwith an imperfect pitch-
fork bifurcation, Case 3. Subplot a presents the bifurcation dia-
gram in the presence of viscoelasticity with α2 = 0, γ =
−0.1, α3 = 0.1, αv = 1.0 β = 0.5 and De = 1. Dashed line
represents unstable solution, and orange circle represents saddle
node bifurcation point. Gray planes show the projections of the
bifurcation diagram in x01 − λ and x03 −λ planes; small red and
green dots represent, respectively, the start and end point of the

path in the range considered. Subplot b indicates the locus of
eigenvalues for equilibrium path A. Subplot c indicates the locus
of eigenvalues for equilibrium path B1. Subplot d indicates the
locus of eigenvalues for equilibrium path B2. λ is varied from 0
to 2. The bifurcation occurs at λcrit,SN = 1.689. Subplot e τeff
and ζeff versus λ for stable portion of equilibrium solution path
A. Subplot f τeff and ζeff versus λ for equilibrium solution path
B1

3.2.3 Bifurcation diagrams

Figures 7, 8, 9, and 10 show the viscoelastic equiv-
alents to the bifurcations shown in Figs. 3, 4, 5, and

6, respectively. The nature of the bifurcation does not
change; however, the viscoelastic force is a state in the
system, and the bifurcation diagram can be presented in
a higher-dimensional space. The bifurcation diagrams
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Fig. 10 Depiction of viscoelastic system with a saddle node
bifurcation, Case 4. Subplot a presents the bifurcation diagram
in the presence of viscoelasticity with λ = 0, α2 = −1.5, γ =
0.0, α3 = 0.5, β = 0.5 and De = 1. Dashed line represents
unstable solution, and orange circle represents saddle node bifur-
cation point. Gray planes show the projections of the bifurcation
diagram in x01 − αv and x03 − αv planes; small and green dots
represent, respectively, the start and end point of the path in the

range considered. Subplot b indicates the locus of eigenvalues
for equilibrium path A. Subplot c indicates the locus of eigen-
values for equilibrium path B1. Subplot d indicates the locus of
eigenvalues for equilibrium path B2. αv is varied from 0 to 2. The
bifurcation occurs at αv,crit = 0.25. Subplot e τeff and ζeff versus
λ for stable portion of equilibrium solution path A. Subplot f)
τeff and ζeff versus λ for equilibrium solution path B1

resemble their elastic counterparts but have an addi-
tional equilibrium state x03, i.e., the equilibrium force
in the viscoelastic element.Note that their dimensional-
ity is increased, but their projections on the x01−λplane

retain the same general shape as their non-viscoelastic
counterparts. As expected, both the pseudo-potential
and the bifurcation diagram clearly show that the vis-
cous component of the viscoelastic element does not
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fundamentally change the bifurcation type instead the
equilibrium stiffness βk acts in conjunction with the
linear stiffness of the system.

3.2.4 Eigenvalues at bifurcation point

Before the complete discussion of the locus of eigen-
values on the complex plane, it is useful to examine
Case 1 depicted in Fig. 7. The parameters for these
plots are α2 = 0, γ = 0, α3 = 0.1, αv = 1.0 β =
0.5, and De = 1. In fact, in the discussion of each case
De = 1. Figure 7a shows a perfect pitchfork bifurca-
tion with an added viscoelastic component with respect
to λ. In this case, each point on an equilibrium path, i.e.,
A, and B, has three associated eigenvalues denoted as
μ = α, andμ = a±ib, where α, a and b are constants.
Points on the equilibrium paths away from the bifurca-
tion point have one real eigenvalue and two complex
conjugate eigenvalues. This is in contrast to a second-
order viscously damped system [14], which has two
complex eigenvalues for a point on the equilibrium
path away from the bifurcation point. In characteriz-
ing the effect of these eigenvalues on the response, the
real eigenvalues for the stable equilibrium paths will
be treated as the effective time constant denoted by
τeff from a first-order linearized system, whereas the
complex conjugates will be examined by an effective
damping ratio indicated by ζeff from a second-order
linearized system. These metrics can be written as fol-
lows

τeff = 1

α
, ζeff = −a√

a2 + b2
.

