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Abstract Under investigation in this paper is the (2 +
1)-dimensional generalizedKonopelchenko–Dubrovsky–
Kaup–Kupershmidt equation, which can be utilized to
describe certain nonlinear phenomena in fluid mechan-
ics. We obtain the higher-order lump, breather and
hybrid solutions, and analyze the effects of the constant
coefficients h1, h2, h4 and h5 in that equation on those
solutions, since the higher-order lump solutions are
generalized via the long-wave limit method, and since
the higher-order breather solutions and hybrid solu-
tions composed of the solitons, breathers and lumps are
derived. With the help of the analytic and graphic anal-
ysis, we get the following: (1) amplitudes of the humps
and valleys of the first-order lumps are related to h1, h2,
h4 and h5, proportional to h4 while inversely propor-
tional to h2. Velocities of the first-order lumps are pro-
portional to h4. The second-order lumps describe the
interaction between the two first-order lumps, which
is elastic since those lumps keep their shapes, veloc-
ities and amplitudes unchanged after the interaction.
Effects of h2 and h4 on the second-order lumps are
graphically illustrated. (2) Amplitudes of the first-order
breathers are proportional to h2. Interaction between
the breather waves is graphically presented. Effects
of h2 and h1 on the amplitudes and shapes of the
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second-order breathers are graphically discussed. (3)
Elastic interactions are graphically illustrated, between
the first-order breathers and one solitons, the first-
order lumps and one solitons, as well as the first-order
breathers and first-order lumps. Also graphically illus-
trated, amplitudes of all those three kinds of hybrid
solutions are inversely proportional to h2, and velocity
of the one soliton is positively correlated to h4.

Keywords Fluid mechanics · (2 + 1)-Dimensional
generalized Konopelchenko–Dubrovsky–Kaup–
Kupershmidt equation · Lump solutions · Breather
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1 Introduction

Nonlinear evolution equations (NLEEs) have been pro-
posed in such fields as fluidmechanics, plasma physics,
fiber optics and ocean dynamics, and analytic solu-
tions for the NLEEs such as the solitons, lumps and
breathers have received people’s attention [1–18]. Soli-
tons have been seen tomaintain their shapes and veloci-
ties unchanged during the propagation [19–26]. Lumps
have been considered as thewaves localized in all direc-
tions in the space [27–29]. Breathers, localized waves
with oscillatory patterns, have been classified as three
types, namely the Akhmediev breathers, Kuznetsov-
Ma breathers and Peregrine solitons [30–36]. Interac-
tions among those nonlinear waves have attracted the
researchers’ attention [37–39].
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Refs. [40,41] have considered the (2 + 1)-dimen-
sional generalizedKonopelchenko–Dubrovsky–Kaup–
Kupershmidt equation for certain nonlinear phenom-
ena in fluid mechanics, which reads

ut + h1uxxx + h2uux + h3uxxxxx + h4∂
−1
x uyy

+ h5uxxy + h6(ux∂
−1
x uy + uuy) + h7(uxuxx

+ uuxxx ) + h8u
2ux = 0,

(1)

where u = u(x, y, t) is the amplitude of the relevant
wave, x and y are the running coordinates, t is the
time, the subscripts represent the partial derivatives,
∂−1
x represents the integral with respect to x , and the
coefficients h�’s (�=1,2,…,8) are the real constants.
Some special cases of Eq. (1) in fluid mechanics and
plasma physics have been seen as follows:

– When h1 = 0, h2 = 0, h3 = 1, h4 = −5, h5 =
−5, h6 = −15, h7 = 15, h8 = 45, Eq. (1) has
been reduced to the (2 + 1)-dimensional B-type
Kadomtsev–Petviashvili equation which describes
the shallow water waves in a fluid or electrostatic
wave potential in a plasma,whereu is awave ampli-
tude function of the scaled space coordinates x , y
and time coordinate t [42–47].

– When h2 = 6h1, h6 = 4h5, h3 = h4 = h7 =
h8 = 0, Eq. (1) has been degenerated to the (2 +
1)-dimensional generalized breaking soliton equa-
tion which describes the interaction of a Riemann
wave propagating along the y axis and a long wave
propagating along the x axis,where u represents the
amplitude or elevation of the Riemann wave [48–
50].

– When h3 = 1, h7 = 15, h8 = 45, h1 = h2 =
h4 = h5 = h6 = 0 and u is independent of y,
Eq. (1) has been reduced to the fifth-order Sawada-
Kotera equation which describes the long waves in
the shallow water under the gravity and in a one-
dimensional nonlinear lattice [51–55].

