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Abstract In this paper, firstly, we investigate a new

1D PWLCM-Sin (PS) map which derived from

PWLCM and Sin map by modulo operation. Due to

the stronger parameter space, bigger Lyapunov expo-

nents and better ergodicity than simple 1Dmap, the PS

map is more suitable for local map of spatiotemporal

dynamics. Secondly, with the novel 2D pseudo-

random mixed coupling method we present a spa-

tiotemporal chaos which used PS map as local map

f(x). This spatiotemporal chaos named 2D Mixed

pseudo-random Coupling PS Map Lattice

(2DMCPML). The experimental results of bifurcation

diagrams, Kolmogorov–Sinai entropy density and

spatiotemporal chaotic diagrams showed that

2DMCPML has advantages of larger parameter space,

more complex chaotic behavior and more ergodic

output sequence than CML. Therefore, 2DMCPML is

more suitable in cryptography than CML. Subse-

quently, we proposed a chaos-based random S-box

design algorithm employed the spatial chaotic char-

acter of 2DMCPML to generate a large number of

S-boxes. The cryptographic performance indicated

that generated S-boxes can resist cryptanalysis attack

well. Finally, four criteria bounds are set. The numbers

of S-boxes satisfying these bounds generated by

2DMCPML and several 1D chaotic maps is calcu-

lated, respectively. The result showed that spatiotem-

poral chaos can generate more S-boxes with high

cryptographic quality than low-dimensional chaos.

This new discovery is significant to the development

of some cryptographic researches such as dynamic

S-box algorithm.

Keywords Spatiotemporal chaos � Low-
dimensional chaos � S-box � Cryptography

1 Introduction

Substitution box (S-box) is important nonlinear mod-

ule in the design architecture of block ciphers which is

used to confuse the relationship between cipher-text

and secret key. In mathematical perspective, S-box

can be regard as vectorial Boolean functions. S-box

structures are generally based on mathematical struc-

tures and random methods. It is necessary to design a

large number of robust S-boxes. The security of block

ciphers is directly related to its S-boxes while the data

encryption standard (DES) is the best example. There

are 8 S-boxes in DES algorithm. Matsui pointed out

that some S-boxes of DES have weak nonlinear

characteristics, and proposed the linear cryptanalysis

which trying to obtain the linear approximation of

these S-boxes. Based on this method, Matsui
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successfully break the full 16-round of DES cipher

with 247 known-plaintexts [1]. Afterward, differential

attack to DES-like cipher is presented by Biham and

Shamir [2]. The appearance of linear cryptanalysis and

differential cryptanalysis require S-box contain good

nonlinearity and differential uniformity. As a result,

advanced encryption standard (AES) has been devel-

oped to replace DES [3]. Inversion mapping are used

in AES S-boxes design which ensure constructed

S-boxes have abilities to resist both linear and

differential attacks. In terms of comprehensive per-

formance, AES S-box structure is the best S-box

structure that can be designed on GF (28). Particularly,

differential probability and BIC-nonlinearity of AES

S-box are the best in existing S-box structures, and the

nonlinearity is almost best. Due to these excellent

cryptography characteristics, AES S-box structure has

stood the test in commercial practice for many years.

However, the algebraic cryptanalysis [4] and side-

channel cryptanalysis [5] researches developed

recently showed that S-box base on algebraic structure

remained weakness. The security of AES may also be

challenged. For that reason, many researchers are

working on new methods as an alternative to algebraic

structures. Lately, many random methods are pro-

posed to design S-box and chaotic systems are usually

chosen to be randomness sources of these methods.

Açikkapi et al. implemented side-channel attacks to

AES algorithm before and after replacing the standard

AES S-box to a best or worst chaotic S-box which

presented in the last decade, found that the chaos-

based random S-box have better performance than

AES S-box in side-channel attacks resisting [6].

Therefore, chaotic S-box may be a good alternative

choice to AES S-box structures especially in side-

channel attacks prevention.

In the early days, discrete-time chaos was first used

in S-box construction [7]. Since then, S-box design by

different discrete chaos was proposed [8–13].After

Özkaynak and Özer proposed a method base on

Lorenz system [14], S-box construction methods

based on continuous-time chaotic systems began to

appear [15–17]. Some chaotic systems with more

complex dynamic behaviors were used to S-box

design to improve cryptography performance. Various

S-box structures were presented based on time delay

[18], fractional [19–21] and hyperchaotic systems

[22, 23]. In order to obtain S-box structures with best

performance criterion, researchers have combined

chaotic systems with optimization algorithm

[24–28]. Many approaches combined chaotic systems

with mathematical structures which play a more

important role than chaos were proposed [29–35].

