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Abstract The primary and subharmonic simultane-

ous resonance of Duffing oscillator with fractional-

order derivative is studied. Firstly, the approximately

analytical solution of the resonance is obtained by the

method of multiple scales, and the correctness and

satisfactory precision of the analytical solution are

verified by numerical simulation. Then, the ampli-

tude–frequency curve equation and phase–frequency

curve equation are derived from the analytical solu-

tion. The stability condition of the steady-state

response is obtained by Lyapunov’s first method,

and the state switching between two stable periodic

orbits is demonstrated. Finally, the effects of nonlinear

factor on the system response are analyzed, and the

difference between stiffness softening and stiffness

hardening system is demonstrated. The influence of

fractional-order term on the system is analyzed in

depth, and the effect mechanism of fractional-order

term is revealed, i.e., the focus and intensity of effect

are determined by the order and coefficient of the

fractional-order derivative, respectively.

Keywords Duffing oscillator � Simultaneous

resonance � Fractional-order dynamical system �
Fractional differential equation

1 Introduction

Fractional-order and classical integer-order calculus

were proposed almost in the same period. However, in

the early stage, fractional calculus was not well

applied in engineering due to its imperfections in

theory. Liouville made the first major study on

fractional calculus in 1832, where he applied his

definition to solve some problems in theory. After that,

fractional calculus has been well applied and studied.

Caputo and Mainardi [1] proposed a new dissipation

model based on the memory effect of fractional

derivative. Podlubny [2, 3] proved the convergence

relation of the error between short and long memory

and introduced the fractional-order PID controllers.

Through the research by Shen et al. [4], Niu et al. [5],

Yang et al. [6], Yaghi and Efe [7], it was found that the

fractional-order PID controllers are indeed superior to

the conventional PID controllers in performances.

Moreover, the numerical calculation methods of

fractional differential equation had been continuously

improved. Lubich [8] proposed the fractional linear

multistep method and showed numerical examples by

Abel integral equation, diffusion problem and special
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functions in 1986. Diethelm et al. [9, 10] studied the

fractional Adams method for the numerical solution of

fractional differential equation. Zhu et al. [11], Kumar

and Agrawal [12], Cao and Xu [13] also proposed

some efficient numerical calculation methods.

The improvement of numerical calculation meth-

ods makes it easier for researchers to study the

dynamic phenomena of fractional-order nonlinear

systems such as bifurcation, chaos and synchroniza-

tion. Cermak and Nechvatal [14] theoretically ana-

lyzed some local bifurcations in the fractional Chen

system and discussed the chaotic behavior of the

system with low-order derivatives. Lei et al. [15] used

Melnikov method to study the chaotic behavior of a

generalized Duffing-type oscillator with fractional-

order deflection under dichotomous noise excitation.

Niu et al. [16] investigated the chaos of the fractional-

order Duffing system by the Melnikov method. Leung

et al. [17, 18] proposed the residue harmonic balance

method and studied the periodic bifurcation of Duff-

ing–van der Pol oscillators with fractional derivatives

and time delay by this method. He et al. [19], Eshaghi

et al. [20, 21] and Du et al. [22] studied the chaos

control of fractional-order dynamical systems and

found some important phenomena.

Analytical research was also an important subject,

and there were some important works on the resonance

of fractional-order dynamic systems. Shen et al.

[23, 24] studied the primary resonance of fractional-

order Duffing oscillator and van der Pol oscillator by

the averaging method and analyzed the effects of the

fractional-order derivative on the amplitude–fre-

quency response of these oscillator. Van Khang and

Chien [25] studied the subharmonic resonance of

Duffing oscillator with fractional-order derivative by

the averaging method. For the conventional Duffing

oscillators excited by multiple-term frequency, they

may exhibit complex resonance phenomena, such as

simultaneous resonance and combination resonance.

Nayfeh and Yang [26, 27] studied the combination

resonance and simultaneous resonance of some con-

ventional Duffing oscillators under multiple-term

frequency excitation. Moreover, Kacem et al. [28],

Leung et al. [29] and Zhao [30] studied the resonance

control of some conventional Duffing oscillators.

