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Abstract This paper addresses the issue of finite-
time stability (FTS) and finite-time contractive sta-
bility (FTCS) of nonlinear systems involving state-
dependent delayed impulsive perturbation. Several suf-
ficient conditions are obtained by using theories of
impulsive control and Lyapunov stability. The relation
between impulsive perturbation and state-dependent
delay is established to achieve FTS and FTCS. For
time-varying nonlinear system and nonlinear system
with fixed parameters, we derive some sufficient con-
ditions based on the main thought of this paper, respec-
tively. Finally, three numerical examples are provided
to illustrate the effectiveness and validity of achieved
results.

Keywords Finite-time stability - Finite-time con-

tractive stability - State-dependent delay - Delayed
impulses - Impulsive theory

1 Introduction

In plenty cases of practical situations, there should con-
sider the behavior of systems over a period of time,
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which is finite. For instance, in the process of some
chemical experiments, will the pressure or humidity
or other parameters be kept within suitable bounds in
a fixed time interval? Furthermore, under the circum-
stance of launching a satellite from neighborhood of
a place A to neighborhood of the destination D, will
the satellite be placed into the appropriate orbit? Thus,
Kamenkov [7] introduced the concept of FTS in 1953.
Dorato pointed out that FTS is a much more natural con-
cept of “stability” in contrast with classical Lyapunov
stability [3]. Specifically, there are two main aspects of
differences. First, FTS processes systems which oper-
ating time is limited to a finite-time interval. Second, a
prescribed bound of variables is essentially required by
FTS. It should be emphasized that there is another con-
cept of FTS, which has been extensively considered in
mountains of publications, e.g., [2,5,10,12,26,28,38].
The latter FTS refers to the case that states of a system
converge to the equilibrium at setting time, which is
finite. A great variety of research regarding FTS has
been devoted to because of its wide range of applica-
tions over many practical areas. Authors in [16] inves-
tigated the problem of FTS for time-varying systems
by applying the Lyapunov—Razumikhn technique to
deal with the time delay. In particular, this paper deeply
investigated FTS for linear time-varying systems with
time-varying parameters by constructing an auxiliary
function. In [26], the concept of FTS was developed
into the interconnected impulsive switched system and
the problem of FTS for interconnected switching sys-
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tems with impulses was researched. In 1967, Weiss and
Infante presented the concept of FTCS to describe the
state of a system operates within a smaller specified
bound, compared with the initial one, at some instant
o < T under the premise of FTS [33]. Thereafter, there
has been considerable research concerning the FTCS
[27].

The phenomenon of impulses is one of the indis-
pensable topics when scientists and researchers inves-
tigate the real world, such as pharmacokinetics, tran-
sition of satellite orbit, frequency modulate systems,
and secure communication [15,29,36]. In these cases,
the impulsive differential equation (IDE) provides a
natural way to describe systems with discontinuous
motions. In 1989, Lakshmikantham and Simeonov [§]
presented some general results of the IDE, which pro-
vided a researching foundation for the follow-up stud-
ies. After then, the domain of IDE has been a hot issue
over decades and been broadly studied pertaining to the
stability and other properties of solutions to IDE, see
[1,17,18]. Research on the stability of impulsive sys-
tems generally can be split into two groups. One group
considers the fixed-time impulses [11,20,31], and the
other one pays particular attention to the variable-time
impulses [32,37]. There has been a lot of interesting
research on the FTS or finite-time synchronization of
impulsive systems. Author in [21] presented a general
approach to analyze the key point for FTS and fixed-
time convergence for the impulsive systems. Issues of
FTS for nonlinear systems with impulsive effects were
investigated in [22] via the method of average dwell
time.

