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Abstract In this paper, the stick-slip vibrations of an
archetypal self-excited smooth and discontinuous (SD)
oscillator are investigated. The mathematical model of
the self-excited SD oscillator is established by employ-
ing Coulomb’s law to formulate the friction between
the surfaces of the mass and the moving belt. Complex
dynamical behaviors are demonstrated by equilibrium
analysis including stability analysis and supercritical
pitchfork bifurcations of the system. Closed-form solu-
tions for both stick-slip motions and pure slip motions
of the system can be derived and utilized to examine
the influence of the belt speed on the steady-state of
the system by using Hamilton function. The evolution
of sliding regions and the collision of the trajectories
with the sliding region are presented for the forced self-
excited system resorting to the numerical simulations.
The results obtained here offer an opportunity for us
to understand the conversion mechanism between the
stick and the slip motions for the friction systems with
geometric nonlinearity in engineering.
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1 Introduction

Friction is a very complicated dynamics phenomenon
and plays a crucial role in various engineering systems,
such as mechanical engineering, civil engineering and
seismology [1–3]. Moreover, it is a typically nons-
mooth factor that may induce self-excited vibration in
extensive engineering systems, such as brake systems
[4], bearing systems [5], rotating drilling systems [6],
rotor rubbing systems [7], and so on. A great number of
comprehensive models have been established, such as
Coulomb friction model, Dahl model, Sribeck friction,
Karnopp model and LuGre model [8,9]. Among them,
the Coulomb friction model is the simplest one and has
been extensively adopted.

Friction induced self-excited vibration, also known
as stick-slip vibration, often cause some undesired
effects observed in everyday life as well as engineer-
ing applications, including noise of a squeaking door,
squeaky chalk on a blackboard, brake squeal, rattling
joints of a robot, chattering machine tools and others.
The self-excited vibrations between contact interfaces
may lead to wear and damage of a machinery or a
failure of a mechanical system. Scholars have done a
variety of theoretical and experimental research on the
related problems caused by the stick-slip vibration [10–
12]. Many researchers have attempted to understand
stick-slip vibrations by using a simple oscillator excited
by a moving belt that exerts a friction force. Major-
ity of these investigations in literature have focused
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on the occurrence of stick-slip vibration [13,14], stick-
slip periodic solution [15,16], asymmetric non-sticking
solutions [17], stick-slip amplitudes [18,19] and stick-
slip chaos [20–22]. However, stick-slip vibrations are
sensitive to material properties, such as physical and
mechanical properties of the materials between the two
surfaces in contact, stiffness of the components, sur-
face topography, system damping, working environ-
ment and so on. Until to now, there is no an efficient
and feasible method which can fully explain the stick-
slip vibration phenomenon. Thus, it is quite important
to comprehensively understand the conversion mech-
anism between the stick motion and the slip motion,
which may provide some guidance to reduce the harm-
ful influences of the stick-slip motion on mechanical
components and improve the operating performance.

At present, there are numerous nonlinear fric-
tion systems characterized by geometry nonlineari-
ties of elastic large deformation or large displace-
ment in mechanical engineering, seismology and cli-
matostratigraphy, such as thegeometric friction-induced
vibration between the brake plate and pad in a brake
system [23], the motion between the moving tectonic
plates in an earthquake fault moving across each other
[24], the stick-slip phenomenon of the Whillans Ice
Stream (WIS) as the climate changes [25]. Therefore,
it is of great practical significance to study the mech-
anism of stick-slip vibrations of friction systems with
geometry nonlinearity.

Recently, a self-excitedSDoscillatorwith geometric
nonlinearity was proposed in [26] based upon the SD
oscillator [28–31] mounted on a moving belt, which
is characterized by the multiple stick zones, hyper-
bolic structure transition and friction-induced asym-
metry phenomenon. The threshold of multiple stick-
slip chaos for the perturbed self-excited SD oscilla-
tor has been studied in [32]. The local and global
bifurcation behaviors including Hopf bifurcation, dou-
ble tangency bifurcation, grazing bifurcation, sliding
homoclinic bifurcation of the self-excited SD oscilla-
tor with Stribeck friction characteristic were investi-
gated in [33]. Stochastic P-bifurcations of self-excited
SD oscillator under the effects of periodic impulse and
random force were studied, see [34] for details. The
research on the stick-slip vibration theory of the fric-
tion system with geometry nonlinearity is very lim-
ited. The most of existing studies regarding the aspect
of stick-slip vibration for geometry nonlinear system
with friction resort to the numerical simulation. It is

necessary to develop some analytical procedures for
evaluating the stick-slip vibrations of friction systems
with geometry nonlinearity.

The motivation of this paper is to investigate the
stick-slip vibrations of the self-excited SD oscillator
with Coulomb friction. By employing the Hamilton
function, the closed-form solutions can be derived and
utilized to examine the influence of the moving belt
speed on the steady state of this system. Furthermore,
the evolution of sliding regions and the collision of tra-
jectories in stick-slip motion with sliding region for
the forced self-excited system can be demonstrated.
These investigations on the stick-slip vibrations of the
self-excited SD oscillator can lead to a deeper under-
standing of stick-slip vibration mechanism for friction
systems with the geometric nonlinearity in mechanical
engineering.

