
Nonlinear Dyn (2020) 101:2235–2247
https://doi.org/10.1007/s11071-020-05963-2

ORIGINAL PAPER

Nonlinear model predictive position control for a
tail-actuated robotic fish

Pengfei Zhang · Zhengxing Wu · Yan Meng · Min Tan · Junzhi Yu

Received: 25 June 2020 / Accepted: 15 September 2020 / Published online: 28 September 2020
© Springer Nature B.V. 2020

Abstract Position control is a significant technique
for the underwater application of robotic fish; how-
ever, it is also very challenging due to the underactu-
ated property and input coupling of system dynamics.
In this article, a two-stage orientation–velocity non-
linear model predictive controller is proposed to solve
this problem. A scaled averagingmodel of tail-actuated
robotic fish is constructed at first. Then, the novel strat-
egy based on orientation and velocity control is devel-
oped as well as proved to be equivalent with posi-
tion control in the sense of Lyapunov. Furthermore, a
nonlinear model predictive controller with a two-stage
switching strategy is designed to regulate the orienta-
tion and velocity error. Finally, the simulation results
demonstrate the superiority of the proposed control
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algorithm compared with other methods. Particularly,
there exists an interesting twist-braking behavior in
simulation, which indicates that the proposed method
makes better use of the system dynamics. The pro-
posed method is efficient for not only bionic robotic
fish but also other aquatic underactuated robots, which
offers new insight into the position control of underwa-
ter robots.

Keywords Bionic robotic fish · Position control ·
Nonlinear model predictive control · Underactuated
dynamics

1 Introduction

The development of bionic robotic fish is an active
area of underwater robotic research. Owing to its high
maneuverability, high efficiency, and noiseless perfor-
mance, bionic robotic fish is differentiated from the
commercially developed autonomous underwater vehi-
cles (AUVs) and holds tremendous promise for under-
water applications undoubtedly [1,2]. However, the
prerequisite is the robust and precise control for car-
rying out the underwater mission efficiently and suc-
cessfully. In particular, the precise position control is
an essential technique for the large amounts of under-
water applications, e.g., underwater salvage and rescue,
underwater sensor network deployment. At present, the
vast majority of existing studies about the control prob-
lem of robotic fish involve swimming control [3,4],
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motion performance optimization [5,6], target track-
ing [7–9], path following [10,11], trajectory tracking
[12–15], and formation control [16–18]. Nevertheless,
the results on the position control of robotic fish are still
limited, where one critical challenge of position con-
trol is the complex dynamic properties, e.g., underactu-
ated characteristics and input coupling. The underactu-
ated characteristics of robotic fish reflect in two aspects.
Firstly, there are three degree-of-freedoms (DOFs) on
the horizontal movement, but only two control inputs
are available for robotic fish, which usually consist of
the forward thrust and steering torque. Secondly, the
forward thrust must be larger than or equal to zero,
which indicates that the deceleration of robotic fish is
difficult and mainly relies on the hydrodynamic force.
Additionally, unlike the ordinary underactuated vessel
or AUV, the input coupling property that the steering
torque will induce the lateral acceleration, makes the
position control more challenging for robotic fish.

In order to overcome the hurdles caused by the
dynamic characteristics for the position control of
robotic fish, the researchers have done a few works.
Yang et al. transformed the nonholonomic fish robot
system into the chained form at the kinematic level
and applied the backstepping method to moor it to
the desired docking position [19]. Yu et al. pro-
posed the point-to-point (PTP) hybrid control scheme
for a four-link robotic fish, which consists of the
speed control based on the fuzzy logic algorithm and
the proportional–integral–derivative (PID) orientation
controller [20]. Kato et al. provided a fuzzy controller
for the rendezvous and docking task of a fish robot
equipped with a pair of two-motor-driven mechani-
cal pectoral fins [21]. Except for the robotic fish, the
other aquatic robots, e.g., underwater surface vessel and
AUV, also face the same problem brought by the under-
actuated property [22,23]. Mazenc et al. utilized coor-
dinate transformation and backstepping technique for
determining global uniform asymptotically stabilizing
feedbacks for an underactuated vessel [24]. Sankara-
narayanan et al. proposed a switched finite-time PTP
control strategy for an underactuatedAUV,which splits
the system into several subsystems through state and
input transformation and regulates them by finite-time
controllers [25]. Yang et al. designed a backstepping-
based dynamically mooring controller in terms of the
kinematic model of underactuated AUV [26].

