
Nonlinear Dyn (2020) 102:1627–1642
https://doi.org/10.1007/s11071-020-05999-4

ORIGINAL PAPER

Optimal control of a two-body limbless crawler along
a rough horizontal straight line

Nikolay Bolotnik · Tatiana Figurina

Received: 24 April 2020 / Accepted: 3 October 2020 / Published online: 15 October 2020
© Springer Nature B.V. 2020

Abstract An optimal control problem is solved for a
two-body limbless locomotor crawling along a straight
line on a horizontal rough plane.Coulomb’s dry friction
acts between the locomotor’s bodies and the underlying
plane. The control is performed by the force of interac-
tion between the bodies. The system should be moved
from the state of rest by a given distance in a minimal
time, provided that the relative positions of the bodies
in the initial and terminal states coincide and the veloc-
ities of the bodies at the terminal instant are equal to
zero. A particular attention is given to the case where
the bodies are prohibited to change the direction of their
motion.

Keywords Limbless locomotion · Coulomb’s
friction · Optimal control

1 Introduction

This paper is related to the dynamics and control of
limbless locomotion systems. Such systems can move
in nonlinear resistive environmentswithout special pro-
pelling devices (wheels, legs, caterpillars, fins, etc.)
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due to the change in their configurations. These sys-
tems consist of a number of bodies (links) connected by
cylindrical (revolute) or prismatic (translational) joints.
The bodies interact with one another and with the envi-
ronment. The systems are controlled by the forces of
interaction between their bodies; these forces are inter-
nal forces with respect to the locomotor. The interac-
tion between the bodies changes the velocities of these
bodies relative to the environment, which leads to the
change in the resistance forces applied by the environ-
ment to the locomotor components. The forces of inter-
action with the environment are external forces for the
locomotor. Therefore, by changing the internal inter-
action forces, one can control the external forces, con-
trolling thereby the motion of the entire system. This
principle ofmotion underlies locomotion of some limb-
less animals, in particular snakes and worms, and can
be utilized in artificial locomotors (mobile robots).

The motion of systems with revolute joints along a
horizontal rough plane is studied in [1–4]. It is assumed
that all links of the system have contact with the plane
and the Coulomb’s dry friction acts between the bod-
ies and the underlying plane. Dynamic and quasi-static
modes of motion are considered. In the dynamic mode,
slow and fast motions alternate [1]. In the slow phases,
part of the linksmove slowly, while the remaining links
are kept fixed due to friction. During the slow phases,
the center of mass of the system is moving relative to
the plane. In the fast phases, the systemquickly changes
its configuration, while the center of mass virtually
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remains fixed due to short duration of the phase. By
alternating the slow and fast motions the system can be
driven to any position on the plane. In the quasi-static
mode, fast phases are absent and the links of the system
move so slowly that the entire motion can be regarded
as a continuous sequence of equilibria [2,3]. Control
algorithms for both modes of motion are proposed.

Worm-like locomotion systems are addressed in [5–
18]. In these publications, the motion along a straight
horizontal line is studied. Two types of models are con-
sidered, in which the locomotor is represented as a
chain of a finite number of bodies regarded as point
masses [5,8–11] or as a distributed-mass deformable
rod [14–18]. The distances between the point masses
in the lumped-mass model or the lengths of the seg-
ments in the distributed-mass model are changed due
to internal interaction forces acting between the adja-
cent elements of the locomotor. The interaction of the
worm-like systems with the environment is modeled
by Coulomb’s dry friction or viscous friction. Papers
[6,7,12,13] deal with more complicated worm-like
locomotion systems in which the bodies that have con-
tact with the environment are connected by elastic ele-
ments (springs) or contain internal bodies themotion of
which relative to the main bodies excites and sustains
the motion of an entire locomotor. In all cited publica-
tions, the gaits and the respective control modes for the
worm-like locomotors are designed and investigated;
in some papers, parametric optimization of structural
and control design variables is performed. An optimal
control problem for a lumped-mass system is solved in
[8]. Systematic theoretical studies of worm-like loco-
motion of systems that consist of a finite number of
rigid components connected by prismatic joints are pre-
sented in two books [10,11]. These books deal mostly
with the dynamical behavior of the worm-like systems
subject to various excitation modes; control and opti-
mization problems do not define the major content of
these publications.

A simplest model of a limbless crawler consists of
two rigid bodies that interact with each other and with
the environment and move along a straight line passing
through the bodies of the system. An important class
of such crawlers involves the systems in which only
one body interacts with the environment. In this case,
the body that interacts with the environment can be
interpreted as a housing (capsule) and the other body
as an internal body that can move inside the housing.
Such locomotors are called capsule locomotors or cap-

sule robots. The capsule robots are easy to miniaturize
and can be made hermetic without protruding parts,
which enables such robots to be used in vulnerable
media, including the human body. Various aspects of
the dynamics and control of capsule robots are stud-
ied in [19–29]. Optimal control problems for capsule
robots are solved in [19–22].

The subject matter of our paper is a time optimal
control problem for a two-body crawler for the gen-
eral case, where both bodies may have contact with the
environment. The bodies are modeled by point masses
and may move along a straight line passing through
the bodies on a rough horizontal plane. Coulomb’s dry
friction is assumed to act between the bodies and the
underlying plane. The system is controlled by the force
of interaction between the bodies. No constraints are
imposed on the control force. It is required to drive the
system that is at rest at the initial time instant through
a prescribed distance in a minimal time, provided that
at the terminal instant the system is at rest and the rel-
ative position of the bodies coincides with that for the
initial time instant. This problem is solved for two state-
ments. For one statement, no constraints on the motion
of the bodies are imposed. The other statement pro-
hibits backward motion for any of the bodies.

Our paper is closely related to the studies of [30–
34]. These studies deal with dynamics, control, and
parametric optimization of two-body crawlers, how-
ever, optimal control problems are not solved. Con-
trol and optimization problems for a two-body crawler
similar to that in question in our paper are considered
by Chernousko in [32,33]. The motions induced by
a piecewise constant mode of change in the force of
interactions between the bodies are dealt with in [32].
The distance between the bodies changes periodically
within prescribed limits. The average velocity of the
crawler is studied as a function of the design and con-
trol parameters. The optimal parameters that provide
a maximum for the average velocity are calculated. A
mode of motion in which the relative velocity between
the bodies changes in a piecewise-constantmode is pro-
posed and investigated in [33]. The influence of the
parameters of the system on the average velocity and
the energy consumption per unit path is analyzed.Wag-
ner and Lauga [34] addressed the two-body system as
a mechanical model for crawling limbless animals that
allows studying the physical principles of locomotion
of such animals. On the basis of computational exper-
iments combined with analytical considerations, they
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Fig. 1 Two-body locomotion system

investigated the physical conditions subject to which
the system can crawl at a periodic change in the dis-
tance between the bodies and their velocities along a
straight line on a horizontal plane with Coulomb’s fric-
tion. The issues addressed in [34] are investigated in
[31] analytically for the case of small friction between
the bodies of the crawler and the underlying surface.
The conditions, subject to which the two-body crawler
can move in a periodic mode so that neither of the bod-
ies changes the direction of its motion, are obtained
in [30]. An optimal control problem for a worm-like
locomotion system was first stated in [8]. In this paper,
a system of three or more identical bodies interacting
with each other is considered. The systemmoves along
a straight line on a horizontal plane with Coulomb’s
friction between the bodies and the underlying surface.
An optimal control that drives the system through a
maximum distance for a fixed time is designed. It is
assumed that at the initial and terminal time instants
the system is at rest and has the same configuration. In
the optimal motion, neither of the bodies changes the
direction of its velocity, which is important for crawl-
ing systems, since it minimizes the energy expendi-
tures on the compensation for the work of the friction
forces. The technique proposed in [8] does not apply
to crawlers that consist of two bodies.

2 Statement of the problems

A controlled locomotion of a two-body system that can
move along a straight line on a horizontal rough plane
is considered (Fig. 1).

