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Abstract The dynamical features of a modified Fit-
zhugh–Nagumo (FHN) nerve model are addressed.
The model considered accounts for a relaxation time,
induced by diffusion and finite propagation velocities,
resulting in a hyperbolic system.Bifurcation analysis of
the local kinetic system with the relaxation constant as
the principal bifurcation parameter reveals a threshold
of the relaxation constant beyond which a supercritical
Hopf bifurcation occurs. It is shown that the frequency
of the ensuing cycles depends on the relaxation time.
The existence of Hopf bifurcations on invariant center
manifolds is established using the projection method.
Analytical formulas for the critical value of the relax-
ation constant and the first Lyapunov coefficient are
derived; results are confirmed via numerical simula-
tions. The addition of external current, at small values
of the relaxation constant, produces excitable behavior
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consistent with the classical FHN model such as peri-
odic firing, bistability, bursting and canard explosions.
At higher values of this constant, chaotic motion and
other new dynamical objects such as period-two, -three
and -four orbits are observed numerically.

Keywords Hopf bifurcation ·Relaxation time · Period
doubling · Fitzhugh–Nagumo

1 Introduction

Stability analysis in dynamical systems plays a key role
in predicting underwhat parameter ranges qualitatively
distinct behaviors emerge and the system’s asymptotic
behavior. Of all the distinct dynamics a system might
display, the emergence of periodic or oscillatory behav-
iors seems to be of particular interest due to their wide
range of applications. The most common route leading
to periodic behavior, and often encountered in excitable
systems, is the Hopf bifurcation, extensive treatise of
which can be found in Refs. [1,2]. The Hopf bifur-
cation occurs when a pair of imaginary eigenvalues
of the associated linearized system crosses the imagi-
nary axis with nonzero speed, as a parameter crosses
a critical threshold. Concretely, this corresponds to the
emergence/destruction of a periodic orbit from a fixed
point. Seminal works on the Hopf bifurcation can be
traced back to the works of Poincaré et al. [1]. As such,
it is sometimes referred to as the Poincaré–Andronov–
Hopf bifurcation. Whenever a periodic orbit emerges,
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it is also relevant to study the stability of the emergent
cycle which determines the nature of the Hopf bifurca-
tion. If the cycles emerge before the critical parameter
value, the Hopf bifurcation is termed subcritical. If on
the contrary, the cycles emerge post-critical value, we
say a supercritical Hopf bifurcation has taken place.
One technique frequently used to ascertain stability of
a periodic solution is the center manifold theory [3].
Essentially, the method consists of reducing the dimen-
sions of the system to the vector space spanned by the
pair of purely imaginary eigenvalues without loss of
information regarding stability. For a good introduc-
tion to the theory and proofs, refer to Refs. [3,4]. Other
techniques include Hopf’s power series method, aver-
aging theory, Lyapunov functions [5], just to name a
few. In a supercritical Hopf bifurcation, the first Lya-
punov coefficient of the restricted dynamics to the cen-
ter manifold is negative and positive in the subcritical
case.

Based on the nature of the bifurcation at a critical
parameter value, models of neurons can be compart-
mentalized into two main types (see Ref. [6]), the so-
called bifurcation type 1 and 2 neurons [7]. A bifur-
cation of type 1 generally occurs when the equilib-
rium loses stability via a saddle-node bifurcation on
an invariant circle. Bifurcation type 2 neurons, also
called resonators, lose stability via Hopf bifurcations.
They fire in response to stimulating frequencies equal
to their resonant frequency [8,9]. In addition to their
sensitivity to the frequency of an external stimulation,
one feature, common to bifurcation type 2 neurons, in
contrast to type 1 neurons, and which we shall observe
subsequently, is their ability to fire post-inhibitory
pulses [9]. This is the result of the unstable manifold
being warped around the stable equilibrium making it
more likely for small perturbations to drive the system
into instability. Examples of Bifurcation type 1 neu-
ron models include the Theta, reduced Traub–Miles
(RTM), Wang–Buzsáki (WB) models [10]. The classi-
cal Hodgkin–Huxley, Fitzhugh–Nagumo (FHN) mod-
els and many more are examples of bifurcation type 2
neurons. Whenever a limit cycle emerges in a dynam-
ical system, it is possible for it to undergo bifurcations
of its own. Examples of such include the fold or limit
point of cycle bifurcation, flip or period doubling bifur-
cation, Neimark–Sacker bifurcation of cycles (bifurca-
tions on invariant torus), canard explosions [11] and so
much more. The period doubling bifurcation is one of
the most studied routes to chaos, via period doubling

cascades. A trademark of this bifurcation is the emer-
gence/destruction of a new cycle of period twice that
of the original cycle. This bifurcation has been studied
in other variants of the FHN model [12,13].