The above methods can be roughly divided into two
categories. The first one is to circumvent the difficulty
of underactuated dynamics and directly design the sub-
tle rules to control robots, e.g., fuzzy controller [20,21].
Although this method implements the position con-
trol without considering the dynamic model, it highly
relies on the artificial experience so that it is easy to
fail in some cases. The second one is to convert the
kinematics [19,26] or dynamics [24,25] of robots into
the amenable formulation by coordinate transformation
and then design controller by means of the common
nonlinear control techniques like backstepping. How-
ever, most of these works do not take into account the
input coupling and the constraint of control input, e.g.,
thrust must be nonnegative, which are the core techni-
cal difficulties on the position control of robotic fish.

In this article, we propose a two-stage orientation–
velocity nonlinear model predictive controller (TSOV-
NMPC) to accomplish the position control of robotic
fish, where the issues about underactuated character-
istics and input coupling are addressed from three
aspects. Firstly, the forward velocity constraint is
derived to guarantee that the velocity is in a certain
range and the robot is able to be braked by hydrody-
namic force, which avoids the necessity of negative
thrust. Secondly, in order to reduce the impact of input
coupling, the heading and velocity orientation errors
are defined as control goals, which is relatively easy to
control compared with other error definitions. Lastly,
the nonlinear model predictive control (NMPC) algo-
rithm is utilized to address the underactuated issues.
The NMPC algorithm can not only deal with the state
and input constraints but also optimize the control value
inmaximum extent based dynamic characteristics even
if the system is underactuated.

At present, there aremany applications of theNMPC
algorithm on AUV platforms [27,28], while the use
of the NMPC algorithm is limited for robotic fish due
to the difficulty of dynamic modeling about fish-like
propulsion [11,13]. However, Wang et al. proposed
a scaled averaging method to construct the dynamic
model of a tail-actuated carangiform robotic fish,which
is not only high-fidelity but also amenable to analysis
and control design [29]. This article is on the basis
of this averaging model and further utilize the NMPC
algorithm to accomplish the position control of robotic
fish.

The main purpose of this article is to develop a
precise position controller for robotic fish, which lays
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the solid foundation for performing underwater mis-
sions. The main contributions are twofold. On the one
hand, we propose a novel control strategy based on
orientation and velocity control to replace the direct
methods depending on the feedback of position or dis-
tance errors, which achieves better control precision
and adaptability in the simulations. Besides, the equiv-
alence between orientation–velocity control and posi-
tion control is proved in the sense of Lyapunov, where
the orientation control includes the heading orientation
and velocity orientation control. On the other hand, a
TSOV-NMPC algorithm is developed to accomplish
position control of robotic fish, which combines the
virtue of heading orientation and velocity orientation
control as well as making better use of the robot’s
dynamic property. Particularly, an interesting twist-
brakingmechanism is found in the deceleration process
of robotic fish, which is not the pre-designed maneu-
ver but automatically generated by the optimization
algorithm. The proposed control algorithm offers new
insight into the position control of underwater under-
actuated robots, which is not only efficient for robotic
fish but also for other aquatic robots that possess similar
dynamic properties.

The rest of this article is organized as follows. The
dynamic modeling of tail-actuated robotic fish and the
problem formulation of position control are provided
in Sect. 2. Section 3 introduces the design of TSOV-
NMPC in detail. The simulation setups and results are
offered in Sect. 4. Finally, Sect. 5 concludes this article.

2 Problem formulation

The planar motion model of the tail-actuated robotic
fish shown in Fig. 1a is deduced in this section. In
particular, the robot is assumed to be operated in an
incompressible fluid within an infinite domain. The
earth-fixed reference frame Cw and body-fixed refer-
ence frame Cb are displayed in Fig. 1b. The coordinate
Cb is located at the center of gravity (CG) of robotic
fish,whose x axis is parallelwith the anterior–posterior.
The position X , Y , and orientation ψ are defined in the
frame Cw. The surge velocity u, sway velocity v, and
yaw angular velocity ω are defined in the body frame.
Obviously, the kinematic equations of the robot can be
written as follows:

Ẋ = cosψ · u − sinψ · v

(b)

(a)

Fig. 1 Tail-actuated robotic fish.a appearance rendering,b coor-
dinate definition

Ẏ = sinψ · u + cosψ · v

ψ̇ = ω. (1)

As shown in Fig. 1a, the tail-actuated robotic fish
consists of a rigid body and a rigid tail fin. Besides, the
motion of tail fin follows the sinusoidal law

