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Abstract In this present study, we systematically
explore the periodicity (almost periodic nature) of a
dynamical system in time-varying environment, which
portrays a special case of prey–predator model gov-
erned by non-autonomous differential equations. In
particular, we investigate the dynamical characteristics
of the underlying prey–predator model by consider-
ing modified Leslie–Gower-type model with Crowley–
Martin functional response with time-dependent peri-
odic variation of model parameters in a prey reserve
area. We show the existence of globally stable periodic
solutions. This perpetual prey oscillation results in per-
sistent interference among predator, causing reduced
feeding rate at high prey density. A comparative study
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between the two methods used to prove the existence
of periodic (almost periodic) solution of the consid-
ered non-autonomous system is also discussed. After
showing permanence, existence, uniqueness and global
attractivity of the periodic (almost periodic) solution
analytically,wedemonstrate the typical prey andpreda-
tor dynamics in time-varying environment using sev-
eral numerical examples. Partial rank correlation coef-
ficient technique is performed to address how themodel
output is affected by changes in a specific parameter
disregarding the uncertainty over the rest of the param-
eters.

Keywords Non-autonomous system · Temporal
refuge · Almost periodic solution · Crowley–Martin
functional response · Global attractivity · Continuation
theorem, Sensitivity analysis

Mathematics Subject Classification 37C60 · 34C27 ·
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1 Introduction

Process-based ecological models often include time-
dependent nonlinear processes [27,50], this suggests
that the contribution of each parameter to the variation
inmodel outputs may also changewith time. For exam-
ple, in forest growth models, the coupled nonlinear
reduction in stomatal conductance and hydraulic con-
ductivity as trees age will inevitably influence physio-
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logical processes such as photosynthesis, biomass allo-
cation, etc. [27,43]. Thereby, some parameters influ-
ential at young stand ages may decline in influence
in older stands and vice versa [47]. Time-dependent
variation analysis of system parameters is a significant
part of the successful development in process-based
ecological models [57] because these models are often
complex and can be richly parameterized [58]. One
significant example is the culture of Hilsa fish harvest-
ing at Ganges–Brahmaputa–Meghna (GBM) basin of
northern Bay of Bengal. Age or body size is consid-
ered to be one of the most significant traits of a species
because it correlates many aspects of its biology, from
life history to ecology [7,37,49]. Different case studies
onHilsa fish atGBMbasin reflect a real scenario of eco-
logical and economic status of India and Bangladesh.
De and Datta [12] carried out an experiment on Ten-
ualosa ilisha (Hamilton) commonly known as Hilsa,
of the freshwater zone of Hooghly estuary to estimate
the length-weight relationship of Hilsa fish. It is well
known that the rate of growth of fish population varies
due to the periodic changes of the ecosystem includ-
ing changes in food availability, salinity, tempera-
ture, density-dependent growth factors, etc. [25,38,40].
Fish population biology is impacted by several fac-
tors like physiological factors of birth, death etc., sea-
sonal effects of environment, climate change, physio-
chemical factors of ocean, fishing effort, harvesting,
etc. which are all time-dependent system parameters.
The literature shows that the temporal fluctuations in
the physical environment are major drivers of popula-
tion fluctuation yet there has been a little theoretical
attention to predict the characteristics of the resultant
populationfluctuation [1,8,10,16,29,51,56].When the
temporal inhomogeneity of the environment is incor-
porated, amodelmust be non-autonomous and the con-
cerned research includes the consideration of periodic
and almost periodic coefficients as the relevant envi-
ronmental factors fluctuate periodically (almost peri-
odically) in time [2,6,41,52].

Protected area iswhere the prey seeks refuge in order
to stay away from the predation risk and this surely has
an effect on the prey–predator coexistence [26]. Since
the predator cannot access the prey in the reserved area
and considering the predator to be a generalist here,
i.e., the predator has other food resources and it also
feeds on the available prey [11]. This situation leads to
intraspecific competition among predator population

[44,45,55]. Such a scenario is modeled and temporal
inhomogeneity is incorporated in this research.

Our objectives of this present study are to formu-
late model with periodic and almost periodic system
parameters and study the dynamical characteristics
of this non-autonomous prey–predator system which
describes a particular ecological scenario. This work
carries a complete dynamical analysis of the proposed
model and establishes the existence of a unique, glob-
ally attractive periodic (almost periodic) solution of the
model system using comparison lemma, coincidence
degree theorem and constructing a suitable Lyapunov
functional. The system describes the following ecolog-
ical scenario:

• According to the diet variation, here predator is
generalist type [4,23,24]. For so, we consider here
modified Leslie–Gower-type model [4,23,24,29].

• The interference among predator is regardless of
whether a particular individual is currently han-
dling prey or searching for prey [10,24,36]. Here
we consider Crowley and Martin [10]-type func-
tional response of predator which represents the
interference among themselves [24,53].

• Predator’s foraging efficiency is affected by the
prey refuge intensity [14,22,23,26,31,33,35,51,
54,56] and we incorporate degree or strength of
prey refuge [22,23,26] in the Crowley–Martin
functional response term [10,24]. This describes
the negative feedback on the predator feeding over
the range of prey density by decreasing encounter
of prey density.