Delayed impulses is a notion to depict the scenario
that states at impulsive moments are not merely depen-
dent on current states of the system but as well the
historical ones. For example, in the process of infor-
mation transfer via the impulsive control, there exist
sampling and transmission delays caused by data rate
of the link [24]. Most existing studies concern the time
delay in impulses either fixed or in the form of integral.
In [19], the synchronization issue of complex dynam-
ical networks via pinning impulsive control was con-
sidered. Delays in impulses were assumed as 7, mean-
ing that different impulsive instants may have different
scale of delays which is more suitable to depict practi-
cal situation. Another synchronization issue of chaotic
neural networks with delayed impulses was studied in
[34]. Distributed time delay was taken into considera-
tion in impulsive input, in other words, states of impul-
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sive instants rely on the historical period of states of
the system. Authors in [30] investigated the issue of
exponential synchronization of coupled Lur’e networks
involving proportional delay. The proportional delay
considered in Ref. [30] is a type of unbounded time-
varying delay. While in many cases, the time delay
may differ based on states of the system. For instance,
in a sampling and impulsive control system, the data
needed to be frequently sampled if states of the sys-
tem increase sharply for better control performance;
while the states of the system run steadily, the sample
period can be longer for lower control cost. Thus, the
notion of state-dependent delay came into researcher’s
vision. Li in [13] brought up a kind of state-dependent
delay © = ©(f, x(; )), where the scale of time-delay
is determined by historical states of the system. In
[13], the authors provided some sufficient criteria of
locally uniform stability, locally uniformly asymptot-
ical stability and locally exponential stability of non-
linear differential systems under the effects of state-
dependent delayed impulses. Besides, from the view-
point of control, authors presented some interesting
results with respect to the issue of stabilities of non-
linear systems via state-dependent delayed impulsive
control [14]. Although both issues of state-dependent
delayed impulsive perturbation and control of nonlin-
ear systems were investigated and some novel results
were obtained, there have been rare research concern-
ing those issues in the framework of FT'S so far.
Hinted by the above discussion, we shall address
the problem of FTS and FTCS for nonlinear systems
with the state-dependent delayed impulsive perturba-
tion. By employing theories and techniques stem from
the impulsive differential equation, we derive some suf-
ficient conditions to ensure the FTS and FTCS of non-
linear systems with state-dependent delayed impulses.
We drop the restriction of smoothness on the state-
dependent delay. Alternatively, we use a X function
to constrain the delay term. Furthermore, we estimate
the Lyapunov function which is subjected to the state-
dependent delayed impulsive perturbation via the com-
parison principle. The rest of this article is structured
as follows. Some notions and basic definitions which
will be used afterward are introduced in Sect. 2; in
Sect. 3, we analyze the issue of FTS and FTCS for
nonlinear systems with state-dependent delayed impul-
sive perturbation and obtain some sufficient criteria; we
offered three numerical examples in Sect. 4 to illustrate
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the validity of our results; conclusions are concluded
in Sect. 5 together with further work.

2 Preliminaries

Notations || - || is a notation of the Euclidean norm
of n-dimensional real spaces R"”. R denotes the set of
real numbers. R and Z_ are the sets of positive real
and integers, respectively. R”*" represents the n x m-
dimensional real spaces. Matrix I' > 0, means the
matrix ' is symmetric and positive definite. I'7 is the
transpose of the matrix I'. I ™! denotes the inverse of
I". For symmetric matrices .# and A", .# > .4 indi-
cates that .# — ./ is positive and definite. I stands
for the identity matrix with appropriate dimensions.
A = {1, 2,...,n}. x denotes the symmetric block in
a symmetric matrix. L = {f(-) € C| f(0) =0, Vx >
0, f(x) > Oand f is strictly increasing in x}. For any
set I € R containing the origin and the set D C R,
C(, D) = {f : I — D and f is continuous}.
C: = C([to — &, 1], R") equipped with the norm
1V lle = supyeiy—e, 111V )]l

Consider the nonlinear system subject to impulses
involving state-dependent delay, described by

x(t) = f@, x(0), t 210>0, 1 # 1,
-x(tk) = ‘Ik(tk_ - T, x(tk_ _T))s
T=1(t, x(t; ), k € Zy

xt() = w»

ey

where x € R" is the state vector, f € C(Ry xR", R"),
Jy € CRxR", R"), k € Zy, T € C(Ry x
R, [0, €D, xy = {x(t +5) © 5 € [10 — &, noll,
0 < 17 < +oo. ¥y € Cg is the initial condition.
To exclude the Zeno phenomenon, impulsive instants
frosatisfy 0 < tp < 4 < -+ < tf — 00, as
k — 00,k € Z. Withoutloss of generality, we assume
that each solution of (1) is right continuous, that is,
limt_>tk+ x(t) = x(tg).

Suppose that the function f satisfies conditions
(H1)—(H3) in Ref. [18], so that solutions of the system
(1) exist. Assume that x () = x(¢, o, V) is a solution
of (1) started from the point (79, ¥ ). Furthermore, for
any t > 1o, f(t, x) = 0and Jr(z, x) =0, iff x =0,
k € Z.In this case, the system (1) always has a trivial
solution (x = 0). Some basic definitions which will be
used in the next section are given in the following.