In this case, the equilibrium path A is initially stable,
as λ is increased and passes through the bifurcation
point, λcrit,PF = 1.5, the path A becomes unstable.
This instability can be seen on the locus of eigenval-
ues presented in Fig. 7b, when the eigenvalues cross
the imaginary axis and become positive. Considering
only stable segment equilibria, one sees that this move-
ment of the eigenvalues on the complex plane causes
the effective time constant, τeff to grow toward infin-
ity, while the effective damping ratio ζeff shows only a
slight increase (Fig. 7d).

The locus of eigenvalues associated with path B is
presented in Fig. 7c. The eigenvalues have all negative
real parts and move on the real axis. The complex con-
jugates’ eigenvalues primarily move toward the imagi-
nary axis. Note that the effective time constant rapidly

decreases as the path moves away from the critical λ,
while the effective damping ratio for path B shows
a slight decrease in value. This behavior is shown in
Fig. 7e.

Case 2, shown in Fig. 8a, has two bifurcations; a
saddle node bifurcation, and a transcritical bifurca-
tion. The parameters for this case are α2 = 0.5, γ =
0, α3 = 0.1, αv = 1.0 and β = 0.5. Here, the
equilibrium paths are indicated by A, B1, and B2. The
discussion will begin with path A, in this case, there
is a transcritical bifurcation where path A becomes
unstable, and path B2 becomes stable. This occurs at
a critical λcrit,TC = 1.5. Interestingly, the eigenvalues
presented in Fig. 8b that cross into the positive real
plane are the real eigenvalues. As a result, the associ-
ated τeff approaches infinity, while the associated ζeff
remains bounded and reaches a value of approximately
0.35. This behavior is depicted in Fig. 8e. The locus
of eigenvalues associated with Path B1 is presented in
Fig. 8c. This path is stable and originates at the bifur-
cation λcrit,SN = 0.875, i.e., the saddle node bifur-
cation point. Figure 8f shows that both the τeff and
ζeff decreases from infinity as the eigenvalues move on
the left-hand side of the complex plane. Finally, path
B2 began as the unstable path birthed from the saddle
node bifurcation point. This is evident in Fig. 8d that
the real eigenvalue starts at the origin and moves to the
right-hand side on the positive real axis of the complex
plane. As the solution nears the transcritical bifurca-
tion point, the eigenvalue changes direction and crosses
into the negative real axis, where the path becomes sta-
ble. The movement of the associated complex eigen-
values is always on the left-hand side of the imaginary
axis. Initially, the complex parts of these eigenvalues
move closer to the real axis, while the real parts become
increasingly negative.As the solutionmoves toward the
transcritical bifurcation point, the eigenvalues reverse
direction and move toward the imaginary axis. As pre-
sented in Fig. 8g, this movement causes τeff to decrease
from infinity and the value ζeff is the continuation of
the ζeff of the eigenvalues of path A.

The viscoelastic imperfect pitchfork bifurcation
given in Case 3 is depicted in Fig. 9a. The parameters
for this case are α2 = 0, γ = −0.1, α3 = 0.1, αv =
1.0 and β = 0.5. Note that A is stable for all val-
ues of the bifurcation parameter Λ , However as path
A nears the bifurcation point, λcrit,SN = 1.689, both
τeff , and ζeff increases until they reach local maximum
near the bifurcation point before decreasing (Fig. 9e).
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(a) (b)

(c) (d)

(e)

(f)