Moreover, a universal method based on modulo

operation to generate S-boxes for all chaotic maps was

proposed in [36], in addition to suggest the standard of

chaos-based S-box structure with best cryptographic

properties. In order to analyze the role of chaotic

system used in the S-box design process on S-box

performance criteria, Özkaynak in [37] showed that

strong S-box structures can be designed by the S-box

design approach with modulo operation used in [36],

using entropy source that do not display chaotic

behavior. Which indicate that modulo operation play a

more important role than entropy source in this case.

Lately, the effects of pre and post some implements on

design criteria were analyzed in [38, 39]. In [40], not

only a successful design work be done, but also the

effect of fixed point and reverse fixed point on

cryptanalysis process was considered.

It has been proved that high-dimensional chaotic

system has some advantages than low-dimensional

chaotic map system, such as larger parameter range,

more complex behavior and longer period [41]. For

that reason, high-dimensional chaotic system is con-

sidered to be better choice in many cryptographic

studies like image encryption and PRNG. On the other

hand, there are few researches about the high-dimen-

sional chaotic system, especially spatiotemporal

chaotic system, in random S-box design. Therefore,

it is necessary to investigate the performance of high-

dimensional chaotic system in S-box generation

compared with low-dimensional chaotic system. In

this paper, spatiotemporal chaos was taken as a

representation of high-dimensional chaotic system to

investigate the above issue.

The coupled map lattice (CML) is a classical

spatiotemporal chaos has been deeply studied and

widely applied [42–45] in cryptography. Its adjacent

couplings can describe by the following equation:

Xnþ1 ið Þ ¼ 1� eð Þf Xn ið Þ½ �
þ e
2

f Xn i� 1ð Þ½ � þ f Xn iþ 1ð Þ½ �f g; ð1Þ

where i = 1, 2,…, L is the lattice index, n is the time

index, 0\ e\ 1 is the coupling coefficient, f(Xn)-

= xXn(1 - Xn), (3.569946 B x B 4) is logistic

map. The periodic boundary condition Xn (0) = Xn

123

1152 P. Zhou et al.



(L) has been used in this system. But due to the

periodic windows of CML, parameter u should be

carefully selected. In recent years, many spatiotem-

poral chaos based on new coupling methods have been

proposed to avoid the high correlation effect between

adjacent lattices. Chen et al. investigated a novel

spatiotemporal chaos which connections are rewired

randomly with varying probability P and rewiring

period T [46]. But the spatial connection pattern of this

spatial random coupling method cannot be reproduced

in same parameters, which limited its application in

cryptography. Another direction is nonlinear coupling

method. In [47], a novel dynamics base on nonlinear

coupling method named Arnold coupled logistic map

lattice (ACLML) was presented. Subsequently, a

mixed linear–nonlinear coupled map lattices

(MLNCML) was suggested in [48]. The nonlinear

coupling method replaced the adjacent coupling with

non-adjacent coupling, but the system base on it still

retained property that one lattice is limited by another

two fixed lattices in every iteration.

In other to avoid above disadvantages, we investi-

gated a new spatiotemporal system with pseudo-

random coupling strategy that we called 2DMCPML.

The three coupling lattices selected by a novel 2D

pseudo-random mixed coupling method, when two of

them are neighbor lattices, and the last one decided by

the pseudo-random sequence value of local lattice.

The used of 2D pseudo-random mixed coupling

method has following advantages: (1) make the

dynamics behavior of local map more complex. (2)

Accelerate the whole system into full spatial chaos. (3)

Increase the number of coupling parameters. (4)

Reduce the correlation effects of adjacent lattices,

since every iterations are effected by a different lattice

in random position. The local maps of many spa-

tiotemporal chaos are classical Logistic map. The

simple 1D map like Logistic map and Sin map has

been proved that contain many disadvantages: blank

windows, weak parameter space, low orbit complexity

and uneven distribution of output chaotic sequence.

Therefore, we designed a new 1D chaotic map named

PS map to replace simple 1D map for local map. The

PS map is constructed by PWLCM and Sin map base

on nonlinear combination structure in [49]. Numerical

simulation of PS map showed that it is more

suitable for local map of spatiotemporal chaos than

simple 1D map. Subsequently, we analyzed the

dynamic properties of 2DMCPML. The experimental

results of bifurcation diagrams, Kolmogorov–Sinai

entropy density and spatiotemporal chaotic diagrams

showed that 2DMCPML has advantages of larger

parameter space, more complex chaotic behavior and

more ergodic output sequence than CML. These new

features ensure 2DMCPML more suitable in cryptog-

raphy than CML. Moreover, the evolution of spa-

tiotemporal chaotic diagrams from CML to

2DMCLML and then to 2DMCPML demonstrated

the enhancement of chaotic behaviors which PS map

and 2D mixed coupling method provided.

The purpose of our work is not only to present a new

spatiotemporal system but also to investigate the

availability of 2DMCPML in the generation of

random S-box and the advantages of spatiotemporal

system to low-dimensional chaos in S-box generation.