However, the analytical research on the resonance of

the fractional-order Duffing oscillator excited by

multiple-term frequency is relatively few at present.

Duffing-type equations can describe many issues in

engineering vibration, such as the forced vibration of

viscoelastic beam [31, 32], the response of rotating

machine [33] and the response of coupled pitch-roll

ship [34]. Accordingly, the study on the primary and

subharmonic simultaneous resonance of fractional-

order Duffing oscillator is necessary. In this paper, the

primary and subharmonic simultaneous resonance of

fractional-order Duffing oscillator is studied analyti-

cally. In Sect. 2, an important formula is derived based

on the Caputo’s definition, and the approximately

analytical solution of the simultaneous resonance is

obtained by the method of multiple scales. Section 3

presents the analysis on the steady-state response and

its stability, multi-value characteristic and frequency

response. In Sect. 4, the effects of nonlinear factor and

fractional-order term on the steady-state response are

analyzed by numerical simulation, and the results are

discussed in depth.

2 The approximately analytical solution of Duffing

oscillator with fractional-order derivative

The following Duffing oscillator with fractional-order

derivative is considered

m€u tð Þ þ c _u tð Þ þ ku tð Þ þ a1u
3 tð Þ þ b1D

pu tð Þ
¼ �F1 cosx1t þ �F2 cosx2t; ð1Þ

where m, c, k, a1, �Fi and xi (i ¼ 1; 2) are the system

mass, linear damping coefficient, linear stiffness

coefficient, nonlinear stiffness coefficient, excitation

amplitude and excitation frequency, respectively, and

Dpu tð Þ is the p-order derivative of u tð Þ to t with the

fractional coefficient b1 (b1 [ 0) and fractional order

p (0� p� 1). The fractional-order term is introduced

in Eq. (1) due to the fact that many materials or

devices in engineering exhibit obvious viscoelasticity,

which could be accurately described by fractional-

order derivative. There are several definitions for

fractional-order derivative, such as Grünwald–Let-

nikov, Riemann–Liouville and Caputo definitions, and

they are equivalent under some conditions for a wide

class of functions [2]. However, one subtle difference

is that the initial conditions for the fractional-order

differential equations with the Caputo derivatives are

in the same form as for the integer-order differential
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equations [35]. Therefore, Caputo’s definition is

adopted

Dp
t u tð Þ½ � :¼ 1

C 1� pð Þ

Z t

0

t � sð Þ�pu0 sð Þ ds; ð2Þ

where C zð Þ is Gamma function satisfying

C zþ 1ð Þ ¼ zC zð Þ.
In order to make Eq. (1) satisfy the requirements

for the method of multiple scales formally, one can set

2el ¼ c

m
; x2

0 ¼
k

m
; ea ¼ a1

m
;

eb ¼ b1
m

; F1 ¼
�F1

m
; F2 ¼

�F2

m
;

so that Eq. (1) becomes into

€u tð Þ þ 2el _u tð Þ þ x2
0u tð Þ þ eau3 tð Þ þ ebDpu tð Þ

¼ F1 cosx1t þ F2 cosx2t; ð3Þ

where x0 is natural frequency of linearized Eq. (1).

The primary and subharmonic simultaneous reso-

nance (PSSR) means that x1 and x2 are close to x0

and 3x0, respectively, and F1 is enough small, i.e.,

F1 ¼ ef ; x1 ¼ x0 þ er1;x2 ¼ 3x0 þ er2;

f ¼ O 1ð Þ; r1 ¼ O 1ð Þ; r2 ¼ O 1ð Þ;

where r1 and r2 are detuning factors. Accordingly,

Eq. (3) can be transformed into

€u tð Þ þ x2
0u tð Þ ¼ e½f cos x0t þ er1tð Þ � 2l _u tð Þ

� au3 tð Þ � bDpu tð Þ�
þ F2 cos 3x0t þ er2tð Þ:

ð4Þ

Here, we use the method of multiple scales to find

the approximate solution of Eq. (4). The solution

expressed in two different time scales is

u t ; eð Þ ¼ u0 T0; T1ð Þ þ eu1 T0;T1ð Þ; ð5Þ

where T0 ¼ t and T1 ¼ et.
Substituting Eq. (5) into Eq. (4) and equating the

coefficients of e0 and e1 on both sides, one could obtain

D2
0u0 þ x2

0u0 ¼ F2 cos 3x0T0 þ r2T1ð Þ; ð6aÞ

D2
0u1 þ x2

0u1 ¼ �2D0D1u0 þ f cos x0T0 þ r1T1ð Þ
� 2lD0u0 � au30 � bDp

T0
u0:

ð6bÞ

The general solution of Eq. (6a) can be written as

u0 T0; T1ð Þ ¼ a T1ð Þ cos x0T0 þ h T1ð Þ½ �

þ F2

x2
0 � x2

2

cos 3x0T0 þ r2T1ð Þ;
ð7Þ

and it can also be written in the following form

u0 T0; T1ð Þ ¼ A T1ð Þejx0T0 þ Bej 3x0T0þr2T1ð Þ þ cc; ð8Þ

where A T1ð Þ ¼ a T1ð Þ
2

ejh T1ð Þ, B ¼ F2

2 x2
0
�x2

2ð Þ, j is the

imaginary unit, and cc stands for the complex

conjugate of the preceding terms.

An approximate formula should be derived before

proceeding to the next step. According to Caputo’s

definition, the p-order (0� p� 1) derivative of ejXt can

be expressed as

Dp
t e

jX t ¼ 1

C 1� pð Þ

Z t

0

t � sð Þ�pjXejX sds

¼ 1

C 1� pð Þ

Z t

0

v�pjXejX t�vð Þdv

¼ jXejX t

C 1� pð Þ

Z t

0

v�pe�jX vdv

¼ jXejX t

C 1� pð Þ

Z t

0

v�p cosXv� j sinXvð Þdv

¼ XejX t

C 1� pð Þ jIc þ Isð Þ;

where Ic ¼
R t
0
v�p cosXvdv, Is ¼

R t
0
v�p sinXvdv.

When t ! 1, there are the following approximate

results

Ic � ~Ic ¼ lim
t!1

Z t

0

v�p cosXvdv

¼ Xp�1C 1� pð Þ sin pp
2

� �
; ð9aÞ

Is � ~Is ¼ lim
t!1

Z t

0

v�p sinXvdv

¼ Xp�1C 1� pð Þ cos pp
2

� �
: ð9bÞ

Therefore, the p-order derivative of ejXt can be

approximately written as

Dp
t e

jX t � Xpej X tþpp
2ð Þ: ð10Þ

Substituting Eq. (8) into Eq. (6b), where bDp
T0
u0

can be calculated using Eq. (10), one could obtain the

following condition to eliminate secular terms from u1
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� 2jx0D1A� 3aA2 �A� 6aAB2 � bxp
0Ae

jpp
2

� 2jlx0A� 3a �A2Bejr2T1 þ f

2
ejr1T1 ¼ 0:

ð11Þ

By substituting A T1ð Þ ¼ a T1ð Þ
2

ejh T1ð Þ into Eq. (11)

and separating the real and imaginary parts, the

differential equations about slowly varying amplitude

a T1ð Þ and phase h T1ð Þ are obtained as follows:

D1a ¼ �laþ 3a a2B
4x0

sin 3h� r2T1ð Þ

� f

2x0

sin h� r1T1ð Þ

� a

2
bxp�1

0 sin
pp
2

� �
;

ð12aÞ

aD1h ¼ 3aaB2

x0

þ 3aa3

8x0

þ 3aa2B
4x0

cos 3h� r2T1ð Þ

� f

2x0

cos h� r1T1ð Þ þ a

2
bxp�1

0 cos
pp
2

� �
:

ð12bÞ

Then, the first-order approximately analytical solu-

tion of Eq. (3) can be expressed as

u tð Þ ¼ a cos x0t þ hð Þ þ 2B cosx2t; ð13Þ

where a and h are functions in slow time scale T1, and

determined by Eq. (12).