So, the non-autonomous modified Leslie–Gower
prey–predator system with Crowley–Martin functional
response and prey reserve is given by:

dx(t)

dt
= x(t)

(
a(t) − b(t)x(t)

− c(t)(1 − m)y(t)

a1(t) + a2(t)(1 − m)x(t) + a3(t)y(t) + a4(t)(1 − m)x(t)y(t)

)
,

dy(t)

dt
= y(t)

(
d(t) − e(t)y(t)

k(t) + (1 − m)x(t)

)
. (1)

Here x(t) is the size of prey population and y(t) is the
size of predator population. It is also assumed that the
refuge protectingmx of prey, wherem ∈ [0, 1), is con-
stant and hence (1−m)x is only prey available to preda-
tor.All the coefficientsai (t), a(t), b(t), c(t), d(t), e(t), k(t)
(i = 1, 2, 3, 4) are continuous and bounded above and
below by positive constants with ecological meaning
as follows:
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a(t) Prey population growth rate in the absence of
predator,

b(t) Strength of competition among individual of
prey species,

c(t) Maximum value which per capita reduction rate
of prey can attain,

d(t) Growth rate of predator,
e(t) Maximum value which per capita reduction rate

of predator can attain,
a1(t) Measures the half saturation of prey species,
a2(t) Measures the handling time on the feeding rate,
a3(t) Coefficient of interference among predator,
a4(t) Coefficient of interference among predators at

high prey density.

The rest of the paper is structured as follows. Some
preliminary results used in this study are given in
Sect. 2. In Sect. 3, we establish boundedness, perma-
nence and global asymptotic stability of the model sys-
tem (1). We derive sufficient conditions for the exis-
tence and global asymptotic stability of a periodic solu-
tion in Sect. 4. In Sect. 5, we also discuss the exis-
tence of a unique almost periodic solution. In Sect. 6,
numerical examples are provided to validate analyti-
cal findings. Ecological interpretation of the obtained
analytical findings are given in the last section.

2 Lemmas and definitions

Herewe introduce some notations, definitions and lem-
mas in order to present sufficient conditions for the
existence of a positive periodic and almost periodic
solutions.

Definition 2.1 The solution set of the model system
(1) is ultimately bounded if ∃ S > 0 such that for
every solution (x(t), y(t)) of (1), ∃ T > 0 such that
‖(x(t), y(t))‖ < S, ∀ t ≥ t0 + T , where S is indepen-
dent of particular solution while T may depend on the
solution.

Definition 2.2 (Equicontinuous family of functions)
Let E be any compact metric space. Let C(E) denote
set of continuous functions defined on E and f ∈ A ⊆
C(E). A is said to be equicontinuous family of func-
tions if ∀ ε > 0 ∃ δ > 0 such that

d(x, y) < ε ⇐⇒ | f (x) − f (y)| < ε ∀ f ∈ A.

Definition 2.3 (Globally attractive solution)Abounded
positive solution X (t) = (x̂(t), ŷ(t)) of the model sys-
tem (1) with X (0) > 0 is said to be globally attractive
(globally asymptotically stable), if any other solution
Y (t) = (x(t), y(t)) of the system (1) with Y (0) > 0
satisfies lim

t→+∞ |X (t) − Y (t)| = 0.

Definition 2.4 The upper right Dini (upper right)
derivative for a function V : R → R is defined as

D+V (t) = lim sup
h→0+

V (t + h) − V (t)

h
.

Lemma 2.5 [5] Let ζ be a real number and h be a
nonnegative function defined on [ζ,+∞) such that h
is integrable on [ζ,+∞) and is uniformly continuous
on [ζ,+∞). Then lim

t→+∞h(t) = 0.

Lemma 2.6 (Brouwer fixed-point theorem) [3] Let Ῡ
be a closed bounded convex subset of R

n. Let ρ be a
continuous operator that maps Ῡ into itself. Then the
operator ρ has at least one fixed point in Ῡ , i.e., ∃ a
point x̂ ∈ Ῡ such that ρ(x̂) = x̂ .

Definition 2.7 (Almost periodic solution) [18] A func-
tion f (t, x), where f is an m-vector, t is a real scalar
and x is an n-vector, is said to be almost periodic in t
uniformly with respect to x ∈ X ⊂ R

n , if f (t, x) is
continuous in t ∈ R and x ∈ X , and if for any ε > 0,
it is possible to find a constant l(ε) > 0 such that in
any interval of length l(ε) there exists a τ such that the
inequality

|| f (t + τ, x) − f (t, x)||
=

∑m

i=1
| fi (t + τ, x) − fi (t, x)| < ε

is satisfied for all t ∈ R, x ∈ X . The number τ is called
an ε-translation number of f (t, x).

Definition 2.8 A function f : R → R is said to be
asymptotically almost periodic function if there exist
an almost-periodic functionq(t) and a continuous func-
tion r(t) such that

f (t) = q(t) + r(t), r ∈ R and r(t) → 0 as t → ∞.

Definition 2.9 [19,20] Let Y and Z be two Banach
spaces. Let L : Dom L ⊂ Y → Z be a linear map, and
N : Y → Z be a continuous mapping. The operator
L is called Fredholm operator of index 0 if dim Ker
L = codim Im L < +∞ and Im L is closed in Z . If
L is a Fredholm mapping of index zero and there exist
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continuous projections P : Y → Y and Q : Z → Z
such that Im P =Ker L , Ker Q = Im L = Im (I −Q),
it follows that L| Dom L ∪ KerP : (I − P)X → Im
L is invertible. We denote the inverse of the map by
KP . If Υ is an open-bounded subset, the mapping L
is called L-compact on Ῡ if QN (Ῡ ) is bounded and
Kp(I − Q)N : Ῡ → Y is compact. Since Im Q is
isomorphic to Ker L, then there exists an isomorphism
J : Im Q → Ker L .