2 The governing equation

In this section, a self-excited SD oscillator is studied,
as shown schematically in Fig. 1a. This system is com-
posed by a mass M , supported by a non-deformable
moving belt with a constant velocity V0, connected to
a fixed support by a inclined linear spring of stiffness
coefficient K , which is capable of resisting both com-
pression and tension. The contact surface between the
mass and the belt is rough so that the belt exerts a fric-
tion force FS on the mass. It is supposed that the mass
moves on the moving belt horizontally without loss of
contact with the belt. The position and velocity of the
mass over the belt are represented by X and Ẋ .

The equation of motion for this self-excited system
is written as the following

MẌ + K X
(
1 − L√

X2 + H2

)
+ FS = 0, (1)

where the dot denotes the derivative with respect to τ ,
L is the original length of the spring, H is the distance
between the fixed point and the belt, and the friction
FS between the mass and the belt is modeled as the
Coulomb friction (Fig. 1b).

The stick and slip motions are depended on the rela-
tive velocity Vrel = Ẋ − V0. In the stick state, the rela-
tive velocity is equal to zero (Vrel = 0), that is the mass
and the belt move together and the static friction will
take the value necessary to balance the forces, which
implies that it is necessary to keep the contacting sur-
faces from sliding. Furthermore, the mass acceleration
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Fig. 1 The mechanical
model. a The dynamical
model of a self-excited SD
oscillator, b Coulomb
friction law

(a) (b)

is equal to zero, i.e., Ẍ = 0. Thus, the static friction
can be written as

− μs FN ≤ FS = −K X (t)
(
1 − L√

X2(t) + H2

)

≤ μs FN , (2)

where μs represents the maximum static friction coef-
ficient, FN = Mg − K H(1 − L/

√
X2 + H2) is the

total force of the gravity of the mass and vertical com-
ponent of the spring force to be assumed that FN > 0.
Only if the spring force exceeds the peak force μs FN ,
the mass begins to slide.

In the slip state, the relative velocity is not equal to
zero (Vrel �= 0), that is the mass slides on the belt and
the kinetic friction acts on the direction opposite to the
relative velocity. The kinetic friction is given by

FS = μk FN sign(Ẋ − V0), (3)

where μk is the coefficient of kinetic friction.
Because the friction FS between the mass and the

belt is discontinuous andmultivalued atVrel = 0,which
can be described in the formof the differential inclusion
of Filippov type [35] as

FS ∈ μ(Vrel)FNSign(Ẋ − V0), (4)

where

Sign(Vrel) =
⎧⎨
⎩
1 if Vrel > 0,
[ − 1, 1] if Vrel = 0,
−1 if Vrel < 0,

μ(Vrel) is the friction coefficient of contacting surfaces
and assumed to have two discrete values, defined as

μ(Vrel) =
{

μk if Vrel �= 0,
μs if Vrel = 0.

(5)

Equation (1) can be made dimensionless by letting
x = X/L , ω2

0 = K/M , α = H/L , g1 = g/(Lω2
0),

v0 = V0/(Lω0), vrel = ẋ − v0 and t = ω0τ , together
with Eq. (4), and written as:

ẍ + x
(
1 − 1√

x2 + α2

)
∈ −μ(vrel)

[
g1 − α

(
1 − 1√

x2 + α2

)]
Sign(ẋ − v0), (6)

where the dot denotes the derivative with respect to t .
It is worth noting that the system (6) is strongly geo-

metric nonlinear, having an irrational restoring force
f (x) = x(1 − 1/

√
x2 + α2) due to the geometri-

cal configuration, and a nonlinear friction force fs =
μ(vrel) fn Sign(vrel) due to variation of normal contact
force fn = g1 − α(1 − 1/

√
x2 + α2).

3 Equilibrium bifurcation

In paper [26], the equilibrium and its bifurcation of the
self-excited SD oscillator were studied by assuming a
constant coefficient of friction, i.e., μk = μs = μ. In
this paper, under the assumption of Coulomb friction,
including a static coefficient different from the kinetic
one, stick-slip vibrations of a self-excited SD oscillator
will be analyzed, which is one of some follow-up work
for the self-excited SD oscillator. In this section, we
firstly investigate the equilibria and their stability for
this system. Equation (6) can be written as following
generic planar Filippov system by letting ẋ = y,
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⎧
⎨
⎩
ẋ = y,

ẏ ∈ −x
(
1 − 1√

x2 + α2

)
− μ(vrel)

[
g1 − α

(
1 − 1√

x2 + α2

)]
Sign(y − v0),

(7)

which follows the equilibria determined by the follow-
ing

x
(
1 − 1√

x2 + α2

)

−μk

[
g1 − α

(
1 − 1√

x2 + α2

)]
= 0,

(8)

or equivalently, it follows

x4 + 2μk(α − g1)x
3 + [α2 − 1 + μ2

k(α − g1)
2]x2

+2μkα(α2 − g1α − 1)x + μ2
kα

2[(α − g1)
2 − 1] = 0.

