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Abstract As an unmanned system, the multirotor has
gained widespread attention in practical aviation engi-
neering, because of its ease of use, reliability andmain-
tainability. From the perspective of flight reliability and
safety, it is significant and essential for a multirotor
to detect anomaly occurrences and evaluate the real-
time health performance status in a timely manner.
Considering the limitations in the modeling of mul-
tirotor dynamics and the state estimation of existing
methods, a health performance evaluation method of
multirotors under wind turbulence is proposed in this
paper. First, a stochastic hybrid system (SHS)-based
model is established to describe the dynamic behavior
of the multirotor, where the flight dynamics, external
disturbances due to wind turbulence, and dynamics of
discrete modes are included. The real-time probabil-
ity distribution of the hybrid state of the SHS-based
multirotor model is obtained by a modified interacting

Z. Zhao · X. Wang (B) · Y. Bai
School of Artificial Intelligence and China Light Industry
Key Laboratory of Industrial Internet and Big Data, Beijing
Technology and Business University, No. 11/33 Fucheng
Road, Haidian District, Beijing 100048, China
e-mail: wangxy@btbu.edu.cn

Z. Zhao
e-mail: zhaozy@btbu.edu.cn

Y. Bai
e-mail: baiyuting@btbu.edu.cn

P. Yao
College of Engineering, Ocean University of China,
Qingdao 266100, China
e-mail: yaopenghappy@163.com

multiple model particle filter algorithm. Based on this,
the real-time overall health performance status of the
multirotor during flight is quantitatively evaluated by
the classical health degree and the fuzzy health degree
as indicators. Finally, a multirotor suffering from dif-
ferent types of sensor anomalies is simulated to demon-
strate the availability and effectiveness of the proposed
method.

Keywords Health performance evaluation · Multiro-
tor · Interacting multiple model · Particle filter · Health
degree

1 Introduction

The multirotor is a vertical take-off and landing
unmanned aerial vehicle (UAV). As an unmanned sys-
tem, it has been widely used in practical engineering
due to its ease of use, reliability andmaintainability [1].
From the perspective of flight reliability and safety, an
anomaly or fault in any part of a multirotor, such as air-
frame damage and sensor or actuator faults, may lead to
catastrophic disasters [2,3]. Therefore, it has theoreti-
cal significance and engineering value for a multirotor
to detect anomalies and evaluate the in-situ health per-
formance status in a timely manner. System health is
a combined good condition of all the components and
their interactions [4]. It reflects the extent of systemper-
formance degradation or deviation from an expected
normal condition [5]. Prognostics and Health Man-
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agement (PHM) technologies use observation signals,
system models, and related algorithms to detect fault
occurrences, evaluate system health degradation, pre-
dict health status evolution, and subsequently develop
necessary maintenance and operational measures to
ensure operational safety and reliability [6]. Thus, it
is feasible to use PHM technologies to ensure the reli-
able and safe flight of multirotors.

The existing PHM approaches are basically divided
into four categories [7]: reliability-based,model-based,
data-driven, and hybrid approaches. The reliability-
based approach has the simplest form of prognostics
based on the distribution of event records of a pop-
ulation of identical items. In practice, the reliability-
based approach can be performed when historical
run-to-failure data are available [8]. The model-based
approach is themost classic approach in PHMdue to its
accuracy, intuitiveness and interpretability [9]. In this
approach, a physics-of-failure or mathematical model
is developed on a component-level or system-level of
the plant. This model is a real-time, mathematical rep-
resentation of the system behavior that is able to esti-
mate and predict the variations of the health perfor-
mance degradation and detect failure occurrences [10].
The data-driven approach uses information extracted
from condition monitoring data to evaluate and pre-
dict the health performance status. It mainly relies on
techniques in the field of artificial intelligence, which
has many statistical or machine learning tools that can
be applied directly [11]. Since the above approaches
have their own advantages and limitations, the hybrid
approach aims to integrate the benefits of different
approacheswhileminimizing the limitations to achieve
better characteristics of the health performance status
estimation and prediction. Further details can be found
in comprehensive literature reviews [12–15].

There has been considerable research on PHM tech-
nologies for UAVs [16]. From the perspective of air-
borne equipment, these studies can be basically divided
into five categories: PHM for aircraft structures [17],
actuators [18], sensors [19], power plants [20], and
signal transmission [21]. A detailed literature review
was presented previously [22]. The current research
on ensuring the flight safety of UAVs is focused on
fault diagnosis and fault-tolerant control [23,24]. The
fault diagnosis approaches can deal with different fault
types during a flight, such as abrupt faults, grad-
ual faults, and intermittent faults, and achieve their
detection, isolation, and diagnosis by related model-

