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Abstract Vibration experiments are carried out on a

slightly corrugated circular cylindrical shell made of

polyethylene terephthalate fabric. The shell is liquid-

filled, it is pressurized by a liquid column that applies a

pressure of 100 mmHg, and the two edges are clamped

to fix supports. Forced vibrations of the shell are

experimentally studied in the linear (small amplitude)

and in the geometrically nonlinear (large amplitude)

regime. The large-amplitude vibrations of the liquid-

filled shell are characterized by a strong softening

behavior that cannot be captured by any quadratic

nonlinear stiffness. Since compressed fibers do not

carry load, a piecewise linear stiffness with viscous

damping is thus introduced in a reduced-order model,

resulting in a very good agreement between experi-

mental and simulated responses. The stiffness param-

eters and the damping ratios are identified from the

experimental results. The damping ratio grows lin-

early with the excitation amplitude, indicating a

predominant hydrodynamic damping. In particular,

the damping ratio increases 2.75 times from the small-

amplitude vibrations to a maximum amplitude of

1.26 mm. This is a very significant increase that

highlights the necessity to introduce nonlinear damp-

ing to model shell structures.

Keywords Soft shell � Vibrations � Nonlinear
vibrations � Identification

1 Introduction

Nonlinear vibrations of circular cylindrical shells

made of linearly elastic materials received large

attention in the literature. Reviews were written by

Amabili and Paı̈doussis [1] and Alijani and Amabili

[2]. Particularly relevant are the studies of Chen and

Babcock [3], Batista and Goncalves [4], Amabili,

Pellicano and Paı̈doussis [5], Amabili [6–8], Pellicano

[9], Jansen [10], Ribeiro [11], Amabili, Balasubrama-

nian and Ferrari [12]. They studied the presence of a

second mode, identical to the one directly excited by

an external force but orthogonal to it, in a narrow

frequency range close to the resonance due to a one-to-

one internal resonance. The effect of a contained

liquid, giving additional inertia through the so-called

virtual mass, was also investigated in references [4–8].

Experimental results were reported in [4, 7, 12]

together with the corresponding numerical

simulations.

The mechanics and dynamics of hyperelastic shells

have received much less attention in the literature.

Nonlinear vibrations of a hyperelastic anisotropic

circular cylindrical shell were addressed by Bre-

slavsky, Amabili and Legrand [13]. Amabili [14] and
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Amabili et al. [15] introduced a nonlinear higher-order

shell theory for incompressible biological hyperelastic

materials.

Soft shells are used in a wide range of engineering

applications, such as vascular prostheses and soft

robots. When repairing the aorta, surgeons often use

tubes made of polyethylene terephthalate fabric as

aortic prostheses; they are usually referred as Dacron

grafts, where Dacron is a commercial name of the

fabric. They have an overall circular cylindrical shape

and present corrugations along the axial direction. Due

to the corrugations, they are flexible in axial direction,

but they are stiff to pressure load in circumferential

direction. However, the fabric is not capable of

carrying significant compression without buckling.

Aortic prostheses have been studied statically and

dynamically because of their clinical relevance

[16–19]. However, no vibration study is available in

the literature for Dacron shells and for soft shells made

by fabrics, despite they are loaded by pulsatile

pressure in applications. The investigation of large-

amplitude vibrations, which are vibrations with

amplitude of the order of the fabric thickness, is of

particular interest for a soft shell since this amplitude

can be easily achieved under relatively small excita-

tion. The complication arising for fabric shells is that

fibers carry only small compressive loads. Also,

internal pressurization helps to avoid fiber compres-

sion only for moderate vibration amplitude since the

Dacron fabric is stiff to tensile loads. Therefore, it

presents small pre-stretch due to pressurization, which

is easily reverted into compression during a large

vibration cycle. This behavior of fabric introduces

complex nonlinearities in the system dynamics.