N -soliton solutions ofEq. (1) have been obtained via
the Hirota bilinear method, where N is a positive inte-
ger, and periodic-wave solutions of Eq. (1) have also
been constructed via the Riemann theta function [40].
Lump, lumpoff and rogue wave solutions for Eq. (1)
have been derived [41].

However, to our knowledge, Eq. (1) is still worthy
of further study. Firstly, the higher-order lump solu-
tions of Eq. (1) have not been reported, and interaction

between the lumps has not been investigated. Secondly,
breather solutions of Eq. (1) have not been obtained.
Thirdly, although Ref. [41] has obtained the lumpoff
solutions of Eq. (1)which describe the inelastic interac-
tion between the lumps and one solitons, elastic interac-
tions there have not been investigated, between thefirst-
order breathers and one solitons, the first-order lumps
and one solitons, as well as the first-order breathers and
first-order lumps. Motivated by those, we will present
this paper.

Through thedependent variable transformation [40],

u = 12h1h2
−1(ln f )xx , (2)

Eq. (1) has been transformed into the following bilinear
equation [40]:

(Dx Dt + h1D
4
x + h3D

6
x + h4D

2
y

+ h5D
3
x Dy) f · f = 0,

(3)

where 2h1h
−1
2 = 5h3h

−1
7 = h5h

−1
6 = h7h

−1
8 , 5h3h4 =

−h25, f = f (x, y, t) is a real function, and D is the
Hirota’s bilinear differential operator defined as [56]

Dm1
x Dm2

y Dm3
t f (x, y, t) · g(x, y, t)

=
(

∂

∂x
− ∂

∂x ′

)m1
(

∂

∂y
− ∂

∂y′

)m2
(

∂

∂t
− ∂

∂t ′

)m3

f (x, y, t)g(x ′, y′, t ′)|x=x ′,y=y′,t=t ′ ,

(4)

with g(x ′, y′, t ′) being a function of the formal vari-
ables x ′, y′ and t ′, whilem1,m2 andm3 being the non-
negative integers. N -soliton solutions for Eq. (1) have
been expressed as Expression (2) [40] with

f =
∑

μ=0,1

exp

⎛
⎝ N∑
i=1

μiηi +
N∑
i< j

μiμ j Ai j

⎞
⎠ ,

ηi = pi x + ki y + ωi t + φi , (i = 1, 2, . . . , N )

ωi = −h1 p
3
i − h3 p

5
i − h5 p

2
i ki − h4 p

−1
i k2i ,

eAi j = − Ri j
Si j

, (i < j, j = 2, 3, . . . , N )

Ri j = h3(pi − p j )
6 + h1(pi − p j )

4 + h4(ki − k j )
2

+(pi − p j )(ωi − ω j ) + h5(pi − p j )
3(ki − k j ),

Si j = h3(pi + p j )
6 + h1(pi + p j )

4 + h4(ki + k j )
2

+(pi + p j )(ωi + ω j ) + h5(pi + p j )
3(ki + k j ), (5)

where pi ’s, ki ’s and φi ’s are the complex constants,∑
μ=0,1 denotes a summation over all the possible
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combinations of μ1 = 0, 1, μ2 = 0, 1, . . . , μN =
0, 1, and the notation

∑N
i< j indicates a summation

over all the possible pairs (i, j) chosen from the set
{1, 2, . . . , N }, with the condition i < j .

To sum up, this paper will investigate the higher-
order lump, breather and hybrid solutions for Eq. (1),
and study the effects of h1, h2, h4 and h5 on those
solutions. In Sect. 2, employing the long-wave limit
method [57,58], we will construct the Lth-order lump
solutions, where L is a positive integer, and analyze the
effects of h1, h2, h4 and h5 on the velocities and ampli-
tudes of the first-order lumps. We will graphically dis-
cuss the interaction between the two first-order lumps,
and the effects of h2 and h4 on the first-order lumps.
In Sect. 3, we will construct the M th-order breathers,
where M is a positive integer. Effects of h1 and h2 on
the second-order breathers will be discussed. Interac-
tion between the two first-order breather waves will be
graphically presented. In Sect. 4, hybrid solutions com-
posed of the first-order breathers and one solitons, the
first-order lumps and one solitons, as well as the first-
order lumps and first-order breathers will be obtained.
Elastic interactions of those three kinds of hybrid solu-
tions will be graphically illustrated. We will also dis-
cuss the effects of the coefficients on those hybrid solu-
tions. In Sect. 5, we will give our conclusions.