Fig. 11 Effect of Deborah number on snap through dynamics
of imperfect pitchfork bifurcation, Case 3, when α2 = 0.0,
α3 = 0.1, γ = −0.1, αv = 1.0, λ = 1.69 and β = 0.50: a
De =0.1, b De = 1.0, c De =10.0, and d De=100.0. Red lines

indicate unstable equilibrium points, and blue lines indicate sta-
ble equilibrium point. Insets corresponded to shaded regions on
plots. Subplot e shows locus of eigenvalues. Subplot f τeff and
ζeff versus De. (Color figure online)

This is reflected in the locus of eigenvalues shown in
Fig. 9b; the real eigenvalue approaches the origin and
then changes direction and becomes increasingly neg-
ative as λ is increased past the bifurcation point, while
the complex eigenvalues approach the real axis where
the real part becomes increasingly negative. Path B1

originates from the saddle node bifurcation point at
λcrit = 1.689. Figure 9c shows the locus of eigenvalues
of this path, the real eigenvalues becomes increasingly
negative, and the complex eigenvalues approach the

imaginary axis. As presented in Fig. 9f, this movement
results in τeff and ζeff to decrease rapidly. Path B2 is
unstable; this is reflected in the associated real eigen-
values shown in Fig. 9d that move along the positive
real axis. The remaining two eigenvalues remain on the
left-hand side of the imaginary axis, yet they are ini-
tially real before converging and leaving the real axis
to become complex conjugates.

Case 4 is the single saddle node bifurcation pre-
sented in Fig. 10a, which is common in von Mises
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Fig. 12 Effect of Deborah
number on snap through
dynamics experiencing the
ghost of saddle node
bifurcation, Case 4, when
α2 = 0.0, α3 = 0.1,
γ = −0.1,
αv = αv,crit,SN + 0.001,
λ = 1.69 and β = 0.50: a
De =0.1, b De = 1.0, c De
=10.0, and d De=100.0.
Opaque red lines indicate
annihilated unstable
equilibrium points, and
opaque blue lines indicate
annihilated stable
equilibrium point. Insets
corresponded to shaded
regions on plots. (Color
figure online)
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trusses. In the previous cases, λ is the bifurcation
parameter, while in this case αv is the bifurcation
parameter. Here, the parameters are λ = 0, α2 =
−1.5, γ = 0.0, α3 = 0.5, and β = 0.5. Path
A is the null solution path, and the eigenvalues of
this path are shown in Fig. 10a. They lie on the left-
hand side of the imaginary axis, the complex conjugate
eigenvalues moves away from the imaginary axis, and
the real eigenvalues approach the origin. By inspect-
ing Fig. 10e, the effective time constant increases with
αv, and the effective damping ratio slightly increases
with αv. Path B1 is stable and terminates at the saddle
point. As illustrated in Fig. 10c, the complex eigen-
values approach the real axis, and the real eigenvalues
move toward the origin. This causes τeff and ζeff shown
in Fig. 10f to approach infinity as αv is increased to
αv,crit,SN = 0.25.

4 Deborah number

Up to this point themanuscript has considered the pres-
ence and stability of equilibrium solutions of a vis-
coelastic material behavior in conjunction with geo-
metric nonlinearities. The manuscript now focuses on
the effects of viscoelasticity on the transient response
due to changes in the Deborah number. Examin-
ing Eq. 6, D−2

e is an effective inertia of the non-
dimensionalized system. Additionally, the Deborah
number is defined as De = ωnτ ; thus, it is propor-
tional to the ratio of viscoelastic time constant to the

natural period of oscillation, i.e., De ∝ τ/Tn , where
Tn = 2π/ωn .