3 The steady-state response and its stability

The system stability, especially the stability of steady-

state response, is an important issue in engineering

vibration, so that the steady-state response and system

stability are considered in this section. Observing

Eq. (12), it can be found that steady-state motions (i.e.,

D1a ¼ 0 and D1h ¼ 0) exist if, and only if, both h�
r1T1 and 3h� r2T1 are constants, that means

D1h ¼ r1 ¼ r2=3. Therefore steady-state motions

exist only whenx1 ¼ x2=3 is strictly satisfied. Letting

r1 ¼ r2=3 ¼ r and h� rT1 ¼ u in Eq. (12), it will

become into the following autonomous form

D1a ¼ �laþ 3a a2B
4x0

sin 3u� f

2x0

sinu

� a

2
bxp�1

0 sin
pp
2

� �
; ð14aÞ

aD1u ¼ �raþ 3aaB2

x0

þ 3aa3

8x0

þ 3aa2B
4x0

cos 3u

� f

2x0

cosuþ a

2
bxp�1

0 cos
pp
2

� �
:

ð14bÞ

Correspondingly, the approximately analytical

solution becomes into

u tð Þ ¼ a cos x1t þ uð Þ þ 2B cosx2t; ð15Þ

where a and u are determined by Eq. (14).

In order to verify the correctness and precision of

the analytical solution, the obtained result is compared

with numerical solution, where the analytical solution

and the numerical solution are calculated by Eqs. (15)

and (3), respectively. The numerical calculation

method introduced in Ref. [35] is used to calculate

the numerical solution, and the calculation scheme is

as follows:

x tkð Þ ¼ y tk�1ð Þhq1 �
Xk
n¼1

c q1ð Þ
n x tk�1ð Þ; ð16aÞ

y tkð Þ ¼ ½F1 cosx1tk þ F2 cosx2tk � 2ely tk�1ð Þ
� x2

0x tkð Þ � eax3 tkð Þ � ebz tk�1ð Þ�hq2

�
Xk
n¼1

c q2ð Þ
n y tk�1ð Þ;

ð16bÞ

z tkð Þ ¼ y tkð Þhq3 �
Xk
n¼1

c q3ð Þ
n z tk�1ð Þ; ð16cÞ

where q1 ¼ q2 ¼ 1, q3 ¼ 1� p, and c qð Þ
n is the frac-

tional binomial coefficient with the iterative relation-

ship as c
qð Þ
0 ¼ 1 and c qð Þ

n ¼ 1� 1þq
n

� �
c

qð Þ
n�1. According

to Eq. (10), the initial value of fractional-order term is

given by

Dp
t u tð Þ½ � t¼0j ¼ u 0ð Þxp

0 cos
pp
2

� �
: ð17Þ

A set of basic parameters of the demonstrated

system are defined as e¼ 0:1, l¼ 0:1, x0 ¼ 2, a ¼ 5,

b ¼ 1, p ¼ 0:6, F1 ¼ 0:1, F2 ¼ 24, and x2 ¼ 3x1.

For each given x1, the system is simulated for 300

time units, and the time-step is set to 0:001 (the same

below). Taking the maximum amplitude after 270

time units as the steady-state amplitude �u, the
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amplitude–frequency curves of the system can be

obtained as shown in Fig. 1. Moreover, setting

x1 ¼ 2:2, a0 ; u0ð Þ ¼ 2 ; 0ð Þ, and the corresponding

initial values of the numerical solution calculated by

Eqs. (15) and (17) is

u0 ; _u0 ; D
pu0ð Þ ¼ 1:3933 ; 0:0167 ; 1:2413ð Þ.