based, data-driven, and hybrid methods [25]. The fault-
tolerant control strategies enable the UAV to con-
tinue its intended task possibly at a reduced level,
rather than completely failing. This can ensure flight
safety through effective control algorithms or redun-
dant designs [26,27]. However, these approaches are
basically performed based on the concept of faults to
study the PHM issue of multirotors. In practice, it is
also significant to use the concept of health to mea-
sure the overall health performance status of multiro-
tors on a system level. Some efforts have been made
to use the concept of health to achieve the reliable and
safe flight of multirotors and quantitatively evaluate
the overall performances of multirotors during flights
[22,28,29]. The results proved the feasibility of these
methods, but all these methods have contain certain
limitations. The primary deficiency is the modeling of
winddisturbances. Existing studies simplymodeled the
wind disturbances as a Gaussian-distributed random
variable and added it to the dynamic model of the mul-
tirotor. This form of modeling may lead to inaccurate
estimates of the state variables of the multirotor and
its health performance status, since wind disturbances,
such as wind turbulence, should be viewed as colored
noise [30]. In fact, the wind speed is an autocorrelated
variable, and it is preferable to simulate it by pass-
ing white noise through a forming filter [31]. In addi-
tion, previous studies assumed that the state variables
of the multirotor conformed to a Gaussian distribution,
which is a conservative constraint due to the nonlin-
earity of the multirotor dynamics. Thus, in this paper,
a health performance evaluation method of multirotors
under wind turbulence is proposed. First, a stochas-
tic hybrid system (SHS)-based model is established
to describe the dynamic behavior of the multirotor,
where the flight dynamics, external disturbances due to
wind turbulence, and dynamics of the discrete modes
are included. The real-time probability distribution of
the hybrid state of the SHS-based multirotor model is
obtained by a modified interacting multiple model par-
ticle filter algorithm (M-IMMPF). Based on this, the
real-time overall health performance status of the mul-
tirotor during flight is quantitatively evaluated by the
classical health degree and the fuzzy health degree as
indicators. Finally, a multirotor suffering from differ-
ent types of sensor anomalies is simulated to demon-
strate the availability and effectiveness of the proposed
method.
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There are three main contributions of this paper.
First, the wind turbulence model is introduced in the
uncertainty modeling of the multirotor dynamics. In
this case, the wind disturbance on the multirotor is col-
ored noise, which is more realistic than using Gaussian
white noise to describe wind disturbances, as was done
in previous studies. Second, an M-IMMPF algorithm
is used to estimate the probability distribution of the
state variables of the multirotor, which can overcome
the inaccuracies caused by using a Gaussian distribu-
tion to describe the estimates. Third, classical and fuzzy
health degrees are established as health indicators. In
contrast to previous studies, a new calculation method
using classic and fuzzy health degrees is proposed to
match the probability distribution function described
by the particles, which is more reasonable and efficient
than existing calculation methods.

The remainder of this paper is organized as follows.
Section 2 provides the SHS-based modeling process of
multirotors. Section 3 presents the health performance
evaluation algorithm, including the hybrid state estima-
tion and health quantification. Section 4 presents a case
study, including the configuration, results, and analysis.
Section 5 presents the conclusions, and future research
is discussed.

2 SHS-based multirotor modeling

2.1 Multirotor dynamics

A general dynamic model of a multirotor is presented
[32], as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e ṗ = ev

ev̇ =
⎡

⎣
0
0
g

⎤

⎦− 1
mR

e
b ·
⎡

⎣

⎡

⎣
0
0
fT

⎤

⎦+ b f w

⎤

⎦

Θ̇ = W · b�
Jb� = −b� × (J · b� )+ τ

, (1)

where e p = [ e px e py e pz
]T ∈ R

3×1 represents the
multirotor’s three-dimensional position in the earth-

fixed coordinate frame, ev = [ evx evy
evz
]T ∈

R
3×1 represents the projection of the multirotor’s

velocity in the earth-fixed coordinate frame, b f w =
[
b fw,x

b fw,y
b fw,z
]T ∈ R

3×1 represents the projec-
tion of the additivewind force due towind turbulence in
the aircraft-body coordinate frame, Θ = [φ θ ψ

]T ∈

R
3×1 represents the attitude angles of the multiro-

tor, which are the roll, pitch and yaw angles, respec-
tively, b� ∈ R

3×1 represents the angular velocity of
the aircraft body’s rotation, J = diag

(
Jx , Jy, Jz

) ∈
R
3×3 represents the moments of inertia of the aircraft,

τ ∈ R
3×1 represents the moments generated by the

propellers in the axes of the aircraft-body coordinate
frame, g is the acceleration of gravity, m is the mass of
themultirotor, fT is the total lift,Re

b ∈ R
3×3 is the rota-

tion matrix from the aircraft-body coordinate frame to
the earth-fixed coordinate frame, and the matrix W is
defined as follows:

W =
⎡

⎣
1 tanθsinφ tanθcosφ
0 cosφ −sinφ
0 sinφ/cosθ cosφ/cosθ

⎤

⎦ .

2.2 Wind force and turbulence modeling

When a multirotor flies forward, the projection of the
wind force due to wind turbulence can be calculated as
follows:

⎧
⎨

⎩

b fw,x = Cd · bv2x
b fw,y = Cd · bv2y
b fw,z = Cd · bv2z

,

where Cd is the generalized airframe drag coefficient;
[
bvx

bvy
bvz
]T ∈ R

3×1 represents the projection of
the velocity of the airflow around themultirotor relative
to the flight speed of the multirotor in the aircraft-body
coordinate frame, which is

⎡

⎣

bvx
bvy
bvz

⎤

⎦ = Rb
e

⎛

⎝

⎡

⎣

ewx
ewy
ewz

⎤

⎦−
⎡

⎣

evx
evy
evz

⎤

⎦

⎞

⎠ ,

where Rb
e = [Re

b

]−1 is the rotation matrix from the
earth-fixed coordinate frame to the aircraft-body coor-

dinate frame, and
[
ewx

ewy
ewz
]T ∈ R

3×1 represents
the projection of the wind velocity caused by wind
turbulence in the earth-fixed coordinate frame. In this
study, the Dryden wind turbulence model is used to
describe the turbulent wind field [33,34]. The Dry-
den wind turbulence model is characterized by power
spectral densities for the three velocity components
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ewx ,
ewy,

ewz , which are

Φwx (ω) = σ 2
x

Lx
π ·evx

1

1+
(
Lx

ω
evx

)2 ,

Φwy (ω) = σ 2
y

L y
π ·evy

1+12
(
Ly

ω
evy

)2

[

1+4
(
Ly

ω
evy

)2
]2 ,

Φwz (ω) = σ 2
z

Lz
π ·evz

1+12
(
Lz

ω
evz

)2

[

1+4
(
Lz

ω
evz

)2
]2 ,

where σ and L represent the turbulence intensity and
scale length, respectively. Since the multirotor flies at
a low altitude, the turbulence intensity and scale length
satisfy the following [35]:

Lx = 2Ly =
e pz

(0.177 + 0.000823 · e pz)1.2
,

Lz =
e pz
2

,

σx

σz
= σy

σx
= 1

(0.177 + 0.000823 · e pz)0.4
,

σz = 0.1w20,

where w20 is the wind speed at 20 ft (6.096 m).

Let x = ( e pT evT ΘT b�T
)T

be the state variable
vector. A generic dynamicmodel formof themultirotor
is established as follows:

x (k) = F
(
x (k − 1) , b f w (k − 1)

)
+ �ww (k − 1)

y (k) = Cx (k) + �vv (k)
,

where F (·) can be obtained by discretization of (1), y
represents system measurements, and the matrix C is
the measurement parameter matrix. The items w and v

are the process noise and measurement noise, respec-
tively, which satisfy the following:
{

w (·) ∼ N (0,Q) , v (·) ∼ N (0,R) ,∀k
cov [w (k) , v ( j)] = E

[
w (k) vT ( j)

] = 0,∀k, j ,
where Q and R are covariance matrices, and �w and
�v are noise-driven matrices.

2.3 SHS modeling

In this section, an SHS-basedmultirotormodel is estab-
lished, in which the discrete subsystem describes the
different health statuses and the dynamic transitions
between them, and the continuous subsystem describes
the flying behavior under these statuses. The estab-
lished SHS-based multirotor model is defined as H =
(S, C,D, Init).

(a) Hybrid state space (S)
Let S = Q × R

nx be a hybrid state space.
Q={q1, q2, . . . , qM } is a finite set of discrete modes,
where q j represents the j th health status of the multi-
rotor. The space S assigns each discrete mode q j ∈ Q
a continuous spaceRnx , where the state variable vector
x ∈ R

nx . The hybrid state (q, x) is then defined on the
hybrid state space S.

(b) Continuous dynamics (C)
For ∀q j ∈ Q, the continuous dynamics of the SHS-

based multirotor model are described as follows:

C :
{

x(k) =F j
(
x(k−1),b f w(k−1)

)+�w, jw j (k−1)

y(k) =C j x(k)+�v, jv j (k)
. (2)

(c) Discrete dynamics (D)
A Markov chain is used to describe uncertain mode

transitions in H as follows:

D :
{

P {q j (k)
} = p j (k) ∀q j ∈ Q

P {q j (k + 1) |qi (k)
} = πi j (k) ∀qi , q j ∈ Q,

where � = [πi j
]

M×M ∈ R
M×M is the mode transi-

tion probability matrix, and p = (p1, p2, . . . , pM ) ∈
R
1×M is the mode probability vector, which satisfies
{∑M

j=1 πi j = 1, i = 1, 2, . . . , M
∑M

j=1 p j = 1
.

(d) Initial condition (Init)
The initial condition of H can be described by the

probability distribution function of (q (0) , x (0)):

Init :
{F (x (0)

∣
∣q j (0)
) = N (x j (0) ,P j (0)

)

P {q j (0)
} = p j (0)

, (3)

where the symbolF (·) denotes the symbol of the prob-
ability distribution function. For ∀q j ∈ Q, p j (0) ≥ 0,
and
∑M

j=1 p j (0) = 1.

3 Health performance evaluation algorithm

Similar to previous safety assessment studies [36], the
health of a multirotor refers to its ability to main-
tain a good working condition and perform tasks as
required by users. Commonly, a task of a multirotor
can be decomposed to a sequential waypoints in its fly-
ing space. Thus, a multirotor can be considered healthy
if it flies following a predefined trajectory with devia-
tions in a tolerant range. Suppose a task trajectory is

Tr =
{
e pM, k

∣
∣
∣
e pM (k) ∈ R

3×1
}

. (4)
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Then, given a real-time flight position e p (k) of the
multirotor at a specific time k, the health performanceof
multirotor can be evaluated by a quantization function:

h (k) = H (e p (k) ,Tr
)
. (5)

In the proposed health performance evaluation algo-
rithm, a specific form and computation method of (5)
are established, which here includes two parts: hybrid
state estimation and health performance quantification.

3.1 Hybrid state estimation

To evaluate the real-time health performance of a mul-
tirotor, the probability distribution of the hybrid state
(q (k) , x (k))is estimated by an M-IMMPF algorithm.
The IMMPF algorithm combines an interacting multi-
ple model (IMM) filter and a particle filter, which can
address the problem of nonlinearities and deal with a
scenario with non-Gaussian noise. In addition to these
advantages, compared with other observer-based state
estimation methods for the purpose of obtaining state
estimates [37,38], IMMPF can use many particles to
fit the non-Gaussian distribution of the system states.
This can account for the uncertainties in the health risk
assessment and give more reasonable and accurate sys-
tem health values. In addition, as the computational
power of computers (such as aircraft’s ground station
computers) increases, the computational cost limit of
this algorithm is gradually weakened.

