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Abstract The evolution dynamic properties of self-
acceleratingHermite complex-variable-functionGaus-
sian (SHCG) wave packets in highly nonlocal nonlin-
ear media are investigated. Analytical results from a
(3+1)-dimensional Snyder–Mitchell model show that
various SHCG wave packets carrying multi-order vor-
tices rotate smoothly. Increasing the distribution factor
will cause the intensity layout to cluster more closely
around the center, while the vortices will be farther
away. The SHCG wave packets can reverse the posi-
tions of their temporal side lobes. The role of the power
ratio in determining the rotation period and the angu-
lar velocity is also discussed. Furthermore, numerical
results of the nonlocal nonlinear Schrödinger equation
are simulated to illustrate the effects of different non-
localities and initial perturbations. The SHCG wave
packets show interesting features during propagation,
which can provide new ideas for the regulation of the
multi-dimensional optical field.
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1 Introduction

As a solution to the Schrödinger equation, the Airy
wave packet exhibits remarkable and interesting prop-
erties [1], including self-accelerating, self-healing and
nondiffracting behavior. In free space, compared with
the linear propagation of traditional beam, Airy beam’s
propagation trajectory is bent and is not affected by
external forces or other potential fields, researchers
call it self-accelerating beam.SomeAiry-related beams
also have self-accelerating property, such asAiryGaus-
sian beam [1]. Novel self-accelerating wave packets
have been explored extensively, from one-dimensional
pulses [2] and two-dimensional beams [3] to three-
dimensional spatiotemporal wave packets [4]. It has
been demonstrated that these distinctive wave packets,
which have propagation properties that are independent
from the ambient environment, are important across the
range from fundamental research to practical applica-
tions such as particle manipulation [5], imaging [6] and
plasmons [7].

The vortex, as a typical optical effect, has attracted
considerable attention because of its isolated dark spot
structure that carries orbital angular momentum [8].
A topological charge indicates that the phase rotating
around the centerwill change by 2π . Vortex beamswith
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topological charges are mutually spatially orthogonal,
this feature provides vortex beams with an additional
spatial dimension to carry information, and their poten-
tial applications can thus be expanded considerably
[9]. Reference [10] has demonstrated optical commu-
nication experimentally using orbital angular momen-
tum multiplexing in fibers. Optical vortices have also
been used as tweezers to assemble DNA biomolecules
[11]. Research into the propagation of optical vortices
that have been superimposed on Airy wave packets has
attracted considerable attention [12–14].

For a long time, the generation of novel spatiotem-
poral optical wave packets that are impervious to both
dispersion and diffraction has posed an interesting chal-
lenge [15]. Recently, tremendous efforts have been
made by researchers to generate spatiotemporal wave
packets in both linear and nonlinear backgrounds [16–
19]. Nonlocalmeans that the response of themedium in
a point depends on the intensity in the vicinity of this
point. Nonlocality has attracted considerable interest
for its potential applications to nematic liquid crystals
and lead glasses [20,21]. More recently, as the generic
model of Schördinger equation with nonlocal nonlin-
earity presented, the evolution dynamics of spatiotem-
poral wave packets in nonlocal nonlinear media have
received much attention [22–24].

Among the various wave packets available, the
complex-variable-function distribution [25] represents
a rather intriguing phenomenology in the form of its
rotatingmodes. However, to the best of our knowledge,
the propagation of novel spatiotemporal wave packets
with helical phases, particularly the propagation of self-
acceleratingHermite complex-variable-functionGaus-
sian (SHCG) wave packets carrying multi-order vor-
tices in nonlocal nonlinear media, remains an open
subject for research. In this paper, we investigate the
various modes of localized SHCG wave packets car-
rying topological charges, and their dynamic evolution
properties in highly nonlocal nonlinear media are dis-
cussed. Increasing the distribution factor will cause the
intensity layout to cluster more closely around the cen-
ter, while the vortices will be farther away. The SHCG
wave packets can reverse the positions of their tempo-
ral side lobes. The simulated results agree well with
the theoretical results under the high nonlocality con-
dition. The interesting features of SHCG wave packets
will provide new ideas for the regulation of the multi-
dimensional optical field.