Then, the comparison of the displacement time history

between the analytical and the numerical solution can

be plotted in Fig. 2.

Figure 1 shows that the error of analytical solution

is low in a wide range of frequency, and it can be seen

from Fig. 2 that both the transient and steady-state

response of analytical solution are relatively accurate

in the resonance range.

In addition, it can be found that the steady-state

response is multi-value in a certain range of frequency.

In fact, other branches can also be obtained, and they

are stable, if the initial value of the simulation is

changed suitably. The reason for the above phe-

nomenon can be revealed from Eq. (15), i.e., the

multi-value characteristic and stability of the steady-

state response are subjected to the first part (i.e.,

a cos x1t þ uð Þ) in the analytical solution. Therefore,

we will only focus on this part in the stability analysis

of the steady-state response.

Letting D1a ¼ 0, D1u ¼ 0, and marking steady-

state amplitude as �a and steady-state phase as �u, one
could obtain

3a �a2B

4x0

sin 3 �u� f

2x0

sin �u ¼ l �aþ �a

2
bxp�1

0 sin
pp
2

� �
;

ð18aÞ

3a �a2B
4x0

cos 3 �u� f

2x0

cos �u

¼ r�a� 3a �aB2

x0

� 3a �a3

8x0

� �a

2
bxp�1

0 cos
pp
2

� �
:

ð18bÞ

Furthermore, the amplitude–frequency equation

and phase–frequency equation of steady-state

response can be obtained as follows:

24abxp
0 �a2 þ 8B2
� �

cos
pp
2
� 48rax0 �a2 þ 8B2

� �h

þ3a 3a�a4 þ 36a�a2B2 þ 192aB4 � 8Bf
� �

þ16b2x2p
0 � 64bxpþ1

0 r cos
pp
2

� l sin
pp
2

� �

þ64x2
0 r2 þ l2
� ��2

9a2 �a6 þ 108a2 �a4B2
�

þ 48a�a2B 12aB3 þ f
� �

þ 24a�a2bxp
0 �a2 þ 8B2
� �

cos
pp
2

� 48a�a2rx0 �a2 þ 8B2
� �

þ 16�a2b2x2p
0

�64�a2bxpþ1
0 r cos

pp
2
� l sin

pp
2

� �

þ64�a2x2
0 r2 þ l2
� �

� 16f 2
�

¼ 98304aBx2
0f

3 lþ 1

2
bxp�1

0 sin
pp
2

� 	2

ð19aÞ

Fig. 1 Comparison of amplitude–frequency curves by the approximately analytical solution (the solid line) and the numerical solution

(the circles): a system response to x1; b system response to x2
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4 9�a4a2B2 � 12�a2aBf cos 2 �uþ 4f 2
� �
� �a2 9a2 �a2 þ 8B2

� �2þ24abxp
0 �a2 þ 8B2
� �h

cos
pp
2

� 48rax0 �a2 þ 8B2
� �

þ 16b2x2p
0

� 64bxpþ1
0 r cos

pp
2
� l sin

pp
2

� �
þ 64x2

0 l2 þ r2
� �i

¼ 0:

ð19bÞ

Next, the stability condition of the steady-state

response will be derived by Lyapunov’s first method.

Defining a state vectorV ¼ a ; u½ �T, a vector function
is generated as

F Vð Þ ¼ _V ¼
�laþ 3a a2B

4x0

sin 3u� f

2x0

sinu� a

2
bxp�1

0 sin
pp
2

� �

�rþ 3a B2

x0

þ 3aa2

8x0

þ 3aaB
4x0

cos 3u� f

2ax0

cosuþ 1

2
bxp�1

0 cos
pp
2

� �

2
664

3
775:

ð20Þ

The Jacobi matrix and the characteristic equation of

F Vð Þ at the steady-state response are as follows:

J ¼
3�aaB sin 3 �u

2x0

� 1

2
bxp�1

0 sin
pp
2
� l

9�a2aB cos 3 �u
4x0

� f cos �u
2x0

f cos �u
2�a2x0

þ 3�aa
4x0

þ 3aB cos 3 �u
4x0

f sin �u
2�ax0

� 9�aaB sin 3 �u
4x0

2
664

3
775; ;