Definition 1 Function V: [fg — &, c0) x R" — R4,
is said to be included in the class V if

1. V is continuous on [t;_1, ;) x R" and

lim Vi, x) =V(m™, n);

(m, n)—(m—, n)

2. V(t, x) is locally Lipchitiz in x with V (¢, 0) = 0.

Definition 2 [4] Given three positive constants «, S,
T,witha < B.System (1)issaid tobe FTS withrespect
to (o, B, T), provided that for any trajectory x (), the
condition ||/ ||¢ < o indicates that |lx(¢)|| < B, for all
telty, to+T).

Remark 1 Ttshould be strongly stressed thato, 8, T are
all a prior in a relevant problem. What is worth noting
is that FTS differs from the concept of stability in the
sense of Lyapunov [23]. A system which is FTS can be
not Lyapunov stability, and vice versa. FTS requires a
solution to a given problem stay within the prescribed
bound over finite-time interval. Next, the finite-time
analog of asymptotical stability is introduced as FTCS.

Definition 3 [33] Given five positive constants «, §,
y,oand T,withy <o < fando € (0, T), system
(1)is FTCS withrespectto («, B, y, o, T),if [¥ |l <
o implies

M lx@®I < B, ¥Vt € lto, 10 +T1;
@) llx®l <y, Ytelto+o, to+TI.

Remark 2 FTS identifies a case that the state of a sys-
tem begins within a given initial bound and will operate
below an assigned bound over finite time, as is shown
in Fig. 1. Moreover, the concept of FTCS characterizes
the “contractive behavior” of the state based on Defini-
tion 3, that is, the state will additionally enter a smaller
prescribed bound compared with initial one before the
terminal time. Illustration of FTCS mentioned above is
given by Fig. 2 in trajectory behavior. Therefore, FTCS
requires stronger conditions in comparison with FTS.

3 Main results

In this section, we shall present some Lyapunov-based
conditions for both FTS and FTCS of nonlinear sys-
tem (1). For the investigating purpose, we claim that
o, B, v, o, T are all pre-given positive constants with
y <a < B,tg <o < T.Wealways assume the initial
condition satisfy 0 < ||¥] < «.
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[lle < e
lz(@®)Il < 8.t € [to, to + T

Fig. 1 Trajectory of the case of FTS

[¢lle <a
lz@)Il < B8,t € [to, to + T
@)l <.t € fto+o,to+T]

Fig. 2 Trajectory of the case of FTCS

Theorem 1 Suppose that there exist constants [y >
1, k € Zy, § € Ry, functions wy, wp, k €K,V €V,
LeCRy, Ry)and H € C(R, R.), such that

D oi(lxl) < Vi, x) < oa(llx]), Vi € [0 —

& 10+ Tl

(I) DTV, x(@t) < —H@L\V(, x@)), t €
(k-1 1);

D) Vg, x(@) = wV( — 1, x(t — 1)),
T =1(t, x(t;)), k € Z, furthermore x(t) =
x(t, ty, ) is the solution of the system (1)
through (to, V);

av) «(t, u) <k(jull), t e Ry, u e R";
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L(u)ds

179
V) I+ / sup  H(s)
k= /f/uE(O ()

<34 f inf H)E
tr—n u€(, wa(a))

( (wz(ot))) 77=infkez+{t — f—1}

)ds where X =

t
VD) (5 — 1) H(s)L(”) < m2®
10 2( )
[t0, 20+ T
Then, system (1) is FTS w.rt. (o, B, T).
Additionally, if
th+o
a —8>f H© s = 1o ‘“‘Ey;| @)

then, the system (1) is FTCS w.r.t. (o, B,y, 0,T)

Proof Let x(t) denote the solution of system (1)
through (#p, ). Define the Lyapunov function as
V() =V, x(@)).

To begin, we shall verify

V() >0, Vt > 19— &. 3)

Fort € [fo — &, ty], because of the assumption on the
initial condition that 0 < |[¥| < «, it is obvious that
V() > 0.

For t € [t, 11), ¥ (tp) # O implies V() > 0.
Suppose V(zfr) =0, that is,

x(t) = Jit; — 7, x(t] —11)) =0,

where 7y = t(#;, x(¢;)), which yields that x(tl_ —
71) = 0. It contradicts the above induction. so V(tl ) >
0, and

V() >0, VYt € [t1, 1).

