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Abstract In this paper, some degenerate solutions
of the spatial discrete Hirota equation are constructed
via the degenerate idea of positon solution. Under the
zero seed solution, the n-positon is obtained by N -fold
degenerate Darboux transformation (DT). The degen-
erate DT is taking the degenerate limit λ j → λ1 for the
eigenvalues λ j ( j = 1, 2, 3, . . . , N ) of N -fold DT and
then performing the high-order Taylor expansion near
λ1. Considering the universal Darboux transformation,
breather is obtained from the nonzero seed. Then, a
new type of breather solution can be produced by using
the same degenerated method and higher-order Tay-
lor expansion for eigenvalues in determinant expres-
sion of breather solution. The explicit determinants of
breather-positon solution and positon solution are con-
structed, respectively, and the complicated and signifi-
cant dynamics of low-order solution are also revealed.
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1 Introduction

Soliton equations have been widely used and deeply
studied in the fields of fluid mechanics, physics, math-
ematics, communication and other natural disciplines
from the discovery of solitons to the present. On the one
hand, the content of soliton theory is to develop system-
aticmethods for solving nonlinear equations [1–6]. The
other is to study the algebraic and geometric properties
of integrable systems [7,8]. With the continuous devel-
opment of integrable systems, the theory of integrable
systems is also gradually applied to discrete systems.
Then, the discrete integrable systems have attracted
more and more attention because of their wide appli-
cation in many fields in recent decades. The research
of the discrete integrable systems can be traced back to
the works of Ablowitz, Ladik [9,10] and Hirota in the
1970s. Hirota firstly discretized the nonlinear partial
difference KdV equation [11], the discrete-time Toda
equation [12] and other soliton equations. Then, the
properties and exact solutions of some discrete equa-
tions have been discussed [13–16]. Date et al proposed
a method of discrete soliton equation by means of the
transformation group theory, which gives a great num-
ber of integrable discretizations of soliton equations
[17]. A case in point is the quantum field theory, in
which discretization provides a strong implement for
building models of quantum gravity [18]. Suris devel-
oped a universal Hamiltonian method for integrable
discretization [19]. After this pioneering work of inte-
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grable discretization, the research of discrete integrable
systems has gradually extended to other mathematical
fields. For instance, numerical analysis and its various
applications are largely dependent on the discretization
of the related partial differential equations (PDEs) [20].
Integrable discrete system promotes the development
of new core mathematical tools for the discrete com-
plex analysis, the discrete differential geometry and the
theoretical physics. And it provides an effective way to
study the difference equation and the general theory of
discrete system.

In 1992, Matveev firstly proposed the positon solu-
tions of the KdV equation [21], which is a kind of sin-
gular real solution, and has obvious connection with
the super transparent potential in quantum physics.
The results shown that the positon solution is a class
of slowly damped oscillation solution widely existing
in nonlinear integrable equations and it has the spe-
cial property of being superreflectionless [22]. Unlike
the exponentially decaying soliton solution, the posi-
tons are weakly localized. In particular, the solitons
do not experience any phase shift in a collision with
the positons, whereas the positons produce two addi-
tional but always finite phase shifts in collision with
solitons. The positons themselves remain unchanged
in the collision [23–25]. Especially, when Matveev
gave positon and soliton-positon solutions of the KdV
equation by means of the exact Wronskian expres-
sion [22], the positon solutions were quickly taken into
account in other nonlinear evolution equations, such as
the Sine-Gordon (SG) equation [26], the defocusing
modified KdV (mKdV) equation [27,28], the Toda-
lattice [29], the extended KdV equation [30] and the
Hirota–Satsuma coupled KdV system [31]. However,
all of the above literatures on positon are singular func-
tions. For many soliton equations with complex val-
ues, the existence of smooth positon solutions becomes
a question worthy studying. Recently, some papers
have constructed the smooth positon for continuous
equations of the focusing mKdV equation [25], the
complex mKdV equation [32], the second-type deriva-
tive nonlinear Schrödinger (DNLSII) equation [33],
the derivative nonlinear Schrödinger (DNLS) equation
[34]. Besides, as a potential in quantummechanics, the
positon solution of the KdV equation is expected to be
realized by band engineering in practical application
[35].