Coulomb’s dry friction is acting between the bodies
and the underlying plane. The system is controlled by
changing the force of interaction between the bodies. In
what follows, the bodies are modelled by point masses.
Let m and M denote the masses of the bodies; x and y
the coordinates of the bodies measured along the line
of motion of the system from certain points fixed on
this line; km and kM the coefficients of friction of the
respective bodies against the underlying plane; F the

control force applied to body m by body M ; Fm and
FM Coulomb’s friction forces acting on bodies m and
M , respectively; g the acceleration due to gravity. The
motion of the system is governed by the differential
equations

ẋ = v, ẏ = V, mv̇ = F + Fm, MV̇ = −F + FM .

(1)

According to Coulomb’s law, the forces of friction are
defined by

Fm =
⎧
⎨

⎩

−kmmg sgn v, v �= 0,
−F, v = 0, |F | ≤ kmmg,

−kmmg sgn F, v = 0, |F | > kmmg.

(2)

FM =
⎧
⎨

⎩

−kM Mg sgn V, V �= 0,
F, V = 0, |F | ≤ kM Mg,

kM Mg sgn F, V = 0, |F | > kM Mg.

(3)

We suppose that kmm �= kM M which means that
the sliding friction forces for two bodies are different.
If kmm = kM M and both bodies are resting at an ini-
tial time instant, then the center of mass of the system
remains resting all the time. Indeed, if the velocity of
the center of mass is equal to zero, the velocities of the
bodies are both equal to zero or directed opposite to
each other, and hence, Fm = −FM . From (1) it follows
that mv̇ + MV̇ = Fm + FM = 0, which proves the rest
of the center of mass of the system. For what follows,
without loss of generality it is assumed that

kmm > kM M. (4)

For the mechanical system under consideration, two
optimal control problems are stated.

Problem 1 Let the system of Eqs. (1)–(4) at the initial
time instant rest in the state

x(0) = y(0) = 0, v(0) = V (0) = 0. (5)

By choosing the control strategy F(t) it is desired to
drive the system into the state

x(T ) = y(T ) = l, v(T ) = V (T ) = 0, l > 0. (6)

in a minimal time T = T (1)
min .

Problem 1 is a time-optimal control problem. It
requires both bodies of the system to bemoved between
the initial and terminal states of rest by the same pre-
scribed distance l in a minimal time. No constraints on
the control variable F(t) are imposed.
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Problem 2 Let the system of Eqs. (1)–(4) at the initial
time instant rest in the state of (5). By choosing the con-
trol strategy F(t) it is desired to drive the system into
the state of (6) in a minimal time T = T (2)

min , provided
that

v(t) ≥ 0, V (t) ≥ 0, t ∈ [0, T ]. (7)

Problem2 is a time-optimal control problem for non-
reverse motions. By non-reverse motions we under-
stand the motions in which neither of the bodies moves
backward (in the direction opposite to that of the total
displacement). Problem 2 coincides with Problem 1
apart from the inequalities of (7) that prohibit back-
ward motions of the bodies during the entire time.

3 Dual problems

It is useful to consider the optimal control problems
that are dual to Problems 1 and 2. In the dual problems,
the time of the motion T is fixed and the distance l
is to be maximized. The equations of motion, bound-
ary conditions, and constraints coincide with those for
the respective primary problems. Let Tmin(l) denote the
minimal time of the motion through the distance l for
the primary problem and let lmax(T ) denote the maxi-
mal distance that can be travelled for a fixed T for the
respective dual problem. These quantities satisfy the
relations

lmax(Tmin(l)) = l, Tmin(lmax(T )) = T . (8)

To prove these relations note first that the function
Tmin(l) is continuous andmonotonically increases from
0 to∞ as l increases from0 to∞. This follows from the
dimensionality analysis. Indeed, the governing param-
eters of both problems are l, g, m, M , km , kM , among
which l, g, m, M are dimensional quantities, and the
quantity of dimension of time is defined by a unique
(apart from a dimensionless coefficient) combina-
tion

√
l/g. Therefore, Tmin = χ(m, M, km, kM )

√
l/g,

where χ(m, M, km, kM ) is a dimensionless function.
This proves that the function Tmin(l) is continuous and
monotonically increases from 0 to ∞ as l increases
from 0 to ∞ and, hence, it has an inverse T −1

min(T ).
Let us show that lmax(T ) = T −1

min(T ). Indeed, the
value T is the solution of the primary problem for
l = T −1

min(T ), that is T is the minimum time allow-
ing the system to travel the distance l. If we suppose

that lmax(T ) = l∗ > T −1
min(T ), then we come to contra-

diction, taking into account the increase of the function
Tmin(l), which implies that Tmin(l∗) > T . This proves
the equality lmax(T ) = T −1

min(T ), which is equivalent to
(8).

4 Nondimensionalization

Introduce the dimensionless variables and parameters:

x ′ = x
L , y′ = y

L , l ′ = l
L ,

t ′ =
√

gkm
L t, T ′ =

√
gkm

L T,

u = F
km mg , F ′

m = Fm
km mg , F ′

M = FM
km mg ,

μ = M
m , k = kM

km
,

(9)

where L is a scaling factor of the dimension of length
that can be chosen arbitrarily. This nondimensionaliza-
tion implies that the mass of body m is taken as a unit
of mass and the sliding friction force magnitude for
this body kmmg as a unit of force. Accordingly, in the
nondimensionalized equations, one should let m = 1,
M = μ, F = u, kmmg = 1, kM Mg = μk; inequality
(4) becomes μk < 1.

Substitute relations (9) into (1)–(6), (7) and omit the
primes to obtain the nondimensionalized equations of
motion

ẋ = v, ẏ = V, v̇ = u + Fm, μV̇ = −u + FM ,

(10)

expressions for the forces of friction

Fm =
⎧
⎨

⎩

−sgn v, v �= 0,
−u, v = 0, |u| ≤ 1,
−sgn u, v = 0, |u| > 1,

(11)

FM =
⎧
⎨

⎩

−μk sgn V, V �= 0,
u, V = 0, |u| ≤ μk,

μk sgn u, V = 0, |u| > μk,

(12)

the inequality

μk < 1, (13)

the boundary conditions

x(0) = y(0) = 0, v(0) = V (0) = 0, (14)

x(T ) = y(T ) = l, v(T ) = V (T ) = 0, l > 0,

(15)

and the non-reverse condition

v(t) ≥ 0, V (t) ≥ 0, t ∈ [0, T ]. (16)
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Nondimensionalized relations (10)–(13) contain 2
parameters: μ and k. These parameters define the
dynamic behavior of the system for a given control
force u. The parameter k appears in the equations only
multiplied by μ. This is no coincidence. The product
μk defines the ratio of the maximal sliding fiction force
for body M to that for body m, and it is this ratio that
is essential for the behavior of the system. It could
have been said that the equations of motion contain
two governing parametersμ andμk, and a new param-
eter ν = μk could have been introduced. We chose not
to do so in order to provide a succession in the notation
of the dimensionless and dimensional variables.

In the dimensionless variables, Problems 1 and 2 are
reformulated as follows.

Problem 1 Let the system of Eqs. (10)–(13) at the ini-
tial time instant rest in the state of (14). By choosing
the control strategy u(t) it is desired to drive the system
into the state of (15) in a minimal time T = T (1)

min .

Problem 2 Let the system of Eqs. (10)–(13) at the ini-
tial time instant rest in the state of (14). By choosing the
control strategy u(t) it is desired to drive the system,
subject to the non-reverse condition (16), into the state
of (15) in a minimal time T = T (2)

min .