Utilizing this method iteratively, we can show that the
inequality (3) holds for all t > 7y — &.
Next, we make the following claim. For ¢ > 1y,

vin < [ meivle)

o<ty <t

t
X exp (—/ H(s)L(VV(S))ds)

L(V(s))
X exp / (s) ds ).
(m;, = (1, Xt >> Vis) )

“

For simple representation, we define L(s,

L
H (s)ﬂ. The proof of (4) is formulated based on
u

u) =
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the mathematical induction. For ¢ € [#g, t1), it is clear
that

V(1) = V(o) < w2(ll¥lle),

and
t

V() < V(t) exp(—/ L(s, V)ds)
to

t
< ;o (Il llg) exp (—(1 —8)/ L, V)ds),
0]
(5)

which indicates that the inequality (4) holds for ¢ €

[70, 11).
By condition (I), we can arrive that, for all ¢+ €

[t0, 11),
V() <or(Vle),

and

el < @y (@2(1¥lle) < o7 (@2@)

which combining with condition (IV) derives that
=1, x@) <«k(lx@ ) < 2. (6)
Using (6) and condition (V), we have

n
L1 exp (/ L(s, V)ds)
n—r
n
< W1 exp (/ L(s, V)ds)
l1—t7f/
n
< exp <6/ L(s, V)ds>
n—n
n
< exp (8/ L(s, V)ds). @)
to

It then follows from condition (III) that

Vi) =V — )

-1
V(t) exp (—f L(s, V)ds) ,
fo

1 —1 =,
o (Ille), t — 11 < to,

1n—r
V(1) exp (—/ L(s, V)ds),
fo

=M1

< 1 —11 = 1o,
—_ n—r
or(I¥lle) exp (— / L(s, V)ds>,
fo
t—11 <1,

-1
< proa([[¥lg) exp (—f L, V)dS)
1

0

n
< wor (¥ lle) exp (— f L, V>ds>

fo

'
X exp (/ 1 L(s, V)ds) . ®)
-1

Fort € [t1, 1),

t
V() §V(t1)eXP(—/ L(s, V)ds),
1

t
<pr(¥lle) exp (—/ L(s, V)dS>
1

0

t
X exp (/ 1 L(s, V)ds) . ©)]
n—r

Thus, (4) holds for ¢ € [¢1, t2). By substituting (7) into
(9), we can get

t

V() < o2 (I lle) exp (—(1 - 8)/ L, V)dS) :
1o

As a consequence,

wi(lx]) = V(@) = w2(l¥lle), Vi € (11, 12),

and

Ix@)] < o (w2(ll¥ 1))

<o N (@), ¥ € n, n).

Suppose that (4) holds for ¢ € [#_1, #;),] > 2, which
implies

-1

v = [urevle exp (— [ o v>ds>
k=1 o

=1 g
% ex L(s, V)ds ),
P <Z./rkr(tk,X(lk_)) ) (10

k=1
t
V(1) Swz(lllﬁlls)exp(—(l—a)/ L(s, V>ds),
fo
Ix] < oy (2(I¥lle)) -
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The next thing to do is to verify that for 7 € [#, #;41),

the following inequalities hold,

1

t
vy <[ ]meivle) exp (— f L(s, V)ds)

k=1 fo

! %
X exp / L(s, V)ds |,
(Z =7 (1, x(1))
t

k=1

x| < oy (02(1¥ 1)) -

D

With the help of condition (IIT) and (10), we can get

Vi) =V —1)
-1

-1
[T rcenivlle) exp (— / L(s, V)ds)

k=1 0

=1 L
X exp Z/ L(s, V)ds |,
k=1 Y =T, x(17))

1
(ll—Tz >1-1),

11—
<m Husz(llwlls)exp< [ L(s, V>ds)
fo

k=1

=2 g
X exp Z/ L(s, V)ds ),
k=1 Y =Tk, x(17))

1
G2 =<ti—u<t-1),

(¥ lle), 1 — 1w < to,

n—1
< wiwp([|[¥lle) exp <—/ L(s, V)dS)

to

=1
X exp Z/ L(s, V)ds ),
=7 (tg, x(1;7))

k=1

1
=< woa (I lle) exp (—/ Ls, V)dS)

fo

i f
X exp Z/ L(s, V)ds | .
=t (t, x(1;))

k=1

As demonstrated before, for ¢ € [#, #;41), we have

t
V) < V(t ) exp (/ L(s, V)ds>

I

l '
< T meontivlle) exp (— | e V>ds)
k=1 0

1 t
X exp Zf L(s, V)ds|.
k=1 =T (t, x(1;))
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V(1) < wa(llle) exp (—(1 —5>/ L(s, v>ds),

According to the fact that

IxOHI < oy (02(1¥ 1))

one can get

=1, xt) < k(lx@D) < 2.