(9)

After some calculations, the solutions to Eq. (9) are

x0 = 1

2
μk(g1 − α) − 1

2

√
Υ1 + Δ + 1

2

√
2Υ1 − Δ − Υ2,

x1 = 1

2
μk(g1 − α) − 1

2

√
Υ1 + Δ − 1

2

√
2Υ1 − Δ − Υ2,

x2 = 1

2
μk(g1 − α) + 1

2

√
Υ1 + Δ + 1

2

√
2Υ1 − Δ + Υ2,

(10)

where

Υ1 = 1

3
μ2
k(α − g1)

2 − 2

3
(α2 − 1),

Υ2 = 8μ3
k(g1 − α)3 − 16μkα(α2 − g1α − 1) + 8μk(α − g1)[μ2

k(α − g1)2 + α2 − 1]
4
√

Υ1 + Δ
,

Δ =
3
√
2Δ1

3 3

√
Δ2 +

√
−4Δ3

1 + Δ2
2

+
3

√
Δ2 +

√
−4Δ3

1 + Δ2
2

3 3
√
2

,

Δ1 = 12μ2
kα

2[(g1 − α)2 − 1] − 12μ2
k(α − g1)(α

3 − α2g1 − α) + [μ2
k(α − g1)

2 + α2 − 1]2,
Δ2 = 108μ4

kα
2(α − g1)

2[(α − g1)
2 − 1] − 72μ2

kα
2[(α − g1)

2 − 1][μ2
k(α − g1)

2 + α2 − 1]
−36μ2

k(α − g1)(α
3 − α2g1 − α)[μ2

k(α − g1)
2 + α2 − 1] + 108μ2

k(α
3 − α2g1 − α)2

+2[μ2
k(α − g1)

2 + α2 − 1]3.

The equilibria of system (7) are (x0, 0), (x1, 0) and
(x2, 0), and their stability can be determined by Jaco-
bian of equilibria of the system (7), where the Jacobian
matrix, J , can be written as

J(xi ,0) =
⎡
⎣

0 1
α2 − αμk xi
(x2i + α2)3/2

0

⎤
⎦ , i = 0, 1, 2, (11)

with the characteristic equation written as

λ2 − [ α2 − αμk xi
(x2i + α2)3/2

− 1
] = 0, i = 0, 1, 2, (12)

where x0, x1 and x2 have been given by Eq. (10).
Eigenvalues, λ, of the Jacobian matrix can reflect

the features of local stability at the equilibrium point.
Therefore, the equilibrium (x0, 0) is a hyperbolic sad-

dle with the eigenvalues λ1,2|(x0,0)=±
√

α2−αμk x0
(x20+α2)3/2

−1,

and the equilibria (x1,0) and (x2,0) are the pair of cen-

terswith the eigenvaluesλ1,2|(x1,0)=±i
√

αμk x1−α2

(x21+α2)3/2
+1

and λ1,2|(x2,0) = ±i
√

αμk x2−α2

(x22+α2)3/2
+ 1, respectively, for

the parameters α and μk satisfying

2Υ1(α, μk) − Δ(α,μk) − Υ2(α, μk) > 0. (13)

Clearly, the equilibria of system (7) depend on the
values ofα andμk . To examine the influence of parame-
tersα andμk on the dynamics of system (7), the equilib-
rium surface in (α, μk, x) space from Eq. (8) is shown
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(a)

(b)

(c)

Fig. 2 a Equilibrium surface in (α, μk , x) space and section β1 and β2. b Equilibrium bifurcation in x − α plane for μk=0.1. c
Equilibrium bifurcation in x − μk plane for α=0.4. Dashed and solid lines display the saddle and center, respectively

(a) (b) (c)

Fig. 3 The centre-saddle bifurcation for belt velocity v0 = 1. a α = 0.4, b α = 0.4955, c α = 0.55. The black, green and blue dots
denote the centres, the saddle point and the centre-saddle point, respectively

in Fig. 2a for g1 = 2, which clearly shows the equilib-
rium bifurcations of the self-excited SD oscillator with
the variation of parameters α and μk .

To get a better understanding of the bifurcation pro-
cess, we investigate the structure of the equilibrium
surface by introducing two planes β1 : μk = 0.1 and
β2 : α = 0.4, in order to cut the equilibrium surface

in two different directions and two intersections are
obtained in the following:

ε1 = {(x, α)|x − μkα

= [x − μk(g1 − α)]
√
x2 + α2, g1 = 2, μk = 0.1

}
,

ε2 = {(x, μk)|x − μkα

= [x − μk(g1 − α)]
√
x2 + α2, g1 = 2, α = 0.4

}
.
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The equilibrium bifurcation with the variation of α

for μk = 0.1 has been shown in Fig. 2b, meanwhile
the equilibrium bifurcation with the variation of μk for
α = 0.4 is presented in Fig. 2c, where the dashed and
solid curves represent the saddle and the center, respec-
tively. It is clearly seen that the centre-saddle bifurca-
tions occur atα∗ = 0.4955 in Fig. 2b, andμ∗

k = 0.1331
in Fig. 2c, respectively. This process of topological
change for the centre-saddle bifurcation is shown in
Fig. 3 with the variation of parameter α for belt veloc-
ity v0 = 1. The black and green dots denote the centres
and the saddle point connecting two homoclinic orbits,
respectively, as shown in Fig. 3a for α = 0.4. With the
increase of α, the centre-saddle bifurcation occurs at
α = 0.4955 in Fig. 3b, where a blue dot denote the
centre-saddle point connecting one homoclinic orbit.
In Fig. 3c, the homoclinic orbit vanishes and there is
only a centre for α = 0.55.

4 Sliding behaviors induced by Coulomb friction

In this section, the stick-slip and pure slip motions
induced by Coulomb friction for the self-excited SD
oscillator are investigated. Note that, for ẋ > v0 > 0,
there is no equilibrium for this system, and no close
orbits exist as known from Fig. 3. We will analyze the
sliding behaviors of this system by assuming ẋ < v0,
then system (6) can be rewritten into a Hamiltonian
system as follows

⎧⎪⎨
⎪⎩
ẋ = ∂H

∂y
= y,

ẏ = −∂H

∂x
= −x

(
1 − 1√

x2 + α2

)
+ μk

[
g1 − α

(
1 − 1√

x2 + α2

)]
,

(14)

fromwhich the Hamiltonian can be obtained as follows

H(x, y) =H(x, ẋ)=1

2
ẋ2 + 1

2
x2−

√
x2 + α2

−μk(g1−α)x−μkα ln
(
x+

√
x2+α2

)
.