2 The higher-order lump solutions for Eq. (1)

In this part, we will construct the Lth-order lumps
via the long-wave limit of the N -soliton solutions for
Eq. (1).

To construct the Lth-order lumps for Eq. (1), setting

φi = Iπ, pi = σ Pi , ki = σKi , N = 2L , (6)

and then taking σ → 0, we can generalize the Lth-
order lumps from Solutions (2) and (5) as

u = 12h1h2
−1(ln f )xx , (7)

where I = √−1, σ is a real constant, Pi ’s and Ki ’s are
the complex constants,

f =
2L∏
i=1

θi + 1

2

2L∑
i, j

Bi j

2L∏

 �=i, j

θ
 + · · · + 1

L!2L

×
2L∑

i, j,...,κ,υ

L︷ ︸︸ ︷
Bi j Brs . . . Bκυ

2L∏
ϒ �=i, j,...,κ,υ

θϒ + · · · ,

θi = Pi x + Ki y − h4
K 2
i

Pi
t,

Bi j = 6P2
i P

2
j

[
2h1Pi Pj + h5(Pj Ki + Pi K j )

]
h4(Pj Ki − Pi K j )2

, (8)

∑2L
i, j,...,κ,υ means the summation over all the possible

combinations of i, j, . . . , κ, υ, which are taken from
1, 2, . . . , 2L and are all different from each other.

To obtain the nonsingular solutions, we set

Pr = P∗
L+r = Pr1 + I Pr2,

Kr = K ∗
L+r = Kr1 + I Kr2, (r = 1, 2, . . . , L)

(9)

and substitute Eqs. (9) into Eqs. (7) and (8), where
the superscript ∗ represents the complex conjugation,
Pr1’s, Pr2’s, Kr1’s and Kr2’s are the real constants.
Thus, we obtain the nonsingular lump solutions for
Eq. (1) under the condition Br,L+r > 0.

When L = 1, the first-order lump solutions for
Eq. (1) can be written as

u = 12h1h2
−1(ln f )xx , (10)

where

f = θ1θ2 + B12,

θ1 = P1x + K1y − h4
K 2
1

P1
t,

θ2 = P2x + K2y − h4
K 2
2

P2
t,

B12 = 6P2
1 P

2
2 [2h1P1P2 + h5(P2K1 + P1K2)]

h4(P2K1 − P1K2)2
.

(11)
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When one takes

P1 = P∗
2 = P11 + I P12,

K1 = K ∗
2 = K11 + I K12

(12)

in Solutions (10), the corresponding solutions are non-
singular under the condition B12 > 0. Solutions (10)
can also be expressed as

u = 24h1
h2

[−(X ′ + �1Y ′)2 + �2
2Y

′2 + �3
]

[
(X ′ + �1Y ′)2 + �2

2Y
′2 + �3

]2 , (13)

with

X ′ = x + h4(K 2
11 + K 2

12)

P2
11 + P2

12

t,

Y ′ = y − 2h4(K11P11 + K12P12)

P2
11 + P2

12

t,

�1 = K11P11 + K12P12
P2
11 + P2

12

, �2 = K12P11 − K11P12
P2
11 + P2

12

,

�3 = −3[h5(K11P11 + K12P12) + h1(P2
11 + P2

12)]
h4(P2

11 + P2
12)

−1(K12P11 − K11P12)2
,

(14)

where �3 > 0 must be satisfied. We find that u → 0
when x → ∞ and y → ∞ from Expressions (13).
Hence, Solutions (10) are the first-order lumps moving
on the constant backgrounds along the line

(K 2
11 + K 2

12)y − 2(K11P11 + K12P12)x = 0. (15)

Velocity components of the first-order lumps along the
x and y directions, Vx and Vy , are obtained as

Vx = −h4(K 2
11 + K 2

12)

P2
11 + P2

12

,

Vy = 2h4(K11P11 + K12P12)

P2
11 + P2

12

.

(16)

For Solutions (10), when t = 0, there are three extreme
points at (0, 0), (

√
3�3, 0) and (−√

3�3, 0) on the
x − y plane. Amplitudes of the humps and valleys of

the first-order lumps are derived as

℘1 =
∣∣∣∣∣
−8h1h4(K12P11 − K11P12)2(P2

11 + P2
12)

−1

h2[h5(K11P11 + K12P12) + h1(P2
11 + P2

12)]

∣∣∣∣∣ ,

℘2 =
∣∣∣∣∣

h1h4(K12P11 − K11P12)2(P2
11 + P2

12)
−1

h2[h5(K11P11 + K12P12) + h1(P2
11 + P2

12)]

∣∣∣∣∣ .
(17)

From Expressions (16) and (17), we find that the
velocities of the first-order lumps are proportional to
the coefficient h4. Amplitudes of the humps and valleys
of the first-order lumps are related to the coefficients
h1, h2, h4 and h5: both the amplitudes of the humps
and valleys of the first-order lumps are proportional to
h4, while inversely proportional to h2. Amplitudes of
the humps of the first-order lumps are eight times as
large as those of the valleys of the first-order lumps.