The Deborah number does not affect the asymptotic
stability of the system.However, it does affect eigenval-
ues of the system.The effect of theDeborah number can
readily be seen near a saddle-node bifurcation depicted
in Fig. 11. The Deborah number influences the dura-
tion of time an oscillation around an unstable point can
be maintained before stability is lost and the response
jumps to oscillations around a stable equilibrium point.
Figure 11a plots the response when De << 1 this
occurs when τ << Tn . In the case the effective inertia
of the system D−2

e is large and the viscoelastic behav-
ior resembles that of an underdamped system when it
oscillates around the equilibrium points. Figure 11b
shows the response when τ = Tn . Here, the viscoelas-
tic timescale is the same as the elastic timescale and
the effective system behaves as if it is nearly critically
damped. Figure 11c, d plots the snap-through response
De >> 1, i.e., this occurs when τ >> Tn and the
elastic time scale is less than viscoelastic time scale. In
both cases, there is a high-frequency elastic response
near the unstable equilibrium point that is completely
decayed as the system reaches the stable equilibrium
point. This behavior can be readily understood by plot-
ting the locus of eigenvalues for the stable equilibrium
point. The locus is annotated with labels 1–4 corre-
sponding to time traces in Fig. 11a–d, respectively.
The equilibrium has two associated complex conju-
gate pairs that travel toward the origin on the complex
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plane and a real eigenvalue that moves to the left on the
negative real axis as the Deborah number is increased
(Fig. 11e). Figure 11f shows the effective damping ratio
and time constant for this scenario. The effective time
constant, τeff , decreases with Deborah number. The
effective damping ratio ζeff increases reaches a local
maximum then subsequently decreases.

Combining Fig. 11e, f along with the time traces
in Fig. 11a–c allows a complete understanding of this
behavior. One sees that when De = 0.1, the complex
eigenvalues are dominant in the response and the pres-
ence of the real eigenvalue is obscured. In this case
the system does not oscillate as it moves to the equilib-
rium point and then elastic response oscillations domi-
nates.When De is increased to 1.0, the effect of the real
root on the response increases, while the effects of the
complex conjugate eigenvalues decrease the combined
effect is that the system appears to be near critically
damped. Next, when De is increased to 10.0 and 100.0,
initially the complex conjugates eigenvalues are seen
on the response and the system appears underdamped;
initially, as time increases and the system approaches
the stable equilibrium point, the real eigenvalue domi-
nates the response.

TheDeborah number also influences the presence of
a ghost that occurs after a saddle node bifurcation [35].
Just after the stable and unstable fixed points collide
and annihilate each other, a ghost that occurs causes a
slow passage through a bottleneck. Figure 12a–d shows
the length of the bottle neck for De equal to 0.01, 1, 10,
and 100, respectively. Note the bottleneck decreases
in size until De = 1 where it subsequently increases
and remains nearly unchanged at De = 100when com-
pared to De=0.1, the complex eigenvalues are dominant
in the response, and hence the oscillation.

5 Conclusions

In this manuscript, we examined the effects of vis-
coelasticity on the various static bifurcation cases of
a mechanical oscillator. To this end, a lumped param-
eter model was first obtained for a single degree of
freedom system. The model consists of a viscoelastic
rotating rod subjected to axial and transverse forces
applied at the free end of the rod. Additionally, an
external moment is applied along with a nonlinear
rotational spring. The viscoelastic response was rep-

resented by the two-spring damper element connected
to the free end of the rod. A non-dimensional analysis
was performed on the governing equation to examine
and generatemultiple bifurcation diagrams, first for the
oscillator without linear viscoelasticity, and then in the
presence of a viscoelastic element. It was obvious that
the nature of the bifurcation depends on the loading
bifurcation parameter, the quadratic and cubic coeffi-
cients of the restoring force, and the external loading
and imperfection parameter. Supercritical pitchfork,
saddle-node, and transcritical bifurcation were investi-
gated for different cases of the controlling parameters.
By exploring the bifurcation diagrams in the presence
of a viscoelastic element, it was evident that the nature
of these diagrams does not change from the equivalent
diagrams generated without linear viscoelasticity. Yet,
results revealed that when introducing a viscoelastic
element to the system, the bifurcation diagram included
an additional equilibrium state representing the equilib-
rium force in the viscoelastic component. Furthermore,
the manuscript analyzed the eigenvalues at bifurcation
points of the various bifurcation cases considered in
this study. The effective time constant of the oscillator
and the effective damping was employed to character-
ize the effects of the eigenvalues on the response of
the oscillator. Results revealed that this characteriza-
tion can serve as a design guideline that can be utilized
to create a system holding distinct effective damping
and time constant by controlling the loading parame-
ter. Finally, t he manuscript investigated the effects of
viscoelasticity on the transient response of the oscil-
lator. It was shown that the Deborah number can con-
trol the duration of time needed to maintain oscillation
around an unstable branch before jumping to a stable
branch.
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A Appendix