(15)

Since
dH

dt
= dH

dx
ẋ + dH

dy
ẏ = dH

dx

dH

dy
− dH

dy

dH

dx
≡ 0,

(16)

the level curves H(x, ẋ)=constant are solution curves
for the system (14). The critical points of H(x, ẋ) cor-
respond to the fixed points of the flow of Hamilton’s

Eq. (14). For the saddle point (x0, 0), we can get

H(x0, 0) = 1

2
x0 −

√
x20 + α2 − μk(g1 − α)x0

−μkα ln
(
x0 +

√
x20 + α2

)
= h0. (17)

For convenience, a newHamiltonian can be obtained
by introducing a transformation

E = H̃(x, ẋ) = H(x, ẋ) − h0 = 1

2
ẋ2 + 1

2
x2

−√
x2 + α2 − μk(g1 − α)x − μkα ln

(
x + √

x2 + α2
)

− h0,
(18)

where x0 is the abscissa of the saddle point (x0, 0)with
standard hyperbolic structure, thus H̃(x0, 0) = 0.With
the help of the Hamiltonian (18), the trajectories can be
classified and analyzed. Different stationary dynamic
behaviours are exhibited as the parameter v0 varies by
numerical analysis, as shown in Figs. 4, 5 and 6 for
g1 = 2, μs = 0.1 and μk = 0.05.

When α = 0.4, the phase portraits of system (6)
are plotted for different values of the Hamiltonian
H̃(x, ẋ) = E , as shown in Fig. 4a for v0 = 0.9. When
E < 0, there exists two families of periodic orbits
inside the homoclinic orbits with asymmetry, respec-
tively. When E > 0, there exists another family of
periodic orbits outside the homoclinic orbits, where the
outermost periodic orbit is a stick-slip motion and the
short horizontal part (marked with green) corresponds
to the stick locus, as shown in Fig. 4a.

For a given belt speed v0, a particular region χs1

(shaded in Fig. 4a) in the phase plane is defined by the
following inequality [36]:

χs1 : 1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x +

√
x2 + α2

)
− h0 ≤ Eb, (19)

where

Eb = 1

2
v20 + 1

2
x22 −

√
x22 + α2 − μk(g1 − α)x2

−μkα ln
(
x2 +

√
x22 + α2

)
− h0, (20)

x2 is the abscissa of the right-hand centre (x2, 0). The
boundary of χs1 is a circumference being tangent to the
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(a) (b)

Fig. 4 Dynamical behaviour of the system (6) for α = 0.4 and v0 = 0.9. a Phase portraits of the system, b the curves of Hamiltonian
H̃(x, ẋ) versus displacement x

stick locus (marked with green) and the tangent point
is (x2, v0).

For an initial point P0 = (xp, ẋ p) in Fig. 4a, if P0 ∈
χs1, the periodic motion starting from P0 do exist in a
pure slip mode as the following
1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x +

√
x2 + α2

)
− h0 = Ep, (21)

where Ep = 1

2
ẋ2p+

1

2
x2p−

√
x2p + α2−μk(g1−α)xp−

μkα ln
(
xp +

√
x2p + α2

)
− h0. The mass will rest if

P0 coincides with the three equilibria of the system (6).
If P0 /∈ χs1, the trajectory starting from P0 is

attracted by a stick-slip motion located in the outer-
most periodic orbit in Fig. 4a, which is defined as

Γs :

⎧
⎪⎪⎨
⎪⎪⎩

1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x + √

x2 + α2
)

− h0 = Es , ẋ < v0,

xr1 ≤ x ≤ xr2, ẋ = v0,

(22)

where

Es = 1

2
v20 + 1

2
x2r2 −

√
x2r2 + α2 − μk(g1 − α)xr2

−μkα ln
(
xr2 +

√
x2r2 + α2

)
− h0,

xr2 = 1

2
μs(g1 − α) + 1

2

√
Υ1(μs) + Δ(μs)

+1

2

√
2Υ1(μs) − Δ(μs) + Υ2(μs),

(23)

and xr1 and xr2 are the smallest and largest roots of the
equation
1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x +

√
x2 + α2

)
+ 1

2
v20 − h0 = Es .

The curves of Hamiltonian H̃(x, ẋ) versus displace-
ment x mentioned in [37] for pure-slip periodic motion
and stick-slip periodic motion shown in Fig. 4a have
been depicted in Fig. 4b, where the potential function
V (x) (marked by blue)

V (x) = 1

2
x2 −

√
x2 + α2

−μk(g1 − α)x − μkα ln
(
x +

√
x2 + α2

)
− h0

is characteristic in asymmetric potentialwells. Two centres are
the minima of V (x), while the saddle is the local maximum,
and it separates the two asymmetric potential wells.