By employing condition (V) successively, the follow-

ing inequality can be derived
173
l_[uk exp Z/ L(s, V)ds
—1 k=T, x(1))

l
< 1_[ Lk €Xp (Z/ Ls, V)ds)

< exp (8/ %]L(s V)ds).
ty— A

Accordingly, for any t € [t;, #j4+1), witht <ty + T,

t
V(1) = ox([[¥lls) exp (—(1 - 5)/ L(s, V)dS> :
I
0 12)

Inserting the condition (VI) into (12), and using the
condition (I), we could arrive that, for ¢t € [ty, 1o+ T1,

o(lx@I) < V@)
t
< wy(a) exp <—(1 — 8)/ Ls, V)ds) ,
fo
< w1(B),

which implies that
Ix@l < B, vVt €1, 1o+ T].

Therefore, the system (1) is FTS w.rt. (o, B, T).

If the additional condition (2) holds. Another step is
to prove FTCS of system (1). Taking condition (I), (2)
and (12) into consideration, one can get, for fy + o <
t<th+T,

w1 (Ix®1) = V()
to+o
< o ([l¥lle) exp (—(1 - 5)/ L(s, V)dS)
to
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t
< o ([l¥lle) exp (—(1 - 8)/ L(s, V)ds)
fo

< w1(y),
which indicates
x| <y, YVt elto+o, to+T].

Then, the system (1) is FTCS with respect to (o, B,
y, o, T). The proof is completed. O

Remark 3 In fact, condition (V) can be relaxed as fol-
lows

174 L
Inpig +/ H(s) (u)ds
tk—e)g u

1)
<s [ HEitW

fr—n

ds,

forany u € (0, wy(@)) and k € Z.

Remark 4 The crucial point of Theorem 1 is to han-
dle the delay term in impulses. The delay is state-
dependent, in other words, it varies in accordance with
the past state of the system (1). Thereby, we established
a relation between the delay term (%) and the impul-
sive perturbation (the impulsive strength wk, and the
lower bound of impulsive interval n) by introducing a
parameter § and constructing the condition (V) in The-
orem 1. In addition, the choice of § is also dependent
on the prescribe bound, which could be reflected in
condition (VI) and the additional condition (2).

Remark 5 The parameter § corresponds the pre-given
information of bounds, the impulsive perturbation and
the state-dependent delay together and can be adjusted
according to specific situations. Specifically, consider-
ing condition (VI) for the case that w1 (8) < wa (@),
the range of § is restricted to (0, 1). While if w{(8) >
wy (o), the range of § is R..

Remark 6 Lots of publications have considered the
problem of the stability for different kinds of systems,
see [6,9,25,35]. Compared with results in [13], firstly,
we drop the restriction of smoothness on the delay func-
tion T = 7(x(t7), t). A K-class function « is used to
constrain the state-dependent delay 7. Secondly, we
develop the local uniformly asymptotically stability of
nonlinear systems with state-dependent delayed impul-
sive perturbation to the FTS and FTCS of which. It
should be noted that both FTS and FTCS could be

regarded as the local properties of solutions, since we
just consider the boundedness of solution over finite-
time interval.

Choose special forms of functions H(s) and L(u) in
Theorem 1, the following results could be obtained.

Corollary 1 Suppose the condition (IV) in Theorem 1
holds. The system (1) is FTS w.r.t. (o, B, T), if there
exist positive constants wi, wy, h, m, u > 1, § and
Sfunctions V € V,k € K, suchthatt(u) < k(|lull), u €
R”, and the following conditions hold,

(M) orlx]™ < V¢, x) < o2lx]|™ Vx € [tg —
E t0+TI;
(2) DTV (t, x(t) < —hV(t, x(1), 1 € [tx—1, &);
3) V(tg, x(tx)) <= nV(, — 1, x( — 1), T =
(1, X (1)), k € Tg;
w2

@) n < exp(hdn — hM), where M = k(" —a),
w]
n = infrez, {tk — ti—1};
w1 m
S) 6—1h(t —19) <In , Vi elty, to+ T
wro™

Then system (1) is FTS w.rt. (o, B, T).
Furthermore, if

wry™

(1 — 8)héa > |In 2!
wra™

Iy

system (1) is FTCS w.r.t. (o, B, y, o, T).

Corollary 2 Assume that conditions (1), (11l), (IV) and
(VI) in Theorem 1 are satisfied. Suppose 81 > ¢, and
there exists function L € C(Ry, Ry), satisfying

DYV(t) < L(V), t € [tiz1, 1)

If the following inequality holds,

sup In pg N
keZy ) L(u)
— < inf ,
8 —H T ue©, ;@) Uu

then the system (1) is FTS w.r.t. (o, B, T). In addition,
the system (1) is FTCS w.r.t. (o, B, v,o, T) with (2).