Since their emergence in the later half of the century
and largely fueled by theworks of Hodgkin andHuxley
[14], mathematical models of nerve propagation have
led to a plethora of studies that sought to facilitate our
understanding of nerve propagation. This facilitation
often came with handy simplifications of models while
often disregarding key phenomenological entities. One
such entity is the relaxation time of the recovery vari-
ables, as pointed out in the earlier works of Maugin
et al. [15], in which the concept of internal variables
is used to posit a thermodynamically admissible model
of nerve propagation. Similar models [16–18] take into
account the relaxation time by considering that a finite
velocity of propagation in a spatially extended system
necessarily leads to delays. That is, the recovery of the
membrane potential post-excitation is not an instanta-
neous process but one accompanied by a delay τ . If
J(x, t + τ) represents the actual flux of the diffusing
quantity, then it can be expanded in a Taylor series

J(x, t + τ) = J(x, t) + τ
∂J
∂t

+ O(τ 2), (1)

assuming a small τ ≥ 0. This modification, when com-
bined with Fick’s law of diffusion and the continuity
equation, gives the hyperbolic reaction diffusion equa-
tion

τ
∂2u

∂t2
+ ∂u

∂t
= −d∇2u. (2)

Building on the works in Ref. [19], and papers by Gaw-
lik et al. [20,21], we consider the following modified
model of nerve impulse propagation, while we incor-
porate a relaxation time

τutt + ut = uxx + u − u3

3
− v,

vt = ε(u + a − bv),

(3)

where ε, a and b are positive constants of the FHN
model and τ is the relaxation time added via a hyper-
bolic time derivative. The classical FHN model (when
τ = 0) is a model of choice for analytical manipu-
lations and has featured in multiple studies since its
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inception as a model in Neuroscience. It is used tradi-
tionally as a model of nonlinear wave propagation on
excitable tissue or recently in conjunction with devices
such as memristors [22–24], when interested in the
effects ofmagnetic induction onnerve propagation, and
more recently with thermistors and photocells to obtain
thermosensitive [25] and photosensitive [26] neurons,
respectively. It is shown inRef. [21], among other inter-
esting dynamical features, that themodel at hand allows
for finite propagation speeds of the action potential
while still conserving its traveling wave properties for
small τ .

In this paper,we explore the bifurcation properties of
τ on the excitability of local kinetic system of the mod-
ified model; the stability analysis of the full reaction–
diffusion system will be submitted elsewhere for pub-
lication. Being essentially a delay, there is a possibility
for τ leading to delay induced oscillations as was the
case in Refs. [27–30]. This possibility constituted the
primary impetus for this study. In order to explore this
plausibility, firstly, we choose τ as our single bifurca-
tion parameter, in the absence of external stimulating
current. Secondly, via direct numerical simulation we
study the combined dynamics of τ and the external
stimulating current on the emergence of codimension-
two bifurcations.

2 Stability of equilibria and periodic orbits

To start, we omit the diffusion term in system (3),
by considering the corresponding local system, and
rewrite it as a system of three autonomous differential
equations as follows:

ut = w,

τwt = u − u3

3
− v − w,

vt = ε(u + a − bv).

(4)

The steady states of the system can be located at the
intersection of its nullclines (w = 0; u − u3

3 − v = 0
and u + a − bv = 0). Eliminating w and v from these
equations, we obtain the following cubic polynomial:

u3 + 3(1 − b)

b
u + 3a

b
= 0. (5)

Lemma 1 A cubic polynomial of the form: x3+a2x2+
a1x + a0 = 0, x ∈ C

1, has discriminant

D = a22a
2
1 − 4a31 − 4a32a0 − 27a20 + 18a2a1a0. (6)

Furthermore,

if D > 0, then the polynomial has three distinct real
roots corresponding to three fixed points of system
(4).
if D = 0, the polynomial has multiple roots.
if D < 0, the polynomial has a unique real root
and two complex conjugate roots.

Lemma1 iswell known and can be proven usingVieta’s
formulas (see Ref. [31] for similar classification of
fixed points in the discrete case). Applying this to Eq.
(5), we obtain

D = −108(1 − b)3 − 243a2b

b3
. (7)

Similar to the classical FHN in R
2, this model can

have up to three equilibria. Studies on the different
types and nature of these equilibria can be found in
Ref. [32]. For the sake of simplicity, we shall consider
the unique stable equilibrium for the study of Hopf
bifurcations. Equation (7) under Lemma 1 implies that
system (4) possesses a unique equilibrium, satisfying
108(1−b)3+234a2b > 0. Choosing 0 < b < 1,∀a ≥
0 as is the case with our model, is enough to guarantee
this condition.

Notice that the location of the steady state is inde-
pendent of τ , our chosen bifurcation parameter which
makes it ideal for the reduction to center manifold as
demonstrated in the next subsection.

2.1 Hopf bifurcation

By making the variable changes, X = u − u∗,Y =
w−w∗ and Z = v−v∗, corresponding to a translation
of the steady state to the origin, system (4) can be put
in the form

Xt = Y,

Yt = δ

[
(1 − u∗2)X − u∗X2 − X3

3
− Y − Z

]
,

Zt = ε(X − bZ),

(8)
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where δ = 1
τ
. We are interested in the onset of non-

linear oscillations in system (8), under the influence
of the relaxation constant. Since we are in IR3 and
generic Hopf bifurcations are analytically defined for
two-dimensional systems,wemakeuse of the reduction
techniques from the center manifold theory to prove
that Hopf bifurcations do exist for our system at large
values of the relaxation constant. We follow similar
guidelines as in Ref. [33], specifically, the projection
method detailed therein.