In this paper, the spatial discretization equation of
Hirota equation [36] is discussed,

d

dt
un = α(1 + |un|2)[un+2 − un−2 + 2un−1

− 2un+1 + u∗
n(u

2
n+1 − u2n−1)

− |un−1|2un−2 + |un+1|2un+2

+ un(u
∗
n−1un+1 − u∗

n+1un−1)]
− iβ(1 + |un|2)(un+1 + un−1) + 2iβun,

(1)

where α and β are two real constants and the ∗
denotes the complex conjugation. The spatially discrete
Hirota equation was derived from the reduction of an
Ablowitz–Ladik hierarchy matrix. The order-n soliton
solution and continuous limit theory of Eq. (1) have
been discussed inRef. [36]. InRef. [37], the roguewave
solutions of Eq. (1) were studied. Moreover, There are
two special forms of the spatial discrete Hirota equa-
tion. The spatial discrete complex mKdV equation can
be simplified from Eq. (1) when β = 0, and Eq. (1)
can be reduced to the spatial discrete NLS equation
when α = 0. And the rational solution, breather solu-
tion and continuous limit theory of the spatial discrete
complex mKdV equation have been investigated [15].
However, to our knowledge, the smooth positon solu-
tions of the spatial discrete Hirota equation (1) have not
been reported. Positon solution can be derived from the
degenerate of soliton solution. Therefore, we consider
whether we can use this degenerated idea to construct
the degenerate solutions of the discrete equation. The
purpose of this paper is constructed the degenerate solu-
tions of the spatial discrete Hirota equation.

This paper is organized as follows. In Sect. 2, the
smooth positon solution under the zero seed solution is
given by using the degenerate Darboux transformation
(DT). In Sect. 3, the breather solution of Eq. (1) is
constructed from the nonzero seed solution. In Sect. 4,
the breather-positon solutions of Eq. (1) are generated
by a degenerated process based on breather solution.
The conclusion is provided in the last section.

2 Positons of the spatial discrete Hirota equation

The Lax pairs of the spatial discrete Hirota equation
(1) are [36]:

ϕn+1 = Lnϕn,
dϕn

dt
= Mnϕn, (2)
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where the matrices Ln and Mn have the following
forms:

Ln =
(

λ un
−u∗

n λ−1

)
,

Mn = α

(
An(λ, λ−1, un) Bn(λ, λ−1, un)

−Bn(λ
−1, λ, u∗

n) An(λ
−1, λ, u∗

n)

)

+ iβ

(
Cn(λ, λ−1, un) Dn(λ, λ−1, un)
Dn(λ

−1, λ, u∗
n) −Cn(λ

−1, λ, u∗
n)

)
,

where

An(λ, λ−1, un) = λ4 − λ−4

2
− λ2 + λ−2 + λ2unu

∗
n−1

− λ−2un−1u
∗
n − 2unu

∗
n−1

+ (unu
∗
n−1)

2 + (1

+ |un−1|2)unu∗
n−2

+ (1 + |un|2)un+1u
∗
n−1,

Bn(λ, λ−1, un) = λ3un + λ−3un−1 + λ[(1
+ |un|2)un+1 + u2nu

∗
n−1 − 2un]

+ λ−1[(1 + |un−1|2)un−2

+ u2n−1u
∗
n − 2un−1],

Cn(λ, λ−1, un) = −unu
∗
n−1 − (λ − λ−1)2

2
,

Dn(λ, λ−1, un) = −λun + λ−1un−1.