We now turn to the case of time-varying nonlinear
systems and investigate the corresponding issue of FT'S
and FTCS. A type of time-varying nonlinear system is
given as

x(1) = —A@)x(1) + B(t)g(x (1)),
1>10>0, 1 #1, (13)
x,o = lp
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The impulsive perturbation is given,

x(tx) = hx(t, — 1), T=71(x({)), (14)
where A1) = (a;;(1)), . B@) = (bij(1)),,, €
CR4, RM), and [y = (FP) ke A gkx) =
(g1(x1), 82(x2), - ., gn(xn)", satisfying

|8i (x) — (W) = lilx — yl,

where x, y € Rand [; > 0, i € A are Lipschitizian
constants. Furthermore, we assume that g; (0) =0, i €
A. Then system (13) can be rewritten as

Xi(t) = — '21 a;j(H)x; (1) + _Zl bij(1)gj(x(1)),
j= Jj=
t>1 >0, t;étk,
xit) = 3 %00 =), T = (1)),
iz

x,o = w

5)

Theorem 2 Suppose that a;;(t) > 0,i € A, and there
exist constants § > 0, ux > 1 and functions H(t) €
CRy, Ry), VeV, k € K, complying with T(u) <
k(||ull), u € R", and the following conditions,

@

H(t) < 2mina;; () — max Y _ |ai; (1))

i#j I=!1
n
—max > laij ()]
j#i =
n n
—ml,ale |bij (1)L — mjax; 1bij (1L
J= =

k
f,; N < g, k€ Zys
173

axn Z?:l Z;:l(
73
(D) In g —i—/ H(s)ds <6 ‘H(s)ds, where
t—M te—=n
M =k(), n=infrez {tx — ti—1};
to+T
av) (1-9) /

Then, system (15) is FTS w.r.t. («, B, T). If the addi-
tional condition holds, that is,

H(s)ds < 21n é
o

to+o y
6 — 1)/ H(s)ds > 2|1n =|. (16)
o (o4
Then, system (15) is FTCS w.r.t. («, B, y, o, T).

@ Springer

Proof Choose the Lyapunov function with the form of

sz(m

Then take the derivative along the solution x(¢) of sys-
tem (15). Combining the condition (I), it yields that for

t# Iy,

Vo) = x|

DYV (@)

=2) %0 )

i=1

= —ZZZaij(t)xi(Z)xj(t)

i=1 j=1

+ Zzzbij(t)xi(t)gj(x(t))

i=1 j=I

ZZau(r)x -2 Z Za,,mx,(r)x,(r)
i=17=!

i #J

+2) > b (0xi()g (x(1))

i=1 j=1

< -2 ai(n)x} ()

i=1

+maxZ|a,](t)|Zx (1)

l#/fl

+maxZ laij (D] Y 57 (0)
g i=1

J# =l
+max Y [bij (0l Y x7 (1)
"o i=1
n n
+maxz |bij (D)1l inz(t)
i i=1
< —HOV (). an

When ¢ = #, it follows from the impulsive perturbation
function (14) and the condition (II) that

Vit =Y xi()

i=1
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=YY -

i=1 j=1

<ux Y xi(t — 1)
j=1
VT — 7). (18)

Base on Theorem 1, we can arrive that the system (15)
is FTS w.rt. (o, B, T). Moreover, with the help of
formula (16), the system (15) could realize FTCS w.r.t.
(o, B, v, o, T). The proof is completed. O

Remark 7 For systems in practical implications, due
to complex mechanisms and unmeasured disturbance,
it is unavoidable to investigate dynamical behaviors of
systems with time-varying parameters. Theorem 2 pro-
vides a possible way to analyze the FTS and the FTCS
of time-varying system with state-dependent delayed
impulsive perturbation based on the Lyapunov stabil-
ity theory and the theories of the impulsive differential
equation. However, it should be mentioned that we do
not find a general way to construct the function H(z),
namely, up to now, the function H(¢) could only be
chosen by trial and error. Besides, the choice of Lya-
punov function as V() = ||x(¢)||*> in Theorem 2 is to
simplify the calculation process. The Lyapunov func-
tion could also be taken in a more general form as
V() = xT(t)Px(t), P > 0 € R"™ The detailed
corresponding results are omitted here.

In what follows, we are concentrated on analyzing
issues of FTS and FTCS of nonlinear systems with
fixed parameters under state-dependent delayed impul-
sive perturbation. The model is described by

x(1) = —Ax(t) + Bg(x(1)), t =10 =0, t # 1,
x(t) = kx(t, — 1), T=1(x(1)),
Xtg = v,

(19)

where A, B € R"*", The other illustrations of system
(19) is same as those of the system (15). Applying the
LMI technique, we can acquire the following corollary.