Considering the Jacobian (J ) of system (8)

J =
⎛
⎝ 0 1 0

δ(1 − u∗2) −δ −δ

ε 0 −εb

⎞
⎠ , (9)

its characteristic polynomial is obtained as

λ3+(bε+δ)λ2+(bε+u∗2−1)δλ+(bu∗2−b+1)εδ = 0.

(10)

For a general degree-n polynomial χ(z)

χ(z) = a0z
n + a1z

n−1 + · · · + an,

with a0 > 0, it is possible to construct the correspond-
ing Hurwitz matrix H(χ)

H(χ) =

⎛
⎜⎜⎜⎜⎜⎝

a1 a3 a5 . . . . . .

a0 a2 a4 . . . . . .

0 a1 a3 a5 . . .

0 a0 a2 a4 . . .

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (11)

Let �i be the i th-order principal minor or i th Hurwitz
determinant of H (χ ), then the following theorem from
Ref. [34] applies:

Theorem 1 χ(z) has a pair of distinct roots, iω and
−iω on the imaginary axis and all other roots in the
left half plane if and only if an > 0,�n−1 = 0 and
�n−2 > 0, . . . ,�1 > 0.

Applying this theorem to Eq. (10), we obtain a3 >

0,�2 = 0 and �1 > 0 as three conditions necessary
for a Hopf bifurcation to occur in the system under
study. It is easy to verify the first and third relations by
inspection. Applying the second condition (�n−1 = 0)
to the third 2nd-order Hurwitz determinant, we obtain

bε(εb + u∗2 − 1) − ε(bu∗2 − b + 1) = 0,

and after a short algebraic manipulation, we arrive at
the critical value

δc = ε − b2ε2



, (12)

where
 = εb+u∗2−1. Let α = δ−δc be the distance
away from the bifurcation point, thenwe can say, atα =
0, a Hopf bifurcation takes place. We will show that a
stable limit cycle indeed bifurcates from the unique
stable fixed point for values of α < 0, while the origin
maintains its equilibrium for α > 0. To establish the
frequency of these limit cycle oscillations, we proceed
as follows. We substitute λ = iω into Eq. (10) and
separate the resulting equation into real and imaginary
parts to obtain

bεδ(u∗2 − 1) − (bε + δ)ω2 + δε = 0, (13)

ω3 − 
δω = 0, (14)

with
 = εb+u∗2−1 > 0. From these two equations,
we obtain

δc = ω2



, and ω2 = ε − b2ε2. (15)

The first equation on the left corresponds to the value of
δc predicted by Theorem 1, while the second equation
is the frequency of the resulting oscillations (ω > 0).
Under these conditions, Eq. (10) can be written as

(λ + bε + δc)(λ
2 + ω2) = 0, (16)

which is then solved for the third eigenvalue of J , at
the critical point, having solution

λ3 = − (bu∗2 − b + 1)ε



< 0, (17)

which once again confirms that all solutions stay on the
center manifold ∀t > 0.

2.2 Existence of invariant manifolds

To begin our investigation of manifolds, we express the
Jacobian of the system at the critical point, in terms of
δc. Let us call this matrix A
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A =
⎛
⎜⎝

0 1 0
ω2(1−u∗2)



−ω2



−ω2




ε 0 −εb

⎞
⎟⎠ . (18)

We denote by n0 the number of eigenvalues with purely
imaginary parts, by n+ thosewith positive real parts, by
n− those having negative real parts and by Tc the critical
eigenspace generated by n0 eigenvalues. Obviously, for
matrix A, we have n0 = 2, n+ = 0, n− = 1 and for
sufficiently small α, the following theorem from [33]
applies:

Theorem 2 (Center manifold theorem) There is a
locally defined smooth two-dimensional parameter-
dependent attracting centermanifoldWc

loc(0) of system
(8) that is locally tangent to Tc, at the point (0, 0, 0).
The restriction to Wc

loc(0) exhibits a Hopf bifurcation
with a negative first Lyapunov coefficient.

Proof The resulting manifold is obviously dependent
on δ. Moreover, since n+ = 0 and the third eigenvalue
of A is negative, there are no unstable manifolds, and
the resulting center manifold is attracting.

We now investigate the asymptotic dynamics on the
existing centermanifold of the systemaswell as the sta-
bility of the resulting Hopf bifurcation by computing
the first Lyapunov coefficient of the restricted dynam-
ics on the center manifold. To this end, we project the
system onto the center manifold using the generalized
eigenvector, q, and adjoint vector, p, as outlined in the
projection method [33]. This avoids conversion of the
system to canonical form, from which computation of
stability is relatively easier in two dimensions and can
get quite involved in higher dimensions. The vectors p
and q satisfy the equations

Aq = iωq, (19)

AT p = −iωp, (20)

and

〈p, q〉 = 1. (21)

Given the slightly complex nature of matrix A, we use
MAPLE software to find these eigenvectors. It follows
that

q =
⎛
⎜⎝

εb2−1
iω(1−εb2+iωb)

εb2−1
1−εb2+iωb

1

⎞
⎟⎠ and p̃ =

⎛
⎜⎝


+iω
1−εb2−iωb−


iω(1−εb2−iωb)
1

⎞
⎟⎠ .