2 Mode of SHCG wave packets in highly nonlocal
nonlinear media

The nonlinear Schrödinger equation is not only impor-
tant in studies of physical system properties, but also
plays a crucial role in describing the optical dynamics
of real problems [26,27]. In a general class of media,
when the propagation of a spatiotemporal wave packet
U (x, y, τ, z)with a nonlinear nonlocal response is con-
sidered, the evolution obeys the nonlocal nonlinear
Schrödinger equation [26,28]

2i
∂U

∂z
+ 1

k

(
∂2U

∂x2
+ ∂2U

∂y2

)
− kg

∂2U

∂τ 2
+ 2k

Δn

n0
U = 0,

(1)

where x and y are the transverse coordinates, τ

represents the time coordinate, k is the wave num-
ber in the media without nonlinearity, and kg =
∂2k/∂ω2|ω0 is the group velocity dispersion evaluated
at the carrier frequency ω0. Δn = n1

∫ ∫ ∞
−∞ R(r −

r ′)|U (r ′, z)|2d2r ′ is the nonlinear perturbation of the
refraction index, n1 is the nonlinear index coeffi-
cient, n0 is the linear refractive index of the media,
r and r ′ are two-dimensional transverse coordinates,
and R represents the physically reasonable nonlo-
cal response function. Here, the Gaussian function
α2/(2π) exp[−α2r2/(2w2

0)] is selected as the normal-
ized symmetrical real spatial response function of the
media [25],whereα = w0/w1 is the nonlocality degree
of the wave packet in the nonlocal nonlinear media,w0

is the spatial scaling parameter, and w1 is the charac-
teristic length of the response.

Underlying the dimensionless coordinates (X,Y,

T, Z) = (x/w0, y/w0, τ/τ0, z/L), τ0 is the tem-
poral scaling parameter, L = kw2

0 is the diffraction
length, and D = τ 20 /

∣∣kg∣∣ is the dispersion length. It
is assumed that both the dispersion and the diffraction
have the same effect along the propagation direction
(i.e., L=D), and we consider the anomalous dispersion
(i.e., kg < 0). In the case of high nonlocality, Eq. (1) can
be applied to the (3+1) dimensional Snyder–Mitchell
model [28–31], which can be simplified into the fol-
lowing normalized dimensionless form
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+
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∂Y 2 + ∂2
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)
U−β2(X2+Y 2)U = 0,

(2)
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where β = √
P0/Pc is related to the power ratio, P0

is the input power, Pc = n0/(γ n1L2) is the critical
power for soliton propagation, and γ is the material
parameter related to R.Wenote thatEq. (1) is nonlinear,
while Eq. (2) is linear. The idea behind this important
simplification is from Snyder and Mitchell [28]. By
using the method of separation of variables [29], the
solution to Eq. (2) can be written as the multiplication
of two functions denoted by F(X,Y, Z) and A(T, Z):

U = F(X,Y, Z)A(T, Z). (3)

We consider the finite-energy Airy distribution with
a chirp factor in the temporal dimension A(T, 0) =
Ai(T )eaT+icT 2

. Here, a(0 < a � 1) is the decay fac-
tor required to enable the physical realization, and c is
the chirp factor [32]. Considering the effect of initial
frequency chirp on Airy pulse propagation, the chirped
Airy distribution propagating in an optical fiber is dis-
cussed in Ref. [32]. The following can then be obtained
as

A(T, Z) = √
ηAi

[
η
(
T − η

4
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)]

exp
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12
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(4)

where η = 1/(1 + 2cZ). Other exact solutions to the
one-dimensional Schrödinger equation can be used as
the temporal distributions to explore spatiotemporal
wave packets; the chirped Airy function is just one of
these solutions [1]. After substituting Eq. (3) into Eq.
(2), we obtain

2i
∂F

∂Z
+ ∂2F

∂X2 + ∂2F

∂Y 2 − β2(X2 + Y 2)F = 0. (5)

The initial Hermite complex-variable-function Gaus-
sian part can be expressed as

F(X,Y, 0) = Hm(ξ0) exp

(
− X2 + Y 2

2

)
, (6)

where Hm(·) is the mth-order Hermite polynomial,
ξ0 = (X + iY )/b, and b is the distribution factor. The

solution to Eq. (5) can be expressed as

F(X,Y, Z) = Hm(ξ)

w(Z)

exp

[
− X2 + Y 2

2w2(Z)

+i
X2 + Y 2

2M(Z)
− iθ(Z)

]
, (7)

where ξ = (X + iY )/[bw(Z)] exp[iθ(Z)], w(Z) =
[cos2(βZ)+ sin2(βZ)/β2]1/2, M(Z) = β[tan(βZ)+
β2 cot(βZ)]/(1−β2), and θ(Z) = arctan[tan(βZ)/β].
Equation (7) shows that the radius of the wave packet
is related to β when the complex-variable-function
and the distribution factor b are given. The complex-
variable-function Gaussian distribution is a more gen-
eral solution that contains rotating elliptical Gaussian
distribution.