Thus, we employed the spatial chaotic character of

2DMCPML to construct 1000 random S-boxes. The

cryptographic performance of constructed S-boxes are

tested. An example S-box with good cryptographic

performance was selected to compare with the some

representative S-box structures. Finally, four criteria

bounds were set in this paper. The number of S-boxes

satisfying these bounds generated by 2DMCPML and

several 1D chaotic maps is calculated, respectively.

The result showed that spatiotemporal chaos can

generate more S-boxes with high cryptographic qual-

ity than low-dimensional chaos. This discovery may

have important effect to the development of some

cryptographic researches such as dynamic S-box

algorithm.

The rest paper is organized in following way. In

Sect. 2, the 1D PS map is presented. The 2D Mixed

pseudo-random Coupling PSMap Lattices is proposed

in Sect. 3. In Sect. 4, the details of S-box construction

method based on 2DMCPML is given. The crypto-

graphic performance of S-boxes constructed by

2DMCPML are analyzed in Sect. 5. In Sect. 6, the

example S-box of our work is compared with some

representative S-box structures, in addition, the

advantage of spatiotemporal chaos to low-dimensional

chaos in S-boxes generation is investigated. At last, a

conclusion is drawn in Sect. 7.

2 The 1D PS map

Since the chaotic behavior of spatiotemporal chaos is

mainly determined by local map, the local map should
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be selected carefully. Combining PWLCM map and

Sin map, a new 1D PS map was proposed for the local

map of 2DMCPML in this section.

The 1D PWLCM is a generalized form of tent map.

It can describe by following function:

Xnþ1 ¼ Fp Xnð Þ

¼
Xn=p; 0�Xn\p;
Xn=pð Þ= 0:5� pð Þ; p�Xn\0:5;
Fp 1� Xnð Þ; 0:5�Xn � 1;

8
<

:
ð2Þ

where the parameter p should be selected from (0,0.5),

and the status value Xn is in the range of [0,1]. The

PWLCM is chaotic when p[(0,0.5).
The Sin map is a well-known 1D chaos. It is widely

used in study of cryptography. The Sin chaotic

function is

Xnþ1 ¼ l sin pXnð Þ=4; ð3Þ

where the parameter l is in the interval (0,4], and the

status value Xn is in the interval [0,1]. Sin map has

chaotic behaviors, when l[[3.569946, 4].
The simple 1D map like PWLCM, Logistic and Sin

map share some common disadvantages: blank win-

dows, weak parameter space, low orbit complexity and

uneven output sequences distribution. These problems

limit their application in cryptography. Base on a

modulo operation [49], we obtain the PWLCM-Sin

map. The parameters of both seed maps are unified for

convenience. Themathematical expression of PSmap is

where the parameter x is in the interval (0,4), the status

value Xn also interval in [0,1]. The PS map has a more

complex structure than a simple 1D map, which

indicates that it may has more complex chaotic orbits.

In order to get the quantified performance of PS map,

Lyapunov exponent, bifurcation and distribution of

output sequences are tested. Figure 1a shows that the

Lyapunov exponents of PS system are positive in whole

parameter space and significantly bigger than simple 1D

map. Therefore, PS map has more complex orbits and

chaotic sequences than simple 1D map. The bifurcation

diagram of PSmap is shown in Fig. 1b. It is clear that no

blank windows and short-period phenomenon in appear

the bifurcation which indicated PS map has a much

larger available parameter space than simple 1D map.

Figure 1c shows the relatively uniform output distribu-

tion of PS map. Above new features ensure PS map is

suitable for cryptography.

3 The proposed 2DMCPML system

Extending the spatial dimension to two-dimension,

mixing the pseudo-random coupling component with

adjacent coupling component, using PS map as local

map, we proposed a novel spatiotemporal chaotic model

2DMCPML. It can describe by the following equation:

Xnþ1 i; jð Þ ¼ 1� eð Þf Xn i; jð Þ½ � þ e
2

1� rð Þ

f Xn iþ 1; jð Þ½ � þ f Xn i; j� 1ð Þ½ �f g þ erf Xn a; bð Þ½ �;
ð5Þ

where i, j, a, b are lattice indexes, n is time index. e and
r are coupling coefficients in the range of [0,1]. Xn(i,

j) is the state of local map in lattice (i, j) and the local

dynamics f(X) define as PS map. The periodic

boundary conditions Xn(i ? L, j) = Xn(i, j) and Xn(i,

j ? L) = Xn(i, j) are used in 2DMCPML.