ð21aÞ

and

k2 � Pkþ Q ¼ 0; ð21bÞ

where P ¼ trJ, Q ¼ det J½ �.
According to Lyapunov’s theory, the stability

condition of steady-state response is P\0 and

Q[ 0. For the damped system, there is always

P\0. Accordingly, the stability condition of the

researched system is Q[ 0, i.e.,

27�a6a2 � 1728�a2a2B4 þ 48�aaf �a2 þ 16B2
� �

cos �u

� 48�a2b2x2p
0 þ 192�a2bxpþ1

0 r cos
pp
2
�

�
l sin

pp
2

�

� 192�a2x2
0 r2 þ l2
� �

� 64�abxp
0 9�aaB2 cos

pp
2

� 2f cos �uþ pp
2

� �h i

þ 128�ax0 9r�aaB2�
�

2fl sin �u� 2fr cos �uÞ � 64f 2 [ 0:

ð22Þ

Up to now, for each r satisfying the aforementioned

limit, all corresponding steady-state solutions

ri ; �ai ; �uið Þ can be obtained from Eq. (19) and their

stability can be determined by Eq. (22). The param-

eters of the demonstrated system are still defined as

e ¼ 0:1, l ¼ 0:1, x0 ¼ 2, a ¼ 5, b ¼ 1, p ¼ 0:6,

F1 ¼ 0:1, and F2 ¼ 24. In Figs. 3 and 4, the typical

amplitude–frequency and phase–frequency curves are

shown, respectively. It can be seen from Fig. 3 that

there are as many as three bifurcation points in the

amplitude–frequency response, namely H11, H12, and

H13, which correspond to H21, H22, and H23 in the

phase–frequency response, respectively. Furthermore,

it can be found from Figs. 3 and 4 that there are as

many as seven branches s1 * s7, which means that

the whole responses of Eq. (3) also have up to seven

branches S1 * S7 in a certain range of frequency. For

instance, the corresponding four stable periodic orbits

of S1, S3, S4 and S6 are as shown in Fig. 5, where

Fig. 2 Comparison of displacement time histories by the

approximately analytical solution (the solid line) and the

numerical solution (the circles), where x1 ¼ 2:2, x2 ¼ 3x1:

a transient response; b steady-state response
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r ¼ 2:5 (i.e., x1 ¼ 2:25 and x2 ¼ 3x1),and the initial

values u0 ; _u0 ; D
pu0ð Þ of the four groups are set as

1:0825 ; 0:7276 ; 0:9644ð Þ, �0:7275 ;ð 0:3482 ;

�0:6481Þ, �1:4895 ; 3:1944 ; �1:3271ð Þ,
�1:0298 ;ð �3:0478 ; �0:9174Þ, respectively.
This multi-value characteristic can be used for

system status switching, i.e., as long as the state

variables (i.e., u and _u) of the oscillator are switched to

another periodic orbit, the system will run stably in the

new periodic orbit. It should be noted that in practice,

it is necessary to ensure that the status switching

process is smooth, which may involve the process

control method, and the smoothness is not considered

here. Just as an example, the case of r ¼ 2:5 is still

considered, and two points O1 �0:4859 ; 0:1323ð Þ and
O2 �1:018 ; �3:502ð Þ on S3 and S6 are marked,

respectively, in the state space. Then, O1 is set to the

initial value of Eq. (3). After running for 320 time

units, one can let the oscillator switch to O2 and

continue to run for 320 time units. The phase trajectory

of Eq. (3) can be obtained as shown in Fig. 6. In

addition, as previously stated, many engineering

vibration issues are related to Duffing system. For

the rotating machine, it may pass through the

resonance regions during starting and/or stopping

processes. At this time, the system response can be

switched between multiple branches, and the ampli-

tude will suddenly increase or decrease, which is

called jump phenomenon. This phenomenon was

observed in the experiment of Ref. [36].