5 Auxiliary problem

Denote by z and w = ż the coordinate of the system’s
center of mass and its velocity:

z = x + μy

1 + μ
, w = v + μV

1 + μ
. (17)

If the motion of the bodies obeys the boundary condi-
tions (14) and (15), the motion of the center of mass is
subject to the boundary conditions

z(0) = 0, w(0) = 0, (18)

z(T ) = l, w(T ) = 0. (19)

According to (10), the motion of the center of mass is
governed by the equation

ż = w, (1 + μ)ẇ = f, (20)

f = Fm + FM . (21)

Define possible ranges for the total friction force f
depending on the direction of the motion of the center
of mass. If w > 0, then v + μV > 0 and, accordingly,
at least one body moves forward, the other body being

allowed to move in any direction or stay at rest. Let
v > 0. Then, according to Coulomb’s law, Fm = −1,
−μk ≤ FM ≤ μk and, therefore, −1 − μk ≤ f ≤
μk−1. In a similar waywe obtain that−1−μk ≤ f ≤
1 − μk for w > 0 and V > 0. Therefore, taking into
account that μk < 1, we have f ∈ [−1−μk, 1−μk]
forw > 0. In a similar waywe obtain the inclusion f ∈
[−1 + μk, 1 + μk] for w < 0. Let now w = 0. Then,
the bodies move in opposite directions or both rest. In
accordance with (11), (12), and (21), for vV < 0, we
have | f | = 1 − μk. For v = 0 and V = 0, the values
of Fm and FM and, hence, the value of f , depend on
the control u. Analysis shows that f = 0 for |u| ≤ μk,
f ∈ (−1 + μk, −1 + μk) for μk < |u| ≤ 1, and
f ∈ {−1 + μk, 1 − μk} for |u| > 1. Finally, we have

f ∈ [−1 + μk, 1 + μk], w < 0,
f ∈ [−1 + μk, 1 − μk], w = 0,
f ∈ [−1 − μk, 1 − μk], w > 0.

(22)

Consider an optimal control problem for system (20)
where f is treated as a control variable.

Problem 3 (auxiliary) For the system defined by rela-
tions (20) and (22), find a control f (t) that transfers
the variable z(t) from the state (18) into the state (19)
in a minimal time T = T0.

To solve the auxiliary problem, let us prove first that
w ≥ 0 for the optimal motion. Let z(t) be some func-
tion satisfying (18)–(20), (22) such that w(t) < 0,
t ∈ A ⊂ [0, T ]. Since the quantity f is bounded
due to (22), w(t) is a continuous function of time.
This implies, with reference to the conditions w(0) =
w(T ) = 0, that A is a union of nonintersecting inter-
vals at the ends of which w = 0. Consider another
function z∗(t), z∗(0) = 0, and w∗(t) = ż∗(t) such
that w∗(t) ≡ 0 for t ∈ A and w∗(t) = w(t) for
t ∈ [0, T ] \ A. Since w(t) < 0 for t ∈ A, we have
z∗(T ) > z(T ) = l. So we obtained that if a function
z(t) is such thatw < 0 in an interval, then this function
is not optimal (the greater distance can be travelled for
the fixed T and, due to the duality, the shorter time is
needed to travel a fixed distance). Thus, we proved that
in the optimal motion w ≥ 0.

From (22) and (13) it follows that for w ≥ 0, the
control f satisfies the constraints

− (1 + μk) ≤ f ≤ 1 − μk. (23)
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Solve the time-optimal control problem for system (20)
subject to the boundary conditions of (18) and (19) and
the constraints of (23) to obtain

f =
{
1 − μk, 0 ≤ t ≤ τ,

−1 − μk, τ ≤ t ≤ T0,
(24)

where

T0 = 2

√
(1 + μ)l

1 − μ2k2
, τ = 1 + μk

2
T0. (25)

This completes the solution of the auxiliary optimal
control problem.

Lemma 1 The minimal time T0 for Problem 3 provides
a lower bound for the minimal times T (1)

min and T (2)
min for

Problems 1 and 2, i.e.,

T (i)
min ≥ T0, i = 1, 2. (26)

Proof Let the functions x(t), y(t), v(t), and V (t)
define a solution of system (10)–(13) that corresponds
to a control function u(t) and satisfies the boundary
conditions of (14) and (15). The respective motion of
the center of mass is characterized by the functions z(t)
and w(t) defined by (17). These functions satisfy the
boundary conditions of (18) and (19) and the equation
of (20) for f = f (t) defined by expression (21), where
Fm and FM are calculated according to (11) and (12)
for u = u(t), v = v(t), and V = V (t). The func-
tion f (t) defined in such a way satisfies the inclusions
of (22). Therefore, the set of solutions of the system of
(20) and (22) subject to the boundary conditions of (18)
and (19) includes the set of functions (17) induced by
solutions of the system of (10)–(13). For this reason,
the optimal time T0 resulted from the solution of Prob-
lem 3 provides a lower bound for the optimal times for
Problems 1 and 2. �

6 Solution of Problem 1

We will define a control strategy u(t) in the class of
distributions (generalized functions) and the respective
motions x(t) and y(t) of both bodies that provide the
minimal time T (1)

min = T0. According to Lemma 1, such
control strategy solves Problem 1. It is sufficient to find
amotion of the system for which the acceleration of the
center of mass is defined by ẇ = f/(1 + μ), where f
is defined by (24) and (25). Let

u =

⎧
⎪⎪⎨

⎪⎪⎩

−1, 0 ≤ t < τ,

(1 − μk)τδ(t − τ), t = τ,

−μk, τ < t < T0,
l(1 + μk − μ(1 − μk))δ̇(t − T0)/2, t = T0.

(27)

where δ(t −ξ) is Dirac’s delta function concentrated at
the point t = ξ . Subject to this control, in the interval
[0, τ ), body m rests in the position x = 0, while body
M accelerates at an acceleration of V̇ = (1 − μk)/μ.
It is a maximum acceleration allowed for body M , pro-
vided that body m is resting. In this time interval, the
center of mass of the system moves at a constant accel-
eration of ẇ = (1− μk)/(1+ μ). At the instant τ , the
coordinate and velocity of body M become

y(τ ) = (1 − μk)
τ 2

2μ
, V (τ ) = (1 − μk)

τ

μ
. (28)

At the instant τ , body M instantaneously transmits its
momentum entirely to bodym as a result of which body
m acquires the velocity v(τ) = (1−μk)τ . In the inter-
val (τ, T0), body M rests and body m decelerates at
an acceleration of v̇ = −(1 + μk), which is a mini-
mum acceleration allowed for body m, provided that
body M is resting. In this time interval, the center of
mass of the system moves at a constant acceleration of
ẇ = −(1 + μk)/(1 + μ). By the time instant T0, the
velocity of bodym vanishes and its coordinate becomes

x(T0) = (1 + μk)
(T0 − τ)2

2
, v(T0) = 0. (29)

According to the relations of (25), (28), and (29), the
coordinates of the bodies by the time instant T0 are
given by

x(T0) = l
2 (1 − μk)(1 + μ),

y(T0) = y(τ ) = l
2μ(1 + μk)(1 + μ),

(30)

and the center ofmass rests in the position z(T0) = l. At
the instant T0, the bodies instantaneously move close
to one another and arrive at the same position, which
brings the system into the state of (6). The instanta-
neous change in the distance between the bodies is due
to the force which is represented by the derivative of
Dirac’s delta function concentrated at the instant T0
and multiplied by a respective coefficient. Subject to
the control of (27), in the interval [0, T0), the center of
mass moves according to (20), (24) and is driven from
the state (18) into the state of (19) in a minimum time
T0.
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Fig. 2 Time histories of the variables x (dash-and-dot line), y
(dashed line), and z (solid line) for the motion governed by the
control of (27)

The time histories of the coordinates x(t) and y(t)
of the bodies for the motion governed by the control
strategy of (27) are given by

x =
⎧
⎨

⎩

0, 0 ≤ t < τ,
1
2 (1 − μk)(1 + μ)l−
1
2 (1 + μk)(T0 − t)2, τ ≤ t < T0.

(31)

y =
{

1−μk
2μ t2, 0 ≤ t < τ,
l
2μ(1 + μk)(1 + μ), τ ≤ t < T0,

(32)

The coordinate z of the center of mass of the system
is defined by the first expression of (17). By substituting
the expressions of (31) and (32) into that of (17) for z
we obtain

z = z0(t) =
{

1−μk
2(1+μ)

t2, 0 ≤ t < τ,

l − 1+μk
2(1+μ)

(T0 − t)2, τ ≤ t < T0.