Definition 2.10 [13,19] Let Υ ⊂ R
n be an open

and bounded, f ∈ C1(Υ, R
n) ∩ C(Υ , R

n) and y ∈
R
n/ f (∂Υ ∪ N f ), i.e., y is a regular value of f . Here,

N f = {x ∈ Υ : J f (x) = 0}, the critical set of f
and J f is the Jacobian of f at x . Then the degree deg
{ f, Υ, y} is defined by

deg{ f, Υ, y} =
∑

x∈ f −1y

sgn J f (x). (2)

For more details about Degree Theory, one can refer
Deimling [13].

Definition 2.11 (Homotopy invariance) Let Ω ⊂
R
n be an open and bounded set and V (Ω) =

{ f ∈ C(Ω̄, R
n) : 0 ∈ f (∂Ω)}. Then the mapping

deg(.,Ω) : V (Ω) → Z is well defined. Moreover,
if h : [0, 1] × Ω̄ → R

n is continuous and such that
0 /∈ h(t, ∂Ω) for all t ∈ [0, 1] then deg(h(t, .),Ω)

does not depend on t . If we “deform with continuity,” a
function f ∈ V (Ω) into another function g ∈ Ω then
deg( f,Ω) = deg(g,Ω), with the essential assumption
that no zeros appear in ∂Ω throughout the homotopy.

Lemma 2.12 (Continuation theorem) [19] Let L be a
Fredholmmapping of index zero and N be a L-compact
on Ῡ . Furthermore, assume

(i) for each λ ∈ (0, 1), x ∈ ∂Υ ∪ DomL , Lx �= λNx,
(ii) for each x ∈ ∂Υ ∪ Ker L , QNx �= 0 and

deg{J QN , Υ ∪ Ker L , 0} �= 0.

Then the operator equation Lx = Nx has at least one
solution in Ῡ ∪ DomL.

Nowwe introduce the following function spacewith
its norm, which will be valid throughout the paper.
Denote

X = Z

=
{
w(t) = (u, v)T ∈ C(R, R

2) |w(t + ω) = w(t)
}
,

equipped with norm

‖w‖ = max
t∈[0,ω] ‖w(t)‖ = max

t∈[0,ω] ‖u(t)‖ + max
t∈[0,ω] ‖v(t)‖,

for (u, v) ∈ X . Obviously, X and Z both are
Banach spaces when they are endowed with the above
norm ‖.‖.

3 General non-autonomous case: positivity,
permanence and global attractivity

Assume that a(t), b(t), c(t), d(t), e(t), k(t), ai (t) are
continuous and bounded for i = 1, 2, 3, 4. Let R

2+ =
{(x, y) ∈ R

2|x ≥ 0, y ≥ 0}. Let g(t) be a continuous
and bounded function defined on R. Let gL and gM
denote inf

t∈Rg(t) and sup
t∈R

g(t), respectively. It is obvious

that the coefficients of themodel system (1)must satisfy

min
i=1,2,3,4

{aL , bL , cL , dL , eL , kL , aiL } > 0,

max
i=1,2,3,4

{aM , bM , cM , dM , eM , kM , aiM } < ∞.

Lemma 3.1 The positive cone is positively invariant
with respect to the model system (1).

Proof The proof is similar to the proof given in [14]. ��
Now we state a theorem that will help us to show

the boundedness and permanence of the model system
(1).

Theorem 3.2 If

aLa1L > (1 − m)cMMε
2 , (3)

then the set defined by

κε := {
(x, y) ∈ R

2|mε
1 ≤ x ≤ Mε

1 ,m
ε
2 ≤ y ≤ Mε

2

}
,

(4)

is positively invariant with respect to the system (1),
where

Mε
1 := aM

bL
+ ε,

mε
1 := aLa1L − cM (1 − m)Mε

2

a1L bM
− ε,

Mε
2 := dM (Mε

1 + kM )

eL
+ ε,

mε
2 := dL(mε

1 + kL)

eM
− ε,

and ε ≥ 0 is sufficiently small so that mε
1 > 0.

Proof For the proof of this theorem, one can refer [1].
��

The following theorem follows immediately from
Theorem 3.2.
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Theorem 3.3 Suppose that the time-dependent coeffi-
cients satisfy

m > 1 − aLa1L
cMM2

, (5)

Then the model system (1) is permanent.

Remark 3.4 Here aLa1L > (1 − m)cM implies that
aMa1M > (1 − m)cL as aM > aL , a1M > a1L and
cM > cL . In addition,wewould like to remark here that
all the solutions of the model system (1) are ultimately
bounded above under the restriction (5). One can also
prove that the set κε �= φ, i.e., the model system (1) has
at least one bounded positive solution (Definition 2.1).

Remark 3.5 For the same value of coefficient functions
as in the Example 6.1 (Sect. 6) and sufficiently small
value of ε, one can show that the sufficient conditions of
Theorem 3.2 are well satisfied. Moreover, one can also
compute the set κε . Here for ε = 0, (3) is same as (5).
Hence if κε is positively invariant in model system (1),
then the system (1) is permanent. Here it is important
to mention that permanence ensures the existence of
a positively invariant region, while it does not provide
any information about ω and Ω and which is ensured
by Theorem 3.2.