Based on the established model H, the sequential
sensor measurements Yk = {y (0) , y (1) , . . . , y (k)},
and an initial condition in (3), the IMMPF algorithm is
implemented as described in Table 1.

Modification: In the conventional IMMPF algo-
rithm, the transition probability matrix � is always
assumed to be constant as prior knowledge. However,
an unchanged transition probability matrix may reduce
the filtering accuracy and also fail to recognize the cor-
rect mode. The reason for this is that when the health
status of the multirotor changes, a new mode should be
dominant, and its corresponding transition probability
setting should be changed [39]. This problem can be
solved by dynamically resetting the transition probabil-
ity matrix after one anomaly is detected. The principle
is to make the IMMPF algorithm “think” the domi-
nant mode after an anomaly occurs is not the dominant
one anymore. The detected anomalous mode should
be viewed as a new dominant mode. Furthermore, the

update process should be efficient without complex
computations. Thus, an update of transition probabil-
ity is added to the conventional IMMPF algorithm to
achieve more accurate hybrid state estimations.

Suppose q (k − 1) = qi and q (k) = q j . If qi =
q j , then � (k) = � (k − 1). Otherwise, � (k) = � ·
� (k − 1)·�, where� is an elementarymatrix, defined
as follows:

� =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
· · ·

0 1 ← i th row
. . .

1 0 ← j th row
· · ·

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

which means � (k) is obtained from � (k − 1) by
a simple row and column transformation. After the
update, mode q j at time k becomes dominant instead of
mode qi . Through the modification, the filtering accu-
racy will be guaranteed. Furthermore, the restriction
that accurate discrete dynamics should be known as
priori knowledge for SHS modeling is relaxed.

Based on the M-IMMPF algorithm, the real-time
probability distribution of the hybrid state (q, x) is esti-
mated as follows:

F (x (k)
∣
∣q j (k)

) =
N∑

l=1

εlj (k) δ
(
x (k) − ŝlj (k)

)

P {q j (k)
} = p j (k)

, j = 1, 2, 3, (6)

where δ (·) is the Dirac function.

3.2 Health performance quantification

Based on the hybrid state estimation result, the health
performance status of the multirotor can be evaluated
and identified in a quantitativemanner.Here, twohealth
performance indicators are established: classical health
degree and fuzzy health degree.

3.2.1 Classical health degree

Based on the assigned task trajectory of the multirotor
in (4), a time-varying healthy space SH is defined as
follows:

SH (k) =
{
R
3
∣
∣
∣

∥
∥
∥
e p (k) − e pM (k)

∥
∥
∥∞ ≤ ξ

}
, (7)
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Table 1 IMMPF based hybrid state estimation

For k = 0, 1, . . .

Step 1. Interacting (for ∀q j ∈ Q)

(1) Calculate the predicted mode probability of mode q j from k − 1 to k: p j (k|k − 1) =∑i πi j pi (k − 1)

(2) Calculate the mixing probability of mode q j at time k − 1: pi | j (k − 1) = πi j pi (k − 1)
/
p j (k|k − 1)

(3) Calculate the mixing estimate of mode q j at time k − 1: x̂0j (k − 1|k − 1) =∑i x̂i (k − 1|k − 1) pi | j (k − 1)

(4) Calculate the mixing covariance of mode q j at time k − 1:

P0
j (k − 1|k − 1)

=∑i {Pi (k − 1|k − 1) + [x̂0j (k − 1|k − 1) − x̂i (k − 1|k − 1)][x̂0j (k − 1|k − 1) − x̂i (k − 1|k − 1)]T}pi | j (k − 1)

Step 2. Model-conditional filtering (for ∀q j ∈ Q)

(1) Draw N particles slj (k − 1) , l = 1, 2, . . . , N from N
(
x̂0j (k − 1|k − 1) ,P0

j (k − 1|k − 1)
)

(2) Calculate the predicted state of the particles at time k: ŝlj (k) = F j

(
slj (k − 1) , b f lw (k − 1)

)
+ �w, jw

l
j (k − 1)

(3) Calculate the measurement residual of the particles at time k: rlj (k) = y (k) − C j ŝ
l
j (k)

(4) Calculate the weights of particles at time k: ε̄lj (k) = N
(
rlj (k) ; 0,R

)
= 1√

2πR
exp
(
− 1

2 r
l
j (k)

T R−1rlj (k)
)

(5) Normalize the weights of particles at time k: εlj (k) = ε̄lj (k)
∑N

l=1 ε̄lj (k)

(6) Calculate the empirical mean and covariance of x j at time k: x̂ j (k|k) =∑ εlj (k) ŝ
l
j (k)

P j (k|k) =∑N
l=1 εlj (k)

(
ŝlj (k) − x̂ j (k|k)

) (
ŝlj (k) − x̂ j (k|k)

)T

Step 3. Mode probability update (for ∀q j ∈ Q)

(1) Calculate the residual covariance of the particles at time k :
S j (k) =∑N

l=1 εlj (k)
(
C j ŝ

l
j (k) − C j x̂ j (k|k)

)
·
(
C j ŝ

l
j (k) − C j x̂ j (k|k)

)T

(2) Calculate the likelihood function of the particles at time k:

L j (k) =∑ εlj (k)N
(
rlj (k) ; 0,S j (k)

)
=∑N

l=1
εlj (k)√|(2π)S j | exp

(
− 1

2 r
l
j (k)

T S−1
j (k) rlj (k)

)

(3) Update the mode probability at time k: p j (k) = p j (k|k−1)L j (k)∑
i pi (k|k−1)Li (k)

(4) Recognize the current mode at time k: p j (k) = maxi pi (k)

{
� pT 
⇒ The system is in mode q j

< pT 
⇒ No mode is recognized

Step 4. Estimate fusion

(1) Calculate the overall estimate of x at time k: x̂ (k|k) =∑ j x̂ j (k|k) p j (k)

(2) Calculate the overall covariance matrix at time k:

P (k|k) =∑ j {P j (k|k) + [x̂ (k|k) − x̂ j (k|k)
] · [x̂ (k|k) − x̂ j (k|k)

]T}p j (k)

Step 5. k −→ k + 1.

where ξ is a healthy threshold. As shown in Fig. 1,
(7) presents a range and boundary of the multirotor
deviating from the task.