α(t) = α0 + αa sin(ωαt) (2)

where α represents the tail deflection angle. α0, αa ,
and ωα denote the bias, amplitude, and frequency
of tail beating, respectively. Particularly, considering
the carangiform propulsion adopted, the hydrodynamic
forces of tail fin are analyzed by the Lighthill’s large
amplitude elongated body theory [30]. Besides, the
hydrodynamic effects exerted on rigid body are con-
sidered to contain the viscous damping and additional
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mass. Eventually, the complete dynamic equations of
the robotic fish are given by

u̇ = vω − Kx

Mx
|u|u − Kt

Mx
α̈ sin α

v̇ = −uω − Ky

My
|v|v + Kt

My
α̈ cosα

ω̇ = −Mx − My

Λz
uv − Kτ

Λz
|ω|ω

− Kt

Λz
(−rbt α̈ cosα + 2

3
Lα̈) (3)

where Mx = mb + max , My = mb + may , andΛz =
Λb + Λaz denote the mass and moment of inertia of
the body, respectively, which contain the added mass
and inertia. Kx , Ky , and Kτ represent the damping
coefficients. Besides, Kt = 1

2mL2, where m = 1
4ρd

2

is virtual mass for the per unit length of tail and L is
tail length. ρ is the density of water. d is the depth of
the tail cross section.

Furthermore, the periodic model (3) is averaged for
the convenience of practical control, and the scaled
averaging method is applied as [29]

u̇ = vω − Kx

Mx
|u|u + KforceKt

2Mx
u1 (4a)

v̇ = −uω − Ky

My
|v|v + KforceKt

2My
u2 (4b)

ω̇ = −Mx − My

Λz
uv − Kτ

Λz
|ω|ω − KmomentKtrbt

2Λz
u2

(4c)

where u1 = α2
Aω2

α(1− 1
2α

2
0− 1

8α
2
A) and u2 = ω2

αα2
Aα0.

Kforce and Kmoment are scaling functions of tail force
and torque. Generally, Kforce is a constant and Kmoment

can be represented as the linear function of α0. rbt
denotes the distance between CG and tail joint.

According to the above dynamic model, the under-
actuated property includes two aspects: the less number
of independent control input and the limited range of
u1 that must be larger than zero. Besides, the input
coupling refers that the same control input is utilized
to control multiple states, e.g., the input u2 is applied
to control the lateral and turning acceleration simulta-
neously. It is worth noting that the dynamic model for
most of the underwater surface vessel andAUV is input
decoupling and there is usually no nonnegative limita-
tion on the thrust. Therefore, the position control for
robotic fish is relatively difficult than other underwater
robots.

The target of position control is to drive the robot
to arrive and stay at the desired point. Therefore, the
control problem tackled in this paper can be formulated
as follows:

Consider the robotic fish model in the horizontal
plane described by (1) and (4a)–(4c). Derive a control
law that generates the control input u1 and u2 to guar-
antee that the robotic fish arrives at the target position
and its velocity decreases to zero at the same time.

3 Controller design

In this section, an NMPC-based controller is proposed
to solve the above control problem, where the original
position control is converted into a problem combining
orientation and velocity control in a subtle manner.

3.1 Velocity constraint

Due to the underactuated property and input coupling,
the directmethod using theCartesian coordinates of the
desired point as feedback is hard to achieve satisfactory
performances. Thus, the point tracking problem is con-
verted into an angle tracking one in some works, which
governs the heading of robotic fish to point to the target
point. However, the controller based on angle tracking
can only drive the robotic fish approaching target rather
than stopping on it. In other words, the velocity con-
trol is essential for the position control of robotic fish,
which indicates that the velocity should decrease as the
robot approaches the target point. According to (4a),
the forward velocity u mainly depends on the input u1,
but u1 > 0 for most of cases. It means that the robotic
fish cannot utilize negative thrust to brake itself and the
viscous effect is the only source of deceleration forces.
Therefore, if the velocity exceeds a certain range, the
viscous force will be unable to brake the robotic fish
and the robot will exceed the desired point. For the sake
of further discussion, the constraint of velocity should
be deduced at first.

Let us consider the free deceleration of the robotic
fish, namely, u > 0, u1 = 0. Assuming lateral velocity
is negligible, namely, v = 0, Eq. (4a) can be written as

u̇ = − Kx

Mx
|u|u = − Kx

Mx
u2, u(0) = V (5)
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where V denotes the initial velocity of the free decel-
eration stage. Hence, the analytic solution of the above
ordinary differential equation is given by

u = 1
1
V + Kx

Mx
t
. (6)

In order to compute the free movement distance of
the robot with initial velocity V , Eq. (6) is integrated
over [0, τ ] as

d =
∫ τ

0
u dt = Mx

Kx
ln

[
1 + KxV

Mx
τ

]
(7)

where τ is time constant that refers to the desired max-
imum time that the robotic fish does not exceed the tar-
get point. The larger τ means that the robotic fish will
move a longer distance d, which indicates the stronger
velocity constraint.