The coupling relationship in Eq. (5) is portrayed in

Fig. 2. For any lattice (i, j), the state Xn?1(i, j) is

influenced by following elements: (1) itself Xn(i, j), (2)

adjacent lattice from two directions Xn(i ? 1, j) and

Xn(i, j -1), (3) non-adjacent lattice with random

position Xn(a, b). Here, the value of a and b decided by

the Xn(i, j) state value. Combining the first and second

place in the decimal part of Xn(i, j) to get a two-digit

Xnþ1 ¼ Fx Xnð Þ

¼
4� xð Þ sin pXnð Þ=4þ 8Xn=xð Þmod 1; 0�Xn\0:125x;

4� xð Þ sin pXnð Þ=4þ Xn � 0:125xð Þ= 0:5� 0:125xð Þð Þmod 1; 0:125x�Xn\0:5;

Fx 1� Xnð Þ; 0:5�Xn � 1;

8
><

>:

ð4Þ
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number, mod this number with L then plus 1, one can

get a. Similarly, combining the third and fourth place

in the decimal part of Xn(i, j) to get another two-digit

number, mod this number with L then plus 1, one can

get b. For example, if Xn(i, j) = 0.40967142 and

L = 16, the two-digit number is 40 and 96, respec-

tively, so a = (40 mod 16) ? 1=9 and b = (96 mod

16) ? 1=1.

For practicality and comparison purpose, CML

assign L = 256, 2DMCPML assign L = 16. Here

considered the spatiotemporal system under relatively

weak coupling condition. The Bifurcation diagrams of

CML and 2DMCPML with fixed e are drawn in Fig. 3
to demonstrate the chaotic behavior in time dimen-

sion. Figure 3a–c indicate the bifurcations of CML

with e = 0.1, 0.3 and 0.5, respectively, when

x [ [3, 4]. Obviously, CML keeps some characters

occur in Logistic map like forking behavior, blank

Window and short periods which limits its application

in cryptography.

The bifurcation diagrams of 2DMCPML with

e = 0.1, 0.3 and 0.5 where r = 0.5 are shown in

Fig. 3d–f, respectively. There are no forking behavior

and blank window in these figures which is a new

feature. Meanwhile the state values of 2DMCPML are

distributed almost in entire space of [0,1]. The

explanation of the difference in bifurcation is that

the new PS map has better chaotic dynamics than

logistic map and the 2D pseudo-random mixed

coupling increases the instability of potential periodic

orbits. CML systems are generally considered more

suitable for cryptographic applications than ordinary

Fig. 1 The simulation of PS map. a Lyapunov exponents, b bifurcation diagram, c output distribution

Fig. 2 The coupling

relationship of 2DMCPML
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low-dimensional maps for its less blank window.

Similarly, 2DMCPML is more suitable for crypto-

graphic applications than CML.

Lyapunov exponent measure the divergence of

nearby orbits and provide a qualitative view to

dynamic behavior of system. Generally, the larger

Lyapunov exponent is, the more complex chaotic

dynamical behavior is. The proposed spatiotemporal

chaos 2DMCLML can be considered as L2 dimensions

dynamics. Kolmogorov–Sinai (KS) entropy density is

usually used to measure the chaotic property of multi-

dimensions dynamics which is the average of all

positive Lyapunov exponents [50].

The KS entropy density for different e and x of

2DMCLML and CML systems are shown in Fig. 4a, b,

respectively. It is apparent that the KS entropy densities

of CML are within [0, 0.5] in Fig. 4a while KS entropy

densities of 2DMCPML are mostly higher than 0.5 in

Fig. 4b. The proposed 2DMCPML have higher KS

entropy densities than CML in almost entire parameter

space. This characteristic indicates that 2DMCPML

containsmore intensive andextensive chaotic behaviors.

In order to analyze global chaotic properties of

proposed system, the spatiotemporal chaotic diagrams

with fixed local parameter and coupling strength is

investigated. All spatiotemporal systems here consist

of 256 lattices and iterate 500 times. Figure 5a

illustrates the spatiotemporal chaotic diagrams of

CML with x = 3.9, e = 0.1. As iteration progress,

state values tend to converge slightly. The state values

distribution is in small range and uneven.

The spatiotemporal chaotic diagrams of 2D Mixed

pseudo-random Coupling Logistic Map Lattices

(2DMCLML) with x = 3.9, e = 0.1 and r = 0.5 is

drawn in Fig. 5b. Comparing Fig. 5a with Fig. 5b, it is

clear that 2DMCLML have lager scope and more

uniform distribution of state values. Bearing in mind

that 2DMCLML and CML use a same local dynamics

Logistic map, the only explanation of this difference is

that the 2D Mixed pseudo-random Coupling method

indeed benefit system chaotic property. Therefore, 2D

Mixed pseudo-random Coupling method is more

suitable in cryptography than adjacent coupling

method.