It is observed that the level of Hamiltonian H̃(x, ẋ) is
unchanged during the pure-slip motion when E ≤ Eb marked
with shaded area in Fig. 4b. The Hamiltonian H̃(x, ẋ) = Es

denotes the slip stage of the stick-slip periodic motion Γs ,
while the Hamiltonian H̃(x, ẋ) = Ek (depicted with green)
represents the stick stage of the stick-slip periodic motion Γs ,
which is defined as

Ek = 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x +

√
x2 + α2

)

+1

2
v20 − h0, x ∈ [xr1, xr2]. (24)

From the discussion above, we know that the system has
three equilibria, a pair of centers and a saddle point with a
hyperbolic structure connecting two asymmetric homoclinic
branches on both sides under ẋ < v0 with a relatively large
belt speed, as shown in Fig. 4a. From some numerical inves-
tigations, it is found that there exists two critical belt speeds
v∗
0 and v∗∗

0 which can be calculated from the equation E = 0,
one can get

v∗
0 =

√
2h0 − x22 + 2

√
x22 + α2 + 2μk(g1 − α)x2

√
+2μkα ln

(
x2 +

√
x22 + α2

)
, (25)
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v∗∗
0 =

√
2h0 − x21 + 2

√
x21 + α2 + 2μk(g1 − α)x1

√
+2μkα ln

(
x1 +

√
x21 + α2

)
, (26)

where x1 and x2 is the abscissa of two centres (x1, 0) and
(x2, 0), respectively.

When v0 > v∗
0 , there exists two homoclinic branches con-

necting the saddle point with a hyperbolic structure. While
v∗∗
0 < v0 < v∗

0 , the homoclinic orbit on the left-hand remains,
and the other homoclinic branch breaks, meanwhile the unsta-
ble manifold of the saddle point enters into a stick-slip peri-
odic motion after passing along a stick stage denoted by the
segment marked green, as shown in Fig. 5a.

For a given belt speed satisfying v∗∗
0 < v0 < v∗

0 , a particu-
lar region χs2 (shaded in Fig. 5a) in the phase plane is defined
by the following inequality:

χs2 :

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x + √

x2 + α2
)

− h0 ≤ 0, x ≤ x0,

1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x + √

x2 + α2
)

− h0 ≤ Eb, x > x0.

(27)

As shown in Fig. 5a, if P0 ∈ χs2, the steady motion from
P0 is a pure-slip periodic motion. If P0 /∈ χs2, the trajectory
from P0 except for the point from the stable manifold of the
saddle point is attracted by a stick-slip periodic motion in the
right half of a plane in Fig. 5a, as defined in Eq. (22) for
Γs . The curves of Hamiltonian H̃(x, ẋ) versus displacement
x corresponding to pure-slip periodic motion and stick-slip
periodic motion in Fig. 5a have been shown in Fig. 5b for
v0 = 0.5. The expressions of Eb, Es and Ek for the Hamilto-
nian H̃(x, ẋ) have been presented in Eqs. (20), (23) and (24),
respectively.

When v0 < v∗∗
0 , both two homoclinic orbits break. In this

case, a particular region χs3 (shaded in Fig. 6a) in the phase
plane is defined by the following inequality:

χs3 :

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x + √

x2 + α2
)

− h0 ≤ E ′
b, x < x0,

1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x + √

x2 + α2
)

− h0 ≤ Eb, x > x0,

(28)

where the Eb is defined by Eq. (20) and

E ′
b = 1

2
v20 + 1

2
x21 −

√
x21 + α2 − μk(g1 − α)x1

−μkα ln
(
x1 +

√
x21 + α2

)
− h0. (29)

As depicted in Fig. 6a, if P0 ∈ χs3, the steady motion from
P0 is a pure-slip periodic motion. If P0 /∈ χs3, and except for
the point from the stable manifold of the saddle point, the

trajectory from P0 is attracted by a right or a left stick-slip
periodic motion in Fig. 6a, as defined in Eq. (22) for Γs and

Γ ′
s :

⎧⎪⎪⎨
⎪⎪⎩

1

2
ẋ2 + 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x + √

x2 + α2
)

− h0 = E ′
s , ẋ < v0,

xl1 ≤ x ≤ xl2, ẋ = v0,

(30)

respectively, where

E ′
s = 1

2
v20 + 1

2
x2l2 −

√
x2l2 + α2 − μk(g1 − α)xl2

−μkα ln
(
xl2 +

√
x2l2 + α2

)
− h0,

xl2 = 1

2
μs(g1 − α) − 1

2

√
Υ1(μs) + Δ(μs)

−1

2

√
2Υ1(μs) − Δ(μs) + Υ2(μs),

(31)

and xl1 and xl2 are the smallest and largest roots of the equation
1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x +

√
x2 + α2

)
+ 1

2
v20 − h0 = E ′

s .

The curves of Hamiltonian H̃(x, ẋ) versus displacement
x corresponding to a pure slip periodic motion and stick-slip
periodicmotion in Fig. 6a have been plotted in Fig. 6b for v0 =
0.2. The expressions of Eb, Es and Ek for the Hamiltonian
H̃(x, ẋ) can be found in Eqs. (20), (23) and (24) above, and
the expressions of E ′

b and E ′
s have been described in Eqs. (29)

and (31), respectively. While E ′
k is given by

E ′
k = 1

2
x2 −

√
x2 + α2 − μk(g1 − α)x

−μkα ln
(
x +

√
x2 + α2

)

+1

2
v20 − h0, x ∈ [xl1, xl2]. (32)

The above results can be particularized to the case ofμs =
μk : it should be noted that Γs coincides with ∂χs1 (Es = Eb),
Γ ′
s coincides with ∂χs3 in x < x0 (E ′

s = E ′
b), and the steady

stick motion reduces to one point (Ek = 0), more details can
be seen in [26].