Furthermore, in order to ensure the robotic fish
would not exceed the target point within time τ , the
movement distance d should be less than the current
distance between robot and goal, which can be written
as

d = Mx

Kx
ln

[
1 + KxV

Mx
τ

]
< r (8)

where r = √
(XT − X)2 + (YT − Y )2 denotes the dis-

tance from target point. XT and YT represent the coor-
dinates of target point in frame Cw.

According to (8), if the distance between robotic fish
and target is r , the velocity constraint will be

V < Vmax (9)

where the available maximum velocity is

Vmax = Mx

Kxτ

[
exp

(
Kx

Mx
r

)
− 1

]
.

3.2 Orientation–velocity control strategy

The single orientation control is unable to stop the
robotic fish at the terminal position, thus the veloc-
ity control is essential. The idea of velocity control
is intuitive, which requires that robot should track the
velocity constraint Vmax as accurate as possible so that
it approaches the target by a fast and stable manner.

However, owing to the various orientation definitions,
namely, heading orientation and velocity orientation,
the orientation control of robotic fish can be divided
into two types. The heading orientation control is to
govern the robot’s head to point to the target, while the
velocity orientation control is to coincide the velocity
with the direction of the target. This subsection depicts
these two control strategies in detail and demonstrates
the equivalence between the orientation–velocity con-
trol and position control.

3.2.1 Heading–orientation–velocity (HOV) control
strategy

As shown in Fig. 1b, the relative angle φ between the
robotic fish and target can be represented as

φ = arctan
Ye
Xe

(10)

where Xe = XT − X and Ye = YT − Y denote the
position errors of x and y axis, respectively.

Define the heading angle error and velocity error as
follows:

αh
e = φ − ψ (11)

Ve = Vmax − Vc (12)

where Vc = √
u2 + v2 is resultant velocity.

The objective of HOV control is to regulate the
errors αh

e and Ve to zero. Furthermore, the equiva-
lence between HOV control and position control can
be deduced [31].

Assumption 1 The forward (surge) velocity is not less
than zero, which means u ≥ 0.

Theorem 1 Consider the system kinematics (1) satis-
fying Assumption 1. If there exists a control law letting
Ve = 0 and αh

e = 0, Xe, Ye, u, and v will asymptoti-
cally converge to zero as t → ∞.

Proof Let us define a Lyapunov function candidate

V = 1

2
X2
e + 1

2
Y 2
e +

√
u2 + v2. (13)

Owing to Ve = 0 and αh
e = 0, we have

√
u2 + v2 = Mx

Kxτ

[
exp

(
Kx

Mx

√
X2
e + Y 2

e

)
− 1

]
(14)
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ψ =arctan
Ye
Xe

, cosψ = Xe√
X2
e + Y 2

e

, sinψ = Ye√
X2
e + Y 2

e

.

(15)

Taking the derivative of (13) and substituting (1),
(14), and (15) into it, we have

V̇ = Xe Ẋe + YeẎe

+ d

dt

{
Mx

Kxτ

[
exp

(
Kx

Mx

√
X2
e + Y 2

e

)
− 1

]}

= −Xe(cosψ · u − sinψ · v) − Ye(sinψ · u + cosψ · v)

+ 1

τ

Xe Ẋe + Y Ẏe√
X2
e + Y 2

e

exp

(
Kx

Mx

√
X2
e + Y 2

e

)

= −
[√

X2
e + Y 2

e + 1

τ
exp

(
Kx

Mx

√
X2
e + Y 2

e

)]
· u

≤ 0. (16)

Let R be the set of all points in state space where
V̇ = 0, soR = {x |u = 0}. According to the dynamics
of (4a) and (4b), the derivatives of all states can be zero
only when u = 0 and v = 0. Then, the largest invariant
set in R can be defined as M = {x |u = 0, v = 0}.
Furthermore, based on the (14), the Xe and Ye must be
zero when u = 0 and v = 0. Thus, the invariant set is
equivalent with M = {x |Xe = 0,Ye = 0, u = 0, v =
0}.

Finally, according to the LaSalle’s invariance prin-
ciple, the system states will asymptotically converge to
M as t → ∞. This completes the proof. ��

The HOV control strategy ensures the velocity of
robotic fish converges to zero when it arrives at the tar-
get. However, the condition of Theorem 1 is hard to
meet for the robotic fish, especially when it is close to
the target. As the robot gets closer to the terminal point,
the regulation of the heading angle would be more and
more difficult owing to the input coupling between y
axis acceleration and yaw angular acceleration. More
specifically, the variation rate of relative angle φ will
increase as the distance from the target is shorten, thus
the heading of the robot needs to be adjusted frequently
which induces the drifts on y axis and causes that the
robot is hard to arrive at the goal accurately. Besides,
since the control input u1 is always nonnegative, the
robotic fish can only rely on the fluid drag to deceler-
ate, which causes that the forward velocity is hard to
decrease to the desired range in a limited time.