Figure 5c shows the spatiotemporal chaotic dia-

grams of 2DMCPML with x = 3.9, e = 0.1 and

r = 0.5. Comparing Fig. 5b, c, one can found that

the 2DMCPML have lager range and more uniform

distribution of state values than 2DMCLML after

replacing the local Logistic map with PS map. This

Fig. 3 The bifurcation diagrams of spatiotemporal chaos. a CML with e = 0.1, b CML with e = 0.3, c CML with e = 0.5,

d 2DMCPML with e = 0.1, e 2DMCPML with e = 0.3, f 2DMCPML with e = 0.5
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new feature suggested again that PS map is a better

choice for local map than Logistic map.

Above analysis indicated that 2DMCPML has

advantages of large parameter space, more complex

chaotic behavior and more ergodic output sequence

than most chaotic system in terms of practical

usability. According to the IEEE floating point

standard, the computational precision of 64-bit double

precision number is about 1016 [51]. In case ofx, e and
r are chosen to be key, the key space of 2DMCPML is

close to 4 9 1048 & 2161which is a great number.

4 S-box construction method based on 2DMCPML

In this section, random S-box generation method using

spatial chaotic property of 2DMCPML is provided

which can construct robust S-box without significantly

increase computation. In order to obtain n 9 n S-box,

the size of 2DMCPML is set to L = 2n/2. Here take

n = 8 for example. The detailed algorithm is described

as follows:

Step 1: Determine the coupling parameters e and r,
as well as the local map parameter x. Set the initial
values for all lattices of 2DMCPML that the initial

values are not all the same.

Step 2: Iterate the spatiotemporal system

2DMCPML for k times to go into chaotic, where

k[ 200.

Step 3: Define a one-dimensional empty sequence

with 256 elements: S = [S(0), S(1),…S(255)]. Save

the lattices state value of 2DMCPML into S, row by

row, starting from the first row, like this: S = [S(0) =

X(1,1),…, S(15) = X(1,16),…, S(240) = X(16,1),

…, S(255) = X(16,16)].

Step 4: Reorder all elements in S by ascending order

of their values. The element with larger index put on

the left, if values of two elements are equal.

Translate the index of S to a 8 9 8 table, i.e.,

a b

Fig. 4 The KS entropy density for different e and x of spatiotemporal chaos. a CML, b 2DMCLML

Fig. 5 The spatiotemporal chaotic diagrams of spatiotemporal chaos. a CML with x = 3.9, e = 0.1, b 2DMCLML with x = 3.9,

e = 0.1 and r = 0.5, c 2DMCPML with x = 3.9, e = 0.1 and r = 0.5
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obtains an S-box. Afterward, iterate 2DMCPML

one time to prepare for constructing next S-box.

Repeat the Steps 3–4, one can generate S-boxes as

many as desired.

There are total 256! & 21684 different bijective

S-boxes on GF (28). The number of different bijective

S-boxes indicated that there is a great space for

exploration in the research of constructing 8 9 8

S-box. The proposed method used lots of long period

orbits of spatiotemporal chaos to generate large

numbers of S-boxes.

5 S-box performance analyze

Generating 1000 8 9 8 S-boxes by the method of last

section with e = 0.1, r = 0.5, and x = 2.1. Five basic

requirements are used to evaluate the performance of

the constructed S-boxes. Including bijective property,

nonlinearity, strict avalanche criterion (SAC), outputs

bit independence criterion (BIC) and equiprobable

input/output XOR distribution. These criteria are

widely used to assess S-box.

A Boolean function fi is bijective if it satisfies the

following equation:

wt
Xn

i¼1

aifi

 !

¼ 2n�1; ð6Þ

where ai[{0,1}, (a1, a2,…, an) = (0, 0,…, 0) and wt()

is the hamming weight. The proposed method in last

section guarantees each element in the S-box are

unique number between 0 and 255, so that each

Boolean function satisfies Eq. (6), and all constructed

S-boxes are bijective.

The nonlinearity measures the hamming distance

between N-bit Boolean function and N-bit affine

function [52]. If the nonlinearity of Boolean function

is low, its linear approximation is easy to obtain and

the S-box cryptographic performance is weak. For the

convenience of calculation, the nonlinearity value of

n-bit Boolean function f(x) is usually represented by

the following formula:

Nf ¼ 2n�1 1� 2�n max
x2GF 2nð Þ

S fð Þ xð Þ
�
�

�
�

� �

; ð7Þ

where S(f)(w) is the Walsh spectrum of f(x), it can

describe by the following equation:

S fð Þ xð Þ ¼
X

x2GF 2nð Þ
�1ð Þf xð Þ�x�x; ð8Þ

where x[GF(2n), and x�w denotes the dot product of

x with w.

Here, we measure the nonlinearity property of

S-box structure by the average nonlinearity values of

N-bit Boolean function. Although, in recent study

[53], the author claimed that this measurement was

incorrect because it consider the average nonlinearity

of N-bit Boolean function only, ignoring the rest of the

linear combinations of N-bit Boolean function in the

process. He suggested that the nonlinearity property

should be measured as the minimum nonlinearity

value of all linear combinations of N-bit Boolean

function. However, whether the rest of linear combi-

nations of N-bit Boolean function (such as f1 � f3-
� f4 � f6) can be used in linear cryptanalysis is a

question without certain answer at present. Thus, the

measurement here is still correct.