This appendix converts the linear standard viscoelastic
element fromstress–strain form to a force–displacement
form. It presents an internal variable formulation of the
governing equations of the system.
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Fig. 13 Viscoelastic linear standardmodelwith internal variable

A.1 Stress to force

In this work, the additional degree of freedom is the
viscoelastic force in the system. Recall the viscoelastic
relationship in the linear standard model can be written
as

1

E1
σ̇ + 1

μ
σ = E1 + E2

E1
ε̇ + E2

μ
ε. (A.1)

where E1 and E2 denote the modulus of the element
and μ is the viscosity. Now if the moduli E1 and E2

are parameterized as E1 = (1 − β)E and E2 = βE ,
where E is a base elastic modulus and β is a constant,
the strain ε = L sin θ/b where A and b are the cross
section area of length of the viscoelastic element, and
σ = fvA, Eq. (A.1) can be written as

ḟv
(1 − β)k

+ fv
η

=
˙̄δ

(1 − β)
+

(
βk

η

)
δ̄,

where δ̄ = L sin θ, k = E A/b, and η = μA/b.
(A.2)

A.2 Internal variable description

An alternate description can be obtained using the inter-
nal strain in the system. In this description the vis-
coelastic stress can be written as

σ = (E1 + E2)ε − E1ε̄, (A.3)

μ ˙̄ε + E1(ε̄ − ε) = 0, (A.4)

where ε̄ is the internal strain [36] and is shown in
Fig. 13. These two descriptions are equivalent. This can
be shown by taking the derivative of Eq. (A.3) to yield

σ̇ = (E1 + E2)ε̇ − E2 ˙̄ε. (A.5)

Now,Eqs. (A.5) and (A.3) canbeplugged intoEq. (A.4)
to yield

1

E1
σ̇ + 1

μ
σ = E1 + E2

E1
ε̇ + E2

μ
ε.

The additional dynamics of the system to viscoelastic-
ity can be represented as σ or ε̄.

The equation motion of the system in Fig. 2b can be
written in terms of internal displacements x̄ as

I θ̈ + M̄(θ; k1, k2, k3) (A.6)

= βkLx̄ cos θ − kL2 cos θ sin θ+
FC L sin θ − PL cos θ + M cosΩt,

η ˙̄xβk(x̄ − L sin θ) = 0; (A.7)

when the functions sin θ and cos θ are expanded using
a Taylor series, the equations of motion for the system
can be written as

I θ̈ + (k1 − FC L)θ + k2θ
2 + k3θ

3

= kL(βxi − Lθ) − PL + M cosΩt, (A.8)

ηẋi + βk(xi − Lθ) = 0. (A.9)

Equations in (A.8) and (A.9) are the internal displace-
ment equivalents of Equations (3) and (4).

A.3 Characteristic polynomial

The characteristic polynomial for the Jacobian defined
in Eq. 14 can be written as

Λ3 + a0Λ
2 + a1Λ + a2 = 0, (A.10)

where

a0 = 1 − β, (A.11)

a1 = 1

D−2
e

(
1 + α2x01 + 3α2

3x01 − λ
)

, and (A.12)

a2 = + 1

D−2
e

(
βλ − αβ2 − λ

)
. (A.13)
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