We need to point out that The First-Order Lump
Solutions (10) are constructed via the long-wave limit
method, which is different from the method adopted
in Ref. [41]. Compared with those of the lump solu-
tions obtained in Ref. [41], the trajectories of The First-
Order Lump Solutions (10) always pass through the
point (0, 0) on the x − y plane. The First-Order Lump
Solutions (10) depend on four parameters, namely P11,
P12, K11 and K12, while the first-order lump solutions
obtained in Ref. [41] depend on more parameters.

When L = 2, the second-order lump solutions for
Eq. (1) can be obtained via Solutions (7), as

u = 12h1h2
−1(ln f )xx , (18)

where

f = θ1θ2θ3θ4 + B12θ3θ4 + B13θ2θ4 + B14θ2θ3

+ B23θ1θ4 + B24θ1θ3 + B34θ1θ2

+ B12B34 + B13B24 + B14B23.

(19)

The second-order lumps describe the interaction
between the two first-order lumps. As shown in Fig. 1,
the two first-order lumps move along two lines

(K 2
11 + K 2

12)y − 2(K11P11 + K12P12)x = 0,

(K 2
21 + K 2

22)y − 2(K21P21 + K22P22)x = 0,
(20)

on the x− y plane. It can be seen that the two first-order
lumps have different shapes, velocities and amplitudes.
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The higher-order lump, breather and hybrid 1777

Fig. 1 The second-order lump via Solutions (18) with P1 = P∗
3 = −1 − I, P2 = P∗

4 = −I, K1 = K ∗
3 = 2 − I, K2 = K ∗

4 =
2 − I, h1 = 1, h2 = 2, h4 = − 1

5 , h5 = 1.

Fig. 2 The same as Fig. 1 except that h2 = 4.

Fig. 3 The same as Fig. 1 except that h4 = − 1
10 .

They move close, and then interact with each other.
When t = 0, due to the interaction, it can be seen that
there are two humps with the same amplitude. Finally,
the two first-order lumps separate andmove further and

further. We can find that the interaction between those
two lumps is elastic since the shapes, velocities and
amplitudes of those lumps have no changes the inter-
action. To investigate the effect of h2, based on the
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parameters in Fig. 1, we set h2 = 4 and fix the other
parameters. Comparing Figs. 1 and 2, we find that the
amplitudes of the two first-order lumps are inversely
proportional to h2. When h4 = − 1

10 and the other
parameters are the same as those in Fig. 1, a second-
order lump is depicted in Fig. 3. Comparing Figs. 1
and 3, we find that both the velocities and amplitudes
of those first-order lumps are proportional to h4.

3 The higher-order breather solutions for Eq. (1)

In this part, we will construct the M th-order breathers
under certain parameter constraints in the N -soliton
solutions for Eq. (1).

Motivated by the procedure inRefs. [29,37], we take

N = 2M, pτ = p∗
M+τ = pτ1 + I pτ2,

kτ = k∗
M+τ = kτ1 + I kτ2,

φτ = φ∗
M+τ = φτ1 + Iφτ2, (τ = 1, 2, . . . , M)

(21)

in Solutions (2) and (5),where pτ1’s, pτ2’s, kτ1’s, kτ2’s,
φτ1’s and φτ2’s are the real constants. The M th-order
breather solutions of Eq. (1) are given as

u = 12h1h2
−1(ln f )xx , (22)

with

f =
∑

μ=0,1

exp

⎛
⎝2M∑
i=1

μiηi +
2M∑
i< j

μiμ j Ai j

⎞
⎠ ,

ητ = η∗
M+τ = ητ1 + Iητ2,

ητ1 = pτ1x + kτ1y − (p2τ1 + p2τ2)
−1

×{
h4

[(
k2τ1 − k2τ2

)
pτ1 + 2kτ1kτ2 pτ2

]

+(p2τ1 + p2τ2)
[
h5((p

2
τ1 − p2τ2)kτ1 − 2kτ2 pτ1 pτ2)