In order to satisfy the normalization condition, we
choose a constant ν = 〈 p̃, q〉 such that 〈p, q〉 = 1,
where 〈, 〉 is the standard scalar product in C

3. Hence,
we can take p = 1

ν̄
p̃. Henceforth, we represent δc as δ

for simplicity. Assume system (8) at the critical point
can be written in the form

ẋ = Ax + F(x, δ) + O(|x |4), (22)

where x = (X,Y, Z)T , with F(x, δ) being a continu-
ous function satisfying F(0, δ) = 0 and F ′(0, δ) = 0.
For convenience, consider the following form of F :

F(x, δ) = B(x, x)

2
+ C(x, x, x)

6
, (23)

where B andC aremulti-linear functions of two (three)
planar vectors on the critical eigenspace and defined by
the following expressions:

Bi (x, y) =
3∑

j,k=1

∂2Fi (ξ, δ)

∂ξ j∂ξk

∣∣∣∣
ξ=0

x j yk, (24)

Ci (x, y, ν) =
3∑

j,k,l=1

∂3Fi (ξ, δ)

∂ξ j∂ξk∂ξl

∣∣∣∣
ξ=0

x j ykνl ,

i = 1 . . . 3. (25)

These expressions allow us to evaluate the following
terms:

B(q, q) =
⎛
⎝ 0

−2δu∗q21
0

⎞
⎠ ,

B(q, q̄) =
⎛
⎝ 0

−2δu∗q1q̄1
0

⎞
⎠ ,

B(q̄, q̄) =
⎛
⎝ 0

−2δu∗q̄12
0

⎞
⎠ , and

C(q, q, q̄) =
⎛
⎝ 0

−2δq21 q̄1
0

⎞
⎠ (26)

Theorem 3 (Normal form theorem) By introducing a
complex variable x = zq + z̄q̄ + y, Eq. (22) can be
written for sufficiently small |α| as a single equation
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ż = iωz+ 1

2
g20z

2+g11zz̄+ 1

2
g02 z̄

2+ 1

2
g21z

2 z̄+· · · ,

(27)

together with its conjugate counterpart. Here,

g20 = 〈p, B(q, q)〉 = −2δu∗ p̄2q21 , (28)

g11 = 〈p, B(q, q̄)〉 = −2δu∗ p̄2q1q̄1, (29)

g02 = 〈p, B(q̄, q̄)〉 − 2δu∗ p̄2q̄12, (30)

g21 = 〈p,C(q, q, q̄)〉 − 2〈p, B(q, s)〉 + 〈p, B(q̄, r)〉
+ 1

iω
g20g11 − 2

iω
|g11|2 − 1

3iω
|g02|2.

= −2δ p̄2q
2
1 q̄1 + 4δu∗ p̄2q1s1 − 2δu∗ p̄2q̄1r1

+ 1

iω
g20g11 − 2

iω
|g11|2 − 1

3iω
|g02|2. (31)

y = f (z, z̄) is a variable from the space complemen-
tary to Tc such that 〈p, y〉 = 0. Full details of the
derivation of these formulas can be found in Ref. [33].
Equation (27) is referred to as the restriction equation
governing the dynamics on the center manifold. From
this equation, it is possible to determine whether the
Hopf bifurcation is supercritical (subcritical). Matrices
r and s are 3 × 1 matrices given by

s = A−1B(q, q̄), and

r = (2iωE − A)−1B(q, q), (32)

where matrix E is the identity matrix in IR3, while the
inverse matrix A−1 has the form

A−1 =
⎛
⎜⎝

−b
b(u∗2−1)+1

−b

ω2(b(u∗2−1)+1)

1
ε(b(u∗2−1)+1)

1 0 0
−1

b(u∗2−1)+1
−


ω2(b(u∗2−1)+1)
− u∗2−1

ε(b(u∗2−1)+1)

⎞
⎟⎠ .

(33)

Since matrices B and C happen to be in a simplified
form, r and s will also simplify to

s =
⎛
⎜⎝

2bu∗q1q̄1
b(u∗2−1)+1

0
2u∗q1q̄1

b(u∗2−1)+1

⎞
⎟⎠ , and

r = −2u∗q21 ζ̄
|ζ |2

⎛
⎝ (2iω + εb)
2iω(2iω + εb)

ε

⎞
⎠ , (34)

where ζ is a complex number expressed as

ζ = 2i(2iω+εb)(2i
+ω)+(2iω+εb)(u∗2−1)+ε.