In the present study, vibration experiments are

carried out on a slightly corrugated circular cylindrical

shell made of Dacron fabric. The shell is liquid-filled,

it is pressurized by a liquid column that applies a

pressure of 100 mmHg, and the two edges are clamped

to fix supports. Forced vibrations of the shell are

experimentally studied in the linear (small amplitude)

and in the geometrically nonlinear (large amplitude)

regime. The large-amplitude vibrations of the liquid-

filled shell are characterized by a strong softening

behavior that cannot be captured by any quadratic

nonlinear stiffness. Since compressed fibers do not

carry load, a piecewise linear stiffness with viscous

damping is thus introduced in a reduced-order model,

which is used to identify the nonlinear stiffness and

damping from the experimental data. The accurate

evaluation of nonlinear stiffness and damping may be

used to improve the design of deformable shells

subjected to dynamic loading.

2 Experimental setup

A circular cylindrical shell with axial corrugations and

made by polyethylene terephthalate fabric is studied.

The dimensions are given in Table 1, and a pho-

tograph is shown in Fig. 1. This is a prosthetic tube for

aortic repair named Hemashield Platinum woven

double velour straight graft by Maquet (model

175428P). The shell is constituted by woven Dacron

fabric, which is straight and stiff in the circumferential

direction, while it features a constant-pitch wavy

corrugation in the longitudinal direction to allow axial

flexibility. An axial pre-stretch increases the stiffness

of the shell against unwanted bending responses to

internal pressure. The woven fabric is strongly

anisotropic and presents direction-dependent hypere-

lastic and viscoelastic material behavior, investigated

experimentally in [17–19]. The woven Dacron fabric

is pre-impregnated by stabilized bovine collagen, to

reduce the permeability of the fabric to human blood,

thus reducing hemorrhaging during surgery.

The shell is subjected to internal pressure applied

by the contained liquid. This liquid is constituted by a

mixture of glycerol and physiological saline solution

for medical usage, which approximates the viscosity

and the density of blood in dynamic experiments. The

characteristics of the liquid are given in Table 2. The

temperature was kept constant at 37�Celsius by means

of an electric heater, because of the effect of temper-

ature on the viscosity of the liquid. While collaged-

impregnated Dacron is impervious to blood, because

of the presence of large cells and because of

Table 1 Dimensions of the Dacron shell

Mean diameter 27.8 mm

Fabric thickness 0.33 mm

Axial free length (unstretched) 107.1 mm

Axial free length (at a stretch of 120%) 128.7 mm

Axial distance between corrugations 1.77 mm

Corrugation height (unstretched) 0.66 mm
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coagulation, it is permeable to the water–glycerin

mixture. Therefore, a thin (0.046 mm) latex mem-

brane was inserted inside the graft to prevent leaking.

The stiffness and mass of the membrane are negligible

with respect to those of the shell and to the virtual mass

of the liquid participating in the shell dynamics.

The two edges of the shell are clamped to fixed

supports, and a liquid column applies an internal

pressure of 100 mmHg. In particular, a stiff metal

frame, insensitive to the vibrations of the shell, was

designed and manufactured from heavyweight stain-

less-steel plates and bolts. The frame is constituted by

two disks that feature a 28-mm shoulder and a �’’

hydraulic threaded hole at the center. The shell is

slipped at the two ends onto the centering shoulders

and glued in place, so that fixed boundary conditions

are constituted. The hydraulic ports on the plates of the

frame allow the connection to tubes at both edges. The

two plates can be positioned at adjustable distance by

means of threaded rods and fixing nuts, thus allowing

the desired axial stretch of the shell. The threaded-rod

construction allows for an optimal accessibility of the

shell to excitation and measurement sensors.

The shell is connected at the top to a 3/4’’ ID Tygon

tubing that serves as a liquid column. Liquid is added

to the column until a height of 1.360 m is reached with

respect to the center of the shell. This liquid column

creates the desired pressure of 100 mmHg. A large ID

Tygon tubing was chosen to minimize possible liquid

oscillation in the column as a consequence of the shell

vibrations. A second soft shell, closed at one end and

axially unconstrained, was placed below the tested

shell to function as an expansion chamber, so that the

volume change inside the shell during vibrations

would not result in an oscillation of the liquid column.

To understand the role of gravity and of the conse-

quent pressure gradient inside the shell, tests were

performed with both horizontal and vertical shell by

turning the metallic frame. The experimental setup in

vertical configuration is shown in Fig. 2.