Here, λ is the eigenvalue parameter independent of
n and t and ϕn = (ϕn,1, ϕn,2)

T is the eigenfunction
related to λ. According to the compatibility condition
of Eq. (1), the zero curvature equation is

Ln,t = Mn+1Ln − LnMn . (3)

The determinant representation of the N -fold Dar-
boux transformation (DT) forEq. (1) has been expressed
by [36]

u[N ]
n = un

ω
[N ]1
n+1

ω
[N ]
n+1

+ ω
[N ]2
n+1

ω
[N ]
n+1

, (4)

where

ω[N ]
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ
−N
1 ϕ

(1)
n,1 λ

−N+1
1 ϕ

(1)
n,2 λ

−N+2
1 ϕ

(1)
n,1 · · · λ

N−2
1 ϕ

(1)
n,1 λ

N−1
1 ϕ

(1)
n,2

λ
−N
2 ϕ

(2)
n,1 λ

−N+1
2 ϕ

(2)
n,2 λ

−N+2
2 ϕ

(2)
n,1 · · · λ

N−2
2 ϕ

(2)
n,1 λ

N−1
2 ϕ

(2)
n,2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

λ
−N
N ϕ

(N )
n,1 λ

−N+1
N ϕ

(N )
n,2 λ

−N+2
N ϕ

(N )
n,1 · · · λ

N−2
N ϕ

(N )
n,1 λ

N−1
N ϕ

(N )
n,2

(λ∗
1)N ϕ

∗(1)
n,2 −(λ∗

1)N−1ϕ
∗(1)
n,1 (λ∗

1)N−2ϕ
∗(1)
n,2 · · · (λ∗

1)−N+2ϕ
∗(1)
n,2 −(λ∗

1)−N+1ϕ
∗(1)
n,1

(λ∗
2)N ϕ

∗(2)
n,2 −(λ∗

2)N−1ϕ
∗(2)
n,1 (λ∗

2)N−2ϕ
∗(2)
n,2 · · · (λ∗

2)−N+2ϕ
∗(2)
n,2 −(λ∗

2)−N+1ϕ
∗(2)
n,1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

(λ∗
N )N ϕ

∗(N )
n,2 −(λ∗

N )N−1ϕ
∗(N )
n,1 (λ∗

N )N−2ϕ
∗(N )
n,2 · · · (λ∗

N )−N+2ϕ
∗(N )
n,2 −(λ∗

N )−N+1ϕ
∗(N )
n,1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

here, replace the first column and the second col-
umn, respectively, in ω

[N ]
n with (λN

1 ϕ
(1)
n,1, λ

N
2 ϕ

(2)
n,1, . . . ,

λN
Nϕ

(N )
n,1 , (λ∗

1)
−Nϕ

∗(1)
n,2 , (λ∗

2)
−Nϕ

∗(2)
n,2 , . . . , (λ∗

N )−N

ϕ
∗(N )
n,2 )T , which is ω

[N ]1
n and ω

[N ]2
n .

Taking a seed solution un = 0, the corresponding
spectral equation becomes,

ϕn+1 =
(

λ 0
0 λ−1

)
ϕn, and

dϕn

dt
=

(
χ(λ) 0
0 ω(λ)

)
ϕn, (5)

where

λ = ea+ib,

χ(λ) = α

(
λ4 − λ−4

2
− λ2 + λ−2

)
− iβ

2
(λ − λ−1)2,

ω(λ) = −χ(λ),

then obtain the eigenfunction

ϕn,1 = c1e
Z(λ), ϕn,2 = c2e

−Z(λ), (6)

where a and b are real constants and Z(λ) = n ln λ +
χ(λ)t and c j ( j = 1, 2) are arbitrary complex parame-
ters. Therefore, when N = 1, taking the eigenfunctions
ϕ

(1)
n,1 = c(1)

1 eZ(λ1), ϕ
(1)
n,2 = c(1)

2 e−Z(λ1) are substituted
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Fig. 1 The evolution of two-positon |u[2]
n−p| with a1 = 0.8,

b1 = 0.6, c(1)
1 = 1, c(1)

2 = 0.78, c(2)
1 = 1.2, c(2)