(33)

The subscript 0 of the variable z indicates that expres-
sion (33) corresponds to an optimal motion that occurs
in a time of T0.

The time histories x(t), y(t), and z(t) for the motion
governed by the control of (27) are illustrated in Fig.
2. This figure corresponds to the case where

μ <
1 + μk

1 − μk
. (34)

For this case, body M finds itself ahead of body m by
the time instant T0. At the instant T0, the bodies are
brought together instantaneously, which is shown by
the arrows in the figure.

For

μ >
1 + μk

1 − μk
, (35)

body m finds itself ahead of body M by the time instant
T0.

For

μ = 1 + μk

1 − μk
, (36)

the positions of bodies m and M coincide by the time
instant T0, and the stage of bringing the bodies together
is not needed.

The relations similar to those of (34)–(36), in which
the parameter μ is compared with the ratio (1 −
μk)/(1 + μk) are frequently encountered in what fol-
lows. These relations can be solved for one of the
parameters μ or k. For example, having been solved
for k, inequality (34) can be represented as follows:

k >
μ − 1

μ(μ + 1)
.

However, we prefer to preserve the form with μ on the
left-hand side and μk on the right-hand side, because
the parameter μk has a clear physical sense: It charac-
terises the ratio of the maximal sliding fiction force for
body M to that for body m; see the paragraph after the
inequalities of (16).

Thus, we proved the following proposition.

Proposition 1 The control law (27) gives an optimal
solution of Problem 1 with

T (1)
min = T0.

Notice that the only possibility to move the center
of mass according to (20), (24) in the interval [0, τ ) is
to accelerate body M at a maximal rate, provided that
body m is resting. However, in the interval [τ, T0), the
system can move in different ways. First, body M may
rest while body m decelerates at a minimal accelera-
tion, as is presented above; second, body m may rest
while body M decelerates at a minimal rate; at last,
both bodies may move forward.

Consider separately the case where

μ ≥ 1 + μk

1 − μk
. (37)

In this case, x(T0) and y(T0) defined by (30) satisfy
the inequality x(T0) ≥ y(T0). If this inequality holds,
then there exists a time instant θ , θ ∈ (0, T0], at which
the position of body m coincides with the position of
body M , x(θ) = y(θ) = l; if μ = 1+μk

1−μk , then θ =
T0.

For this case one can suggest a number of optimal
control laws. Here, we consider one of them. Let at the
time instant θ body m share part of its momentum with
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body M so that both bodies acquire the same velocity;
in the interval t ∈ [θ, T0], the positions of both bodies
coincide and the bodies move synchronously until full
stop at the position x(T0) = y(T0) = l. The control
that provides this optimal motion is given by

u =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−1, 0 ≤ t < τ,

(1 − μk)τδ(t − τ), t = τ,

−μk, τ < t < θ,

−μv(θ)
1+μ

δ(t − θ), t = θ,
μ−μk
1+μ

, θ < t ≤ T0,

(38)

θ = 2 − h

1 + μk
τ, v(θ) = τh, (39)

h =
√

(1 − μk)(μ(1 − μk) − (1 + μk))

μ
. (40)

Subject to this control, in the interval (0, θ), themotion
of the system completely coincides with the motion
produced by control (27). At the time instant t = θ ,
the relation x(θ) = y(τ ) holds, i.e., body m catches up
with body M ; then an impulsive interaction between
the bodies occurs, as a result of which both bodies
acquire the same velocity v(θ + 0) = V (θ + 0) =
v(θ − 0)/(1 + μ). In the interval (θ, T0], both bodies
synchronously decelerate to a complete stop. In this
optimal motion, there are no instantaneous jumps in
the positions of the bodies;moreover, both bodiesmove
forward or stay at rest and never move backward. Thus,
the proposed motion solves simultaneously both Prob-
lems 1 and 2.

The time histories of the coordinates x(t) and y(t)
of the bodies for the motion governed by the control
strategy of (38) are given by

x =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t < τ,

(1 − μk)τ (t − τ)−
1
2 (1 + μk)(t − τ)2, τ ≤ t < θ,

l − 1
2 (1 + μk)(T0 − t)2, θ ≤ t ≤ T0,

(41)

y =

⎧
⎪⎨

⎪⎩

1−μk
2μ t2, 0 ≤ t < τ,
l
2μ(1 + μk)(1 + μ), τ ≤ t < θ,

l − 1
2 (1 + μk)(T0 − t)2, θ ≤ t ≤ T0.

(42)

The time history of the coordinate of the center of mass
z(t) is defined by expression (33).

The time histories x(t), y(t), and z(t) for the motion
governed by the control of (38) are illustrated in Fig. 3.

Therefore, the following proposition is proved.

Fig. 3 Time histories of the variables x (dash-and-dot line), y
(dashed line), and z (solid line) for the motion governed by the
control of (38)

Proposition 2 If μ ≥ 1+μk
1−μk , then the control law

(38) gives the optimal solution of both Problems 1 and
2, with

T (1)
min = T (2)

min = T0.

Remark We have mentioned already that the solution
of Problem 1 is not uniquely defined. The solution of
Problem 2 is also not uniquely defined if μ >

1+μk
1−μk ;

the full class of non-reverse optimal motions of the
system for this case can be briefly characterized as fol-
lows. Themotion over the time interval [0, τ ) is defined
uniquely by (27); body m stays at rest and body M
moves forward accelerating with a maximum possible
rate. In the interval [τ, T0), one of the following modes
of motion may occur: one of the bodies (any) rests and
the other body moves forward decelerating with min-
imal acceleration, or both bodies move forward. It is
not necessarily that only one of these modes occurs
in the entire interval [τ, T0). The interval [τ, T0) may
split into a number of time intervals, each correspond-
ing to a certain mode of motion. At the end of a time
interval where only one body moves, the momentum
of this body is transmitted partially or fully to the other
body, and at the end of a time interval where both bod-
ies move, one of the bodies instantaneously stops and
transmits its entire momentum to the other body. The
optimality of such modes is proved by the fact that the
for all of them the center of mass of the system decel-
erates in the interval [τ, T0) at a minimal acceleration
in accordance with (20), (24), and (25). Note that for
the case of μ = 1+μk

1−μk the solution of Problem 2 is
unique; body M rests and body m moves forward over
the entire interval [τ, T0).
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7 Solution of Problem 2

According to [30], for μk < 1, the non-reverse motion
of the system between the states of (5) and (6) is pos-
sible if and only if μ ≥ 1. For the case where the
parameters of the system satisfy the inequality of (37),
the solution of Problem 2 was given in Sect. 6. For this
case, the optimal non-reverse motion occurs in a time
of T0 and, hence, provides simultaneously a solution
for Problem 1. In this section, we concentrate on the
case where

1 ≤ μ <
1 + μk

1 − μk
. (43)

Lemma 2 If there exists a solution for Problem 2, this
solution can be found in the class of alternating motions
of bodies m and M, such that

v(t)V (t) ≡ 0, t ∈ [0, T ].
Proof Consider a non-reversemotion and let the veloc-
ities of both bodies be positive for some time interval:

v(t) > 0, V (t) > 0, t ∈ [α, β] ⊂ [0, T ]. (44)

For this case, the equations of motion of the system are
given by

ẋ = v, ẏ = V, v̇ = u − 1, μV̇ = −u − μk,

(45)

and the motion of the center of mass is governed by the
equation

ẇ = (−1 − μk)/(1 + μ). (46)

Let 
x and 
y denote the displacements of bodies m
and M for the interval [α, β]. �

Let us construct an alternating motion of the system
with the velocities ṽ(t) and Ṽ (t) for the time interval
[α, β], such that the displacements 
x̃ and 
ỹ and the
velocities of the bodies at both ends of this interval coin-
cide with the respective values for the primary motion.
Let at the time instant t = α the entire momentum
of the system be transmitted to body m, as a result of
which ṽ(α) = v(α) + μV (α). Let u = −μk for some
time interval [α, γ ]. In this time interval, body M will
remain fixed, Ṽ ≡ 0, while body m will move in accor-
dance with the equation ˙̃v = −1 − μk. The motion of
the center of mass will be governed by Eq. (46), as was
the case for the simultaneous motion of both bodies.
Let at a time instant γ , γ < β, defined by the relation


x̃ = 
x , the entiremomentumbe transmitted to body
M . Let u ≡ 1 for t ∈ [γ, β]; then body m will be fixed
(ṽ ≡ 0), while body M will move in accordance with

the equation μ
˙̃V = −1 − μk, the motion of the cen-

ter of mass being governed by Eq. (46). Since for both
motions the behavior of the center of mass is governed
by the same Eq. (46) in the entire interval [α, β] and
by the time instant t = γ body m moves through a dis-
tance of 
x̃ = 
x , body M moves through a distance
of 
ỹ = 
y by the time instant t = β. At the instant
t = β, the momentum of body M coincides with the
momentum of the entire system for the primary motion
at the time instant t = β and can be divided between
bodies m and M so that the velocities of both bodies
for the constructed alternating motion and the primary
motion coincide.