Forced vibration experiments were performed

under force excitation. The force was generated by a

Bruel and Kjaer model 4810 eletrodynamic exciter.

Since the Dacron shell is lightweight, a miniature

piezoelectric force transducer (Bruel and Kjaer model

8203) was interposed between the exciter and the

shell; in this case, it was connected to the exciter, so

that no added mass was attached to the shell. A

harmonic wire acted as a stinger connecting the force

transducer to a small and very thin metal disk glued to

the shell. The function of the small disk was to avoid

local buckling of the fabric at the point of application

of the force. The force excitation was placed at

distance of 25 mm from one support of the shell, to

y

x

Fig. 1 Dacron circular cylindrical shell. The axial direction

x and the circumferential direction y are indicated. The

corrugations in axial direction are visible

Table 2 Parameters of the blood-equivalent liquid

Glycerol 45% volume

Saline solution 55% volume

Density 1119 kg/m3

Dynamic viscosity at 37� C 3.5910-3 Pa s

b 

a 

c 

Fig. 2 Experimental setup: a, shell; b, water column; c,

expansion chamber

123

Nonlinear vibrations of a fluid-filled, soft circular shell: experiments and system… 1411



reduce the interaction between the shell and the exciter

during large-amplitude vibrations. The excitation

system is shown in Fig. 3.

3 Experiments

3.1 Linear vibrations

Vibrations of amplitude significantly smaller than the

fabric thickness of the shell are within a linear regime.

Preliminary analysis revealed that the shell coupled to

the liquid presents a rich dynamic response below

200 Hz. Thus, the bandwidth of the experiments was

limited to this value. A Polytec PSV-400 scanning

laser Doppler vibrometer was used to measure the

vibration. The scanning capability allows the vibrom-

eter to measure a large number of points without

contact and to obtain a good spatial resolution. A

displacement decoder was used with the vibrometer,

so that displacement signals were measured (accuracy

1 nm).

Linear vibrations were studied bymodal analysis. A

pseudo-random excitation in the bandwidth up to

200 Hz was used, and 130 points on the surface of the

shell were measured. The signals were acquired by a

Siemens/LMS modal analysis system for data pro-

cessing with Difa Scadas III front-end, using DC

inputs to avoid low-frequency frequency filtering. In

particular, the PolyMax modal estimator of the

Test.Lab software was used for the estimation of the

H1 frequency response function (FRF), and for the

identification of natural frequencies, damping ratios

and natural modes. Modal analysis was performed for

the liquid-filled shell at 100 mmHg pressure in both

horizontal and vertical configurations. The compar-

ison between the two experiments allows to under-

stand the effects of gravity. For both cases, natural

frequencies and damping ratios are given in Table 3

for the first six modes. The fundamental mode in the

vertical configuration has natural frequency of

35.9 Hz, damping ratio 4.91%, and it presents an

axisymmetric shape with one longitudinal half-wave.

Frequencies and damping ratios are similar in the two

configurations under exam. The horizontal configura-

tion appears to be slightly stiffer (higher frequencies),

due to the more uniform pressure along the shell, and

the fundamental mode is slightly less damped. The

synthesized sum of the measured frequency response

functions in the vertical configuration is shown in

Fig. 4a, b for amplitude and phase. The peaks in

Fig. 4a correspond to the natural frequencies pre-

sented in Table 3. The experimentally identified

natural mode shapes are presented in Fig. 5 for the

vertical configuration. As previously observed, the

fundamental mode presents an axisymmetric shape

with one longitudinal half-wave. The inertia of the

contained liquid has a very significant effect on the

shell in the studied setup [20].

3.2 Nonlinear vibrations

Vibrations of amplitude of the order of the fabric

thickness of the shell, or larger, are associated with a

nonlinear behavior of the system. Experiments to

measure the large-amplitude vibrations were per-

formed forcing the shell with a harmonic excitation

in the frequency neighborhood of the fundamental

natural frequency. In the absence of internal reso-

nances, by exciting sinusoidally around the funda-

mental frequency, the response of the system is

dominated by the fundamental mode shape. Therefore,

it is sufficient to point the laser beam at an antinode of

the fundamental mode shape to measure the response.