Corollary 3 Ifthere exists an x n positive and definite
matrix P, a diagonal matrix Q € R™", Q > 0, pos-
itive constants h, |, l;, 6, functions V € V, k € K,
such that t(u) < k(|jul]), u € R", and the following
conditions hold,

(D

T
[—MP I} P} < 0;
*x —P |~

2)

[—PA—ATP+LgQLg+hP PB1| -0
* -0 |7

where Ly = diag(ly, 1, ..., 1)

(3) u <exp(hdn—hM), where M=k ( /)IHL((;‘))a),

n = infrez, {tx — ti—1};

. 2
(4) 6—1Dhé(—1y) <In Amin(P)B

——, Vt € [1g, to+
)\max(P)Ol2
T1.

Then, the system (19) is FTS w.r.t. (o, B, T).
Furthermore, if

Ain (P 2
(1= 8)ho = |1 200DV
Amax (P)a

the system (19) is FTCS w.rt. (o, B, y, o, T).

Remark 8 Set the Lyapunov function V(1) = x7 (1)
Px(t). It is not complicated to obtain the above result,
so the detailed proof is omitted here. Corollary 3 is
derived in the framework of the LMI technique. The
superiority of this method lying that it could be numer-
ically solved by employing the LMI toolbox in the
MATLAB software. In addition, it has less conserva-
tive compared with other methods since only the neg-
ative definiteness of the linear matrix could obtain the
expected results instead of negativeness of every com-
ponent.

4 Examples

In this section, we will provide three examples to
demonstrate the validity and reliability of the above
results in Segment 3.

Example 1 A one-dimensional nonlinear system with

the effects of state-dependent delayed impulses is given
as

@ Springer
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x(t) = —x(t) t>0,t#1,

L+ x@)
x(ty) = (1.15+ m)x(z‘k_ —1), ke A,
xt() :w»

(20)

where T = 0.1 -sint - |x|.

In this case, we consider thatoe = 3.2, 8 =5, y =
2, 0 = 8.5, T = 10. Choose the Lyapunov function
V(t) = |x|, then the functions w;(-), wy(-) can be
chosen as wy(u) = wa(u) = u, u € R4. Apparently,
Ht)y=1,Lu)=u - ! , k() =01 ul, u e Ry

14+u
and J# = 0.33.

(D FTS.

For the FTS of system (20), we choose § = 0.6,
u = 1.25. According to Theorem 1, one may derive
that n = 1, in other words, the impulsive-time sequence
satisfies ty+1 —tx > 1,k € Z. For simulation, we take
impulsive instants #x = 1,2, ..., k, k € Z4. It can be
shown from Fig. 3a that the system (20) is FTS w.r.t.
3, 5, 10).

(II) FTCS.

If we choose § = 0.5, n = 1.2, which leads to
the satisfaction of (2) in Theorem 1. We can conclude
that the system (20) is FTCS w.r.t. (3, 5, 2, 8.5, 10),
which can be demonstrated by Fig. 3b with the impul-
sive instants are set as 4z = 1.1k, k € Z.,. How-
ever, if we change the impulsive interval slightly as
tr+1 — tr = 0.8, and keep the other parameters as the
same, it is easy to check this case does not satisfy The-
orem 1. It can be observed from Fig. 3c that the state
diverged from the bound g = 5 sharply. In a word, the
more frequently the impulsive perturbation occurs, the
system is more easy to be divergent.

Remark 9 Figure 3a shows that the system is finite-
time stability but not asymptotic stability, which can
illustrate the difference between FTS and AS in the
sense of Lyapunov.

It can be observed that the additional condition (2)
resulting in a lager lower bound of impulsive interval,
which means that impulsive perturbation should occur
infrequently compared with the case of FTS to realize
the FTCS.

Example 2 Consider the nonlinear systems (13) with
the parameters

440.5¢7! -1
A(t)=|: . 4+€—z],

@ Springer

x(t)

Fig. 3 State trajectories of the system (20). a The case of FTS
with n = 1; b the case of FTCS with n = 1.1; ¢ the case of
divergence with n = 0.8

B(t) = |:1 +sin(t)  —cos(t) i| ’

sin(t) 1 — cos(t)

with the impulsive perturbation (14)
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V2 sin(k) —cos(k)

I = 2 sin(—) cos( : )
3k 3k

|x1x2]

T(x) = , 81(s) = g2(s) = tanh(s), s € R.