The highly nonlocal nonlinear solution to Eq. (2)
can now be constructed as

U =Hm(ξ)
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12
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(8)

The solution is called the SHCG wave packet, which
is because the structure is determined by the product
of the temporal self-accelerating distribution and the
spatial multi-order Hermite complex-variable-function
Gaussian distribution.

3 Analysis and discussion

We begin by discussing the wave packet properties in
the highly nonlocal nonlinear limit to gain a physi-
cal insight into the SHCG wave packets, which are
demonstrated in the two spatial transverse coordinates
as well as in temporal coordinate. Figure 1 shows var-
ious examples of 3D second-order SHCG wave pack-
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Fig. 1 a1–f1 Snapshots
describing the initial
second-order SHCG wave
packets with different b.
a2–f2 The normalized
transverse intensity, the
corresponding cross lines
and insets display the
related phase distributions

ets with their main lobes in front and the transverse
layout varying from a ring in Fig. 1a1 to an elliptical
ring in Fig. 1b1, side-by-side vortices in Fig. 1c1, a
butterfly shape in Fig. 1d1, a number eight shape in
Fig. 1e1 and a solid round shape in Fig. 1f1. Figure
1a2 shows the transverse intensity distribution as a ring
with an isolated dark spotwith two topological charges.
In Fig. 1b2–e2, as the distribution factor increases,
the transverse intensity distribution becomes clustered
more closely around the center, while the two vortices
move farther away from the center. When b is large
enough, Eq. (6) is nearly equal to the Gaussian func-
tion and the vortices disappeared while the Gaussian
plot can be seen clearly in Fig. 1f2. b characterizes the
distribution of the SHCG wave packet from the wave

packet center and provides a way to capture the scale
or degree of being spread out.

Figure 2 shows that the entire SHCG wave packet
rotates smoothly while basically maintaining its pro-
file; the rotation period isπ . The physical essence of the
rotation phenomenon is that the energy flow in thewave
packet cross section is not uniformly distributed, which
results in the redistribution of the energy flow. Figure
2a–c shows that the wave packets are self-accelerating
in the positive T direction while keeping their main
lobes at the front. It is important to note that because of
the negative chirp factor (c < 0), η in Eq. (8) becomes
negative, and thewavepackets inFig. 2d–f reverse their
positions to have their temporal side lobes at the front
while still self-accelerating. In addition, by observing
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some particular profiles, we can expect that they are
distinguished in real physics; e.g., when β = 1, the
input power equaling the critical power, the diffraction
is balanced exactly by the nonlinearity, the wave pack-
ets propagate stably.

Although the visible rotation comes from a nonzero
angular momentum, not all wave packets with nonzero
angular momentum will rotate. It can be found that the
vortex Ince–Gaussian soliton [33], which is also a solu-
tion of the Snyder–Mitchell model, does not rotate dur-
ing propagation. To discuss the rotation characteristics
of SHCG wave packets in the highly nonlocal limit,
we consider the magnitude of the transverse angular
velocity (i.e., the angle rotated per unit propagation
distance) V = dθ(Z)/dZ = 1/w2(Z). V is inversely
proportional to w2(Z) and thus behaves periodically.
It is like the movement of the rigid body in mechanics,
if the wave packet is narrowed (or broadened) while
keeping the total “mass” contents, its angular veloc-
ity increases (or decreases). The rotation period of the
wave packets is π/β, which decreases with increas-
ing β. The transverse angular velocity is not related
to the form of the wave packet and is only dependent
on the power ratio. The SHCG wave packets periodi-
cally oscillating when the balance between diffraction
and nonlinearity is broken. When the input power is
lower than the critical power (i.e., β < 1), the angular
velocity initially decreases before increasing back to 1,
as shown in Fig. 3a. Nevertheless, the reverse occurs
when the input power is greater than the critical power
(i.e., β > 1), with the angular velocity initially increas-
ing and then decreasing back to 1, as shown in Fig. 3b.

In addition, we perform the numerical calculations
of Eq. (1) to verify the results of the theoretical analy-
sis. The propagation dynamics of the third-order SHCG
wavepackets are shown inFig. 4. The normalized trans-
verse intensity and the corresponding cross lines of the
third-order SHCG wave packets are shown in Fig. 4a,
while the insets in Fig. 4b–f show the changes in the
phase distribution. The most obvious features are the
phase singularity and the intensity singularity, while
the shape of this singularity is influenced by the three
topological charges.Comparison shows that the numer-
ical simulation results in Fig. 4d agree well with the
results of the theoretical analysis in Fig. 4c under the
high nonlocality (α = 0.001) condition. It is natural
to consider what may occur when the degree of non-
locality changes. The approximations of the analytical
results are slightly worse in Fig. 4e and f because the

degree of nonlocality has become weaker. The less α

is, the higher the nonlocality is. The degree of nonlo-
cality is the relative width of the response function with
respect to the wave packet, and it thus changes dynam-
ically when the wave packet spreads or contracts. It is
difficult to prove anything rigorously for an arbitrary
degree of nonlocality, but what we have discussed here
provides strong support for the existence of observable
nonlinear modes in the laboratory experiments.