+h1 pτ1(p
2
τ1 − 3p2τ2) + h3 pτ1(p

4
τ1 − 10p2τ1 p

2
τ2

+5p4τ2)
]}
t + φτ1,

ητ2 = pτ2x + kτ2y − (p2τ1 + p2τ2)
−1

×{
h4

[
(−k2τ1 + k2τ2)pτ2 + 2kτ1kτ2 pτ1

]
+(p2τ1 + p2τ2)

[
h5((p

2
τ1 − p2τ2)kτ2 + 2kτ1 pτ1 pτ2)

+h1 pτ2(3p
2
τ1 − p2τ2) + h3 pτ2(5p

4
τ1 − 10p2τ1 p

2
τ2

+p4τ2)
]}
t + φτ2,

eAi j = − Ri j
Si j

,

Ri j = h3(pi − p j )
6 + h1(pi − p j )

4 + h4(ki − k j )
2

+(pi − p j )(ωi − ω j ) + h5(pi − p j )
3(ki − k j ),

Si j = h3(pi + p j )
6 + h1(pi + p j )

4 + h4(ki + k j )
2

+(pi + p j )(ωi + ω j ) + h5(pi + p j )
3(ki + k j ), (23)

and eAτ,M+τ > 1 to ensure that the solutions are non-
singular.

When M = 1, Solutions (22) reduce to the first-
order breather solutions of Eq. (1),

u = 12h1h2
−1(ln f )xx , (24)

with

f = 1 + eη1 + eη
∗
1 + eη1+η∗

1+A12 ,

η1 = η∗
2 = η11 + Iη12,

η11 = p11x + k11y − (p211 + p212)
−1

×{
h4

[(
k211 − k212

)
p11 + 2k11k12 p12

]

+ (p211 + p212)
[
h5((p

2
11 − p212)k11 − 2k12 p11 p12)

+ h1 p11(p
2
11 − 3p212) + h3 p11(p

4
11 − 10p211 p

2
12

+ 5p412)
]}
t + φ11,

η12 = p12x + k12y − (p211 + p212)
−1

×{
h4

[
(−k211 + k212)p12 + 2k11k12 p11

]
+ (p211 + p212)

[
h5((p

2
11 − p212)k12 + 2k11 p11 p12)

+ h1 p12(3p
2
11 − p212) + h3 p12(5p

4
11 − 10p211 p

2
12

+ p412)
]}
t + φ12,

eA12 = 1 − R

S
,

R = 3(p211 + p212)
2{h5(k11 p11 + k12 p12)

+ (p211 + p212)
[
h1 + 5h3(p

2
11 − p212)

]}
,

S = h4(k12 p11 − k11 p12)
2 + p211(p

2
11 + p212)

×[
3h1 + 5h3(3p

2
11 − p212)

] + h5 p11(p
2
11 + p212)

×[
2k12 p11 p12 + k11(3p

2
11 + p212)

]
, (25)

and eA12 > 1. The first-order breathers via Solu-
tions (24) are localized along the direction of η11 = 0
and periodic along the direction of η12 = 0. Periods
of those breathers are 2π

p12
along the x direction and

2π
k12

along the y direction. There are three kinds of the
first-order breathers with different values of p11 and
k11 in Solutions (24). When p11 = 0 and k11 �= 0,
the first-order breathers are parallel to the x axis on the
x − y plane; When p11 �= 0 and k11 = 0, the first-
order breathers are parallel to the y axis on the x − y
plane; More generally, when p11 �= 0 and k11 �= 0, the
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The higher-order lump, breather and hybrid 1779

Fig. 4 The second-order breather via Solutions (22) with M = 2, p1 = p∗
3 = 3

10 − 1
10 I, p2 = p∗

4 = 3
5 I, k1 = k∗

3 = 3
5 I, k2 = k∗

4 =
1 + I, φ1 = φ2 = φ3 = φ4 = 0, h1 = 1, h2 = 2, h4 = − 1

5 , h5 = 1.

Fig. 5 The same as Fig. 4 except that h2 = 4.

Fig. 6 The same as Fig. 4 except that h1 = 2.

first-order breathers are parallel to the line y = − p11
k11

x
on the x − y plane. When p12 = k12 = φ12 = 0, The
First-Order Breather Solutions (24) reduce to the one-
soliton solutions for Eq. (1). From Expressions (24)

and (25), we also notice that the amplitudes of the first-
order breathers are inversely proportional to h2.