Thus, for the motion at which both bodies move
forward in the time interval [α, β], we constructed a
non-reverse alternating motion for which the displace-
ments of both bodies for the time interval [α, β] and
their velocities at the end points coincide with those for
the primary motion. Therefore, for the entire interval
[0, T ], any non-reverse motion can be replaced by the
motion forwhich the bodies alternatingly stay fixed and
move forward, with the displacements of each of the
bodies coinciding with those for the primary motion.
This completes the proof of Lemma 2.

Denote by p the total momentum of the system:

p = v + μV = (1 + μ)w. (47)

Lemma 3 Let a solution of Problem 2 possess the
property v(t)V (t) ≡ 0, t ∈ [0, T ]. Then, the derivative
of the system’s total momentum p is piecewise constant
and assumes in the interval [0, T ] one of the three val-
ues defined by

ṗ ∈ {−1 − μk, −1 + μk, 1 − μk}. (48)

For ṗ = 1 − μk, body m is necessarily at rest and
body M accelerates with maximum intensity; for ṗ =
−1 + μk, body M is necessarily at rest and body m
accelerates with minimum intensity. For ṗ = −1 −
μk any of the bodies can rest while the other body
decelerates with maximum intensity.

Proof Let for an interval t ∈ [α, β] body m be at rest
and body M move forward: v ≡ 0, V > 0. Since body
m does not move, the control u satisfies the inequal-
ity |u| ≤ 1, whence μV̇ ∈ [−1 − μk, 1 − μk]. Let

y denote the displacement of body M over the inter-
val [α, β] in the motion under consideration. Construct
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a control that moves body M in a minimal time by
a distance of 
y between the states with the initial
velocity V (α) and the terminal velocity V (β). This
control is defined by u(t) = −1 for t ∈ [α, γ ] and
u(t) = 1 for t ∈ [γ, β̃], β̃ < β. Subject to this con-
trol, body M first accelerates with a maximum inten-
sity, μV̇ = 1 − μk, and then decelerates with a maxi-
mum intensity, μV̇ = −1 − μk. For this new motion,
the derivative of system’s total momentum p in the
interval [α, β̃] obeys the relation of (48). A similar
reasoning can be applied to the case where body M
is at rest, while body m moves forward. Let V ≡ 0
and v > 0 for t ∈ [α′, β ′]. Since body m is at rest,
the control u satisfies the inequality|u| ≤ μk, whence
v̇ ∈ [−1− μk,−1+ μk]. Let 
x denote the displace-
ment of M for the motion under consideration in the
interval [α′, β ′]. Construct a control that moves body
m in a minimal time by a distance of 
x between the
states with the initial velocity v(α′) and terminal veloc-
ity v(β ′). This control is defined by u(t) = μk for
t ∈ [α′, γ ′] and u(t) = −μk for t ∈ [γ ′, β̃ ′], β̃ ′ < β ′.
For this control, body m first decelerates with a mini-
mum intensity, v̇ = μk −1, and then decelerates with a
maximum intensity, v̇ = −1−μk. For this newmotion,
the acceleration of the center of mass satisfies the rela-
tion of (48) in the interval [α′, β̃ ′]. By replacing each
interval in which the velocities v and V are constant in
sign by a shorter interval in which the center of mass
moves in accordance with inclusion (48), we obtain a
motion for which the systemmoves by the distance that
is equal to its displacement for the primary motion in
a less time. Therefore, within the class of non-reverse
motions that satisfy the relation v(t)V (t) ≡ 0, an opti-
malmotion satisfies the relation of (48). This completes
the proof of Lemma 3.

In accordance with Lemmas 2 and 3, a solution of
Problem 2 can be sought in the class of motions that
satisfy the relation v(t)V (t) ≡ 0 for t ∈ [0, T ] and for
which the acceleration of the system’s center of mass
assumes one of the three values defined by (48). Let us
show that these three values change one another in a
certain order. �
Lemma 4 Let a solution of Problem 2 be such that
v(t)V (t) ≡ 0, t ∈ [0, T ]. Then, the derivative ṗ of
the system’s total momentum is a piecewise constant
function of time that has three intervals of constancy
in the interval [0, T ] and assumes consecutively the
values ṗ = 1 − μk, ṗ = μk − 1, and ṗ = −1 − μk.

Proof According to Lemma 3, the quantity ṗ in the
optimal motion may assume only the values μk − 1,
1−μk, or−μk−1. The relation ṗ = μk−1holdswhen
body M is resting, while body m is moving forward,
decelerating with a minimum possible intensity; the
relation ṗ = 1 − μk holds when body m is resting,
while body M is moving forward, accelerating with a
maximum possible intensity; the relation ṗ = −1−μk
holds when one (any) of the bodies is resting, while
the other body is moving forward, decelerating with
a maximum possible intensity. To prove the lemma, it
suffices to show that switchings of the quantity ṗ from
μk −1 to 1−μk and from−μk −1 toμk −1 or 1−μk
are impossible for the optimal motion. �

We discard first the former possibility. Assume that
ṗ changes its value from μk − 1 to 1 − μk in the
optimal motion at an instant t0, i.e., ṗ = μk − 1 for
t ∈ (t0 − ζ, t0) and ṗ = 1 − μk for t ∈ (t0, t0 + ζ )

for some ζ > 0. Denote p0 = p(t0 − ζ ), p0 > 0. For
the instant t = t0 + ζ , we have p(t0 + ζ ) = p0. In the
interval t ∈ (t0 − ζ, t0), body m moves according to
the equation v̇ = μk − 1, while body M is in a state of
rest; in the interval t ∈ (t0, t0 + ζ ), body m is in a state
of rest, while body M moves according to the equation
μV̇ = 1−μk. Let
x be the displacement of bodym in
the interval (t0−ζ, t0) and
y the displacement of body
M in the interval (t0, t0 + ζ ). The difference between
the distances moved by bodies m and M during the
interval [t0−ζ, t0+ζ ] in the optimal motion is defined
by


x − 
y = ζ

(

1 − 1

μ

) (

p0 + ζ

2
(μk − 1)

)

≥ 0

(49)

Since p0 > 0 and μ ≥ 1, the inequality 
x − 
y ≥ 0
is valid for sufficiently small ζ .

Consider another motion that is characterized by
the total momentum p̃ and is defined in the interval
[t0 − ζ, t0 + ζ ] as follows. At the instant t0 − ζ , the
momentum p̃ coincides with the momentum for the
optimal motion: p̃(t0 − ζ ) = p(t0 − ζ ) = p0. In the
interval (t0 − ζ, t0 + cζ ), c ∈ [0, 1], the quantity p̃ is
governed by the equation ˙̃p = (1−μk) 1−c

1+c , body M
uniformly accelerating, while body m being fixed. For
the time instant t0 + cζ , the momentum is defined by

p(t0 + cζ ) = p∗ = p0 + (1 − μk)(1 − c)ζ.
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In the interval (t0+cζ, t0+ζ ), the relation ˙̃p = μk −1
holds, body m moving with body M being fixed, and
p̃(t0 + ζ ) = p(t0 + ζ ) = p0. The displacements 
x̃
and 
ỹ of body M in the interval (t0 − ζ, t0 + cζ ) and
body m in the interval (t0 + cζ, t0 + ζ ), respectively,
are defined by


x̃ = p0 + p∗
2

(1 − c)ζ, 
ỹ = p0 + p∗
2μ

(1 + c)ζ.