3.2.2 Velocity–orientation–velocity (VOV) control
strategy

As shown in Fig. 1b, the velocity orientation can be
defined as below

γ = arctan
v

u
. (17)

Define the velocity angle error αv
e as

αv
e = φ − γ − ψ. (18)

Similarly, the objective of VOVcontrol is to regulate
the errors αv

e and Ve to zero, and we can clarify the
equivalence betweenVOVcontrol and position control.

Theorem 2 Consider the system kinematics (1). If
there exists a control law letting Ve = 0 and αv

e = 0,
Xe, Ye, u, and v will asymptotically converge to zero
as t → ∞.

Proof Let us define a Lyapunov function candidate

V = 1

2
X2
e + 1

2
Y 2
e +

√
u2 + v2. (19)

Owing to Ve = 0 and αv
e = 0, we have Eq. (14) and

ψ = arctan
Ye
Xe

− arctan
v

u

cosψ = Xe · u + Ye · v√
X2
e + Y 2

e

√
u2 + v2

sinψ = Ye · u − Xe · v√
X2
e + Y 2

e

√
u2 + v2

. (20)

Taking the derivative of (19) and substituting (1),
(14), and (20) into it, we have

V̇ = Xe Ẋe + YeẎe

+ d

dt

{
Mx

Kxτ

[
exp

(
Kx

Mx

√
X2
e + Y 2

e

)
− 1

]}

= −
[
1 + 1

τ

1√
X2
e + Y 2

e

exp

(
Kx

Mx

√
X2
e + Y 2

e

)]

·
√
X2
e + Y 2

e

√
u2 + v2. (21)

According to (14), u2 + v2 will be not equal to zero
when X2

e + Y 2
e 	= 0. Thus, when Xe 	= 0, Ye 	= 0,
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u 	= 0, and v 	= 0, there exists V̇ < 0. It means that
the system states will asymptotically converge to zero
as t → ∞. This completes the proof. ��

Since the VOV control scheme guarantees the resul-
tant velocity of robotic fish to point to the goal, it
can effectively solve the terminal drift issue caused by
input coupling. However, the resultant velocity orienta-
tion depends on both surge velocity and sway velocity,
which is relativewith two control inputs ofu1 andu2, so
the allocation of control quantities is an issue. Besides,
the controller based on the VOV strategy sometimes
induces a few strange system behaviors, e.g., backward
swimming, which will be discussed in simulation.

3.3 Two-stage orientation–velocity NMPC controller

The HOV and VOV control strategies each possess a
fewweaknesses, thus a novel control scheme combined
the HOV and VOV is proposed to strike a sound bal-
ance, which is called the TSOV-NMPC algorithm. Par-
ticularly, there are three reasons for utilizing theNMPC
algorithm, including 1) It allows explicit consideration
of state and input constraints. 2) Through adjusting the
weighting matrices of the cost function, the control
strategies of HOV and VOV can be easily integrated
into one framework. 3) NMPC can deal with the prob-
lem of control allocation in VOV control, which is dif-
ficult for the controller of single-input single-output,
e.g., PID.

For formalizing this NMPC problem, the complete
system state vector is defined as x = [Ve, αh

e , αv
e ,

X,Y, ψ, u, v, ω]T ∈ R
9. The control vector is defined

as u = [u1, u2]T ∈ R
2. The dynamic system can be

written as follows [32]:

ẋ = f (x,u) (22)

where

V̇e = 1

τ
exp

(
Kx

Mx

√
X2
e + Y 2

e

) −Xe Ẋ − YeẎ√
X2
e + Y 2

e

− uu̇ + vv̇√
u2 + v2

α̇h
e = −XeẎ + Ye Ẋ

X2
e + Y 2

e
− ω

α̇v
e = −XeẎ + Ye Ẋ

X2
e + Y 2

e
− v̇u − u̇v

u2 + v2
− ω.