Similarly, we can obtain the second-order breather
solutions of Eq. (1) with M = 2 in Solutions (22).
The second-order breathers describe the interaction
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1780 C.-Y. Zhang et al.

between the two first-order breathers. As analyzed
above, the second-order breathers can be composed of
different kinds of the first-order breathers. For instance,
we may construct a second-order breather which con-
sists of twofirst-order breathers, oneofwhich is parallel
to the x axis, while the other is parallel to the y axis, as
shown in Fig. 4. Those two first-order breathers keep
interactingwith each other on the x−y plane. As t goes
on, the interaction region keeps moving. To investigate
the effect of h2, based on the parameters in Fig. 4, we
set h2 = 4 and fix the other parameters. Comparing
Figs. 4 and 5, we find that the amplitudes of the two
first-order breathers are inversely proportional to h2.
When h1 = 2 and the other parameters are the same as
those in Fig. 4, interaction between the two first-order
breather is illustrated in Fig. 6. Effects of h1 on the
amplitudes and shapes of the first-order breathers can
be seen via comparing Figs. 4 with 6.

4 Hybrid solutions for Eq. (1)

In this section, we will focus on three types of hybrid
solutions for Eq. (1). We will construct the hybrid solu-
tions consisting of the first-order breathers and one soli-
tons, of the first-order lumps and one solitons, and of
the first-order lumps and first-order breathers.

4.1 Hybrid solutions consisting of the first-order
breathers and one solitons for Eq. (1)

We take

N = 3, p1 = p∗
2 = p11 + I p12, p3 = p31,

k1 = k∗
2 = k11 + I k12, k3 = k31,

φ1 = φ∗
2 = φ11 + Iφ12, φ3 = φ31,

(26)

in Solutions (2) and (5), and get the following:
Hybrid solutions composedof thefirst-order breathers

and one solitons describe the interaction between the
first-order breathers and one solitons, as shown in
Figs. 7 and 8. When p11k31 = p31k11, the first-order
breather is parallel to the one soliton on the x − y
plane, as shown in Fig. 7. The first-order breather
and one soliton move in opposite directions. As t
goes on, they move close, interact with each other at
t = 0, and finally become further and further. When
t = 0, due to the interaction, each peak of the first-
order breather is divided into two peaks, and ampli-
tude of any peak is lower than that of the first-order
breather. After the interaction, both the breather and
soliton keep their shapes, velocities and amplitudes
unchanged, which means that the interaction between
the first-order breather and one soliton is elastic. When
p11k31 �= p31k11, the first-order breather and the one
soliton are unparallel on the x−y plane, and keep inter-
acting with each other as t goes on. To investigate the
effect of h2, we take h2 = 4, and the other parame-
ters are the same as those in Fig. 7. Comparing Figs. 7
and 8, we find that the amplitudes of both the first-order
breathers and one solitons are inversely proportional to
h2.

4.2 Hybrid solutions consisting of the first-order
lumps and one solitons for Eq. (1)

Fig. 7 Hybrid solution composed of a first-order breather and a single soliton via Solutions (2) and (5) with N = 3, p1 = p∗
2 =

3
10 − 3

10 I, p3 = 1
2 , k1 = k∗

2 = 6
5 + 3

5 I, k3 = 2, φ1 = φ2 = φ3 = 0, h1 = 1, h2 = 2, h4 = − 1
5 , h5 = 1.
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Fig. 8 The same as Fig. 7 except that h2 = 4

Via the longwave limitmethod [57,58], hybrid solu-
tions composedof thefirst-order lumps andone solitons
for Eq. (1) can be derived via Solutions (2) and (5) with
the parameters

N = 3, φ1 = φ2 = Iπ, p1 = σ P1, p2 = σ P2,

k1 = σK1, k2 = σK2, σ → 0.

(27)

Thus, we obtain the hybrid solutions composed of the
first-order lumps and one solitons for Eq. (1) as

u = 12h1h2
−1(ln f )xx , (28)

where

f = θ1θ2 + B12 + (B12 + ξ13ξ23 + ξ13θ2

+ξ23θ1 + θ1θ2)exp(η3),

ξ13 = −ξ131

ξ132
,

ξ131 = 6P2
1 p

2
3[h5(P1k3 + K1 p3)

+2h1P1 p3 + 5h3P1 p
3
3],

ξ132 = h5P1 p
3
3(2P1k3 + K1 p3) + 3h1P

2
1 p

4
3

+5h3P
2
1 p

6
3 − h4(P1k3 − K1 p3)

2,

ξ23 = −ξ231

ξ232
,

ξ231 = 6P2
2 p

2
3[h5(P2k3 + K2 p3)

+2h1P2 p3 + 5h3P2 p
3
3],

ξ232 = h5P2 p
3
3(2P2k3 + K2 p3) + 3h1P

2
2 p

4
3

+5h3P
2
2 p

6
3 − h4(P2k3 − K2 p3)