(35)

To determine whether the ensuing oscillations are
supercritical (subcritical), we compute the first Lya-
punov coefficient. To this end, we transform Eq. (27)
into its Poincaré form using the following lemma:

Lemma 2 The equation

ż = λz +
∑

2≤k+l≤3

1

k!l!gkl z
k z̄l + O(|z|4), (36)

where λ = λ(α) = μ(α) + iω(α), μ(0) = 0, ω0 > 0
and gi j = gi j (α) can be transformed by an invertible
parameter-dependent change of complex coordinate,
smoothly depending on the parameter

z = w + h20
2

w2 + h11ww̄ + h02
2

w̄2

+h30
6

w̄3 + h12
2

ww̄2 + h03
6

w̄3,

for all sufficiently small α into the equation

ẇ = λw + c1|w|2w̄, (37)

where

c1 = i

2ω

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2
.

Proof We attempt to eliminate the quadratic terms in
Eq. (27) using the transformation

z = w + h20
2

w2 + h11ww̄ + h02
2

w̄2. (38)

As suggested in Ref. [33], we consider the following
inverse quadratic transformation including the resonant
term

w = z − h20
2

z2 − h11zz̄ − h02
2

z̄2

+1

2
(3h11h20 + 2|h11|2 + |h02|2)z2 z̄. (39)

Taking the time derivative of Eq. (39), we get

ẇ = ż − h20 ż ˙̄z − h11(ż z̄ + z ˙̄z)
−h02 ˙̄zz̄ + �

2
(2zż + z2 ˙̄z), (40)
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where� = 3h11h20+2|h11|2+|h02|2. Next, we substi-
tute the expressions of ż and ˙̄z obtained from Eq. (27)
into Eq. (40). After expanding the resulting equation
and collecting terms in z and z̄, we obtain

ẇ = λz +
(g20

2
− λh20

)
z2 +

(g02
2

− λ̄h02
)
z̄2

+ (−h11λ − h11λ̄ + g11
)
zz̄

+
(�

2
(2λ + λ̄) − g11h20

−h11
2

g20 − h11 ¯g11 − ¯g02
2

h02 + g21
2

)
z2 z̄ + · · ·(41)

Here, the three dots stand for terms of order three
and higher, excluding the resonant term (z2 z̄). We now
seek to approximate the terms z2, zz̄, z̄2 and z2 z̄ with
their expansions up to the third order, excluding non-
resonant terms at order three. These result in the fol-
lowing order approximations:

z2 = w2 + 2h11w
2w̄ + · · · ,

zz̄ = ww11 + ( ¯h11 + h20
2

)w2w̄ + · · · ,

z̄2 = w̄2 + ¯h02w2w̄ + · · · ,

z2 z̄ = w2w̄ + · · · . (42)

Substituting these relations into Eq. (41), collecting
terms inw2, ww̄ and w̄2 and equating their coefficients
to zero yield the expressions

h20 = g20
λ

, h11 = g11
λ̄

, h02 = g02
2λ̄ − λ

.

These equations can be used to selectively eliminate
quadratic terms of the desired order. Collecting terms
in w2w̄ gives the coefficient

c1 = 3

2
h11h20(2λ + λ̄) + (2λ + λ̄)|h11|2

+|h02|2
2

(2λ + λ̄) − 1

2
g11h20 + 1

2
h11g20

−h11 ¯g11 − ¯g02
2

h02 + g21
2

− 2λh11h20

+1

2
¯h02g02 − λ̄|h02|2 − |h11|2(λ + λ̄)

+g11 ¯h11 − 1

2
h11h20(λ + λ̄). (43)

The above expression reduces to a rather simple form,
using the relations of Eq. (43), with λ = iω, that is,

c1 = ig20g11
2ω

− i |g11|2
ω

− i |g02|2
6ω

+ g21
2

. (44)

At this point, any remaining third-order terms in
Eq. (41) can be eliminated similarly using lemma (3.5)
of Ref. [33], which concludes the proof. ��

The coefficient c1 determines the nature of the result-
ing Hopf bifurcation. It is related to the first Lyapunov
coefficient l1(δ) as

l1(δ) = Re(c1)

ω
,

= 1

2ω
Re [〈p,C(q, q, q̄)〉

−2〈p, B(q, s)〉 + 〈p, B(q̄, r)〉]
= 1

2ω
Re

(
−2δ p̄2q

2
1 q̄1

+4δu∗ p̄2q1s1 − 2δu∗ p̄2q̄1r1
)
. (45)

In order to keep τ within a range consistent with the
Taylor series approximation, we need to keep its value
very small compared to t . We may take t = 0 as the
origin of time and choose 0 < τ < 1. That is, in
Eq. (12), we can choose ε, u∗ and b such that

εb + ε2b2 < 1 − u∗2 + ε. (46)

For a = 0.7, ε = 0.8 and b = 0.4, the unique equilib-
rium of the system is located at u∗ ≈ −0.966, w∗ =
0, v∗ ≈ −0.665, see Fig. 1. The critical value of relax-
ation constant for this case is

τc ≈ 0.363. (47)

Estimation of the first Lyapunov coefficient at τc is

l1(δ) ≈ −0.5023 < 0, (48)

which predicts that the resulting oscillations ensuing
from this Hopf bifurcation are stable. ��
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Fig. 1 Intersecting nullclines of the system. The unique equi-
librium (E) is located at the point of intersection of the green,
blue planes and the red line, representing the three nullclines of
the system. Note that blue and red nullclines actually lie on the
(u, v)-plane. System parameters are a = 0.7, ε = 0.8, b = 0.4
and I = 0