The basic idea of NMPC is as follows: at each sam-
pling instant we solve a finite horizon optimization
problem that evaluates the cost of the predicted future
behavior of the system, then apply the first element of
optimized control sequences as feedback control for
the next sampling interval. The optimization problem
at time instant t can be formalized as below

min
u(·) J (x(t),u(·)) (23)

subject to:

˙̂x(τ ) = f (x̂(τ ),u(τ )),∀τ ∈ [t, t + Tp]
u(τ ) = u(t + Tc),∀τ ∈ [t + Tc, t + Tp]
x̂(τ ) ∈ X , u(τ ) ∈ U ,∀τ ∈ [t, t + Tp]

with

J (x(t),u(·)) = x̂(t + Tp)
TPx̂(t + Tp)

+
∫ t+Tp

t
x̂(τ )TQx̂(τ ) + u(τ )TRu(τ ) dτ

where J (x,u) is the cost function. x̂ represents the
predicted states based on (22) and u(·) is the control
sequence. Tp and Tc denote the prediction and control
horizon, respectively, and Tc ≤ Tp. X and U are the
sets of state constraints and input constraints. Besides,
P and Q are positive semidefinite weighting matrices.
R is positive definite weighting matrix. These matri-
ces represent the coefficients of terminal penalty and
running cost.

Based on the definition of the above optimization
problem, the TSOV-NMPC algorithm can be listed as
follows:

Algorithm 1 The TSOV-NMPC algorithm
1: Initialize the weighting matrices P, Q, and R:
2: P = diag(p1, p2, p3, 0, 0, 0, 0, 0, 0), where p2 >> p3.
3: Q = diag(q1, q2, q3, 0, 0, 0, 0, 0, 0), where q2 >> q3.
4: for each sampling time tn, n = 0, 1, 2... do
5: Measure the system state x(tn) and calculate state error.
6: if |αh

e | < η then
7: Reset the matrices P andQ. Let p3 >> p2 and q3 >>

q2.
8: Solve the optimal control problem of (23) and obtain the

optimal control sequence u∗(·).
9: Define the NMPC-feedback value as u∗(0) and apply this

control value in the next sampling period.
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Note that the TSOV-NMPC algorithm can be regar-
ded as that the HOV control and VOV control are
automatically switched by a threshold condition. More
specifically, the first stage of TSOV-NMPC is aimed to
decrease the heading angle error αh

e . Once αh
e is less

than the predetermined threshold, the second stage is
activated to govern velocity angle error. Besides, since
theTSOV-NMPCalgorithm is equivalent to a combina-
tion of two controllers, the feasibility and convergence
of this controller can be divided into two individual
parts to analyze. However, no matter for the separate
HOV-based NMPC algorithm or the VOV-based one,
they are classic applications of NMPC whose proofs
of feasibility and convergence have been given by the
literature [32]. Thus, the detailed explanations would
not be explored in this article.

4 Simulation

In order to evaluate the effectiveness of the proposed
position control scheme, the adequate simulationswere
conducted in Matlab environment. The parameters
adopted are derived from the actual robot and are tab-
ulated in Table 1. Additionally, the parameters applied
to implement the NMPC algorithm are as follows:

– Simulation duration: 100 sec.
– Control period: 1 sec.
– Predicted and control horizon: Tp = 15, Tc = 5.
– State weighting matrix (TSOV first stage):
Q = diag(100, 100, 10, 0, 0, 0, 0, 0, 0).

– State weighting matrix (TSOV second stage):
Q = diag(100, 0, 10, 0, 0, 0, 0, 0, 0).

– Control weighting matrix: R = diag(0.01, 0.01).
– Terminal penalty matrix: P = diag(0, 0,
0, 0, 0, 0, 0, 0, 0).

– Velocity constraint constant: τ = 50.
– State constraints: Ve ≥ 0.
– Input constraints: 0 ≤ u1 ≤ 0.5,−0.2 ≤ u2 ≤ 0.2.

4.1 Control strategy comparison

In this subsection, we primarily discuss the control per-
formance for the robotic fish under the various error
definitions. Based on the idea of feedback control, the
definition of control error is the first thing that should be
considered. There are several ways to define the error

Table 1 Simulation parameters of the robotic fish

Parameter Value Unit Parameter Value Unit

mb 1.0 kg Kx 2.0 –

max 2.0 kg Ky 20.0 –

may 2.0 kg Kτ 0.1 –

Λb 0.01 kg · m2 Kt 0.0053 kg · m2

Λaz 0.01 kg · m2 Kforce 40 –

d 0.05 m Kmoment −10 –

L 0.13 m rbt −0.2 m

1“–” denotes dimensionless

on position control, which brings completely different
control performances. These error definitions can be
divided into two categories. The first kind is directly
related to the position, distance, and orientation, while
the second one mainly depends on velocity and orien-
tation. Here, five kinds of error definitions are given as
below
Directed error

– Position error (PE): Xe = XT − X , Ye = YT − Y .
– Polar coordinate position error (PCPE): αh

e , re =√
X2
e + Y 2

e .