2, (29)

and θ1, θ2, B12 and η3 are given by Expressions (5) and
(11). In this case, we find that ξ13 = ξ∗

23, which ensures

that f be a real function. Velocities and amplitudes
of the first-order lumps are given by Expressions (16)
and (17). However, the velocity components of the one
solitons along the x and y directions, Vx−soli ton and
Vy−soli ton , are obtained as

Vx−soli ton = h1 p43 + h3 p63 + h5 p31k3 + h4k23
p23

,

Vy−soli ton = h1 p43 + h3 p63 + h5 p31k3 + h4k23
p3k3

,

(30)

and the amplitudes of the one solitons are | 3p23h1h−1
2 |.

Hybrid solutions composed of the first-order lumps
and one solitons describe the interaction between the
first-order lumps and one solitons, as shown in Figs. 9,
10 and 11. From Fig. 9, we can see that the velocities
of the first-order lump and one soliton are different.
At first, they move close, and then the first-order lump
interacts with the one soliton at t = 0. When t = 0,
due to the interaction, the maximum amplitude of u is
lower than that of the first-order lump. Finally, they sep-
arate and the distance between them becomes further
and further. After the interaction, no changes happen to
the shapes, velocities, and amplitudes of the first-order
lump and one soliton, which means that the interaction
is elastic. Thus, properties of Hybrid Solutions (28) are
different from those of the lumpoff solutions obtained
in Ref. [41], which describe the inelastic interaction
between the first-order lumps and one solitons.

To investigate the effect of h2, based on the parame-
ters inFig. 9,we seth2 = 4 andfix theother parameters.
Comparing Figs. 9 and 10, we find that the amplitudes
of this kind of hybrid solutions are inversely propor-
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Fig. 9 Hybrid solution composed of a first-order lump and a single soliton via Solutions (28) with P1 = P∗
2 = −1 − I, p3 =

− 1
2 , K1 = K ∗

2 = 2 − I, k3 = 2, φ3 = 0, h1 = 1, h2 = 2, h4 = − 1
5 , h5 = 1.

Fig. 10 The same as Fig. 9 except that h2 = 4

Fig. 11 The same as Fig. 9 except that h4 = − 1
10

tional to h2. When h4 = − 1
10 and the other parameters

are the same as those in Fig. 9, interaction between a
first-order lump and one soliton is illustrated in Fig. 11.
Comparing Figs. 9 and 11, we find that the amplitude
and velocity of the first-order lump are proportional

to h4. However, amplitude of the one soliton does not
depend on h4, and velocity of the one soliton is posi-
tively correlated to h4. In this case, we also notice that
the first-order lump crosses over the one soliton and
has two peaks due to the interaction when t = 0.
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Fig. 12 Hybrid solution composed of a first-order breather and a first-order lump via Solutions (32) with P1 = P∗
2 = 1 − 3

4 I, p3 =
p∗
4 = 3

5 I, K1 = K ∗
2 = 2 + I, k3 = k∗

4 = 1 + I, h1 = 1, h2 = 2, h4 = − 1
5 , h5 = 1.

Fig. 13 The same as Fig. 12 except that h2 = 1

4.3 Hybrid solutions consisting of the first-order
breathers and first-order lumps for Eq. (1)

From Solutions (2) and (5) with

N = 4, φ1 = φ2 = Iπ, p1 = σ P1, p2 = σ P2,

k1 = σK1, k2 = σK2, σ → 0, (31)

hybrid solutions composed of the first-order breathers
and first-order lumps for Eq. (1) are obtained as

u = 12h1h2
−1(ln f )xx , (32)

with
f = θ1θ2 + B12 + (B12 + �13�23 + �13θ2

+�23θ1 + θ1θ2)exp(η3) + (B12

+�14�24 + �14θ2 + �24θ1 + θ1θ2)exp(η4)

+[
θ1(�23 + �24) + θ2(�13 + �14)

+B12 + �13�23 + �14�23 + �13�24

+�14�24 + θ1θ2
]
exp(η3 + η4 + A34),

�ıj = −�ıj1

�ıj2
, (ı = 1, 2, j = 3, 4)

�ıj1 = 6P2
ı p

2
j [h5(Pıkj + Kı pj )

+2h1Pı pj + 5h3Pı p
3
j ],

�ıj2 = h5Pı p
3
j (2Pıkj + Kı pj ) + 3h1P

2
ı p

4
j

+5h3P
2
ı p

6
j − h4(Pıkj − Kı pj )