2 = 0.9,

α = 0.6 and β = 1.98 of the spatial discrete Hirota equation
on (n, t)-plane. Panel (a) is the discrete 3D plot, Panel (b) is the
continuous 3D plot, panel (c) is the density plot

Fig. 2 The evolution of three-positon |u[3]
n−p| with a1 = 0.8,

b1 = 0.09, c(1)
1 = 0.6, c(1)

2 = 0.8, c(2)
1 = 0.7, c(2)

2 = 1.1,

c(3)
1 = 0.6, c(3)

2 = 1.2, α = 0.6 and β = 0.6 of the spatial dis-

crete Hirota equation on (n, t)-plane. Panel (a) is the discrete 3D
plot, Panel (b) is the continuous 3D plot, panel (c) is the density
plot

into Eq. (4), the explicit formula of order-one soliton
solution is follows:

u[1]
n = λ1(λ

∗
1)

−2(|λ1|4 − 1)ϕ(1)
n,1ϕ

∗(1)
n,2

|λ1|2|ϕ(1)
n,1|2 + |ϕ(1)

n,2|2
,

= (1 − |λ1|−4)λ21

2
e2i Z I (λ1)sech(2ZR(λ1), (7)

here ZR(λ1) and ZI (λ1) are the real and imaginary
parts of Z(λ1), respectively, and they are given by

ZR(λ1) = a1n + {α[cos(4b1) sinh(4a1)
− 2 cos(2b1) sinh(2a1)]
+β sin(2b1) sinh(2a1)}t,

ZI (λ1) = b1n + {α[sin(4b1) cosh(4a1)
− 2 sin(2b1) cosh(2a1)]
−β cos(2b1) cosh(2a1) + β}t.

Similar to solving the order-one soliton solution,
the order-two soliton solution u[2]

n can be obtained
when N = 2. It can be seen that the denominator of
u[2]
n is zero when the eigenvalue λ2 = λ1 from the

expression of u[2]
n . In general, the soliton solution u[N ]

n
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becomes an indeterminate form 0
0 through the degener-

ate N -fold DT obtained by setting the degenerate limit
λ j → λ1( j = 2, 3, 4, . . . , N ). Then, by performing
the high-order Taylor expansion of λ j = λ1 + ε( j =
2, 3, 4, . . . , N ) in Eq. (4), the n-positon solution of the
spatial discrete Hirota equation given in the following
content.

Example 2.1 The n-positon solution of Eq. (1) gener-
ated by the degenerated N -fold DT from the zero seed
solution un = 0 is expressed as

u[N ]
n−p = ω

[N ]2
n+1

′

ω
[N ]
n+1

′ , (8)

where

ω
[N ]
n+1

′ = (
∂Ni−1

∂εNi−1 |ε=0(ω
[N ]
n+1)i j (λ1 + ε))2N×2N ,

ω
[N ]2
n+1

′ = (
∂Ni−1

∂εNi−1 |ε=0(ω
[N ]2
n+1 )i j (λ1 + ε))2N×2N ,

and

Ni =
{
i, i ≤ N

i − N , i > N .

The positon solution is smooth, which is expressed
as a mixed form of exponential function and polyno-
mial of n and t . Two-positon solution u[2]

n−p can be cal-
culated by the formula (8) when N = 2. Since the exact
form of the two-positon solution is complex, we do not
write its explicit expression but plotted it in Fig. 1. And
Similar to the two-positon solution, the three-positon
solution is plotted in Fig. 2. The discrete 3D plot of
positons is given in Figs. 1 and 2, respectively. Their
continuous 3D plots are also given to give their density
plots. The smooth positon solution is not a traveling
wave solution whose trajectory is not a straight line
but a slowly changing curve. And it can be seen that
neither the carrier wave nor the envelope has changed
from Figs. 1 and 2.