As mentioned in [27], a vector field of the system (6) in
the neighborhood of a periodic stick-slip orbit Γs defined in
Eq. (22) has been shown in Fig. 7 for v0 = 0.8. Outsides
of Γs , the vector fields can cross the discontinuous surface
ẋ = v0 several times, and enter into the periodic orbit Γs

finally, e.g., the trajectory (red dotted line) starting from the
initial conditions p0 =(-1.5, 0) is attracted to the periodic
orbit Γs (blue line). Inside of Γs , the structure of asymmetric
double well is demonstrated.

5 Sliding regions and the associated dynamics

In this section, the sliding regions of stick-slip motion are
demonstrated, especially, the collision of the orbits in the
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(a) (b)

Fig. 5 Dynamical behaviour of the system (6) for α = 0.4 and v0 = 0.5. a Phase portraits of the system, b the curves of Hamiltonian
H̃(x, ẋ) versus displacement x

(a) (b)

Fig. 6 Dynamical behaviour of the system (6) for α = 0.4 and v0 = 0.2. a Phase portraits of the system, b the curves of Hamiltonian
H̃(x, ẋ) versus displacement x

stick-slip periodicmotionwith the sliding region of the system
can be presented.

Now suppose system (1) is perturbed by a viscous damping
C and an external harmonic excitation of amplitude F and
frequency Ω , and described by the following

MẌ + C Ẋ + K X

(
1 − L√

X2 + H2

)
∈ F cosΩτ − μ(vrel)

[
Mg − K H

(
1 − L√

X2 + H2

)]
Sign(Ẋ − V0),

(33)

which can be made dimensionless by letting x = X/L ,
c = C/Mω0, ω2

0 = K/M , α = H/L , g1 = g/Lω2
0,

v0 = V0/Lω0, f = F/K L , ω = Ω/ω0 and t = ω0τ ,

ẍ + cẋ + x
(
1 − 1√

x2 + α2

)
∈ f cosωt − μ(vrel)

[
g1 − α

(
1 − 1√

x2 + α2

)]
sign(ẋ − v0), (34)

where the (·) denotes the differentiation with respect to the
non-dimensional time t .

5.1 Sliding regions

The switching surface of the friction system is determined by
the belt speed v0 at which the friction force changes sign, i.e.,
ẋ − v0 = 0. If the friction force on switching surface can
balance the external forces and the inertia of the mass then
the mass sticks to the surface, which is mathematically the
sliding region [38], also known as stick zone [39]. Otherwise,
the mass leaves the stick phase and starts to slip. Note that
this led to an unavoidable linguistic ambiguity; Physically the
mass stick to the surface, yet mathematically it is said to be
sliding.

The sliding regions of system (34) are characterized by
an extended state space (R2 × S) with a new coordinate x =
(x, ẋ, t). The switching surface is now defined as

Σ = {x ∈ R
2 × S : h(x) = 0}, (35)
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which depends on the belt velocity physically, and h(x) =
vrel = ẋ − v0 and divides the system into two parts such that

ẋ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(ẋ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

−cẋ − x
(
1 − 1√

x2 + α2

)
− μs

[
g1

−α
(
1 − 1√

x2 + α2

)]
+ f cos(ωt)

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, ẋ > v0,

f2(ẋ) :=

⎛
⎜⎜⎜⎜⎜⎜⎝

ẋ

−cẋ − x
(
1 − 1√

x2 + α2

)
+ μs

[
g1

−α
(
1 − 1√

x2 + α2

)]
+ f cos(ωt)

1

⎞
⎟⎟⎟⎟⎟⎟⎠

, ẋ < v0,

(36)

which is continuous and analytic in
{
G1 = {

(x, ẋ, t) ∈ R
2 × S | ẋ > v0

}
,

G2 = {
(x, ẋ, t) ∈ R

2 × S | ẋ < v0
}
.

(37)

Equation (36) defines a Filippov system which exhibits
sliding motion along Σ . According to Filippov system’s def-
inition, sliding dynamics is obtained as the following

ẋ = fsl = λ f1(x) + (1 − λ) f2(x), (38)

where 0 ≤ λ ≤ 1. Since the motion is constrained to the
sliding surface Σ , fsl is tangent to Σ , i.e., 〈∇h, fsl 〉 = 0,
which yields

λ(x) = 1

2μs fn

[
− cẋ − x

(
1 − 1√

x2 + α2

)

+μs fn + f cos(ωt)

]
, (39)

where fn = g1 − α
(
1 − 1√

x2 + α2

)
. If there is no such λ

at a point in Σ , then the corresponding trajectory crosses Σ

transversally.
The switching surface Σ can be split into three regions

depicted in Fig. 8 as the following

1. Crossing region pointing upwards:

Σ+
c =

{
(x, ẋ, t) ∈ R

2 × S | f cos(ωt)

−cẋ − x
(
1 − 1√

x2 + α2

)
> μs fn

}
, (40)

where the flow points away from Σ in G1 and toward Σ

in G2.
2. Sliding region:

Σs =
{
(x, ẋ, t) ∈ R

2 × S | −μs fn

< f cos(ωt) − cẋ − x
(
1 − 1√

x2 + α2

)
< μs fn

}
,

(41)

where the flow points toward Σs in both G1 and G2.