Thus, the classical health degree of the multirotor at
time k can be defined as follows:

hc (k) = P {e p (k) ∈ SH (k)
∣
∣∀q j ∈ Q} . (8)

Equation (8) interprets that the classical health
degree at time k as the probability of the multirotor
staying in the healthy space at the moment, regard-

Fig. 1 Diagram of the healthy space
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less of which discrete modes it belongs to. Since the
real-time hybrid state estimation is obtained by the M-
IMMPF algorithm in (6), the classical health degree
of the multirotor under mode q j can be calculated as
follows:

hc, j (k) = ∫
SH(k) F

(
x (k)
∣
∣q j (k)
)
dx

=∑N
l=1 εlj (k) 1SH(k)

(
ŝlj (k)
)

,

where 1SH : R3 → {0, 1} denotes the indicator func-
tion of set SH⊆ R

3:

1SH (s) =
{
1 s ∈ SH

0 s /∈ SH
.

Then, the classical health degree of the multirotor is

hc (k) =
M∑

j=1

hc, j (k) · p j (k) . (9)

3.2.2 Fuzzy health degree

The classical health degree is defined on a binary
healthy space. However, for dynamical systems that
can operate in a degraded level, the health performance
goes through a series of degradation states from fully
healthy to fully failed. It is limited to characterizing the
health performance of the system with a binary thresh-
old in certain situations. Thus, the fuzzy health degree
is constructed to achieve a quantitative description of
the health performance of themultirotor, which is more
efficient and logical than the one proposed previously
[29].

ForΔp (k) = ∥∥e p (k) − e pM (k)
∥
∥∞, we define the

fuzzy healthy membership function μ
(
Δp (k)
)
. Then,

the fuzzy health degree of the multirotor at time k is
the fuzzy probability that the multirotor is in a fuzzy
healthy status at themoment. Since the real-time hybrid
state estimation is obtained by the M-IMMPF algo-
rithm in (6), the fuzzy health degree of the multirotor
under mode q j can be calculated as follows:

hf, j (k) = ∫
R3 μ
(
Δp (k)
) · F (x (k)

∣
∣q j (k)
)
dx

=∑N
l=1 μ
(
Δp (k)
) · εlj (k) 1R3

(
ŝlj (k)
)

.

Then, the fuzzy health degree of the multirotor is

hf (k) =
M∑

j=1

hf, j (k) · p j (k) . (10)

In this section, the state variables of the multirotor
used for health performance quantification are denoted

as e p, since the multirotor is defined to be healthy if it
flies following a predefined trajectory with a deviation
in a tolerant range in this paper. Note that the health
definition of a multirotor is related to its application
scenario. In some mission scenarios, such as hovering
surveillance, the flight attitude of the multirotor should
be given more attention. Under these circumstances,
the variables in Θ should be considered in the defini-
tion and computation of the classical and fuzzy health
degrees. Thus, the health performance quantification
method proposed in this part can be extended to differ-
ent definitions of the health performance ofmultirotors.

4 Case study

In this section, a faulty multirotor with sensor anoma-
lies during flight is used to prove the effectiveness of the
proposed health performance evaluation method. The
multirotor is required to fly to sequential waypoints and
hover at these points for different time intervals, where
GPS and barometer anomalies occur alternately during
the task. The simulation design, results and discussion
are presented below.

4.1 Simulation design

4.1.1 SHS-based model configuration

Theparameters in themultirotor dynamics and thewind
force and turbulence model are listed in Table 2. Note
that the embedded flight controller was properly set by
the trial method based on simulations [40].

Since the GPS and barometer readings are anoma-
lous, the SHS-basedmultirotormodel is built by setting
the discrete modes as a fully healthy mode q1, a GPS
anomalous mode q2, and a barometer anomalous mode
q3, which is expressed as

Table 2 Multirotor model parameters

Symbol Value

m 1.535 kg

Jx , Jy , Jz 0.0411, 0.0478, 0.0599 kg·m2

g 9.8 m/s2

Cd 0.1365 N/(m/s)2

w20 4 m/s
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Q = {q1, q2, q3} .

For ∀q j ∈ Q, we have its continuous dynamics as pre-
sented in (2), where the process equations satisfy
⎧
⎨

⎩

F1 (·) = F2 (·) = F3 (·) = F (·)
�w,1 = �w,2 = �w,3 = �w

Q1 = Q2 = Q3 = Q

and

Q=diag

⎧
⎪⎪⎨

⎪⎪⎩

w (·) ∼ N (0,Q){
0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.001, 0.001, 0.001, 0.001, 0.001, 0.001

}

�w = diag {0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1}
.