3 Breather solution

Breather solutions to the spatial discrete Hirota equa-
tion based on the Darboux transformation (4) are pre-
sented in this section. For this purpose, take a nonzero
seed solution—plane wave solution

un = ceiwt , (9)

where

w = −2βc2,

and c is a real constant. Introducing a transformation
related to the seed solution (9)

ϕn =
(
e
1
2 iwt 0

0 e− 1
2 iwt

)
ϕ̃n, (10)

then we can map the variable coefficient differential-
difference equation (2) to constant coefficient differen-
tial-difference equation,

ϕ̃n+1 = L̃n ϕ̃n,
dϕ̃n

dt
= M̃n ϕ̃n, (11)

where

L̃n =
(

λ c
−c λ−1

)
,

M̃n = α[(λ + λ−1)L̃3
n + (3λc2 + 3λ−1c2 − 3λ

− 3λ−1)L̃n + (−1

2
λ4 − 1

2
λ−4

+ λ2 + λ−2 + 3c4 + 3)I ] + iβ[(−λ + λ−1)L̃n

+ (
1

2
λ2 − 1

2
λ−2)I ].

In order to find the fundamental solution of the last
linear system, we ought to solve the eigenvalues of the
matrix L̃n . This is the characteristic equation

det (pI − L̃n) = p2 − (λ+λ−1)p+ 1+ c2 = 0. (12)

When there are two different eigenvalues p1 and p2 in
the matrix L̃n , the corresponding eigenfunction is

ϕn(λ) =
(

ϕn,1(λ)

ϕn,2(λ)

)

=
(
e
1
2 iwt (K1 pn1e

θ1t + K2 pn2e
θ2t )

e− 1
2 iwt (pn1e

θ1t + pn2e
θ2t )

)
, (13)

where

K j = − p j − λ−1

c
, ( j = 1, 2),

θ j = α[(λ + λ−1)p3j + (3λc2 + 3λ−1c2 − 3λ

− 3λ−1)p j + (−1

2
λ4 − 1

2
λ−4
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+ λ2 + λ−2 + 3c4 + 3)]
+ iβ[(−λ + λ−1)p j + (

1

2
λ2 − 1

2
λ−2)].

Next, substitute the plane wave solution (9) as the
seed solution and eigenfunction (13) into the N -fold
DT (4) to construct the breather solution of (1), then the
order-n breather solution of the spatial discrete Hirota
equation (1) as

u[N ]
n−b = ceiwt ω

[N ]1
n+1

ω
[N ]
n+1

+ ω
[N ]2
n+1

ω
[N ]
n+1

. (14)

Example 3.1 The order-one breather solution with
nonzero constant c and eigenvalue λ1 is obtained by
letting N = 1 in the upper formula (14) is

u[1]
n−b = ceiwt ω

[1]1
n+1

ω
[1]
n+1

+ ω
[1]2
n+1

ω
[1]
n+1

,

= Δn

Θn
eiwt , (15)

where

Θn = (|K1|2λ−1
1 + λ∗

1)|p1|2n+2e(θ1+θ∗
1 )t

+(|K2|2λ−1
1 + λ∗

1)|p2|2n+2e(θ2+θ∗
2 )t

+(K1K
∗
2λ−1

1 + λ∗
1)(p1 p

∗
2)

n+1e(θ1+θ∗
2 )t

+(K2K
∗
1λ−1

1 + λ∗
1)(p2 p

∗
1)

n+1e(θ2+θ∗
1 )t ,

and

Δn = (K1|λ1|2 + c|K1|2λ1 + c(λ∗
1)

−1

− K1|λ1|−2)|p1|2n+2e(θ1+θ∗
1 )t

+ (K2|λ1|2 + c|K2|2λ1 + c(λ∗
1)

−1

− K2|λ1|−2)|p2|2n+2e(θ2+θ∗
2 )t

+ (K1|λ1|2 + cK1K
∗
2λ1 + c(λ∗

1)
−1

− K1|λ1|−2)(p1 p
∗
2)

n+1e(θ1+θ∗
2 )t

+ (K2|λ1|2 + cK2K
∗
1λ1 + c(λ∗

1)
−1

− K2|λ1|−2)(p2 p
∗
1)

n+1e(θ2+θ∗
1 )t .