Fig. 7 A vector field of the system (6) in the neighborhood of a
periodic stick-slip orbit Γs marked with blue line

Fig. 8 Schematic of the flows of the system (34)

Fig. 9 Schematic of the phase space of the system (34)

3. Crossing region pointing downwards:

Σ−
c =

{
(x, ẋ, t) ∈ R

2 × S | f cos(ωt) + μs fn

< cẋ + x
(
1 − 1√

x2 + α2

)}
, (42)

where the flow points toward Σ in G1 and away from Σ

in G2.
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Fig. 10 Evolution of the
sliding regions for the
system (34). a f = 0, b
f = 0.05, c f = 0.1, d
f = 0.5342, e f = 0.5535,
f f = 0.6

(a) (b)

(c) (d)

(e) (f)

It is noted that the sliding vector field fst = (v0, 0, 1)T is
constant, from the physics point of view: when themass sticks
to the belt, it moves with the same constant speed v0 as the
belt. The boundary of the sliding region is defined as follows

L1 = ∂Σ+
c =

{
(x, ẋ, t) ∈ R

2 × S | λ(x) = 0
}
, (43)

and

L2 = ∂Σ+
c =

{
(x, ẋ, t) ∈ R

2 × S | λ(x) = 1
}
. (44)

In this case, the boundaries of the sliding regions are given
by

L1 : f cos(ωt) − cv0 − x
(
1 − 1√

x2 + α2

)

= μs

[
g1 − α

(
1 − 1√

x2 + α2

)]
, (45)

and

L2 : f cos(ωt) − cv0 − x
(
1 − 1√

x2 + α2

)

= −μs

[
g1 − α

(
1 − 1√

x2 + α2

)]
. (46)

A schematic illustration of phase space with a typical tra-
jectory marked with red is shown in Fig. 9, where the sliding
region is plotted in light green, and the boundary of sliding
region is formed by the two curves L1 with blue and L2 with
green. A typical trajectory marked red with a sliding segment
starting from initial point O in G2 reaches A in Σs , slides
continuously to B in L1 along segment AB in Σs , and then
begins to slip from the tangential point B. Finally, the trajec-
tory returns back to point C and slides to D along the sliding
segment CD in Σs and enters into G2, as shown in Fig. 9 for
example.

The sliding regionsmarked grey are displayed inFigs. 10a–
f in plane (x, t) forα = 0.4, v0 = 0.2, g1 = 2,ω = 1.08 as the
increase of f , which are determined by the boundaryL1 given
by Eq. (45) and the boundary L1 given by Eq. (46). Different
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Fig. 11 Evolution of the sliding regions for f = 1, f = 2 and
f = 4, plotted with black, red and blue lines, respectively

Fig. 12 Bifurcation diagram of displacement x versus external
amplitude f for α = 0.4, v0 = 0.2, g1 = 2, ω = 1.08 and
c = 0.048

types of sliding boundaries are possible due to the ampli-
tude f of external excitation. The sliding region, as shown in
Fig. 10a, consists three separated parallel strips if the ampli-
tude of external excitation f = 0, that is, there is no external
excitation. The sliding regions may bend with an increase of
f , taking Fig. 10b for f = 0.05 as an example, even the region
strips are bent, the strips are kept separately yet.

Very interesting phenomena appear with the increase of f ,
three separated sliding strips join into a multiple connected
area with some irregular ovals as the increase of bending, as
shown in Fig. 10c for f = 0.1, where the white irregular ovals
represent the crossing regions. The ovals gradually increase as
f increases, the multiple connected sliding region becomes
a single ribbon type strip, as represented in Figs. 10d–f for
f = 0.5342, f = 0.5535 and f = 0.6, respectively.

Finally, as f increases, the sliding ribbon like strip region
involutes into a narrowed fluctuation sliding region, as shown
in Fig. 11 for f = 1 (black), f = 2 (red) and f = 4 (blue),
respectively.

5.2 Dynamics associated with sliding regions

In this subsection, the complicated dynamics associated with
sliding region are investigated for the self-excited SD oscil-
lator excited by external excitation f cosωt and damping of
coefficient c. Bifurcation diagram for displacement x versus
amplitude f of external excitation is constructed with initial
condition (x0, y0) = (0.12, 0.01) for parameters α = 0.4,
v0 = 0.2, g1 = 2, ω = 1.08 and c = 0.048, as shown in
Fig. 12, which shows the periodic windows of period-one,
period-two period-four and so on, and a path to chaos from a
periodic doubling.

The trajectories of some periodic and chaotic motions
for the system (34) are depicted as f varies, as shown in
Figs. 13, 14, 15, 16, 17, 18, 19 and 20. All the short horizontal
lines marked with green in phase portraits in the following
figures correspond to the sticking during the motion.

When f =0.06, a stick-slip period-1 motion and its attrac-
tor are shown in Fig. 13a, where a slip trajectory is always
below the stick trajectory. In (x, ẋ, t) state space, a trajectory
approaching switching surfaceΣ from the subspace governed
by vector field f2 returns back after sliding a short time on
the sliding region, and stick trajectories lie in the same sliding
region as time t varies, as shown in Fig. 13b.

With the increase of f , there exists a stick-slip period-1
motion crossing switching surface for f = 0.12, as shown in
Fig. 14a, the trajectory consists of a stick phase, a slip phase
above the stick trajectory (ẋ > v0) and a slip phase below the
stick trajectory (ẋ < v0). In (x, ẋ, t) state space, the shape
of sliding regions have changed, and a trajectory passes from
the lower sub-space governed by vector field f2 to the upper
sub-space governed by vector field f1, unless it collides with
the sliding region. After a finite time, the trajectory hits the
switching surfaceΣ within the sliding region. Then, it evolves
according to the sliding flow until crossing the boundary of
sliding region, where it finally leaves switching surface Σ

toward G2 (see Fig. 14b).
When f = 0.35, a pure slip period-2 motion is found, the

corresponding trajectory and thePoincaré section are shown in
Fig. 15a. In the extended space (x, ẋ, t), the orbit starting from
subspace G2 reaches the switching surface Σ , and crosses it
into subspace G1 without colliding with the sliding region.
Finally, it returns back to subspace G2 crossing switching
surface Σ again (see Fig. 15b).