For c = 0, the difference between the displacements
of bodies m and M is not less than that for the optimal
motion:

(
x̃ − 
ỹ)c=0 =
ζ

(
1 − 1

μ

) (
p0 + ζ

2 (1 − μk)
)

≥ 
x − 
y.

This inequality follows from Eq. (49) combined with
the relations μ ≥ 1 and μk < 1. For c = 1, we have

x̃ = 0 and 
ỹ > 0; hence, the difference between
the displacements of bodies m and M is less than that
for the optimal motion:

(
x̃ − 
ỹ)c=1 < 0 < 
x − 
y.

Since the difference 
x̃ − 
ỹ continuously depends
on the parameter c, there exists c = c0 such that
(
x̃ −
ỹ)c=c0 = 
x −
y. Consider the motion that
corresponds to the parameter c0. For this motion, the
function p̃ is concave (convex upward) by construction,
and hence, the systemmoves by a distance greater than
that for the optimal motion. At the boundary points of
the interval (t0−ζ, t0+ζ ), themomentumof themotion
under consideration coincides with that for the optimal
motion, and the difference in the distances passed by
the bodies coincideswith this difference for the optimal
motion. By changing the primary (hypothetically opti-
mal)motion in the interval (t0−ζ, t0+ζ ) for themotion
under consideration, we obtain that for the resulting
motion, the system passes a greater distance than that
for the optimal motion. Therefore, the primary motion
is not optimal for the problem that requires maximiza-
tion of the distance traveled by the system for a fixed
time T , and hence, the switching of the quantity ṗ from
μk − 1 to 1−μk is impossible for the optimal motion.
This problem is dual to Problem 2 that requires mini-
mization of the time for a fixed distance, and therefore,
this kind of switching is impossible also for the optimal
motion for Problem 2.

Address now the remaining possibilities for which
ṗ switches from −μk − 1 to one of the values μk − 1
or 1 − μk. Let t0 be the switching time. Consider an
alternativemotionwith themomentum p̃ that coincides

with the momentum p outside the interval (α, β) � t0
and is governed by the relation ˙̃p = −1 in this interval.
In the interval (α, β), the relation ˙̃p = −1 is consis-
tent with the motion of any of the bodies (with the
other body being fixed). For any part of this interval,
body m can move with body M being fixed; for the
remaining part, body M moves with body m being
fixed. Let 
x and 
y denote the displacements of
the bodies m and M in the interval (α, β) for the
primary motion, and let 
x̃ and 
ỹ denote the dis-
placements of the respective bodies for the alternative
motion in the same interval. If for the alternativemotion
body m moves during the entire interval (α, β), then

x̃ − 
ỹ > 
x − 
y; if body M moves during this
interval, we have 
x̃ − 
ỹ < 
x − 
y. This implies
that there exists an alternative motion with the momen-
tum p̃ for which body m moves during a part of the
interval and body M moves during the remaining part,
with
x̃ −
ỹ = 
x −
y. Since p̃(t) = p(t) outside
the interval (α, β) and p̃(t) > p(t) in this interval, the
path traveled by the system in the alternative motion
exceeds the path traveled by the system in the primary
motion. This completes the proof of non-optimality of
the primary motion for the problem of maximization of
the distance traveled by the system for a fixed time and,
due to duality, non-optimality of the primarymotion for
time-optimal control Problem 2.

Thus, we have shown that in the optimal motion,
the quantity ṗ of the system can switch from the value
1−μk to any of the valuesμk −1 or−1−μk, from the
value μk − 1 it can switch only to the value −1 − μk,
and no switchings are possible from the value−1−μk.
With reference to the initial condition p(0) = 0, this
completes the proof of Lemma 4.

Notice that the interval for which ṗ = μk − 1 may
be void.

Consider an optimal control problem that is dual to
Problem 2 for the non-reverse motion. Let the time of
the motion T be given and it is necessary to maximize
the displacement of the system l. Consider a motion for
which v(t)V (t) ≡ 0. According to Lemmas 2, 3, and
4, the momentum of the system in an optimal motion
obeys the relations

ṗ =
⎧
⎨

⎩

1 − μk, t ∈ [0, τ1],
μk − 1, t ∈ [τ1, τ2],
−1 − μk, t ∈ [τ2, T ].

(50)

In the interval t ∈ [0, τ1], body M moves at amaximum
allowed acceleration, bodym being fixed.At the instant
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τ1, the entire momentum of body M is transmitted to
body m and then this body decelerates at a minimum
rate in the interval t ∈ [τ1, τ2]. In the interval t ∈
[τ2, T ], any of the bodies may move, decelerating at a
maximum rate.

The problem reduces to the maximization of the
functional

I =
∫ T

0
p(t)dt → max, (51)

subject to the equation of (50), the boundary conditions

p(0) = p(T ) = 0, (52)

and the constraint


x = 
y, (53)

where 
x and 
y denote the displacements of bodies
m and M , respectively, for the time T . The constraint
of (53) implies that the displacements of both bodies
for the time T are the same.

Equation (50) and the boundary conditions of (52)
imply the relation

(1 − μk)τ1 + (μk − 1)(τ2 − τ1)

+ (−1 − μk)(T − τ2) = 0,

from which the quantity τ2 is expressed in terms of τ1
and T by

τ2 = T (1 + μk) − 2τ1(1 − μk)

2μk
. (54)

From this expression, taking into account the inequal-
ities τ1 ≤ τ2 ≤ T , we obtain

T

2
≤ τ1 ≤ T

2
(1 + μk). (55)

The value of the functional I of (51) monotonically
increases as τ1 increases; this follows from the rela-
tions of (50), the boundary conditions of (52), and the
inequality μk < 1. Therefore, for the optimal motion,
the parameter τ1 is defined as a maximum value that
satisfies the relation of (53).

Investigate the possibilities for providing the rela-
tion (53) for the maximum τ1 from the interval of (55),
i.e., for τ1 = T

2 (1 + μk). In this case, we have

τ1 = T

2
(1 + μk), τ2 = τ1. (56)

Let body m move at the last stage of the deceleration
at a maximum rate. Then, the displacements of both
bodies are defined by


x = 1

2
(T − τ2)

2(1 + μk), 
y = 1

2μ
τ 21 (1 − μk).

(57)

By substituting the values of τ1 and τ2 defined by (56)
into (57) and then comparing the values of 
x and 
y
we obtain that 
x ≥ 
y if and only if

μ ≥ 1 + μk

1 − μk
. (58)

If this inequality holds, then for the case where body
m moves during the entire interval [τ2, T ], it leaves
body M behind by the time instant t = T . If body M
moves during the entire interval [τ2, T ], then 
x = 0
and, hence, 
x < 
y. Therefore, due to continuity,
there exists a motion in which the bodies alternate their
motions in the interval [τ2, T ] and 
x = 
y. Thus,
for the case of (58), the solution of the problem of (51)–
(53) is attained for τ1 = T

2 (1 + μk).
Substitute this value of τ1 into (50), let τ2 = τ1 in

accordance with (56), and calculate the integral of (51)
to obtain the maximum value of the functional I :

I = 1

4
(1 − μ2k2)T 2. (59)

In accordance with (17) and (47), for the coordinate z
of the system’s center of mass we have the equation

ż = p

1 + μ
. (60)

Solving this equation, subject to the initial condition
z(0) = 0, in the interval [0, T ] yields

z(T ) = I

1 + μ
= (1 − μ2k2)T 2

4(1 + μ)
= l. (61)

This value of l defines the maximum displacement of
the center of mass for the time T , thus providing a solu-
tion for the optimal control problem dual to Problem 2
for the case of (58). Using the relations of (61) and (8),
we obtain the solution of Problem 2 with the minimal
time of the motion defined by