As to the measurement equation, for mode q1 rep-
resenting the fully healthy status, we have
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

C1 =

⎡

⎢
⎢
⎢
⎣

c1
c2
...

c12

⎤

⎥
⎥
⎥
⎦

�v,1 = �v

,

where ci is the i th row ofC1. For mode q2 representing
the GPS anomalous mode, the components

{
e px ,e py

}

of x might be incorrectly measured, and even the GPS
measurements are completely lost. Then, we have

C2 = C1

∖[
c1
c2

]

,

which is interpreted asC2 being the remaining part after
removing the rows c1 and c2 from C1. The meaning of
C2 is that whether the GPS signal can be received or
not, the continuous state update undermode q2 does not
consider GPS measurements. According to this princi-
ple, for mode q3, we have

C3 = C1\c3 ,

since the height e pz is the 3rd component of x. For
simplicity, setC = I12, which means all state variables
can be directly measured. For measurement noise v j

and the noise driven matrix �v, j under each mode q j ,
we set

q1 :

⎧
⎪⎪⎨

⎪⎪⎩

v1 (·) ∼ N (0,R1)

R1=diag

{
0.1, 0.1, 0.1, 0.5, 0.5, 0.5, 0.001,
0.001, 0.001, 0.001, 0.001, 0.001

}

�v,1 = diag {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
.

For modes q2 and q3, the matrices R j and �v, j can be
obtained following the same conversion rules as those

used for C j . The transition probability matrix in the
discrete dynamics is set as

� =
⎡

⎣
0.98 0.01 0.01
0.1 0.9 0
0.1 0 0.9

⎤

⎦ .

Here, there are two aspects that should be noted.
First, except for the GPS and barometers, other on-
board equipment of the multirotor is considered to
be healthy, including the propulsors and other sen-
sors, such as compasses, gyroscopes, and accelerom-
eters. Second, at most only one anomaly in the GPS
or barometer occurs at an identical time, since there
is little chance that the two sensors are both anoma-
lous at the same time for a qualified multirotor prod-
uct. These two points confine the number of the discrete
modes of the SHS-based multirotor model. In fact, the
number of discrete modes determines the complexity
and real-timeperformance of theM-IMMPFalgorithm.
Therefore, the computational power of the ground sta-
tion of the multirotor and the programming method of
the algorithm limit the maximum number of discrete
modes. References [22,29] conformed this by setting
three and four modes for the same case. Actually, the
mode number and the computational power are a trade-
off. More modes require advanced hardware to pro-
vide more sufficient computational power. Similarly,
in practical applications, real hardware devices deter-
mine the maximum number of modes that can be han-
dled. However, this is not the emphasis of this paper,
because the number of discrete modes does not change
the framework and implementation of the proposed
health performance assessment method.

4.1.2 Health performance quantification
configuration

To compute the classical and fuzzy health degrees, we
set the healthy threshold and fuzzy healthymembership
function as follows:

ξ = 0.5 m

and

μ
(
Δp
) =
⎧
⎨

⎩

1 Δp ∈ [0, 0.2m]
Δp−1
−0.8 Δp ∈ (0.2m, 1m]
0 Δp ∈ (1m,+∞)

.

Here, the selection of ξ and μ
(
Δp
)
plays an important

role in the health performance quantification, since an
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Table 3 Task trajectory

Time interval e pM Time interval e pM

(unit: s) (unit: m) (unit: s) (unit: m)

[0, 6] [0, 0, 10] [60, 70] [−5,−5, 10]

[6, 20] [5, 5, 10] [70, 80] [0, 0, 10]

[20, 30] [5, 0, 5] [80, 90] [0, 5, 5]

[30, 40] [5, 0, 10] [90, 100] [5, 0, 5]

[40, 50] [−5, 0, 5] [100, 130] [5, 5, 10]

[50, 60] [0,−5, 5] [130, 160] [10, 10, 5]

inappropriate configuration will lead to problems such
as false or missed alarms of the health performance
degradation. In practice, the values should be deter-
mined by historical data and reliability tests of multi-
rotors, practical engineering requirements, and expert
experience.

4.1.3 Task and anomaly design

Thewhole simulation timewas 160 s. In the task, amul-
tirotor was required to fly along a predefined trajectory,
which could be described by a series of waypoints. The
details are shown in Table 3. For example, the multiro-
tor was commanded to hover at the waypoint [5, 0, 5]
from 20 to 30 s, and then the multirotor flew to the
next waypoint [5, 0, 10] and hovered there. During the
task, different types of GPS and barometer anomalies
occurred alternately, as shown in Table 4. To simulate
GPSmeasurements with large noise, the corresponding
parameters in R1 of v1 (·) were increased as follows:

R1 (1, 1) = R1 (2, 2) = 5.1.

For the GPSmeasurement drift, we add a random value
to the measurements of e px and e py , as follows:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y (k) = C1x (k) + �v,1v1 (k) + Δy (k)
Δy (k) = [Δ1 (k) ,Δ2 (k) , 0, . . . , 0]T

Δ1 (k) = 3 + ζ1 (k)
Δ2 (k) = 5 + ζ2 (k)
ζ1 (·) ∼ N (0, 0.01) , ζ2 (·) ∼ N (0, 0.01)

.

For the loss of the GPSmeasurements, the related mea-
surements are changed to
{
y1 (k) = y1 (k − 1)
y2 (k) = y2 (k − 1)

.

For barometer anomalies, similar variations are per-
formed to generate related measurements.