A stick-slip period-4 motion and its periodic attractor are
presented for f = 0.372 in Fig. 16a. In (x, ẋ, t) state space, a
orbit starting from subspace G2 into subspace G1 after cross-
ing switching surface Σ , collides with the sliding region and
evolves in it until crossing the boundary of sliding region,
as shown in Fig. 16b. As f varies, period doubling bifurca-
tion occurs and there exists a stick-slip period-8 motion for
f = 0.3734, as shown in Fig. 17a. In (x, ẋ, t) state space, a
trajectory passes from lower subspace G2 to upper subspace
G1, unless it collides with a sliding region Σs , and it evolves
according to the sliding flow until crossing the boundary of
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(a)
(b)

Fig. 13 a The stick-slip period-1 motion with slip trajectory below the switching surface for f = 0.06. b The corresponding trajectory
in the (x, ẋ, t) state space

(a) (b)

Fig. 14 a The stick-slip period-1 motion with slip portion crossing the switching surface for f = 0.12. b The corresponding trajectory
in the (x, ẋ, t) state space

sliding region. After a finite time, it returns back to lower
subspace G2 from upper subspace G1, as shown in Fig. 17b.

Similarly, a period doubling leading to chaos can be
observed as shown in Fig. 12, with the details see from period-
2 motion (Fig. 15a) bifurcating to period-4 motion (Fig. 16a),
period-8 motion (Fig. 17a), and the chaotic motion (Fig. 18a).
The system is transformed from periodic motion to chaotic
motion by periodic doubling bifurcation with the increasing
of excitation amplitude f . As f further increases, the regu-
lar motion vanishes and the stick-slip chaotic motion follows
when f = 0.42, as shown in Fig. 18a. The corresponding
chaotic attractor with stick-slip structure and a part of orbit of
chaotic motion in extended state space (x, ẋ, t) are depicted
in Fig. 18b and c.

When f = 0.7, there exists still a stick-slip chaoticmotion,
as shown in Fig. 19a, where the stick portion become less. The
corresponding chaotic attractor and a part of trajectory in the
(x, ẋ, t) state space are depicted in Fig. 19b and c. In the
extended (x, ẋ, t) state space, the shape of the sliding region
have changed again, which is shaped like a curved ribbon, as
can be seen in Fig. 19c.

Finally, a pure slip period-1 motion with large amplitude
occurs when f = 1.3, as shown in Fig. 20a. In the extended
(x, ẋ, t) state space presented in Fig. 20b, a trajectory passes
through the switching surface from one subspace to the other
without any sticking portion.

It is clear from the above descriptions, for large amplitudes
f of the external excitation shortening (see Figs. 16a and 17a)
or disappearance (see Fig. 20a) of sliding mode becomes pos-
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(a) (b)

Fig. 15 a The pure slip period-2 motion for f = 0.35. b The corresponding trajectory in the (x, ẋ, t) state space

(a) (b)

Fig. 16 a The stick-slip period-4 motion for f = 0.372. b The corresponding trajectory in the (x, ẋ, t) state space

(a) (b)

Fig. 17 a The stick-slip period-8 motion for f = 0.3734. b The corresponding trajectory in the (x, ẋ, t) state space
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(a)

(b)

(c)

Fig. 18 a The stick-slip chaotic motion for f = 0.42. b The chaotic attractor. c The corresponding portion of trajectory in the (x, ẋ, t)
state space

(a)

(b)

(c)

Fig. 19 a The stick-slip chaotic motion for f = 0.7. b The chaotic attractor. c The corresponding portion of trajectory in the (x, ẋ, t)
state space
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(a) (b)

Fig. 20 a The pure-slip period-1 motion with a large amplitude for f = 1.3. b The corresponding trajectory in the extended (x, ẋ, t)
state space

sible. The reason is that the sliding region becomes narrowed
with the increasing of the f , as shown in Figs. 10 and 11,
and the probability of collision of a trajectory with the sliding
region becomes little (see Fig. 20c).

6 Summary and conclusion

In this paper, we have investigated the stick-slip vibrations
of a self-excited smooth and discontinuous (SD) oscillator
with Coulomb friction. The equilibrium states of this fric-
tion system are obtained to shown the complex equilibrium
bifurcations. Closed-form solutions for both stick-slip motion
and pure slip motion have been obtained by using Hamilton
function. Furthermore, the influence of the belt speed on the
steady states of the system has been examined by defining two
critical values of belt speed. Under the perturbation, different
shapes of the sliding regions have been demonstrated with the
variation of amplitude of external excitation. The collision of
trajectories of the periodic motions and the chaotic motions
with the sliding regions have manifested in the (x, ẋ, t) state
space bymeans of numerical simulations. Phase portraits have
been depicted for the better understanding of the dynamical
behaviors of the stick-slip vibration of the system. Further
research is required to carefully consider the dynamics of the
stick-slip vibration for the multiple degree of freedom fric-
tion system with geometry nonlinearity arising in mechanical
engineering.
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