Theorem 3.6 Let (
∑

) denote the set of solutions
χ(t) = (x(t), y(t))T of system (1) on R satisfying
m1 ≤ x(t) ≤ M1 and m2 ≤ y(t) ≤ M2 for t ∈ R.
Then (

∑
) �= φ.

Proof For the proof of Theorem 3.6, one can refer [30].
The proof follows similarly. ��
Theorem 3.7 Let Y (t) = (x1(t), y1(t)) be a bounded
positive solution of the model system (1). If the condi-
tion of Theorem 3.3 along with

inf
t∈R

{
b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

− e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

}
> 0,

inf
t∈R

{
− c(t)(1 − m)

[
a1(t) + a2(t)(1 − m)Mε

1

]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

+
e(t)

[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )2

}
> 0 (6)

hold, thenany twopositive solutions X (t) = (x(t), y(t))
and Y (t) = (x1(t), y1(t)) of the model system (1) sat-
isfy lim

t→∞ |X (t) − Y (t)| = 0, i.e., (x1(t), y1(t)) is glob-

ally attractive.

Proof Let X (t) = (x(t), y(t)) be any bounded positive
solution ofmodel system (1).Hence, there exists T > 0
such that (x(t), y(t)) ∈ κε and (x1(t), y1(t)) ∈ κε for
all t ≥ t0 + T ,

i.e., Theorem 3.2 gives that for an enough small ε >

0, ∃ a T > 0 such that

mε
1 < x(t) < Mε

1 , mε
2 < y(t) < Mε

2 ,

mε
1 < x1(t) < Mε

1 , mε
2 < y1(t) < Mε

2 , (7)

for all t ≥ T . Define ζ(t, x(t), y(t)) = a1(t) + (1 −
m)a2(t)x(t) + a3(t)y(t) + (1 − m)a4(t)x(t)y(t).
Let G1(t) = | ln x(t) − ln x1(t)|.
The Dini derivative of G1(t) along the solution of (3)
gives

D+G1(t)

= sgn(x(t) − x1(t))
( ẋ(t)
x(t)

− ẋ1(t)

x1(t)

)

= sgn(x(t) − x1(t))[
− b(t)(x(t) − x1(t)) − c(t)(1 − m)

( y(t)

ζ(t, x(t), y(t))

− y1(t)

ζ(t, x1(t), y1(t))

)]

= −b(t)|x(t) − x1(t)|
−sgn(x(t) − x1(t))c(t)(1 − m)
( y(t)ζ(t, x1(t), y1(t)) − y1(t)ζ(t, x(t), y(t))

(ζ(t, x(t), y(t)))(ζ(t, x1(t), y1(t)))

)

≤ −b(t)|x(t) − x1(t)|
+c(t)(1 − m)( (1 − m)y1(t)(a2(t) + a4(t)y(t))

ζ(t, x1(t), y1(t)).ζ(t, x(t), y(t))
|x(t) − x1(t)|

+ (a1(t) + (1 − m)a2(t)x1(t))

ζ(t, x1(t), y1(t)).ζ(t, x(t), y(t))
|y(t) − y1(t)|

)
.

Furthermore, consider S2(t) = | ln y(t) − ln y1(t)|.
The upper right derivative of S2(t) is given by

D+G2(t) = sgn(y(t) − y1(t))
( ẏ(t)

y(t)
− ẏ1(t)

y1(t)

)

= sgn(y(t) − y1(t))e(t)( y1(t)

(1 − m)x1(t) + k(t)
− y(t)

(1 − m)x(t) + k(t)

)

= sgn(y(t) − y1(t))e(t)( (1 − m)y1(t)(x(t) − x1(t))

((1 − m)x1(t) + k(t))((1 − m)x(t) + k(t))

+ (k(t) + (1 − m)x1(t))(y1(t) − y(t))

((1 − m)x1(t) + k(t))((1 − m)x(t) + k(t))

)

≤ e(t)(1 − m)y1(t)

((1 − m)x1(t) + k(t))((1 − m)x(t) + k(t))
|x(t) − x1(t)|
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− e(t)(k(t) + (1 − m)x1(t))

((1 − m)x1(t) + k(t))((1 − m)x(t) + k(t))
|y(t) − y1(t)|.

Combining the two functions Gi (t), i = 1, 2, we
obtain G(t) = G1(t) + G2(t). For t ≥ t0 + T , we
have

D+G(t) ≤ −
⎡
⎣b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2 − e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

⎤
⎦

|x(t) − x1(t)|

−
⎡
⎣− c(t)(1 − m)

[
a1(t) + a2(t)(1 − m)Mε

1

]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2 +
e(t)

[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )

2

⎤
⎦

|y(t) − y1(t)|.

The above inequality takes the following form:

D+G(t) ≤ −ρ
[|x(t) − x1(t)| + |y(t) − y1(t)|

]
,

t ≥ t0 + T, (8)

where

ρ = min

⎧⎨
⎩inf

t∈R

⎧⎨
⎩b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2 − e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

⎫⎬
⎭

and

inf
t∈R

⎧⎨
⎩− c(t)(1 − m)

[
a1(t) + a2(t)(1 − m)Mε

1

]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2 +
e(t)

[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )

2

}
⎫⎬
⎭ > 0.