Figure 6 shows the average nonlinearity values of

S-boxes constructed by 2DMCPML. The lower bound

of average nonlinearity values is 100, S-box with very

poor nonlinearity property did not appear. The best

and mean values of average nonlinearity are 107 and

103.54, respectively. Therefore, constructed S-boxes

have good nonlinear properties.

Webster and Tavares proposed strict avalanche

criterion (SAC) combining completeness and the

avalanche effect [54]. An S-box satisfies the strict

avalanche criterion, which means each output bit will

change with a probability of 0.5, if changing one bit of

the input. Constructing dependence matrix is usually

used to verify SAC, and the optimum value is 0.5. The

average value of dependence matrix and average

offset of dependence matrix elements from 0.5 are

both ordinarily used to measure SAC.

Figure 7 shows the average values of dependence

matrix of S-boxes constructed by 2DMCPML. Con-

structed S-boxes have close property to SAC since all

values are within the interval [0.485, 0.52].
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Fig. 6 Average

nonlinearity values of

S-boxes constructed by

2DMCPML

Fig. 7 Average values of

dependence matrix of

S-boxes constructed by

2DMCPML
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The outputs bit independence criterion (BIC) is

another essential analysis criterion for the design of

S-box. In this paper, the measurement proposed by

Adams and Tavares is used to test the BIC of S-box

which analyzes the effect of the two previous criteria

on the output bits [55]. The 8 Boolean functions of

8 9 8 S-box are denoted as f1, f2,…, f8. If fv� fw has

high nonlinearity property and is quite close to SAC

Fig. 8 Average

nonlinearity values for BIC

of s-boxes constructed by

2DMCPML

Fig. 9 Average values of

dependence matrix for BIC

of s-boxes constructed by

2DMCPML
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for any v andw (v,w[{1, 2,…, 8}, and v = w), we can

believe that every pair of output bits have a very small

correlation and the S-box has a good BIC property.

The average values of nonlinearity and dependence

matrix of fv� fw are shown in Figs. 8 and 9, respec-

tively. In terms of nonlinearity, the Average nonlin-

earity values for BIC is greater than 101. In terms of

SAC, the Average values of dependence matrix for

BIC is very close to 0.5. Therefore, constructed

S-boxes have good BIC property.

The last measurement is equiprobable input/output

XOR distribution which also known as maximum

expected differential probability (MEDP) [2]. It is

directly related to differential cryptanalysis. The

maximum value in the input/output XOR distribution

table should be as small as possible. Differential

probability for a given function f can be calculated by:

DPf ¼ max
Dx 6¼0;Dy

# x 2 X f xð Þ � f x� Dxð Þj ¼ Dyf gð Þ;

ð9Þ

where X is the set of all possible input values.

Figure 10 displays the max values of equiprobable

input/output XOR distribution table of S-boxes con-

structed by 2DMCPML. The max values mostly

concentrate in 10 and 12; meanwhile all max values

are not greater than 14. This result indicated that

constructed s-boxes can resist differential attacks well.

Above simulation results shows that the 1000

S-boxes generated by 2DMCPML have good overall

cryptography performance and without very weak

S-box. This is a good property to dynamic S-box

algorithms. Moreover, the chaotic system 2DMCPML

of proposed method has a big parameter space. These

properties ensure the proposed method well suited for

dynamic S-box algorithms.

6 Performance comparison

6.1 Example S-box comparison

An example S-box with good cryptographic perfor-

mance of S-boxes generated by proposed method is

selected and shown in Table 1. The nonlinearities of

eight output bits of example S-box are 110, 104, 106,

106, 106, 108, 108, 108 and the average value is 107.

The dependence matrix, nonlinearity of fv� fw and

equiprobable input/output XOR distribution of exam-

ple S-box are shown in Tables 2, 3 and 4, respectively.

The example S-box is compared with some repre-

sentative S-box structures in Table 5. The results

Fig. 10 Max values of

equiprobable input/output

XOR distribution table of

S-boxes constructed by

2DMCPML
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showed that cryptographic performance of example

S-box is stronger than most chaos-based random

S-boxes but weaker than some S-box structures use

mathematical structure or optimization algorithms.

6.2 Different chaos comparison

Four criteria bounds are set as following way. (1)

Bound 1: NL C 104, (2) Bound 2: NL C 104 &&

|SAC-0.5| B 0.005, (3) Bound 3: NL C 104 &&

|SAC-0.5| B 0.005 && |BIC_SAC| B 0.005, (4)

Bound 4: NL C 104 && |SAC-0.5| B 0.005 &&

|BIC_SAC| B 0.005 && DP B 10. Where NL is the

average nonlinearity value of S-box, SAC is the

average value of dependence matrix of S-box,

BIC_SAC is the average value of dependence matrix

of S-box output pair fv� fw and DP is the max values

of equiprobable input/output XOR distribution table of

S-box.