Specially, setting λ = ea , the characteristic equation
reduce to

p2 − (ea + e−a)p + 1 + c2 = 0, (16)

where the roots are either real roots or complex conju-
gation root pairs. To obtain the space-periodic breather,
we need to choose the pair of conjugate complex roots,
that is (ea + e−a)2 − 4(1 + c2) < 0. On the other
hand, when (ea + e−a)2 − 4(1 + c2) > 0 the solu-
tion becomes time-periodic breather. For illustration,
weplot the dynamics of the breather solution for param-
eters a1 = 0.6, b1 = 0.58, c = 1, α = 2 and
β = 1 in Fig. 3a, dynamical evolution of the time-
periodic Kuznetsov–Ma breather solution for param-
eters a1 = 0.6, c = 0.58, α = 0.01 and β = 3
in Fig. 3b and the dynamical evolution of the space-
periodic Akhmediev breather solution for parameters
a1 = 0.2, c = 2, α = 0.01 and β = 3 in Fig. 3c. Fig-
ure 3d, e and f, respectively, shows their density plots.

Example 3.2 Similarly, the order-twobreather solution
obtained when N = 2 can be expressed as

u[2]
n−b = ceiwt ω

[2]1
n+1

ω
[2]
n+1

+ ω
[2]2
n+1

ω
[2]
n+1

, (17)

where

ω
[2]
n =

∣∣∣∣∣∣∣∣∣∣

λ−2
1 ϕ

(1)
n,1 λ−1

1 ϕ
(1)
n,2 ϕ

(1)
n,1 λ1ϕ

(1)
n,2

λ−2
2 ϕ

(2)
n,1 λ−1

2 ϕ
(2)
n,2 ϕ

(2)
n,1 λ2ϕ

(2)
n,2

(λ∗
1)

2ϕ
∗(1)
n,2 −(λ∗

1)ϕ
∗(1)
n,1 ϕ

∗(1)
n,2 −(λ∗

1)
−1ϕ

∗(1)
n,1

(λ∗
2)

2ϕ
∗(2)
n,2 −(λ∗

2)ϕ
∗(2)
n,1 ϕ

∗(2)
n,2 −(λ∗

2)
−1ϕ

∗(2)
n,1

∣∣∣∣∣∣∣∣∣∣
,

ω
[2]1
n =

∣∣∣∣∣∣∣∣∣∣

λ21ϕ
(1)
n,1 λ−1

1 ϕ
(1)
n,2 ϕ

(1)
n,1 λ1ϕ

(1)
n,2

λ22ϕ
(2)
n,1 λ−1

2 ϕ
(2)
n,2 ϕ

(2)
n,1 λ2ϕ

(2)
n,2

(λ∗
1)

−2ϕ
∗(1)
n,2 −(λ∗

1)ϕ
∗(1)
n,1 ϕ

∗(1)
n,2 −(λ∗

1)
−1ϕ

∗(1)
n,1

(λ∗
2)

−2ϕ
∗(2)
n,2 −(λ∗

2)ϕ
∗(2)
n,1 ϕ

∗(2)
n,2 −(λ∗

2)
−1ϕ

∗(2)
n,1

∣∣∣∣∣∣∣∣∣∣
,

and

ω
[2]2
n =

∣∣∣∣∣∣∣∣∣∣

λ−2
1 ϕ

(1)
n,1 λ21ϕ

(1)
n,1 ϕ

(1)
n,1 λ1ϕ

(1)
n,2

λ−2
2 ϕ

(2)
n,1 λ22ϕ

(2)
n,1 ϕ

(2)
n,1 λ2ϕ

(2)
n,2

(λ∗
1)

2ϕ
∗(1)
n,2 (λ∗

1)
−2ϕ

∗(1)
n,2 ϕ

∗(1)
n,2 −(λ∗

1)
−1ϕ

∗(1)
n,1

(λ∗
2)

2ϕ
∗(2)
n,2 (λ∗

2)
−2ϕ

∗(2)
n,2 ϕ

∗(2)
n,2 −(λ∗

2)
−1ϕ

∗(2)
n,1

∣∣∣∣∣∣∣∣∣∣
.