Fig. 3 Amplitude–frequency curves of steady-state resonance

(the circles for stable solution and the asterisks for unstable one),

and the three bifurcation points are H11 1:2000 ; 0:3994ð Þ,
H12 1:8000 ; 1:1211ð Þ and H13 2:0000 ; 0:4854ð Þ, respectively

Fig. 4 Phase–frequency curves of steady-state resonance (the

circles for stable solution and the asterisks for unstable one), and

the three bifurcation points are H21 1:2000 ; �1:7265ð Þ,
H22 1:8000 ; �2:8012ð Þ andH23 2:0000 ; 1:6250ð Þ, respectively

Fig. 5 Four stable periodic orbits of Eq. 3

Fig. 6 Status switching from S3 to S6
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4 The effects of system parameters on amplitude–

frequency curves

4.1 The effect of nonlinear factor a

In order to reveal the effect of nonlinear factor on the

system, the demonstrated system is simulated under

different a, where other parameters are still defined as

e ¼ 0:1, l ¼ 0:1, x0 ¼ 2, b ¼ 1, p ¼ 0:6, F1 ¼ 0:1

and F2 ¼ 24. The effects of nonlinear factor on

stiffness hardening system (i.e., a[ 0) and stiffness

softening system (i.e., a\0) are shown in Fig. 7. It can

be seen that for the stiffness hardening system, the

topologies of amplitude–frequency curves of primary

and 1/3 subharmonic resonance are emerged simulta-

neously in the PSSR range. And a mainly affects the

amplitude in a certain range of frequency, i.e., the

amplitude decreases due to the gradual hardening of

the stiffness. However, for the stiffness softening

system, the amplitude–frequency curves of PSSR

shows special topologies, and a affects the amplitude,

multi-value characteristic and stability simultane-

ously. That means the resonance peak decreases and

the system tends to be stable with the gradual softening

of stiffness.

4.2 The effect of fractional order p

In this section, we investigate how the variation of

fractional order p affects the system. The parameters

of the demonstrated system are defined as e ¼ 0:1,

l ¼ 0:1, x0 ¼ 2, a ¼ 5, b ¼ 0:3, F1 ¼ 0:1 and

F2 ¼ 24. Through numerical calculation, the ampli-

tude–frequency curves of p ¼ 0:2, p ¼ 0:5, p ¼ 0:7

and p ¼ 1 can be obtained, respectively, as shown in

Fig. 8a. In this demonstrated system, p mainly affects

the feature of subharmonic resonance, but has a slight

influence on the feature of primary resonance.

Considering the particularity of the stiffness soft-

ening system, we do another numerical calculation for

a ¼ �8, and the result is shown in Fig. 8b. This result

still shows that p mainly affects the feature of

subharmonic resonance, which means that it is possi-

ble to change one of the resonance features indepen-

dently by selecting appropriate parameters, even

simultaneous resonance.

Furthermore, the jump phenomenon mentioned in

Sect. 3 is also affected by the fractional order p. The

demonstration system and numerical conditions in

Sect. 3 are still used, but the fractional order is defined

as p ¼ 0:2, p ¼ 0:4 and p ¼ 0:6, respectively. By

repeating the simulation process in Fig. 1, the ampli-

tude–frequency curves of the system with different p

can be obtained, and it is shown in Fig. 9. In this

figure, three jump points R1, R2 and R3 corresponding

to different p are marked, respectively. It can be found

that the frequency of jump point shifting to lower

frequency with the increase in fractional order p.

4.3 The effect of fractional coefficient b

Two cases of p � 0:5 and p � 0:5 is considered here.

Considering the case of p � 0:5 firstly, the parameters

of the demonstrated system are defined as p ¼ 0:9,

e ¼ 0:1, l¼ 0:1, x0¼ 2, a¼5, F1 ¼ 0:1 and F2 ¼ 24.