For comparison purpose, we use the output chaotic

sequence of three different one-dimensional chaos:

Logistic map, Sin map and PS map to generate 1000

8 9 8 random S-boxes, respectively. The numbers of

S-boxes satisfying above four bounds generated by

2DMCPML and three different 1D chaos is calculated.

The result is shown in Table 6. It is clear that the

numbers of S-boxes satisfying the four bounds gen-

erated by 2DMCPML are all more than three 1D

chaotic maps which mean the spatiotemporal chaos

Table 1 The example of

S-box constructed by

proposed method

147 89 98 2 230 229 220 198 162 97 232 148 170 68 122 109

184 152 223 44 204 4 255 3 118 92 73 166 238 251 34 244

153 16 30 105 248 50 240 27 82 126 116 135 214 9 103 107

129 77 84 112 85 167 18 128 176 31 252 55 211 237 140 219

57 175 215 231 119 87 101 22 91 165 174 222 86 247 67 130

58 150 254 23 142 117 90 14 35 110 226 212 224 192 164 113

208 76 43 80 149 26 179 246 157 205 200 45 141 181 187 46

131 171 115 106 102 177 193 62 178 194 195 33 138 21 158 173

78 207 185 202 245 159 139 65 11 233 241 250 239 10 48 210

123 143 104 99 169 56 132 146 154 29 8 24 94 88 218 199

32 19 144 39 136 71 1 20 69 63 125 81 79 95 0 52

36 133 49 70 38 189 236 155 121 243 234 253 75 172 209 161

60 168 17 66 182 47 111 6 53 191 160 74 235 225 227 163

206 186 151 40 156 93 7 196 127 25 100 124 249 108 213 221

228 216 242 180 28 5 114 61 59 197 203 83 120 15 137 72

13 217 12 51 188 96 134 64 145 54 42 201 41 183 190 37

Table 2 The dependence

matrix of example S-box
0.453125 0.5 0.46875 0.5 0.515625 0.484375 0.5 0.5

0.4375 0.5 0.546875 0.53125 0.4375 0.5 0.515625 0.5

0.53125 0.546875 0.53125 0.46875 0.59375 0.5 0.484375 0.53125

0.53125 0.453125 0.578125 0.46875 0.453125 0.421875 0.484375 0.515625

0.453125 0.484375 0.546875 0.53125 0.515625 0.484375 0.484375 0.53125

0.546875 0.56250 0.515625 0.53125 0.421875 0.453125 0.453125 0.421875

0.46875 0.46875 0.515625 0.546875 0.484375 0.46875 0.5 0.546875

0.515625 0.515625 0.484375 0.53125 0.453125 0.484375 0.546875 0.5

Table 3 The nonlinearity for fv� fw of example S-box

– 106 104 100 102 102 106 108

106 – 106 100 102 102 104 102

104 106 – 104 104 102 108 106

100 100 104 – 102 104 102 102

102 102 104 102 – 104 104 100

102 102 102 104 104 – 100 106

106 104 108 102 104 100 – 100

108 102 106 102 100 106 100 –
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Table 4 Equiprobable