Integrating the above relation (8) from t0 + T to t , we
obtain

G(t) + ρ

∫ t

t0+T

[
|x(s) − x1(s)| + |y(s) − y1(s)|

]
ds

< G(t0 + T ) < +∞ t ≥ t0 + T,

which gives

lim sup
t→∞

∫ t

T

[
|x(s) − x1(s)| + |y(s) − y1(s)|

]
ds

<
G(t0 + T )

ρ
< +∞.

One can easily observe that |x(t) − x1(t)| and |y(t) −
y1(t)| are uniformly continuous on [t0+T,+∞). Thus,
we have

lim
t→∞|x(t) − x1(t)| = 0, lim

t→∞|y(t) − y1(t)| = 0,

which completes the proof. ��

Remark 3.8 One can also show that above property
also holds for any two positive solutions with positive
initial values, i.e., we can establish the global asymp-
totic stability of the model system (1). For a4(t) = 0,
the model system (1) reduces to non-autonomous mod-

ified Leslie–Gower-type predator-prey system with
Beddington–DeAngelis functional response while for
a4(t) = 0 and a3(t) = 0, the system (1) reduces to non-
autonomous modified Leslie–Gower-type predator-
prey system with Holling type II functional response.
The above analysis remains valid.

4 Periodicity

Apart from general non-autonomous models, in this
section, the parameters involved with the concerned
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model system (1) are considered to be periodic as rel-
evant environmental factors fluctuate periodically in
time [41]. We derive some sufficient conditions for
existence of a positive periodic solution of the result-
ing periodic non-autonomous system followed by the
global attractivity of a boundary positive solution using
Lemmas 2.6 and 2.12.

Here, we assume that a(t + ω) = a(t), b(t + ω) =
b(t), c(t + ω) = c(t), d(t + ω) = d(t), e(t + ω) =
e(t), k(t + ω) = k(t), a1(t + ω) = a1(t), a2(t + ω) =
a2(t), a3(t + ω) = a3(t), a4(t + ω) = a4(t) i.e., all
the parameters in the system (1) are ω-periodic in t .
Denote the mean value of a continuous and periodic
function ψ(t) with period ω by ψ̂ = 1

ω

∫ ω

0 ψ(t)dt .
Let (x(t, t0, (x0, y0)), y(t, t0, (x0, y0))) denote the

solution of the model system (1) through the point
(t0, (x0, y0)). Define a map ϕ : R

2 → R
2 by

ϕ(x0, y0)

= (x(t0 + ω, t0, (x0, y0)), y(t0 + ω, t0, (x0, y0))),

(x0, y0) ∈ R
2.

Hence, Theorem 3.2 assures the invariance of the set κε

under the operator ϕ defined above, i.e., ϕ(κε) ⊂ κε .
The shift operator ϕ is continuous as the solution of
the system (1) is continuous with respect to initial
value. It is not difficult to observe that the set κε is a
bounded, closed and convex set inR

2. Thus byBrouwer

fixed point theorem (one can refer Lemma 2.6), ϕ has
at least one fixed point in κε , i.e., ∃ (x1, y1) ∈ κε

such that (x1, y1) = (x(t0 + ω, t0, (x1, y1)), y(t0 +
ω, t0, (x1, y1))) = ϕ(x1, y1). Hence, the model sys-
tem (1) posses at least one positive periodic solution
say (x1, y1) and (x1, y1) ∈ κε is assured by the invari-
ance of κε . This can be summarized in the following
theorem:

Theorem 4.1 If the condition (4)of Theorem3.3holds,
then the model system (1) has at least one positive peri-
odic solution of period ω, say (x1, y1), which lies in κε .

In Theorem 4.1, the existence of a positive periodic
solution is proved using the supremum and infimum
(bounds) of the parameters. Now in the next theorem,
we use an alternative approach, i.e., the continuation
theorem is in coincidence degree theory for the exis-
tence of a positive periodic solution.

Theorem 4.2 Assume that the following conditions
hold:

â >
(̂ c

a3

)
, (9)

Then the model system (1) has at least one positive ω

periodic solution.

Proof Making the changeof variables x(t) = exp{u(t)},
y(t) = exp{v(t)}, the system (1) can be rewritten as
follows:

du(t)

dt
= a(t) − b(t) exp{u(t)}

− c(t)(1 − m) exp{v(t)}
a1(t) + a2(t)(1 − m) exp{u(t)} + a3(t) exp{v(t)} + a4(t)(1 − m) exp{u(t)} exp{v(t)} ,

dv(t)

dt
= d(t) − e(t) exp{v(t)}

k(t) + (1 − m) exp{u(t)} . (10)

Nowwe define the operators L , N and projectors P, Q
as follows:

L : DomL⊂ X → X, Lw=L

[
u
v

]
=

[ du
dt
dv
dt

]
, P, Q : X → X, Pw=Qw=

[
û
v̂

]
=

[ 1
ω

∫ ω

0 u(t)dt
1
ω

∫ ω

0 v(t)dt

]
, N : X → X,

Nw =
[
N1(t)
N2(t)