T = 2

√
(1 + μ)l

1 − μ2k2
. (62)

This time coincides with the time T0 of (25).
Let

1 ≤ μ <
1 + μk

1 − μk
. (63)

In this case, for τ1 = T
2 (1+ μk), the inequality 
x <


y holds if body m moves during the entire interval
[τ2, T ]. A fortiori, this inequality holds if the bodies
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alternate their motions in this interval. Therefore, the
relation 
x = 
y cannot be satisfied for τ1 = T

2 (1 +
μk). We will find a maximum value of τ1 = τ ∗

1 for
which the relation of (53) can be satisfied and show that
for this value of τ1 = τ ∗

1 , in the interval [τ2, T ] only
body m moves while body M remains fixed. Indeed, it
is impossible that the bodies alternate their motions in
this interval for τ1 = τ ∗

1 . If this had been the case, one
could have increased the value of τ ∗

1 by a small amount
to provide the relation of (53) by varying the times of
the motion of bodies m and M in the interval [τ2, T ].
Such a variation is impossible if only one of the bodies
moves during the entire interval. The maximum value
of τ ∗

1 corresponds to the case where body m moves
during the entire interval [τ2, T ].

Thus, for the case of (37), we have proved that in the
motion that is optimal for the problem dual to Problem
2, body M moves in the interval [0, τ1] and body m
moves in the intervals [τ1, τ2] and [τ2, T ]. Due to the
duality, this is the case also for Problem 2.

To complete the solution of Problem 2 it remains to
calculate the time of themotion of the system, provided
that the momentum of the system obeys the relations
of (50) and body m moves in the interval [τ2, T ]. In
the interval [0, τ1], body M moves according to the
relations

ẏ = V, μV̇ = 1 − μk, t ∈ [0, τ1],
y(0) = 0, V (0) = 0, y(τ1) = l. (64)

From this relations the time τ1 and the velocity V (τ1)

of body M at this time instant are defined by

τ1 =
√

2μl

1 − μk
, V (τ1) =

√
2l(1 − μk)

μ
. (65)

At the time instant τ1, body M transmits its momentum
entirely to bodym, as a result of which bodym acquires
the velocity

v(τ1) = μV (τ1) = √
2μl(1 − μk). (66)

In the interval [τ1, T ], body M remains fixed and body
m moves according to the relations

ẋ = V,

v̇ = −1 + μk, t ∈ [τ1, τ2],
v̇ = −1 − μk, t ∈ [τ2, T ],
x(τ1) = 0, v(τ1) = √

2μl(1 − μk),

x(T ) = l, v(T ) = 0.

(67)

Solve these equations subject to the initial conditions
for t = τ1, regarding τ2 as a parameter. This yields
x = x(t, τ2), v = v(t, τ2), t ∈ [τ1, T ]. The cum-
bersome explicit expressions for these functions are
omitted here. The unknown parameters τ2 and T can
be defined from the terminal conditions

x(T, τ2) = l, v(T, τ2) = 0. (68)

Solving these equations yields

τ2 = 2

√
2μl

1 − μk
−

√
(1 + μk)(μ − 1)l

(1 − μk)μk
, (69)

T = T (2)
min = T0

√
2μ(1 + μk) − √

μk(μ − 1)√
1 + μ

, (70)

where T0 is the lower bound for the time of the motion
of the system defined by (25).

The optimal control u(t) that drives the system from
the state of (14) into the state of (15) in a time of T
defined by (70) is given by

u =

⎧
⎪⎪⎨

⎪⎪⎩

−1, 0 ≤ t < τ1,

(1 − μk)τ1δ(t − τ1), t = τ1,

μk, τ1 < t ≤ τ2,

−μk, τ2 < t ≤ T .

(71)

The relations of (70) and (71) provide a complete
solution of Problem 2 for the case of (43). For this
case, an optimal control is uniquely defined.

The time histories of the coordinates x(t) and y(t)
of the bodies for the motion governed by the control of
(71) are given by

x =

⎧
⎪⎪⎨

⎪⎪⎩

0, 0 ≤ t < τ1,

(1 − μk)τ1(t − τ1)

− 1
2 (1 − μk)(t − τ1)

2, τ1 ≤ t < τ2,

l − 1
2 (1 + μk)(T − t)2, τ2 ≤ t ≤ T,

(72)

y =
{

1−μk
2μ t2, 0 ≤ t < τ1,

l, τ1 ≤ t ≤ T .
(73)

To define the time history of the system’s center of
mass, one should substitute the expressions of (72) and
(73) into that of (17) for z to obtain

z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1−μk
2(1+μ)

t2, 0 ≤ t < τ1,
μl
1+μ

+ 1−μk
1+μ

τ1(t − τ1)

− 1−μk
2(1+μ)

(t − τ1)
2, τ1 ≤ t < τ2,

l − 1+μk
2(1+μ)

(T − t)2, τ2 ≤ t ≤ T .

(74)
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Fig. 4 Time histories of the variables x (dash-and-dot line), y
(dashed line), and z (solid line) for the motion governed by the
control of (71)

The time histories x(t), y(t), and z(t) are illustrated
in Fig. 4.

A black solid curve plots the function z(t) defined by
(74), while a thick grey curve plots the function z0(t) of
(33) that corresponds to the optimal motions in a time
of T0.

The main result of Sect. 7 can be formulated as a
proposition.

Proposition 3 For 1 ≤ μ <
1+μk
1−μk , the control law

(71) gives an optimal solution of Problem 2 with T (2)
min

defined by (70). For this case, the minimal time of the
motion exceeds the lower bound (T (2)

min > T0) and the
optimal control is uniquely defined.

8 Conclusions

Time-optimal control strategies are defined for a two-
body limbless crawler that moves along a straight
line on a horizontal rough plane. The friction act-
ing between the bodies and the underlying plane is
Coulomb’s dry friction. The aim of the control is to
drive the system through a prescribed distance in a
minimal time, provided that at the initial and termi-
nal instants the velocities of both bodies are equal to
zero and the configurations of the system coincide. A
lower bound for the time of the motion is evaluated. It
is proved that the system can be driven between the two
prescribed states in a time that coincides with the lower
bound. The respective optimal control is found in the
class of distributions (generalized functions) that admit
instantaneous changes in the velocities of the bodies
and the distance between them. This control can be
approximated by classical functions that provide the

time of motion arbitrarily close to the lower bound.
Particular attention is given to non-reverse motions for
which backward motion of any of the bodies is pro-
hibited. The non-reverse motions minimize the energy
spent on the compensation of the work of the forces of
friction. The non-reverse motions are possible if and
only if the mass of the body that has larger force of
friction does not exceed the mass of the other body.
The character of time-optimal non-reverse motions
depends on two dimensionless parameters—the ratio
of the masses of the system’s bodies and the ratio of the
forces of sliding friction for these bodies. Two domains
are singled out in the plane of these parameters. For one
of these domains, the optimal time of the motion coin-
cides with the lower bound for this time. For the other
domain, the optimal time exceeds the lower bound. For
all cases, the optimal control strategies and the respec-
tive times ofmotion are represented explicitly in closed
form. The optimal control is not uniquely defined in the
general case. However, for the parameters that allow
non-reverse motions and for which the optimal time
exceeds the lower bound, the optimal control strategy
is defined uniquely.

The problems addressed in our paper are a particu-
lar case of the optimal control problems for a chain of
interacting bodies moving on a rough surface. For the
case where all bodies have the same mass and the same
coefficients of dry friction with the underlying surface,
this problem was solved in [8]. It turned out that the
optimal motion could be performed in a non-reverse
mode. The technique of [8] in many aspects is similar
to that used in the present paper. First, an upper lower
bound is determined for the time of motion of the sys-
tem’s center of mass between the initial and terminal
states correspond to those of the system, and then a
control law that drives the system between these states
is constructed. This technique can be easily extended
to a chain with an arbitrary number of bodies that may
have arbitrary masses and arbitrary coefficients of fric-
tionwith the underlying surface, unless the non-reverse
requirement is imposed. However, the optimal control
problem for non-reverse motions of an arbitrary multi-
body chain is a challenge and needs separate research.
So far the necessary and sufficient conditions for a non-
reverse transfer a multi-body chain between two states
with identical relative positions of the bodies and iden-
tical absolute velocities have not been found. The iden-
tification of these conditions could be the first step of
this research.