Velocity-based error

– HOV error: Ve, αh
e .

– VOV error: Ve, αv
e .

– TSOV error: Ve, αh
e , and αv

e .

Particularly, in order to evaluate the control effect
of these error definitions, the NMPC algorithm was
utilized as the unified controller to regulate the errors.
Besides, a proportional–integral–derivative (PID) con-
troller combined with the HOV error was applied to
demonstrate the effectiveness of NMPC.

Without loss of generality, the robotic fish was com-
manded to start from the origin point and swim to eight
positions, including the coordinates of (4, 0), (4,−4),
(0,−4), (−4,−4), (−4, 0), (−4, 4), (0, 4), and (4, 4).
The initial states of robotic fish for simulation were set
as zero.

The simulation results corresponding to six con-
trollers are shown in Fig. 2. The first thing is to inspect
the motion trajectories of every case. Obviously, the
trajectories of TSOV-NMPC in Fig. 2a are far better
than those in other cases. The robotic fish controlled
by TSOV-NMPC successfully and precisely arrives at
every position. Besides, it moves more efficiently com-
pared with the case of HOV-PID in Fig. 2f, which can
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(a) (b) (c)

(d) (e) (f)

Fig. 2 The motion trajectories of the robotic fish controlled by various controllers. The plots a–f depict the results of six kinds of
controllers and the red pentagrams denote the target positions

be inferred from the comparison of path length. For the
case of HOV-NMPC (Fig. 2b), PCPE-NMPC (Fig. 2e),
and HOV-PID (Fig. 2f), the robotic fish approaches the
target point in the beginning but drifts off the course at
the final stage. In addition, for the cases ofVOV-NMPC
(Fig. 2c) and PE-NMPC (Fig. 2d), the robotic fish fails
to arrive at every target point and whether the posi-
tion control is successful or not largely depends on the
target position and its initial states. The further inspec-
tion of the robot velocities and cost function turns out
that the optimization problem gets stuck at the local
optimum and the robotic fish enters into a backward
swimming mode, which is an abnormal motion and
with very low velocity. Though the control input u1
must be greater than zero, the Coriolis term vω in (4a)
makes u̇ < 0 become possible. It should be noticed that
backward swimming motion is easier to be activated in
optimization-based methods, e.g., NMPC, since these
methods leverage more dynamic characteristics com-

pared with the modeless approach, e.g., PID. It reveals
that a well-selected error definition and control algo-
rithm will make a great impact on the success rate of
position control and efficiency.

The second thing is to observe the terminal perfor-
mances of every case. Without regard to the failures,
the robotic fish controlled by TSOV-NMPC and VOV-
NMPC arrives at the target point with a smooth and
precise way, which is benefit from the definition of
velocity–orientation error αv

e . While for the case of
HOV-NMPC,PCPE-NMPC, andHOV-PID, all of them
utilize the heading angle error αh

e , the robotic fish will
deviate the course whenever it approaches the terminal
position. This is due to the input coupling of v̇ and ω̇.
When the robotic fish is close to the target, the change
of αh

e will increase. In order to adjust αh
e , the position

error on the y axis will increase under the impact of
input coupling. Besides, though the robot based on PE-
NMPC reaches the target, the terminal path is relatively
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Fig. 3 The boxplot of the terminal error of various position con-
trollers

tortuous, which shows the deficiency of the definition
of PE.

Furthermore, Fig. 3 shows the statistical results of
terminal errors of various control strategies. The height
of the box in the plot denotes the reliability of the con-
trol scheme. The shorter the box is, the better repeata-
bility and success rate the controller possesses. The
middle line represents the general control precision,
namely, the lower middle line means smaller termi-
nal error and higher precision. A careful inspection of
Fig. 3 reveals that the TSOV-NMPC possesses the best
control precision and the most reliable performance,
whose terminal error is about 2 cm and success rate is
100%.

4.2 Terminal behavior analysis of TSOV-NMPC

There exists an interesting terminal behavior for the
robotic fish controller by TSOV-NMPC. We name it
as the twist-braking mechanism. As shown in Fig. 4,
the forward velocity u, control inputs u1 and u2 for the
case whose target is (4, 0) are displayed. It can be eas-
ily found that the thrust u1 becomes zero after about 15
second and the velocity reaches the maximum value.
Then, the deceleration process can be divided into two
stages. Thefirst stage is from15 to 50 second,where the
u1 and u2 are almost zero and the robotic fish is braked
by hydrodynamic. The second stage begins at 50 sec-
ond and the u2 begins to exert influence on robotic fish,
where the twist-braking mechanism is activated so that
the velocity decreases rapidly to satisfy the velocity
constraint.