Fig. 7 Effects of nonlinear factor (the circles for stable solution

and the asterisks for the unstable one): a Stiffness hardening

system; b Stiffness softening system
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The evolutions of the amplitude–frequency curves due

to the variation of the fractional coefficient b are

shown in Fig. 10. Furthermore, for the ease of

comparison, the evolutions of the amplitude–fre-

quency curves due to the variation of linear damping

coefficient l are also given for p ¼ 0:6 and b ¼ 1,

which is shown in Fig. 11. From Figs. 10 and 11, it can

be found that the effect of the fractional coefficient b is
almost equivalent to the effect of the linear damping

coefficient lwhen p � 0:5.With the increase in b and
l, the corresponding primary resonance is reduced

significantly, and the existing region for subharmonic

resonance is also decreased.

Next, considering the case of p � 0:5, the param-

eters of the previous demonstrated system are still

used, but the fractional order is modified to p ¼ 0:1.

According to the previous conclusions, the peak and

topology of the amplitude–frequency curves are

mainly affected by nonlinear factors and linear

damping, respectively. Therefore, b has almost no

effect on the structure of the amplitude–frequency

curve when p � 0:5, which is confirmed in Fig. 12.

That means the increase in b only leads to the

resonance regions shifting to high frequency.

In fact, b has different effects under different p, and

the reason for this phenomenon is that the fractional-

order term in the system has the functions of linear

stiffness and linear damping simultaneously. In other

words, if p � 0:5, the linear damping effect of

fractional-order term will be stronger, so that theFig. 8 Effects of fractional order p: a Stiffness hardening

system; b Stiffness softening system

Fig. 9 Effects of fractional order p on jump phenomenon, where the corresponding frequencies of R1, R2 and R3 are x1 ¼ 3:48,
x1 ¼ 3:38 and x1 ¼ 3:28, respectively: a panoramic view; b local view
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effect on the system is almost equivalent to that of

linear damping. However, if p � 0:5, the linear

stiffness effect of fractional-order term will be

stronger, and the increase in b leads to the increase

in system stiffness, which increases the natural

frequency of the system, so that the resonance regions

shift to high frequency. Regarding the equivalent

linear stiffness and equivalent linear damping of

fractional-order term, their calculation methods have

been given quantitatively in Ref. [23], and here we

only discuss them qualitatively.

5 Conclusions

The primary and subharmonic simultaneous resonance

of Duffing oscillator with fractional-order derivative is

studied. Firstly, the fractional-order derivative for ejXt

is derived approximately based on Caputo’s definition,

and the approximately analytical solution is obtained

by the method of multiple scales. Then, the correctness

and satisfactory precision of the analytical solution are

verified by numerical simulation. Additionally, the

stability and multi-value characteristic of the system

are discussed. The stability condition of the steady-

state response is derived by the Lyapunov’s first

method, and the stability of steady-state response is

analyzed based on this condition. It is found that there

Fig. 10 The evolutions of the amplitude–frequency curves due to the change of bwhen p � 0:5 (the circles for stable solution and the
asterisks for unstable one): a b ¼ 0:6; b b ¼ 1; c b ¼ 1:06; d b ¼ 1:3
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Fig. 11 The evolutions of the amplitude–frequency curves due to the change of l (the circles for stable solution and the asterisks for

unstable one): a l ¼ 0:1; b l ¼ 0:26; c l ¼ 0:28; d l ¼ 0:4

Fig. 12 The evolutions of the amplitude–frequency curves due to the change of bwhen p � 0:5 (the circles for stable solution and the
asterisks for unstable one): a b ¼ 0:5; b b ¼ 2; c b ¼ 3:5
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are at most seven branches in the steady-state

response, including four stable branches and three

unstable branches. Finally, the effects of system

parameters are analyzed by numerical calculation,

especially the effect of fractional-order term in the

system, i.e., equivalent linear stiffness and equivalent

linear damping. They are embodied simultaneously in

the dynamic system, and the focus and intensity of the

effects are determined by p and b, respectively.
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