Table 4 Anomaly occurrence scenario

Time interval Anomaly type
(unit: s)

[0, 6] Healthy

[6, 20] GPS signal with big noise

[20, 30] Healthy

[30, 40] Barometer signal with big noise

[40, 50] Healthy

[50, 60] GPS signal drift

[60, 70] Healthy

[70, 90] Barometer signal drift

[90, 100] Healthy

[100, 130] Barometer signal loss

[130, 160] GPS signal loss

4.2 Results

The proposed health performance evaluation method
was performed for the presented simulation scenario.
The results are shown in Figs. 2-8. Fig. 2 depicts
the three-dimensional wind velocities of the simulated
wind turbulence in the established simulation scenario.
It clearly shows that the wind disturbances experienced
by the multirotor in an actual flight process are col-
ored noise, which cannot be simply modeled with a
Gaussian-distributed noise. This indicates the necessity
of the established wind force and turbulence modeling
method. The hybrid state estimation result is shown
in Figs. 3-6. According to the definition of classical
and fuzzy health degrees, the components e p in x are
examined in this section. Fig. 3 compares the varia-
tion of the measured and estimated values of e p. Fig. 4
depicts the variation of the true and estimated values
of e p, and the task trajectory as shown in Table 3.
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Fig. 2 Simulated wind turbulence

Despite the incorrect sensor measurements, and even
sensor signal loss, the state variables in x could also be
estimated by the M-IMMPF algorithm. Furthermore,
when sensor anomalies (especially sensor signal lost)
occur, the estimated values of x will fluctuate within
a small range, which deviate from their true values. It
should be noted that the estimated values of e p depicted
in Fig. 4 are estimates with the minimum variance for
display purposes. Actually, the probability distribution
of the hybrid state (q, x) is used for health perfor-
mance evaluation. The probability distribution function
f
(
x (k)
∣
∣q j (k) ,Yk

)
in (6) is represented by a number

of particles by the M-IMMPF algorithm, which is dif-
ficult to depict. Nevertheless, Fig. 5 shows the prob-
ability distribution of different modes p j (k) in (6),
which is used in the health performance quantification
in (9) and (10). On this basis, Fig. 6 presents the mode
recognition results based on the M-IMMPF algorithm.
This indicates that a dominant mode of the multiro-
tor is able to be mostly recognized by the M-IMMPF
algorithm, meaning that the M-IMMPF algorithm has
the ability to detect faults. Although fault detection is
not the main purpose of the proposed method, Fig. 6
proves the effectiveness and accuracyof the hybrid state
estimation result based on M-IMMPF. For health per-
formance quantification, the computed classical health
degree is depicted in Fig. 7, and the computed fuzzy
health degree is depicted in Fig. 8. This indicates that
when a sensor anomaly occurs, both the classical and
fuzzy health degrees decrease to some extent, which
proves that their variations can reflect the health per-

Fig. 3 Measured and estimated values of e p

Fig. 4 True and estimated values of e p

formance variations of the multirotor as effective indi-
cators of the health performance status.

4.3 Discussion

To quantitatively assess the effectiveness of the pro-
posed health evaluation method, three error indicators,
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Fig. 5 Mode probability distribution of the SHS-based model

Fig. 6 Mode recognition result based on the M-IMMPF algo-
rithm

Fig. 7 Health performance quantification result based on clas-
sical health degree

Fig. 8 Health performance quantification result based on fuzzy
health degree

namely root mean square error (RMSE), mean abso-
lute error (MAE) and mean relative error (MRE), are
employed to prove the effectiveness and accuracy of
the hybrid state estimation result. Fig. 4 presents the
true and estimated values of e p. The error indicators
are calculated. For example, the calculation formulas
of the above error indicators for the state variable e px
are as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

e (k) = e px (k) − e p̂x (k)

RMSE =
√

1
N

∑N
k=1 e

2 (k)

MAE = 1
N

∑N
k=1 |e (k)|

MRE = 1
N

∑N
k=1 e (k)

.

The results are shown in Table 5. From the average
effect, the estimation error of the real-time position of
the multirotor is within an acceptable range, since the
error range is much smaller than the variation range of
the multirotor flight trajectory.

Despite the error analysis, the advantages of the
proposed method can be further demonstrated through
two comparisons. First, a comparison between the M-
IMMPF and conventional IMMPF algorithms is made.
For clarity, only the mode recognition result based on
the conventional IMMPF algorithm is depicted here, as
shown in Fig. 9. The conventional IMMPF algorithm
fails to identify the correct dominant mode of the mul-
tirotor, let alone evaluate the real-time health perfor-
mance status ofmultirotor. A comparison of Figs. 6 and
9 demonstrates the necessity of the transition probabil-
ity updating process, and the effectiveness and advan-
tages of the proposed M-IMMPF algorithm.
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Table 5 Calculated error indicators

RMSE (unit: m) MAE (unit: m) MRE (unit: m)

e px 0.0273 0.1063 0.0039
e py 0.0307 0.1169 − 0.0354
e pz 0.0528 0.1275 − 0.0050

Fig. 9 Mode recognition result based on the conventional
IMMPF algorithm

For health performance quantification, Figs. 7 and 8
clearly show that when an anomaly occurs, the clas-
sical health degree fluctuates more heavily than the
fuzzy health degree, and the variation of the fuzzy
health degree is sensitive to variations of the health
performance status, especially when themultirotor still
flies in a variable degradation condition. The reason
for this difference is that the classical health degree
uses a sharp threshold to determine the health perfor-
mance status of the multirotor, while the fuzzy health
degree uses fuzzy states to characterize the health per-
formance. Both methods have advantages. For safety-
critical scenarios, the multirotor cannot tolerate slight
anomalies, and an emergency decision should be made
based on slight health performance degradation. In this
case, the classical health degree is required to moni-
tor the health performance status of the multirotor. For
mission-critical scenarios, the first priority of a multi-
rotor is to successfully complete the mission, and it is
acceptable to flywith a degraded orwith an average tol-
erant health performance status. In this case, the fuzzy
health degree is more suitable. Thus, the selection of
the health performance indicators should be based on
practical engineering demands.