3 Numerical analysis and discussion

3.1 Hopf bifurcation and canard phenomenon

It is self-evident that the system under consideration, in
the absence of stimulating current, has an equilibrium
which is independent of τ . This implies that the pro-
jection of this curve onto the (u, τ )-plane is a straight
line u = u∗ when we consider system (4); otherwise,
the curve X = 0, if we consider system (8) instead.
However, the equilibrium may loose stability as τ is
varied. Numerical simulations and continuation of sys-
tem (4) and its subsequent bifurcations were performed
on MATCONT [35]. Bifurcations of the mono-stable
equilibrium were performed in two stages. First, we
varied τ by keeping I at its rest value I = 0, and
then, we varied I , while keeping τ very close to zero.
In the first study, a supercritical Hopf (sH) bifurcation
occurred at τ ≈ 0.363, which confirms results obtained
fromour previous analysis. Continuation of limit cycles
born from this point is shown in Fig. 2a.

Figure 2b shows the equilibrium curve in the pres-
ence of an external stimulating current I . Two Hopf
points uH1 and uH2 are detected this time around, cor-
responding to values Ic1 ≈ 0.327, and Ic2 ≈ 1.423,
respectively. Unlike in the previous case, where τ was
varied, these Hopf points are subcritical in nature. As
I approaches uH1 from the left, several stable and
unstable cycles are born through a limit point of cycles

(LPC) bifurcation. The unstable cycles are generally
contained within the stable cycle. As I is increased fur-
ther, the unstable cycle coalesces with the fixed point in
a subcritical Hopf bifurcation. This leaves an unstable
fixed point and single stable limit cyclewithin the range
Ic1 < I < Ic2. This is confirmed by continuation of the
cycles born from uH1. The results are plotted in Fig. 2c.
Here, we observe a family of periodic orbits of slightly
different geometries (rectangular) than those of sH.
These cycles correspond to large amplitude limit cycles
in contrast to those obtained from a supercritical Hopf
bifurcation. In neurons, action potentials are primar-
ily born via subcritical Hopf bifurcations. Even though
the limit cycles born from a supercritical Hopf bifur-
cation do not lead to full-blown action potentials, they
nonetheless play a crucial role in cell–cell communica-
tions, especially when coupled via electrical synapses
[36]. The location of the various LPCpoints, being very
close to Ic1 and Ic2, and their multiplicity suggest that
a small region of bistability exists and canard explo-
sion occurs at these locations (see cycles colored in
red in Fig. 2c). The canard phenomenon is a distinct
feature of the van der Pol oscillator (from which the
FHN model was inspired). For analysis of canards in
the FHN, seeRef. [32] and references therein. This phe-
nomenon corresponds to a rapid transition in the period
of a limit cycle, from a small value to a large value over
a very small range of the bifurcation parameter. This
suggests that the new model presented here bears fea-
tures reminiscent of other FHN models, as observed in
Ref. [37],wherein a formula for calculating the location
of these canards is given for a model in canonical form.
The period of the ensuing limit cycles has been plotted
against I , and the results are displayed in Fig. 2d. The
pattern depicted suggests the occurrence of homoclinic
bifurcations near both critical values of current.

3.2 Codimension-two bifurcations

We have shown in previous sections that both τ and
I can give rise to oscillations beyond certain critical
values. We have not, however, explored the combined
effect of these two parameters, the analysis of which
we have reserved for this section. The classical FHN
model is known to exhibit two main codimension-two
bifurcations: the Bogdanov–Takens (BT) and Bautin
(generalized Hopf) bifurcations. At the BT point, the
linearized system has double-zero eigenvalues. At the
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Fig. 2 a Bifurcation of equilibrium in the absence of stimulat-
ing current. The straight line represents the equilibrium curve
with the stable portion of the curve is shown in blue and
the unstable portion in red. sH is a supercritical Hopf point
beyond which stable limit cycles emerge. System parameters
were a = 0.7, b = 0.4, ε = 0.8 and I = 0. b the equilibrium
curve and its bifurcations in the presence of I ; uH1 and uH2

are subcritical Hopf points; blue and red lines represent stable
(unstable) equilibria. Limit cycles bifurcating from these points
are shown in panel (c) as well as limit point of cycle points LPC.
Panel (d) shows the variation of the period of these cycles with
stimulating current I . System parameters for panels (b)–(d) are
a = 0.7, b = 0.8, ε = 0.08 and τ = 0.1

generalized Hopf (GH) point, the system has a pair
of complex conjugate eigenvalues and the first Lya-
punov coefficient vanishes. GH points are thus typi-
cally located on Hopf curves. Figure 3 captures all rel-

evant codimension-two bifurcations observed on the
(I, τ )-plane. Four principal curves partition the param-
eter space into four distinct regions corresponding to
topologically different features of the phase plane:

123



320 F. A. Tah et al.

Fig. 3 Codimension-two bifurcations as seen on the (I, τ )-
plane. Only the regions for which τ > 0 are biologically
meaningful. a The blue curve represents the projection of the
Hopf curve on the (I, τ )-plane, the red curve is a limit point of
cycle curve (LPC), and green and black curves are period dou-
bling curves. b Magnification of a portion of the codimension-
two plane showing two period doubling curves. Completion of
the green curve was limited by continuation software. Letters
A–I denote different regions of the parameter space exhibit-
ing qualitatively distinct dynamics. GH are Bautin bifurcation
points, while GPD are generalized period doubling points. Sys-
tem parameters are a = 0.7, b = 0.8 and ε = 0.08

Regions A and B The system is in a quiescent state
with the origin as a stable focus. See Fig. 4a for
a sketch of the phase portrait in this region and
Fig. 5a, c for the corresponding phase portrait and
time series obtained by numerical integration. In
this region, it is possible, however, for very strong
perturbations to excite the cell.
Region C In this region, the Jacobian of the sys-
tem has a pair of purely complex conjugate eigen-
values. The stable origin loses its stability, and a
stable limit cycle is born in the process. Figure 4b
shows a sketch of the phase portrait in this region,
and Fig. 5b, d, shows the corresponding numeri-
cal plots. It is worth noting that the system can fire
even when the excitation I < 0, provided τ , is suf-
ficiently large, a salient quality of resonators. Thus,
we can think of an increment in τ as resulting in
the shrinking of the stable basin of attraction to a
point and a corresponding increase in the unstable
basin of attraction.
RegionsD, E, F andG (Bistability) In these regions,
which are typically bounded by Hopf and LPC
curves, the system is active (excitable) in a bistable
sense. That is, a smaller unstable limit cycle is born
inside the larger and stable cycle from region C.
Points outside of the unstable cycle are attracted to
the stable cycle, but points within it are attracted
to the origin, and the origin regains its stability.
Essentially, this means that the cell can either be in
quiescent or firing mode depending on the degree
of stimulation. As the current is varied in the sys-
tem, the unstable cycle grows and collides with the
stable cycle, giving rise to LPC bifurcations. Fur-
ther increases in current lead to the annihilation
of both cycles, and the system returns to a quies-
cent state. Figure 4c is a sketch of the phase por-
trait within these regions, while Fig. 6 captures the
bistable dynamics obtained numerically, for differ-
ent initial conditions. The bistability observed in
the neighborhood of this region can lead to two
main types of bursting dynamics: Hopf–Hopf and
subHopf–fold bursting [7] as illustrated in Fig. 7.
Regions H and I (Period doubling) Within these
regions, delimited by the period doubling curves,
it is possible to find cycles of period-two and -
four, respectively. Since H, I ⊂ C , the origin is
unstable in this region and the emergent cycles
are stable in nature. Period-two cycles are born
when a period-one cycle undergoes a period dou-
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Fig. 4 Sketches of the
phase portraits
corresponding to three main
regions in the (I, τ )
parameter space, showing
the stability of the
equilibrium and various
invariant sets in each case,
wherein dashed and full
circles represent unstable
(stable) limit cycles, and
arrows indicate the direction
of the flow

(a) Regions A and B (b) Region C (c) Region D,E,F and G

(a) (b)

(c) (d)

Fig. 5 Panels (a) and (b) display the phase plane portraits along with their corresponding time series, in panels (c) and (d), in regions
A, B (column 1) and C (column 2), of the (τ, I ) parameter plane. System parameters are a = 0.7, b = 0.8 and ε = 0.08

bling bifurcation. When the latter undergoes an
additional period doubling bifurcation, a period-
four cycle is born. Numerical simulations of the
current model show that region I actually consists
of period-three and -four cycles coexisting with

chaotic attractors. Examples of period-two and -
three and -four orbits and their respective time
series are shown inFig. 8. Figure 9 depicts the bifur-
cation diagrams across portions of these regions
as τ is varied, supplemented with their respective
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(c) (d)

Fig. 6 Panels (a) and (b) show the phase plane portraits and (c) and (d), their corresponding time series (bottom row) in the bistable
regions D, E, F and G, using different initial conditions. System parameters are a = 0.7, b = 0.8, and ε = 0.08

maximum Lyapunov exponents. It can be seen that
these regions consist of marginally stable attract-
ing sets interrupted by chaotic windows. An exam-
ple of a chaotic set and its respective time series is
shown in Fig. 9e, f. While period-four cycles can
be explained in terms of successive period doubling
bifurcations, period-three cycles are often born out
of tangent bifurcations similar to that of the logistic
map demonstrated in Refs. [38,39]. Indeed, several
tangent bifurcations (fold-flip) bifurcations were
detected during the continuation of the period dou-
bling curve (green) and could explain the origin of
the period-three cycles. However, we feel that these

bifurcations should be suitably addressed by con-
sidering a discrete version of the current model.