Figure 5 displays the twist-brakingmechanism visu-
ally. As shown in Fig. 5, the robotic fish controlled by
TSOV-NMPC utilizes tail torque to twist its body and
slide sideways, when it approaches the goal. Since the
lateral resistance (Ky = 20) is far larger than the for-
ward one (Kx = 2), the forward velocity decreases
quickly so that the robotic fish is able to stay at the ter-
minal point. However, in the reference case, the hydro-
dynamic force fails to brake the robotic fish, which
slides away from the target eventually.

By careful inspection of the dynamicmodel (4a), we
note that the velocity coupling term vω provides the
crucial deceleration force in the process of the twist-
braking, since both the fluid drag and control input is
quite small at that time. Furthermore, the deceleration
effect of coupling term vω is related to the two dynamic
characteristics of robotic fish. The first one is the oppo-
site sign of the control input for lateral acceleration (4b)
and steering acceleration (4c). It causes that the lateral
velocity ω and steering velocity v will increase along
the opposite direction which makes the coupling term
vω easier to be negative. The second one is the large
drag coefficient of y axis, which guarantees that the lat-
eral velocity increases in a limited range. Besides, on
the viewpoint of energy, the nature of the twist-braking
mechanism is converting the forward velocity into the
lateral velocity, then leveraging the larger lateral drag
coefficient to achieve faster energy dissipation. In a
word, the twist-braking mechanism fully reveals that
the NMPC algorithm can leverage the dynamic charac-
teristics of robotic fish to achieve a better control effect.

4.3 Underwater sensor network deployment

The motivation of the position control is to empower
the robotic fish with the ability to arrive at the speci-
fied location and execute tasks. In this subsection, we
assumed a mission that the robotic fish needs to auto-
matically deploy an underwater sensor network con-
sisted of six sensors. Then, the performances of TSOV-
NMPC was evaluated. The locations of the six sen-
sors were randomly generated. The robotic fish started
from the origin, went to every target location to deploy
sensors, and went back to origin eventually. Note that
finding the optimal deploy order can be regarded as a
traveling salesman problem, which was determined by
the genetic algorithm in this article. Figure 6 shows the
simulation results of robotic fish controlled by TSOV-
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Fig. 4 The forward velocity curve and the corresponding control
inputs of the robotic fish that controlled by TSOV-NMPC. The
green dotted line denotes the velocity constraint calculated by (9).
The blue dot-dash line denotes the velocity of the robotic fish that
is without the twist-braking mechanism and only decelerated by
viscous force

Fig. 5 Schematic of the twist-brakingmechanism.The reference
case means that the robotic fish can only decelerate itself by
viscous force

NMPC.From themotion trajectories inFig. 6a, it canbe
easily found that the robotic fish successfully arrives at
every target position. As shown in Fig. 6b, the response
curve of position control has no overshoot and the
required time from one position to another is nearly

(b)

(c)

(d)

(a)

Fig. 6 The simulation results of the underwater sensor network
deployment by robotic fish. a motion trajectory, b x-direction
displacement, c y-direction displacement, d resultant velocity
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the same. Besides, the velocity curve in Fig. 6c shows
that the velocity will decrease to zero whenever the
robot arrives at the target position, which creates the
conditions for the sensor deployment.

However, the careful inspection reveals that the
robotic fish sometimes does not take the direct route but
makes a detour, which is due to the uncontrolled ter-
minal orientation. Thus, our future work will focus on
controlling the terminal position and orientation simul-
taneously.

5 Conclusion and future work

In this article, we have presented a TSOV-NMPC algo-
rithm for the position control of bionic robotic fish,
which creates a convenient condition for performing
the underwater mission. At first, a scaled averaging
model is constructed for tail-actuated robotic fish. By
means of the dynamic model, the velocity constraint
is derived. Besides, the HOV and VOV control strate-
gies are proved to be equivalent with the position con-
trol in the sense of Lyapunov. Furthermore, the NMPC
algorithm with a two-stage switching mechanism is
designed to reduce the orientation and velocity error,
which combines the virtue of HOV and VOV meth-
ods. Finally, the precision and adaptability of TSOV-
NMPC are demonstrated by numerical simulation, and
the twist-braking mechanism existing in simulation
further reveals that the proposed method utilizes the
dynamic characteristics of robotic fish to achieve bet-
ter control performance.

The ongoing and future work will focus on the posi-
tion control under external disturbance as well as the
pose control of robotic fish that consists of position
control and orientation control simultaneously.
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