Furthermore, the stabilities are affected by the vari-
ous perturbation conditions are analyzed. The normal-
ized transverse intensity and the corresponding cross
lines of the fourth-order SHCGwave packets are shown
inFig. 5a,while the insets in Fig. 5b–f display the phase
distribution evolution of the fourth order vortices. The
initial condition is supposed to be U + εφ, where ε

is the perturbation parameter and φ is a random com-
plex function with a maximum amplitude that is lower
than that of the SHCG wave packets. Comparison of
Fig. 5d with the analytical results in Fig. 5c shows that
the numerically simulation results agree well with the
theoretical analysis results under the zero perturbation
(ε = 0) condition. However, the difference between the
numerical simulation results and the theoretical anal-
ysis results becomes huge when ε = 0.3 (Fig. 5f),
although the difference is too small to distinguish when
ε = 0.1 (Fig. 5e). In a numerical simulation, a stable
SHCG wave packet propagates, while the initial wave
packet is perturbed by noise. This may not constitute a
rigorous proof of the stability of the wave packet; how-
ever, it paves the way to the experimental observation
in the highly nonlocal nonlinear media and is further
expected to introduce significant novelties in nonlinear
optics.

4 Summary

In conclusion, we have studied the propagation prop-
erties of localized SHCG wave packets carrying multi-
order vortices in highly nonlocal nonlinearmedia. Ana-
lytical results are obtained by solving the (3+1) dimen-
sional Snyder–Mitchell model, and the stable rotation
of the entire wave packets is shown. When the distri-
bution factor is larger, the transverse intensity distribu-
tion becomes clustered more closely around the center,
while the vortices move farther away from the center.
It is important to note that the wave packets reverse the
positions of their temporal side lobes to face the front
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Fig. 2 Propagation
dynamic of the second-order
SHCG wave packets with a
and d Z = π/3, b and e
Z = 2π/3, c and f Z = π .
a–c b = 1 and c = 0, d–f
b = 2 and c = −1. The
insets in a and d display
temporal profile plots, the
red solid lines with
Z = π/3, the blue dotted
lines with Z = 2π/3 and
the green point lines with
Z = π . β = 1

Fig. 3 Comparison of the
magnitude of the angular
velocity with different β

Fig. 4 The third-order
SHCG wave packets with
b = 1. a The normalized
transverse intensity and the
corresponding cross lines.
The analytical wave packets
with b Z = 0 and c Z = 2.
The related numerical
simulation at Z = 2 by
using the split step Fourier
transform d α = 0.001, e
α = 0.2 and f α = 0.25.
The insets display the
related phase distributions
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Fig. 5 The fourth-order
SHCG wave packets with
b = 0.8. a The normalized
transverse intensity and the
corresponding cross lines.
The analytical wave packets
with b Z = 0 and c Z = 2.
The related numerical
simulation to different
perturbations at Z = 2 with
d ε = 0, e ε = 0.1 and f
ε = 0.3. The insets display
the phase distributions.
α = 0.001

because of negative chirp factors. The SHCG wave
packets propagate stably when the input power is equal
to the critical power, which means that the diffraction
effects are balanced exactly by the material nonlinear-
ity. In addition, the evolution of theSHCGwavepackets
shows that the angular velocity is generally a function
of the power ratio, independent of the distribution fac-
tor. The physics behind the rotation phenomenon is the
inhomogeneity of the energy flow within the SHCG
wave packet cross section. In the numerically simula-
tions, the simulated results agree well with the theoret-
ical results under the high nonlocality condition. Fur-
thermore, the related numerical simulation snapshots
of the SHCG wave packets under different perturba-
tion conditions are discussed. Although the numerical
simulation may not constitute a rigorous proof of the
stability of the wave packet, it does provide strong sup-
port for the existence of observable nonlinear modes in
the laboratory experiments.

These SHCG wave packets have shown good inten-
sity stability during propagation, which has not only
expanded the recently introduced spatiotemporal wave
packets significantly, but also has provided new ideas
for the propagation and regulation of the multi-dimen-
sional optical field.
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