]
=

⎡
⎣a(t) − b(t) exp{u(t)} − c(t)(1−m) exp{v(t)}

a1(t)+a2(t)(1−m) exp{u(t)}+a3(t) exp{v(t)}+a4(t)(1−m) exp{u(t)} exp{v(t)}
d(t) − e(t) exp{v(t)}

k(t)+(1−m) exp{u(t)}

⎤
⎦ .
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Thus, it is not difficult to observe that the domain of L
in X is the whole space and

KerL = {(u, v) ∈ X |(u(t), v(t) = (p1, p2) ∈ R
2) = R

2},
ImL =

{
(u, v) ∈ X |

∫ ω

0
u(t)dt = 0,

∫ ω

0
v(t)dt = 0

}
,

and dim Ker L = codim Im L = 2. Since ImL is closed
in X , L is a Fredholm mapping of index zero. One
can easily observe that P is continuous projection such
that Im P = Ker L , Ker P = Im L = Im (I − Q).
Furthermore, the generalized inverse (to L) KP : Im
L → Dom L∩ Ker P exists and is given by

KP (w) =
∫ t

0
w(s)ds − 1

ω

∫ ω

0

∫ t

0
w(s)dsdt = KP

[
u
v

]

=
[ ∫ t

0 u(s)ds − 1
ω

∫ ω
0

∫ t
0 u(s)dsdt∫ t

0 v(s)ds − 1
ω

∫ ω
0

∫ t
0 v(s)dsdt

]
.

��
Clearly, QN and KP (I − P)N are continuous. By

the Arzela-Ascoli theorem, it is not difficult to prove
that (KP (I − P)N (Ω̄) for any bounded open set Ω ∈
X . Moreover, PN (Ω̄) is bounded. So N is L-compact
on Ω̄ .

Corresponding to the operator equation Lx = λNx
for each λ ∈ (0, 1), we have

du(t)

dt
= λ

(
a(t) − b(t) exp{u(t)}

− c(t)(1 − m) exp{v(t)}
a1(t) + a2(t)(1 − m) exp{u(t)} + a3(t) exp{v(t)} + a4(t)(1 − m) exp{u(t)} exp{v(t)}

)
,

dv(t)

dt
= λ

(
d(t) − e(t) exp{v(t)}

k(t) + (1 − m) exp{u(t)}
)

. (11)

If (u(t), v(t)) ∈ X is an arbitrary solution of the
system (11) for certain λ ∈ (0, 1), we obtain

âω =
∫ ω

0

(
b(t) exp{u(t)}

+ (1 − m)c(t) exp{v(t)}
a1(t) + a2(t)(1 − m) exp{u(t)} + a3(t) exp{v(t)} + a4(t)(1 − m) exp{u(t)} exp{v(t)}

)
dt,

d̂ω =
∫ ω

0

e(t) exp{v(t)}
k(t) + (1 − m) exp{u(t)}dt. (12)

From (11) and (12), we have

∫ ω

0

∣∣∣du
dt

∣∣∣dt ≤ λ

∫ ω

0
a(t)dt + λ

∫ ω

0

(
b(t) exp{u(t)}

+ (1 − m)c(t) exp{v(t)}
a1(t) + a2(t)(1 − m) exp{u(t)} + a3(t) exp{v(t)} + a4(t)(1 − m) exp{u(t)} exp{v(t)}

)
dt < 2âω,

∫ ω

0

∣∣∣dv
dt

∣∣∣dt ≤ λ

∫ ω

0
d(t)dt + λ

∫ ω

0

e(t) exp{v(t)}
k(t) + (1 − m) exp{u(t)}dt < 2d̂ω. (13)
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As (u(t), v(t)) ∈ X , ∃ μi , νi ∈ [0, ω], i = 1, 2,
such that

u(μ1) = min
t∈[0,ω] u(t), u(ν1) = max

t∈[0,ω] u(t), v(μ2)

= min
t∈[0,ω] v(t), v(ν2) = max

t∈[0,ω] v(t). (14)

It follows from (12) and (14) that

âω ≥
∫ ω

0
b(t) exp{u(μ1)}dt = b̂ω exp{u(μ1)}

which in turn gives u(μ1) ≤ ln( â
b̂
), and hence we

obtain

u(t) ≤ u(μ1) +
∫ ω

0

∣∣∣du
dt

∣∣∣dt ≤ ln(
â

b̂
) + 2âω := Θ1.

(15)

Moreover, from the first equation of (12) and equation
(14), one can easily obtain that

âω ≤
∫ ω

0

(
b(t) exp{u(ν1)} c(t)

a3(t)

)
dt

=
(̂ c

a3

)
ω + b̂ω exp{u(ν1)}.

Thus we find u(ν1) ≥ ln

((
â − ĉ

a3

))/
b̂, and hence

u(t) ≥ u(ν1) −
∫ ω

0

∣∣∣du
dt

∣∣∣dt

≥ ln

{
ln

(
â −

(̂ c

a3

))/
b̂

}
− 2âω := Θ2.

(16)

Thus (16) togetherwith (15) implies that max
t∈[0,ω]|u(t)| ≤

max{|Θ1|, |Θ2|} := D1. Furthermore, from (14), we
have
dv

dt

∣∣∣
t=μ2

= dv

dt

∣∣∣
t=ν2

= 0.

Hence second equation of (11) implies that

dv

dt

∣∣∣
t=μ2

= 0 = λ

(
d(μ2) − e(μ2) exp{v(μ2)}

k(μ2) + (1 − m) exp{u(μ2)}
)

,

�⇒ d(μ2) = e(μ2) exp{v(μ2)}
k(μ2) + (1 − m) exp{u(μ2)} .