For the fundamental mode, the antinode is at half-

length of the shell. Since the fundamental mode is

axisymmetric, any measurement point along the

central circumference is equivalent. The chosen point

was located at 180� with respect to the excitation

point. The frequency of the harmonic excitation

c b a 

Fig. 3 Excitation system. a, electrodynamic exciter; b, force

transducer; c, wire stinger
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changes by steps of 0.1 Hz during experiments. The

force excitation and the response are recorded in the

time domain at the sampling frequency of 3200 Hz. At

each frequency step, the first 10 periods are discarded

to get rid of any transient; afterward, the vibration is

measured. The amplitude of the excitation is kept

constant (with a tolerance of ?- 0.01 dB) by the

closed-loop control when the excitation frequency is

changed. The control is implemented in the LMS

Test.Lab software and Difa Scadas III front-end,

which receives the signal from the miniaturized force

sensor. Since the vibration response of the shell

depends on the excitation in nonlinear (large-

Table 3 Natural frequencies and damping ratios identified by experimental modal analysis in the vertical and horizontal

configurations

Vertical configuration Horizontal configuration

Mode Natural frequency (Hz) Damping ratio (%) Mode Natural frequency (Hz) Damping ratio (%)

I 35.9 4.91 I 36.5 4.79

II 70.4 3.09 II 69.7 3.24

III 90.7 2.94 III 94.1 3.82

IV 98.5 0.67 IV 101.2 0.92

V 113.0 1.78 V 115.8 1.82

VI 135.1 2.79 VI 140.1 2.64

Fig. 4 Synthesized sum of the measured frequency response

functions in the vertical configuration. a Amplitude; b phase

Mode I Mode II Mode III 

Mode IV Mode V Mode VI 

Fig. 5 Natural mode shapes of vibration of the vertical shell.

The first mode is axisymmetric with one longitudinal half-wave
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amplitude) regime, it is necessary to apply the

stepped—sine excitation at various levels of constant

forcing amplitude, ranging from the linear (small

amplitude) to the nonlinear regime. Nonlinear tests

were performed for the liquid-filled shell at a pressure

of 100 mmHg in horizontal configuration.

Figure 6 shows the vibration amplitude versus the

excitation frequency for seven forcing amplitudes

between 0.01 N and 0.55 N. The level 0.01 N can be

considered in the linear regime. The nonlinear behav-

ior is strongly softening, as the peak frequency

decreases with the forcing amplitude: the peak

frequency reduces almost 30% in the present range

of force levels. For a forcing amplitude of 0.55 N, a

maximum vibration amplitude of 1.26 mm is reached.

This value is much larger than the shell thickness. The

experimental curves, however, do not feature any

jump associated with the strong nonlinearity. It can be

observed that the backbone curve, which joins the

peaks of the curves at different force levels in Fig. 6,

starts inclined to the left with respect to the vertical.

4 Identification of nonlinear stiffness and damping

Since no complex nonlinear dynamics is observed, a

single-degree-of-freedom reduced-order model is

used for the system identification, where x represents

the modal displacement coordinate associated with the

fundamental mode shape. The results presented in

Fig. 6 are not compatible with a model of the

nonlinear elastic restoring force of the liquid-filled

shell given by the following polynomial

k xþ k2x
2 þ k3x

3; ð1Þ

for any value of the stiffness coefficients k, k2 and k3.

In fact, the modified Duffing equation resulting from

the stiffness expressed by Eq. (1) and with viscous

damping is unable to fit the experimental results and

predicts a completely different backbone curve for any

possible combination of the values k, k2 and k3.

However, the nonlinearity given by Eq. (1) is the one

resulting from geometric nonlinearity of linearly

elastic shells [14]. In order to find the correct nonlinear

stiffness representation, it is necessary to consider that

during large-amplitude vibrations the shell undergoes

harmonic elongation and reduction in the diameter

with respect to the initial value under pressurization.

As a consequence of the internal pressurization and

consequent stretching, if the vibration amplitude is

small enough, fibers in circumferential direction do

not undergo to compression. However, if the ampli-

tude overcomes this limit, compression of the fabric is

reached at some point during the vibration cycle, and

the corresponding stiffness is largely reduced.