123



Optimal control of a two-body limbless crawler 1641

Acknowledgements This study was partially supported by the
Ministry of Science and Higher Education of the Russian Fed-
eration within the framework of the Russian State Assignment
under contract No. AAAA-A20-120011690138-6 and partially
supported by RFBR Grant No. 20-01-00378.

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

References

1. Chernousko, F.L.: The motion of a three-link system along
a plane. J. Appl. Math. Mech. 65(1), 13–18 (2001)

2. Chernousko, F.L.: The wave-like motion of a multilink sys-
tem on a horizontal plane. J. Appl. Math. Mech. 64(4), 497–
508 (2000)

3. Figurina, T.Y.: Controlled slowmotions of a three-link robot
on a horizontal plane. J. Comput. Syst. Sci. Int. 44(3), 473–
480 (2005)

4. Vorochaeva, L.Y., Naumov,G.S., Yatsun, S.F.: Simulation of
motionof a three-link robotwith controlled friction forces on
a horizontal rough surface. J. Comput. Syst. Sci. Int. 54(1),
151–164 (2015)

5. Behn,C.:Adaptive control of straightwormswithout deriva-
tive measurement. Multibody Syst. Dyn. 26(3), 213–243
(2011)

6. Fang, H., Xu, J.: Dynamics of a three-module vibration-
driven system with non-symmetric Coulomb’s dry friction.
Multibody Syst. Dyn. 27(4), 455–485 (2012)

7. Fang, H., Xu, J.: Controlled motion of a two-module
vibration-driven system induced by internal acceleration-
controlled masses. Arch. Appl. Mech. 82(4), 461–477
(2012)

8. Figurina, T.Y.: Optimal control of system of material points
in a straight line with dry friction. J. Comput. Syst. Sci. Int.
54(5), 671–677 (2015)

9. Noselli, G., Tatone, A., DeSimone, A.: Discrete one-
dimensional crawlers on viscous substrates: achievable net
displacements and their energy cost. Mech. Res. Commun.
58, 73–81 (2014)

10. Steigenberger, J., Behn, C.: Worm-Like Locomotion Sys-
tems: An Intermediate Theoretical Approach. Oldenbourg
Wissenschaftsverlag, Munich (2012)

11. Zimmermann, K., Zeidis, I., Behn, C.: Mechanics of Ter-
restrial Locomotion with a Focus on Nonpedal Motion Sys-
tems. Springer, Heidelberg (2010)

12. Zimmermann, K., Zeidis, I., Bolotnik, N., Pivovarov, M.:
Dynamics of a two-module vibration-driven systemmoving
along a rough horizontal plane. Multibody Syst. Dyn. 22(2),
199–219 (2009)

13. Zimmermann, K., Zeidis, I., Pivovarov, M., Behn, C.:
Motion of two interconnected mass points under action of
non-symmetric viscous friction. Arch. Appl. Mech. 80(11),
1317–1328 (2010)

14. DeSimone, A., Guarnieri, F., Noselli, G., Tatone, A.:
Crawlers in viscous environments: linear vs nonlinear rhe-
ology. Int. J. Non Linear Mech. (UK) 56, 142–147 (2013)

15. DeSimone, A., Tatone, A.: Crawling mobility through the
analysis of model locomotors: two case studies. Eur. J. Phys.
E 35(85), 2–8 (2012)

16. Fang, H., Wang, C., Li, S., Wang, K.W., Xu, J.: A com-
prehensive study on the locomotion characteristics of a
metameric earthworm-like robot. Part A: modeling and gait
generation. Multibody Syst. Dyn. 34(4), 391–413 (2015)

17. Fang, H., Wang, C., Li, S., Wang, K.W., Xu, J.: A com-
prehensive study on the locomotion characteristics of a
metameric earthworm-like robot. Part B: gait analysis and
experiments. Multibody Syst. Dyn. 35(2), 153–177 (2015)

18. Jiang, Z., Xu, J.: Analysis of worm-like locomotion driven
by the sine-squared strainwave in a linear viscous medium.
Mech. Res. Commun. 85, 33–44 (2017)

19. Bolotnik, N.N., Figurina, T.Y.: Optimal control of the rec-
tilinear motion of a rigid body on a rough plane my means
of the motion of two internal masses. J. Appl. Math. Mech.
72(2), 126–135 (2008)

20. Bolotnik, N.N., Figurina, T.Y., Chernousko, F.L.: Optimal
control of the rectilinear motion of a two-body system in a
resistive medium. J. Appl. Math. Mech. 76(1), 1–14 (2012)

21. Egorov, A.G., Zakharova, O.S.: The energy-optimal motion
of a vibration-driven robot in a resistive medium. J. Appl.
Math. Mech. 74(4), 443–451 (2010)

22. Egorov, A.G., Zakharova, O.S.: The energy-optimal motion
of a vibration-driven robot in a medium with a inherited
law of resistance. J. Comput. Syst. Sci. Int. 54(3), 495–503
(2015)

23. Liu, Y., Pavlovskaya, E., Hendry, D., Wiercigroch, M.:
Vibro-impact responses of a capsule systems with various
friction models. Int. J. Mech. Sci. 72, 39–54 (2013)

24. Liu, Y., Islam, S., Pavlovskaya, E., Wiercigroch, M.: Opti-
mization of the vibro-impact capsule system. J. Mech. Eng.
62, 430–439 (2016)

25. Liu, Y., Pavlovskaya, E., Wiercigroch, M.: Experimental
verification of the vibro-impact capsule model. Nonlinear
Dyn. 83, 1029–1041 (2016)

26. Liu, Y., Wiercigroch, M., Pavlovskaya, E., Peng, Z.K.: For-
ward and backwardmotion control of a vibro-impact capsule
system. Int. J. Mech. Sci. 74, 2–11 (2013)

27. Liu,Y.,Wiercigroch,M., Pavlovskaya,E.,Yu,H.:Modelling
of a vibro-impact capsule system. Int. J. Non-Linear Mech.
70, 30–46 (2015)

28. Yan, Y., Liu, Y., Liao, M.: A comparative study of the vibro-
impact capsule systems with one-sided and two-sided con-
straints. Nonlinear Dyn. 89, 1063–1087 (2015)

29. Yan, Y., Liu, Y., Manfredi, L., Prasad, S.: Modelling of the
self-propelled vibro-impact capsule in small intestine. Non-
linear Dyn. 96(1), 123–144 (2019)

30. Bolotnik, N.N., Gubko, P.A., Figurina, T.Y.: Possibility of a
non-reverse periodic rectilinear motion of a two-body sys-
tem on a rough plane. Mech. Solids 53, 7–15 (2018)

31. Bolotnik, N., Pivovarov, M., Zeidis, I., Zimmermann, K.:
The motion of a two-body limbless locomotor along a
straight line in a resistive medium. ZAMM 96(4), 429–452
(2016)

123



1642 N. Bolotnik, T. Figurina

32. Chernousko, F.L.: The optimum rectilinear motion of a two-
mass system. J. Appl. Math. Mech. 66(1), 1–7 (2002)

33. Chernousko, F.L.: Analysis and optimization of the recti-
linear motion of a two-body system. J. Appl. Math. Mech.
75(5), 493–500 (2011)

34. Wagner, G., Lauga, E.: Crawling scallop: friction-based
locomotion with one degree of freedom. J. Theor. Biol. 324,
42–51 (2013)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Optimal control of a two-body limbless crawler along  a rough horizontal straight line
	Abstract
	1 Introduction
	2 Statement of the problems
	3 Dual problems
	4 Nondimensionalization
	5 Auxiliary problem
	6 Solution of Problem 1
	7 Solution of Problem 2
	8 Conclusions
	Acknowledgements
	References