Another comparison is made between the fuzzy
health degree proposed in this paper and that pro-
posed previously in [29]. Reference [29] established
two forms of the fuzzy health degree, Rsys1 and Rsys2

. The calculation equations are

Rsys1 = Re px · Re py · Re pz

and

Rsys2 = 1

3

(
Re px + Re py + Re pz

)
.

Apparently, Rsys1 considers that
{
e px ,e py,e pz

}

influence the health performance evaluation result of
the multirotor in a serial form, and any state variable
can totally affect the health performance of the sys-
tem. Rsys2 considers that each state variable only influ-
ences the health performance status of the multirotor
in a weighted form, and the health performance of the
system is a weighted sum of the health performance
statuses of the state variables of interest. The detailed
algorithm is presented previously in [29]. In this way,
the health performance quantification results based on
Rsys1 and Rsys2 are shown Fig. 10. A comparison with
Fig. 8 shows that both Rsys1 and Rsys2 have limita-
tions. The value of Rsys1 is arbitrary to some extent,
since deviations of multiple state variables influence
the variation of the fuzzy health degree in a overlap-
ping manner. As to Rsys2, its value mostly varies in a
relatively small range, sincewhen a single state variable
deviates from its expected value, the influence on the
health performance evaluation result will be weakened
due to the weighted (averaged) computation. The fuzzy
health degree calculated by themethod proposed in this
paper can be viewed as a compromise between Rsys1

and Rsys2, considering both sensitivity and robustness.
More importantly, the algorithm of the fuzzy health
degree reported in [29] requires a discretization step,
since the probability distribution of the state variables
of the multirotor conforms to a multivariate Gaussian
distribution. The accuracy of the evaluation result is
positively related to the fineness of the discretization.
This leads to a heavier computational burden than that
of the algorithm of the fuzzy health degree proposed in
this paper, since the proposed algorithm in this paper
is implemented on the continuous domain of state vari-
ables of the multirotor.

The limitations of the proposed method lie in two
aspects. First, the health performance evaluation result
of the multirotor is sensitive to external disturbances,
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Fig. 10 Fuzzy health degree result based on the algorithm in
[29]

even if a filtering-based method is employed. In low-
intensity wind disturbances, such as low-speed wind
turbulence, the filtering-based method can achieve a
basically satisfactory anti-disturbance effect, and the
health performance evaluation result has a high degree
of credibility. However, for high-intensity wind distur-
bances, such as high-speed wind turbulence or gusts,
the real-time flight position of the multirotor will devi-
ate from the predetermined flight trajectory, resulting
in a decline in health. This is not caused by anoma-
lous on-board components, but caused by disturbances.
Strictly speaking, it cannot be regarded as the deterio-
ration of the health performance of the multirotor. Sec-
ond, the capacity of the algorithm is not determined,
that is, how many sensor anomalies can be covered
by this method, and meanwhile ensures its effective-
ness. To obtain accurate health evaluation results, it
is necessary to accurately estimate the hybrid state of
the SHS-basedmultirotormodel. Therefore, an observ-
ability analysis of themodel can determine the capacity
of the algorithm. However, it should be noted that for
current multirotor products, the observation of aircraft
state variables mostly relies on the fusion of multiple
sensor signals, and the capacity of the algorithm also
depends on the type and number of sensors on the air-
craft.

5 Conclusion

In this paper, a health performance evaluation method
of multirotors under wind turbulence is proposed. Dur-
ing the SHS-based multirotor modeling, the Dryden

wind turbulence model is used to describe the turbu-
lent wind field, which models the wind disturbances on
the multirotor as colored noise. The M-IMMPF algo-
rithm is proposed to estimate the real-time hybrid state
of the SHS-based multirotor model, where the prob-
ability distribution of the hybrid state is described by
a certain number of particles. Finally, the health per-
formance status of the multirotor is quantified by both
classical and fuzzy health degrees as indicators. A case
study proved the effectiveness of the proposed method,
where the error indicators RMSE, MAE, and MRE
were all in acceptable ranges. This method detects the
real-time health performance degradation of the mul-
tirotor in a realistic wind field, and quickly and accu-
rately provides a health quantitative value, which pro-
vides a reference for making reliable flight decisions.
Furthermore, compared to the conventional IMMPF
algorithm and fuzzy health degree proposed in a previ-
ous study, the advantages of the M-IMMPF algorithm
are demonstrated, and the rationality and efficiency of
the proposed fuzzy health degree are proven. In future
research, there are three aspects that require further
study. First, other multirotor anomalies, such as air-
frame damage and propulsor faults, should be taken
into account to extend the applicability of the proposed
method. Furthermore, other sensor anomalies should
be embedded in the proposed method, and an observ-
ability analysis should be performed to determine the
minimum number of accurately observed variables for
the scheme to be applicable. Second, a health perfor-
mance evaluation algorithm for a homogeneous mul-
tirotor team can be investigated, because the members
of the team suffer from similar disturbances in a simi-
lar wind field. The study can help to estimate the form
and amplitude of the disturbances and to mitigate their
impact on the evaluation. Finally, how to properly set
a multirotor’s flight strategy based on different health
evaluation results should also be studied.
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