2,

p3 = p∗
4 = p31 + I p32, (33)

under the condition p31 = 0 or p32 = 0, where η3, η4,
A34, θ1, θ2 and B12 are given by Expressions (5) and
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(11), p31 and p32 are the real constants. In this case,
we find that �13 = �∗

24 and �14 = �∗
23, which ensure

that f be a real function.
Hybrid solutions composedof thefirst-order breathers

and first-order lumps describe the interaction between
the first-order breathers and first-order lumps, as shown
in Figs. 12 and 13. As t goes on, the breather and lump
move close, interact with each other, and finally move
further and further. It is found that the interaction is
elastic since the shapes, velocities and amplitudes of
the first-order breather and lump do not change after
the interaction. To investigate the effect of h2, based
on the parameters in Fig. 12, we set h2 = 1 and fix the
other parameters. Comparing Figs. 12 and 13, we find
that the amplitudes of this kind of hybrid solutions are
inversely proportional to h2.

5 Conclusions

In this paper, we have studied the (2 + 1)-dimensional
generalized Konopelchenko–Dubrovsky–Kaup–
Kupershmidt equation, i.e., Eq. (1), which can be
utilized to describe certain nonlinear phenomena in
fluid mechanics. The Lth-Order Lump Solutions (7)
have been constructed via the long-wave limit method.
Based on Solutions (7), the first- and second-order
lump solutions, i.e., Solutions (10) and (18), have been
obtained. Via Expressions (16) and (17), it has been
found that the velocities of the first-order lumps are
proportional to the constant coefficient h4 in Eq. (1).
We have also found that both the amplitudes of the
humps and valleys of the first-order lumps are related
to the constant coefficients h1, h2, h4 and h5 in Eq. (1),
proportional to h4 while inversely proportional to h2.
It has been found that the second-order lumps describe
the interaction between two first-order lumps, which
is elastic since those lumps keep their shapes, veloci-
ties and amplitudes unchanged after the interaction, as
shown in Figs. 1, 2 and 3. Comparing Figs. 1 and 2, we
have seen that the amplitudes of the second-order lumps
are inversely proportional to h2. As shown in Figs. 1
and 3, we have seen that both the velocities and ampli-
tudes of the first-order lumps are proportional to h4.

We have derived The M th-Order Breather Solu-
tions (22). The First-Order Breather Solutions (24)
have been obtained from Solutions (22) with M = 1.
Solutions (24) have indicated that the amplitudes of
the first-order breathers are inversely proportional to

h2. The second-order breather solutions have been
obtained with M = 2 in Solutions (22). It has been
found that the second-order breathers describe the inter-
action between two first-order breathers, as shown in
Figs. 4, 5 and 6. Comparing Figs. 4 and 5, we have
seen that the amplitudes of the second-order breathers
are inversely proportional to h2. Effects of h1 on the
amplitudes and shapes of the second-order breathers
have been shown in Figs. 4 and 6.

Hybrid solutions consistingof thefirst-order breathers
and one solitons have been constructed via the substi-
tution of Expressions (26) into Solutions (2) and (5).
Interaction between a first-order breather and one soli-
ton has been found to be elastic as both the breather
and soliton keep their shapes, velocities and amplitudes
unchanged after the interaction, as shown in Figs. 7
and 8. Comparing Figs. 7 and 8, we have seen that
the amplitudes of both the first-order breathers and one
solitons are inversely proportional to h2. Via the long-
wave limit method, hybrid solutions composed of the
first-order lumps and one solitons, i.e., Solutions (28),
have been obtained from Solutions (2) and (5) with the
parameters given in Expression (27), and graphically
analyzed, as shown in Figs. 9, 10 and 11. It has been
found that the interaction between a first-order lump
and one soliton is elastic. Comparing Figs. 9 and 10,
we have found that the amplitudes of this kind of hybrid
solutions are inversely proportional to h2. Comparing
Figs. 9 and 11, we have seen that the amplitude and
velocity of the first-order lump are proportional to h4.
However, we have found that the amplitude of the one
soliton does not depend on h4, and the velocity of the
one soliton is positive correlated to h4. Hybrid solu-
tions composed of the first-order breathers and first-
order lumps, i.e., Solutions (32), have been obtained
from Solutions (2) and (5) with the parameters given
in Expressions (31). As shown in Figs. 12 and 13, the
interaction between a first-order breather and a first-
order lump has been found to be elastic. Comparing
Figs. 12 and 13, we have found that the amplitudes of
this kind of hybrid solutions are inversely proportional
to h2.
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