In order to introduce the different stiffness of fabric

during the expansion and contraction phase of the

vibration cycle, a different nonlinear stiffness model is

applied with an idea originated from bilinear stiffness.

Viscous damping is introduced and represents the

global effect of different contributions: dissipation at

the shell boundaries, viscoelasticity of the tube and

liquid-structure interaction. The equation of motion of

the single-degree-of-freedom model with nonlinear

stiffness and viscous damping is given by

m €xðtÞ þ c _xðtÞ þ k f ðxÞ ¼ F cosðx tÞ; ð2Þ

where f ðxÞ is the displacement-dependent nonlinear

stiffness function, F is the harmonic force excitation,

x is the excitation frequency (rad/s), m, c and k are the

modal mass, damping and stiffness parameters of the

system. Equation (2) is transformed in the following

form

x00ðsÞ þ 2f x0ðsÞ þ f ðxÞ ¼ k sinðXsÞ; ð3Þ

where k ¼F=mx2
n is the excitation parameter, X ¼

x=xn is the frequency ratio, s ¼ txn is the non-

dimensional time,xn is the natural frequency (rad/s), f
is the damping ratio and x0 ¼ dx=ds. The nonlinear

Fig. 6 Experimental frequency–amplitude responses to differ-

ent harmonic excitations of the soft shell in the horizontal

configuration under an internal pressure of 100 mmHg. The

black dashed line represents the backbone curve joining the

peaks of the vibration response. Force levels 0.01 N, 0.05 N,

0.15 N, 0.25 N, 0.35 N, 0.45 N, 0.55 N
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stiffness f ðxÞ, which is nonlinear only for negative

values of x corresponding to compression of fibers, can

be approximated with a piecewise linear stiffness

function, which is plotted in Fig. 7. There are three (I,

II, III) line segments shown in Fig. 7, just for

illustration of the method. In general, an appropriate

number of line segments can be chosen to describe the

stiffness function f ðxÞ with accuracy. In the present

case, eight segments are used; they have equations

I : f ðxÞ ¼ x; x� � x1; ð4aÞ
II : f ðxÞ ¼ l1x� ð1� l1Þ x1; �x1 [ x� � x2 ð4bÞ

..

.

VII : f ðxÞ ¼ l6x� ð1� l1Þ x1 �
P5

i¼1

ðli � liþ1Þ xiþ1; �x6[ x� � x7 ð4cÞ

VIII : f ðxÞ ¼ l7x� ð1� l1Þ x1 �
P6

i¼1

ðli � liþ1Þ xiþ1; �x7[ x ð4dÞ

where xi are the switch distances and li are the

stiffness parameters that are given in Table 4; they are

obtained by an iterative minimization of the distance

(least squares) among the experimental points and the

numerical response obtained from Eq. (3). It is clear

that, as the number of segments grows, f ðxÞ
approaches a continuous function representing the

nonlinear stiffness. Figure 8 shows the function

obtained with the values in Table 4. The function is

linear for positive values of x (expansion) and

piecewise linear progressively reduces its value for

negative x (contraction).

The second-order ordinary differential Eq. (3) is

numerically integrated in the software AUTO [21] for

continuation and bifurcation analysis of nonlinear

ordinary differential equations by using collocation

method.

Figure 9 shows the comparison of experimental

and numerical results in the frequency domain for the

7 excitation levels: 0.01, 0.05, 0.15, 0.25, 0.35, 0.45

and 0.55 N. The measured and identified vibration

amplitudes are very close in all the frequency range

around the fundamental mode of the system. The

stiffness parameters given in Table 4 are used in the

numerical model. The stiffness for negative x values is

only 20% of the original value when x is smaller than -

0.7 mm. During the identification of the stiffness

parameters by least squares procedure, also the

damping ratio is estimated at each force level. The

damping ratios are given in Table 5 and grow with the

excitation.