An order-two breather is formed by two order-one
breathers superimposed on each other, and different
parameters have different effects on the dynamic evo-
lution of the order-two breather. Figure 4 describes a
dynamic evolution of the order-two breather solution.
Figure 5 describes the interaction of Kuznetsov–Ma
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Fig. 3 Dynamical evolution of order-one breather solution |u[1]
n−b| in the spatial discrete Hirota equation

Fig. 4 The evolution of
order-two breather |u[2]

n−b|
with a1 = 1.01, b1 = 1.03,
a2 = 1.1, b2 = 1.2, c = 1,
α = 0.1 and β = 1 of the
spatial discrete Hirota
equation on (n, t)-plane.
Panel (a) is the 3D plot,
panel (b) is the density plot

breather and Akhmediev breather. In addition, both
the first-order and the second-order breather solutions
show their periodicity. Hence, the breather solution is a
periodic traveling wave solution of the spatial discrete
Hirota equation.

Compared with the spatial discrete complex mKdV
equation [15], not only the time-period Kuznetsov–Ma
breather solution of Eq. (1) is derived from Eqs. (15)
and (16), but also the order-two breather solution and
the order-two breather solution of the interaction of

123



1832 M. Li et al.

Fig. 5 The evolution of the
interaction of
Kuznetsov–Ma breather and
Akhmediev breather with
a1 = 0.8, a2 = 1.1, c = 1,
α = 0.001 and β = 1 of the
spatial discrete Hirota
equation on (n, t)-plane.
Panel (a) is the 3D plot,
panel (b) is the density plot

Fig. 6 The evolution of the order-two breather-positon of the
spatial discrete Hirota equation on (n, t)-plane, the parameters
of (a) are a1 = 0.8, b1 = 0.9, c = 1, α = 0.6 and β = 1.98; the
parameters of (b) are a1 = 0.8, b1 = 1.8, c = 0.8, α = 0.7 and

β = 0.4; the parameters of (c) are a1 = 0.6, b1 = 0.2, c = 0.58,
α = 0.02 and β = 1.98. Panel (a) (b) and (c) are the 3D plots,
panel (d), (e) and (f) are the density plots
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Fig. 7 The evolution of the
space-periodic order-two
breather-positon of the
spatial discrete Hirota
equation on (n, t)-plane. the
parameters of (a) are
a1 = 0.8, c = 1, α = 0.5
and β = 1.98; the
parameters of (c) are
a1 = 0.6, c = 1, α = 0.02
and β = 1.98; Panel (a) and
(c) are the 3D plots, panel
(b) and (d) are the density
plots

Kuznetsov–Ma breather and Akhmediev breather are
obtained by Eq. (17).

4 Breather-positon solution

In fact, the method of breather-positon solution con-
structed in this part is the same as the positon solu-
tion described in Example 2.1. That is to say, using
the degenerate limit λ j → λ1( j = 2, 3, . . . , N ) and
high-order Taylor expansion of the eigenvalues in the
breather solution to construct the breather-positon solu-
tion. The determinant representation of the breather-
positon is slightly different from the positon owing to
the different seed solutions.

Example 4.1 Under the limit λ j → λ1( j = 2, 3, . . . ,

N ), an indeterminate form 0
0 associated with u[N ]

n−b

yield an order-n breather-positon by higher-order Tay-
lor expansion, namely

u[N ]
n−bp = ceiwt ω

[N ]1
n+1

′

ω
[N ]
n+1

′ + ω
[N ]2
n+1

′

ω
[N ]
n+1

′ , (18)