input/output XOR

distribution table of

example S-box

8 6 6 10 10 6 8 8 6 6 6 8 6 6 6 8

6 8 8 8 6 6 6 6 8 8 8 6 6 4 6 6

6 6 6 6 6 8 6 4 6 8 6 8 6 6 6 8

8 6 6 6 8 8 8 6 6 6 6 6 4 8 6 6

10 6 8 8 8 6 6 8 6 10 6 8 8 6 8 6

4 6 6 8 6 6 6 8 6 6 8 6 6 6 6 8

8 6 8 6 6 6 8 8 4 8 6 6 6 6 6 6

6 6 6 8 8 6 6 6 6 8 8 8 6 6 8 8

6 8 6 8 8 6 6 6 6 10 8 10 6 6 6 6

6 8 6 8 8 6 6 6 6 8 6 6 4 6 6 6

6 6 8 8 6 6 6 6 8 6 6 8 8 6 8 6

8 6 6 6 6 6 6 6 8 6 6 6 8 6 6 8

8 8 6 6 6 6 6 6 6 6 8 6 6 6 6 6

6 6 8 8 8 8 8 8 6 6 6 6 8 8 8 6

6 6 6 6 6 8 6 8 6 6 6 10 6 8 6 8

8 6 6 6 8 8 10 8 6 8 8 8 6 6 8 –

Table 5 Comparison of example S-box and different S-box structures

S-box Nonlinearity Max.XOR SAC Min. BIC-nonlinearity BIC-SAC

Avg Min Max Avg Offset

Proposed 107 104 110 10 0.4993 0.0310 100 0.5050

AES 112 112 112 4 0.5049 0.0264 112 0.4984

Chaos-based random method

Ref. [10] 106.7 106 108 10 0.5034 0.0244 100 0.4951

Ref. [20] 104.7 100 108 10 0.4982 0.0380 96 0.4942

Ref. [8] 109.2 108 112 8 0.5012 0.0295 104 0.5056

Ref. [11] 106.5 106 108 10 0.5010 0.0288 100 0.5045

Ref. [12] 106.2 104 110 10 0.5029 0.0332 96 0.5070

S-box 1 [37] 105.2 102 108 10 0.5037 0.0364 94 0.4994

S-box 1 [36] 106.7 106 108 10 0.4941 0.0327 98 0.4957

Ref. [42] 105.2 104 108 10 0.5056 0.0291 98 0.4954

Ref. [13] 105 98 108 10 0.5061 0.0398 94 0.5038

Chaos-assisted optimization method

Ref. [25] 110.2 110 112 10 0.5000 0.0283 104 0.5052

Ref. [26] 103.2 98 106 12 0.4995 0.0400 100 0.5037

Ref. [27] 107.5 106 108 10 0.4943 0.0369 98 0.4982

S-box 1 [28] 109.5 106 112 8 0.5068 0.0347 102 0.5045

Chaos-assisted mathematical structure method

Ref. [30] 105.5 100 110 32 0.5022 0.0310 102 0.4990

S-box 5 [34] 112 112 112 4 0.5049 0.0264 112 0.5046

Ref. [35] 114 112 116 12 0.4978 0.0227 98 0.4979

Scheme 1 [38] 112 112 112 4 0.5051 0.0266 112 0.5044
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can indeed generate more S-boxes with strong cryp-

tographic feature. This new discovery is significant to

the development of some cryptographic researches

such as dynamic S-box algorithm.

7 Conclusion

In this paper, firstly, we design a new 1D PS map

which derived from PWLCM and Sin map by modulo

operation. Experimental results show that PS map

overcomes many shortcomings such as blank win-

dows, weak parameter space and bad ergodicity which

widely occur in simple 1D map. Since the chaotic

behavior of spatiotemporal chaos is mainly deter-

mined by its local map, the PSmap is more suitable for

local map of spatiotemporal dynamics. Secondly, with

the novel 2D pseudo-random mixed coupling method

we present a spatiotemporal chaos used PS map as

local map f(x). The experimental results of bifurcation

diagrams, Kolmogorov–Sinai entropy density and

spatiotemporal chaotic diagrams showed that

2DMCPML has advantages of larger parameter space,

more complex chaotic behavior and more ergodic

output sequence than CML. Moreover, the evolutions

of spatiotemporal chaotic diagrams from CML to

2DMCLML and then to 2DMCPML demonstrate the

enhancement of chaotic behaviors which PS map and

2D mixed coupling method provided. Above new

features ensure 2DMCPML more suitable in cryptog-

raphy than CML. Subsequently, we employed the

spatial chaotic character of 2DMCPML to generate a

large number of S-boxes. The cryptographic perfor-

mance indicated that generated S-boxes can resist

cryptanalysis attack well. Finally, four criteria bounds

are set. The numbers of S-boxes satisfying these

bounds generated by 2DMCPML and three 1D chaotic

maps is calculated, respectively. The result showed

that spatiotemporal chaos can indeed generate more

S-boxes with strong cryptographic features than low-

dimensional chaos. This new discovery is significant

to the development of some cryptographic researches

such as dynamic S-box algorithm.

In terms of practical usability, the advantages and

disadvantages of proposed method can be summarized

as follow.

(1) Considering chaos-based random S-box has

better performance in side-channel attacks

resisting [6], S-box constructed by proposed

method can be used as masks to prevent side-

channel attacks of symmetric cryptography.

(2) The proposed method is well suited for dynamic

S-box algorithms due to big parameter space

and good overall S-box cryptography perfor-

mance. Such as, the parameter space of pro-

posed method is about 2161, much greater than

dynamic AES S-box algorithms such as [56],

which has 256 different dynamic AES S-boxes.

(3) The large parameter space, more complex

chaotic behavior and more ergodic output

sequence of the entropy source 2DMCPML

ensure it can well apply not only in S-box

construction, but also in other cryptography like

image encryption [48] and pseudo-random

number generator [57].

(4) The comprehensive performance of example

S-box is stronger than most chaos-based

S-boxes but weaker than some S-box structures

used mathematical structure or optimization

algorithms, which means that example S-box is

weaker than some S-box structures used math-

ematical structure or optimization algorithms in

linear cryptanalysis or differential cryptanalysis

resisting.
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