The experimental and numerical time responses for

harmonic excitation of 0.55 N and frequency ratio

X = 0.732, i.e., at the peak of the response in Fig. 9,

are compared in Fig. 10. They show that the reduced-

order model capture with accuracy the system non-

linear dynamics also in the time domain. The small
Fig. 7 Piecewise linear function f ðxÞ. The switching points x1
and x2 and the stiffness parameters l1 and l2 are also defined

Table 4 Parameters of the stiffness function f ðxÞ

i Switch distances, xi (mm) Stiffness parameters, li

1 0.04 0.85

2 0.18 0.60

3 0.23 0.58

4 0.28 0.55

5 0.32 0.45

6 0.40 0.28

7 0.70 0.20

Fig. 8 Stiffness function f ðxÞ of the soft shell identified by the

nonlinear vibration experiments on the fundamental mode; the

seven switching points are indicated
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difference is due to higher harmonics present in the

experimental excitations near the resonance as a

consequence of the interaction between the stinger

and the vibrations of the shell. It is significant to

observe that the positive (outwards) vibration ampli-

tude is smaller than the negative (inwards), which is

typical of softening systems. This clarifies that the

amplitude reported in Fig. 9 is the average between

the vibrations inwards and outwards the shell.

It is interesting to plot the damping ratios obtained

for different values of the maximum vibration ampli-

tudes of each one of the seven curves in Fig. 9. This

produces Fig. 11, which shows a linear increase in the

damping ratio with the maximum vibration amplitude.

Both the identified experimental values and the linear

regression (R = 0.989) are shown. This linear increase

is attributed to the predominant hydrodynamic damp-

ing, which is related to the fluid–structure interaction,

with respect to viscoelastic dissipation of the shell. In

fact, a damping associated with viscoelastic dissipa-

tion takes the cubic nonlinear expression [22–25]

c _xðtÞ þ cnx
2ðtÞ _xðtÞwhile hydrodynamic damping can

be formulated as [26, 27] c _xðtÞ þ cn _xðtÞj j _xðtÞ, where
cn is the nonlinear damping coefficient. The latter

expression gives a linear increase in the equivalent

linear damping ratio with the vibration amplitude,

while the cubic nonlinear damping presents an

increase more than linear. The linear viscous damping

contribution is here c _xðtÞ, where c would be the value
identified for the smallest excitation (0.01 N).

Fig. 9 Comparison of experimental and numerical results,

presented as vibration amplitude (mm) versus non-dimensional

excitation frequency X, for the nonlinear forced vibration

response of the soft shell; force levels 0.01 N, 0.05 N, 0.15 N,

0.25 N, 0.35 N, 0.45 N, 0.55 N. open circle, experimental

point; line, numerical simulation

Table 5 Identified damping ratios at different harmonic force

levels

Force level (N) Damping ratio, f

0.01 0.041

0.05 0.050

0.15 0.070

0.25 0.078

0.35 0.088

0.45 0.108

0.55 0.113

Fig. 10 Time response for harmonic excitation of 0.55 N and

frequency ratio X = 0.732 (at the peak of the response

amplitude). Blue line, experimental results; red line, numerical

results. (Color figure online)
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Fig. 11 Damping ratio versus maximum vibration amplitude

(for each curve in Fig. 9). Filled circle, identified experimental

damping ratio; line, linear regression (R = 0.989)
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5 Conclusions

Nonlinear dynamics of fluid-filled and pressurized soft

shells is a subject of significant interest at the present

time, but still largely unexplored. Experiments on

large-amplitude forced vibrations of a shell made of

polyethylene terephthalate fabric show nonlinear

stiffness and nonlinear damping that are a combined

effect of the structural viscoelasticity and fluid–

structure interaction, as observed for large human

vessels [28]. The present experimental results shed

light on the system’s nonlinear dynamics and allow to

identify a reduced-order model with a single degree of

freedom that is capable of capturing the response with

very good accuracy. The nonlinear stiffness, due to the

reduced load capacity during the part of the vibration

cycle that compresses the fabric, is well described by a

piecewise linear function with eight segments for

negative displacement, while it is linear for positive

displacement. Due to the relatively large number of

segments, the piecewise liner function approximates

well a continuous function, which progressively loses

stiffness for negative displacements; it remains with

only 20% of its initial value for the maximum

vibration amplitude reached in the experiments. The

damping ratio increases 2.75 times from the small-

amplitude vibrations to a maximum amplitude of

1.26 mm. This is a very significant increase that

highlights the necessity to introduce nonlinear damp-

ing to model shell structures.
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