Hence, we obtain

exp v(μ2) ≤
(
kM + (1 − m) exp{θ1}

)[d
e

]
M

�⇒ v(μ2) ≤ ln

{(
kM + (1 − m) exp{θ1}

)[d
e

]
M

}
:= Θ3.

(17)

On the other hand, it follows from second equation of
(11) that

dv

dt

∣∣∣
t=ν2

= 0 = λ

(
d(ν2) − e(ν2) exp{v(μ2)}

k(ν2) + (1 − m) exp{u(ν2)}
)

�⇒ exp{v(ν2)} = d(ν2)[(1 − m) exp{u(ν2)} + k(ν2)

e(ν2)

�⇒ v(ν2) ≥ ln

{(
kL + (1 − m) exp{θ3}

)[d
e

]
L

}
:= Θ4.

(18)

Here, Eqs. (15), (16), (17) and (18) imply that
Θ2 ≤ u(t) ≤ Θ1 and Θ4 ≤ Θ3 for t ∈ [0, ω]. Equa-
tions (17) and (18) together give that maxt∈[0,ω] v(t) ≤
max{|Θ3,Θ4|} := D2. Obviously, D1 and D2 are inde-
pendent of λ. Define D = D1 + D2 + D3, where
D3 > 0 is taken sufficiently large such that D3 >

|l1| + |L1| + |l2| + |L2|.
Forμ ∈ [0, 1] and (u, v) ∈ R

2, consider the follow-
ing algebraic equations

â − b̂ exp{u} − 1

ω

∫ ω

0

μc(t) exp{v}
a1(t) + a2(t) exp{u} + a3(t) exp{v} + a4(t) exp{u} exp{v} dt = 0,

d̂ − 1

ω

∫ ω

0

e(t) exp{v}
k(t) + (1 − m) exp{u} dt = 0. (19)

One can easily show that any solution (u1, v1) of the
above equations satisfies

l1 ≤ u1 ≤ L1, l2 ≤ v1 ≤ L2. (20)

Particularly, we take Ω = {(u, v)T ∈ X : ‖z‖ <

D}. Thus we conclude that for each λ ∈ (0, 1), every
solution x of Lx = λNx is such that x /∈ ∂Ω , i.e., Ω
satisfies the condition (i) of Lemma 2.12. Furthermore,
when (u, v) ∈ ∂Ω ∪ Ker L = ∂Ω ∪ R

2, (u, v) is
a constant vector in R

2 with norm ‖(u, v)‖ = |u| +
|v| = D. Then from the definition of D and (20), we
have PNw = PN (u, v)T �= 0, because if PNw =
PN (u, v)T = 0, then (u, v)T is a constant solution of
(19) with μ = 1. Hence, we have ‖(u, v)‖ ≤ D1 + D2

which is contradictory to ‖(u, v)T ‖ = D. Thus, we
have
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PNw = PN

[
u
v

]
=

[
â − b̂ exp{u} − 1

ω

∫ ω

0
μc(t) exp{v}

a1(t)+a2(t) exp{u}+a3(t) exp{v}+a4(t) exp{u} exp{v}dt
d̂ − 1

ω

∫ ω

0
e(t) exp{v}

k(t)+(1−m) exp{u}dt

]
�=

[
0
0

]
.

Thus, it is clear that the requirement of the condition
(ii) of Lemma 2.12 is accomplished.

Now we need to compute the Brouwer degree of the
map PN . For this, we define a homotopy and use its
invariance property. Consider the homotopy

Hμw = Hμ

[
u
v

]
= μQN

[
u
v

]
+ (1 − μ)G

[
u
v

]
,

where μ ∈ [0, 1] and

G

[
u
v

]
=

[
â − b̂ exp{u}

d̂ − 1
ω

∫ ω

0
e(t) exp{v}

k(t)+(1−m) exp{u}dt

]
. (21)

From (20), we know that Hμw =
(
u, v

)T �= (0, 0)T

on ∂Ω∩Ker L . Define J (= I ) : Im P →Ker L , as Im
P =Ker L . Hence, due to invariance property of homo-
topy of topological degree (refer the Definition 2.11),
we obtain

deg
(
J PN (u, v)T ,Ω ∩ KerL , (0, 0)T

)

= deg
(
PN ,Ω ∩ KerL , (0, 0)T

)

= deg
(
G,Ω ∩ KerL , (0, 0)T

)
.

It can be easily observed that the algebraic equations
G

(
(u, v)T

) = 0, i.e.,

â − b̂ exp{u} = 0,

d̂ − 1

ω

∫ ω

0

e(t) exp{v}
k(t) + (1 − m) exp{u}dt = 0

have unique solution w̃ = (ũ, ṽ)T ∈ Ω∩ Ker L . Let
det M stand for determinant of matrix M while J f (w)

denote the Jacobianmatrix of the function f at the point
w. Then one can obtain that

deg
(
J PN (u, v)T ,Ω ∩ KerL , (0, 0)T

)

= sgn
(
detJG(w̃)

)
�= 0.

Thus, we have verified all the requirements of
Lemma 2.12 and hence the equation Lx = Nx , i.e.,
Eq. (10) has at least one ω-periodic solution in Dom
L ∩ Ω say (u1(t), v1(t)). As x1(t) = exp{u1(t)},
y1(t) = exp{v1(t)}, hence

(
x1(t), y1(t)

)
is an ω-

periodic solution of system (1). This completes the
proof.