where

ω
[N ]
n+1

′ = (
∂Ni−1

∂εNi−1 |ε=0(ω
[N ]
n+1)i j (λ1 + ε))2N×2N ,

ω
[N ]1
n+1

′ = (
∂Ni−1

∂εNi−1 |ε=0(ω
[N ]1
n+1 )i j (λ1 + ε))2N×2N ,

ω
[N ]2
n+1

′ = (
∂Ni−1

∂εNi−1 |ε=0(ω
[N ]2
n+1 )i j (λ1 + ε))2N×2N ,

and

Ni =
{
i, i ≤ N

i − N , i > N .
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Fig. 8 The evolution of
time-periodic the order-two
breather-positon with
a1 = 0.92, c = 0.91,
α = 0.01 and β = 3 of the
spatial discrete Hirota
equation on (n, t)-plane.
Panel (a) is the 3D plot,
panel (b) is the density plot

Breather-positon solution is not only a new type
of breather solution but also an extension of posi-
ton solution. Different breathers of multi-breathers
have different periods, unlike a single breather have
only one period (or equivalent frequencies) and can
be adjusted effectively in experiments [38–41]. The
breather-positon can be reduced to the rogue wave
through further degenerate λ1 → λ0 (ϕn(λ0) = 0);
thus, the order-n breather-positon is the intermedi-
ate state of the order-n-breather transformation to the
order-n rogue wave. In this state, different breathers
have the same period (or velocity), and they can have
different phases.Different phase combinations can pro-
duce different modes in the strong interaction region.
It is easy to find that an order-one breather-positon
is the order-one breather solution in Eq. (15). The
first nontrivial breather-positon is the order-2 breather-
positon u[2]

n−bp, which is the limit of the order-two
breather on the limit λ2 → λ1. Figure 6 shows the
order-two breather-positon dynamic evolution under
different parameters, and Figs. 7 and 8 show the
dynamic evolution of space-periodic breather-positon
and time-periodic breather-positonwith special param-
eters, respectively.

The positon and breather-positon solutions derived
in this paper are exact solutions that have never been
discussed in two special forms[15,42,43] of the spa-
tial discrete Hirota equations (1). So far, we all know
that the Positon solution, the breather-positon solution
and the rogue wave solution can be obtained by tak-
ing the limit of the eigenvalue, but they have the fol-
lowing differences: 1: The positon solution is obtained
under the background that the seed solution is zero; 2:

The breather-positon solution is based on the nonzero
seed solution; 3: The rogue wave solution is a dou-
ble degenerated limit to the breather solution, i.e., the
breather-positon solution is an intermediate state from
the breather solution to the rogue wave solution.

5 Conclusions

We first provide the n-positon solution of Eq. (1) by
using the degenerate limit λ j → λ1 ( j = 2, 3, . . . , N )

andhigher-orderTaylor expansion in the corresponding
determinant representation of the multi-soliton solu-
tion. They are smooth solution expressed as a mixed
form of exponential function and polynomial of n and
t , which is similar to the multi-pole solutions of the
mKdV equation [44–48] and the NLS equation [49]
reported by the Hirota method and the classical inverse
scattering method in the past three decades. The eigen-
function under the nonzero seed solution is derived
by means of the variables separation method and the
superposition principle, and then the breather solution
of the spatial discrete Hirota equation is obtained by the
Darboux transformation method. The breather solution
is periodic. Finally, using the same method as positon
solution, a new type of breather solution is derived from
the breather solution, namely breather-positon. It is
very meaningful to use the breather-positon to explore
the modes and properties of the rogue wave solution as
in Ref [50]. Because on the basis of the degenerate limit
λ j → λ1 ( j = 2, 3, . . . , N ) of the breather solution,
the rogue wave solution can be derived from the further
degenerate step λ1 → λ0 (λ0 is the zero point of the
eigenfunction, i.e., ϕn(λ0) = 0). The soliton-positon
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solution of this equation is also very interesting, which
is similar to the soliton-position solution in the deriva-
tive nonlinear Schrödinger equation [34]. Besides the
results of the spatial discrete equation obtained in this
paper, it is worth studying the decomposition process,
bent trajectory and phase shift of the positon solutions
in the near future.
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