It should be noted that while delays in reality can
be very large as observed in Fig. 3, the Taylor series
approximation used in this study allows us to make
accurate predictions on the actual neuronal dynamics
only within small values of τ , typically less than 1.
That is, as τ gets larger, the dynamic behavior observed
in Fig. 3 might not accurately describe that of the
parabolicmodelwith delaywhich it tries tomodel. This
is because larger values of τ will impose higher-order
derivatives in Eqs. (1), (2) and (3), which might lead to
qualitatively different dynamics from that of the orig-
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Fig. 7 Bursting dynamics of neuron showing: a Hopf–Hopf bursting, and b subHopf–fold bursting, observed in the neighborhood of
the bistable regions for periodic external stimuli, with the system parameters a = 0.7, b = 0.8 and ε = 0.08

(a) (b) (c)

(d) (e) (f)

Fig. 8 Panels (a)–(c) display the phase planes along with their
corresponding time series in panels (d)–(f), in period doubling
regions I and H showing: (a) a period-two orbit in H, (b) period-

three and (c) period-four orbit in Iwith their respective time series
in panels (d)–(f). System parameters were a = 0.7, b = 0.8 and
ε = 0.08

inal system with delay. However, if these higher-order
derivatives or their coefficients are very small or zero,
then higher values of τ might be justified. A full dis-
cussion of approximations of delay systemswithTaylor

series is given in Ref. [40]. Nonetheless, the dynamics
captured in Fig. 3 especially in the higher τ regions is
interesting.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9 Panels (a) and (b) display the bifurcation of local extrema
ofmembrane potential um (row 1)with τ and corresponding vari-
ation of maximum Lyapunov exponent in panels (c) and (d); a
total of 13,501 data points from the time series were used for
the estimation of the latter, under a time step of 0.0667. Red

dashed line marks the transition from stable to chaotic behavior.
(e) Example of chaotic attractor in region I and (f) its correspond-
ing time series. System parameters were a = 0.7, b = 0.8 and
ε = 0.08
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Table 1 Some noteworthy comparisons of the modified model and the classical model based on a few attributes

Property/attribute Classical FHN Modified FHN

Model description/control parameters Two-dimensional parabolic ODE/
four control parameters

Two-dimensional hyperbolic
system/ five control parameters

Recovery variable Not considered as an internal
variable

Considered as an internal variable
with memory effects

Velocity of wave system Assumes infinite velocity without
delay

Velocity is finite with delay

Frequency of oscillations Frequency does not depend on τ Frequency depends on τ

Hopf bifurcations Subcritical and supercritical supercritical and subcritical Hopf

Nature of Canard explosions Subcritical Subcritical

3.3 Discussion

Generally speaking, models of nerve pulse propagation
fall into two main categories: those which try as much
as possible to account for all main electrophysiological
parameters and those which try to reduce the process
to its essential features. The Hodgkin–Huxley model
leans toward the first category, while the classical FHN
falls into the second category. The current FHN model
takes the classical FHN a little step closer toward the
first category by adding to it some details of physio-
logical and physical relevance by realizing that finite
speeds of propagation in a network of spatially cou-
pled neurons necessarily induce propagation delays.
These delays vary with the length of the axon, the pres-
ence/lack of myelination and the distance between the
interacting units of a system [41]. These delays can be
as small as a few milliseconds as well as over hun-
dreds of milliseconds and are especially relevant in
non-local interactions. As such, they can be regarded as
a new bifurcation parameter. Several approaches have
been adopted to model these delays: the adoption of
a second temporal derivative which we have explored
in this study, the space-dependent delays common in
neural fields [42] as well as the addition of a constant
delay [43].

Since theHopf bifurcation induced by τ is supercrit-
ical, it seems reasonable to think that the oscillations it
induces would be relevant under subthreshold operat-
ing conditions of the neuron. Subthreshold oscillations
play a role in brain processes such as action potential
timing control [44], synaptic plasticity [45] and much
more. Furthermore, if interested in studying the tempo-
ral resolution of neurons, one should consider delays
in the analysis since certain neurons can discriminate

between signals based on the time of relaxation. For
example, dendritic and axonal delays lead to spike-
timing-dependent plasticity (STDP) [46]. Some note-
worthy similarities and differences between the modi-
fied and classical model are summarized in Table 1.

4 Conclusion

In this study, we have demonstrated the existence
of nonlinear oscillations in a modified FHN model,
emerging fromHopf bifurcations when a new indepen-
dent variable, the relaxation constant, exceeds a certain
threshold. This variable, which constitutes the mod-
ification to the classical FHN nerve model, accounts
for certain limitations of the latter. It was shown that
in addition to stable and unstable Hopf bifurcations,
the ensuing cycles undergo diverse bifurcations such
as limit point of cycles bifurcations, canard explo-
sions, bursting, chaotic motion, post-inhibitory spik-
ing, period-two, -three and -four periodic motions.
An explicit relation between the frequency of oscilla-
tions of the system and the relaxation time was estab-
lished giving a glimpse into the possible mechanisms
that neurons use to adjust their natural frequencies
for cell-to-cell communications in a neural network.
Codimension-two bifurcation points such as Bautin
and generalized period doubling were also detected
when external stimulating current was varied simul-
taneously with the relaxation constant. The new model
has dynamical characteristics very similar to the clas-
sical model when τ is very small, but displays a variety
of new dynamical behaviors for large τ .
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