For this case, let @« = 4.5, B =6, y =1, 0 =

6, T = 8. Note that i (1) = ”LGu eRN L =1 =1,

e = 1.42, M =2.25. Wechoose § = 5, H(t) = e ".
It follows from Theorem 2 that when n > 0.9, the
system (15) is FTCS w.r.t. (4.5, 6, 1, 6, 8). Here
we take n = 0.9, for numerical simulation; see Fig. 4.
While if we change the impulsive interval slightly as
ter1 — 1 = 0.7, and ux = 2, keep the other parameters
unchanged. It is easy to verify that it does not satisfy
Theorem 2, in other words under this circumstance,
system (15) cannot be FTCS w.r.t. (4.5, 6, 1, 6, 8),
which is shown in Fig. 5. Note that in the t — x; — x»
plane, the phase portrait, which is shown in Fig. 5b,
gives both the case of FTCS and not FTCS, where the
only difference is the impulsive interval.

Remark 10 1t should be noticed that Theorem 2 pro-
vides a feasible method to explore the finite-time sta-
bility for time-varying systems, but these conditions are
somehow conservative. In the future, we would like to
investigate this problem further to obtain some princi-
ples with less conservative and to get a general way to
construct the function H ().

Example 3 Next, we consider a 3-D nonlinear system

T
(19) withg = 0.5]lx+1]|—-0.5]x—1], 7 (x) = >
Parameter matrices A, B are given by
24 —-02 —0.87]
A=|—-048 23 -—15
| —05 —0.8 2.5 |
—0.15 02 —0.17]
B=| —-05 0.6 0.3
| —02 —-03 -0.8 ]
The impulsive matrix is
0.5 + sin(k) 0
I = 0 tanh (k)
0 0

5 I I I I I I I I I x1
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 4 a Trajectories of states x(z), x2(¢), and |x| of system
(15); b phase portrait for the case of FTCS of system (15) with
impulsive perturbation involving state-dependent delay

Obviously, I; = 1, k(u) = ”Z—” u € R". Choose

a=55 =8 y=1,0=6T=10,§ =
09, n=1.1, u =4, M =3.6,and h = 4, a feasible
solution solved by the MATLAB software is

[0.606 0.063 0.158]
P=|0063 0559 0204
| 0.158 0.204 0.686 |
[0.565 0 0 ]
0=| 0 0565 o0 |.
0 0 0565 ]

Then, it follows from Corollary 3 that system (19) with
the state-dependent delayed impulsive perturbation is
FTCS wurt. (5.5, 8, 1, 6, 10), see Fig. 6a. If we
slightly change the initial bound ¢ = 8.5 and keep other
parameters as the same, conditions in Corollary 3 do not
hold at all. Figure 6b reflects visually that in this case

@ Springer
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a L a g
4 x, ()]
) 5r O 4
3t M . X0
4| x3(t)|
Ix
<
i ;
AN |
L T=10 ]
i
i ‘ t
10 15 20

Fig. 5 a Trajectories of states of system (15) with n = 0.7,
= 2; b phase portraits for cases of system (15) with n = 1.3,
and n = 0.7

the system (19) is not FTCS w.r.t. (8.5, 9, 1, 6, 10).
Larger initial bounds may lead to invalidity of FTCS
because of the dependence of solution on initial value.

5 Conclusions

In this paper, we have studied the issue of FTS and
FTCS for nonlinear systems with impulses involving
state-dependent delay. Some sufficient conditions are
obtained by employing techniques based on the the-
ory of impulsive differential equation. The key point of
this paper lies in tackling the past information in delay
terms and adopting it into the construction of Lyapunov
function as a constraint. The reliability of obtained
results is demonstrated by three numerical examples.
As is known to all, time-varying systems are notice-
ably sophisticated to be investigated, due to their varied

@ Springer

Fig. 6 a State trajectories of x; (¢),i = 1, 2, 3, and |x| in Exam-
ple 3 with the initial bound @ = 5.5; b Trajectories of |x| of the
system (19) with different initial bounds @ = 5.5 and « = 8.5

structure. We present a viable way to analyze the FTS
and FTCS of the time-varying nonlinear systems with
state-dependent delayed impulses. It should be noted
that a more general model, which is consist of the state
of x(t, ) at impulsive instants, that is, the impulsive
jump function has the form x(¢) = L(t,, t, — 1),
needs to be further investigated. Since the method in
this paper is somehow conservative, more methods
and tools need to be developed for future research. It
would be an interesting work to consider how to derive
some less conservative conditions for FT'S and FTCS of
nonlinear systems with impulsive perturbation involv-
ing the state-dependent delay. Besides, our results are
focused on nonlinear systems without time-delay. Next,
delayed nonlinear systems could also be further taken
into consideration.
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