Remark 4.3 One can observe that Theorem 4.2 ensures
the existence of a periodic solution under certain
restriction on the prey reservem. It determines a thresh-
old value of prey reserve m while this is not the case
in Theorem 4.1. Numerical simulation also shows that
the prey reserve m, where m ∈ (0, 1], does not affect
the existence of a periodic solution. This ensures the
betterment of Theorems 4.2 over 4.1. As far as the suffi-
cient condition for the existence of at least one periodic
solution is concerned, both Theorems 4.1 and 4.2 give
only one sufficient condition. Theorem 4.2 gives only
one sufficient condition for the existence of a periodic
solution because of kM + exp(Θ1) > 0. We should
notice that in case of density-dependent predator death
rate wemust have addition parametric restriction along
with (9).

Remark 4.4 One can observe that the prey co-ordinate,
x1(t) of the ω-periodic solution (x1(t), 0) of the sys-
tem (1) is theω-periodic solution of the time-dependent
periodicLogistic equation discussed in [17]. The global
attractivity of the positive ω-periodic solution of the
model system (1) can be discussed in the similar fash-
ion as we have done for the general non-autonomous
model system in Sect. 3 while the global attractivity
of the boundary ω-periodic solution can be discussed
as in [17]. The ω-periodic solution (x1(t), 0) of the
non-autonomousmodel system (1) reduces to boundary
equilibrium ( ab , 0) of the corresponding autonomous
model system.

5 Almost periodicity

Almost periodic solutions of ecological models have
received significant attention from researchers during
last few decades [8]. The concept was introduced by
H. Bohr in his magnificent papers published in Acta
Mathematica [6]. A function g : R → R is called
almost periodic if g(x + τ) = g(x) is satisfied with an
arbitrary degree of accuracy by infinitely many values
of τ , those values being spread over the whole range
from −∞ to +∞ in such a way as not to leave empty
intervals of arbitrary great length. For detailed study of
almost periodic functions and its properties, we refer
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to [59]. The coefficients of a model system are taken
to be almost periodic when the various components
of environment are periodic with not necessarily com-
mensurate periods (e.g., seasonal effects of weather,
food supplies, mating habits and harvesting) [30], i.e.,
when the periods of the components of environment
are rationally independent. Thus, assumption that the
parameters in model system are almost periodic makes
the model more realistic.

In this section, we ensure the existence of almost
periodic solution of the model system (1), which
is more general concept than periodicity, under the
assumption thata(t), b(t), c(t), d(t), e(t), a1(t),a2(t),
a3(t) and a4(t) are almost periodic in t .

Let

x(t) = exp(x̄(t)), y(t) = exp(ȳ(t)).

Then the model system (1) becomes in the following
form

dx̄(t)

dt
= a(t) − b(t) exp(x̄(t))

− c(t)(1 − m) exp(ȳ(t))

a1(t) + a2(t)(1 − m) exp(x̄(t)) + a3(t) exp(ȳ(t)) + a4(t)(1 − m) exp(x̄(t)) exp(ȳ(t))
,

d ȳ(t)

dt
= d(t) − e(t) exp(ȳ(t))

k(t) + (1 − m) exp(x̄(t))
. (22)

From Theorem 3.2, one can easily prove the following
result

Theorem 5.1 If aLa1L > (1 − m)cMMε
2 , then the set

defined by

κ∗
ε := {

(x, y) ∈ R
2| ln(mε

1) ≤ x ≤ ln(Mε
1 ), ln(m

ε
2)

≤ y ≤ ln(Mε
2 )

}
,

is positively invariant with respect to the model sys-
tem (22), where mε

1, M
ε
1 ,m

ε
2, M

ε
2 are defined in Theo-

rem 3.2.

In order to prove that the main result of this section,
we shall first introduce the following lemma. Consider
the ordinary differential equation

x ′ = f (t, x), f (t, x) ∈ C(R × D, Rn), (23)

where D is an open set in Rn and f (t, x) is almost
periodic in t uniformly with respect to x ∈ D.

In order to show the existence of an almost-periodic
solution of (23), we consider the product system of (23)

x ′ = f (t, x), y′ = f (t, y). (24)

Lemma 5.2 (cf. Theorem 19.1 of [59]) Suppose that
there exists a Lyapunov function V (t, x, y) defined on
[0,+∞) × D × D that satisfies the following condi-
tions:

1. α(||x − y||) ≤ V (t, x, y) ≤ β(||x − y||), where
α(γ ) and β(γ ) are continuous, increasing and pos-
itive definite.

2. |V (t, x1, y1) − V (t, x2, y2)| ≤ K (||x1 − x2|| +
||y1 − y2||), where K > 0 is a constant.

3. V ′(t, x, y) ≤ −μV (|x − y|), where μ > 0 is a
constant.

Furthermore, suppose that the system (23) has a solu-
tion that remains in a compact set S ⊂ D for all
t ≥ t0 ≥ 0. Then system (23) has a unique almost-

periodic solution in S, which is uniformly asymptoti-
cally stable in D.

Theorem 5.3 If aLa1L > (1 − m)cMMε
2 and

inf
t∈R

⎡
⎣b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

− e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

]
> 0,

inf
t∈R

[
− c(t)(1 − m)

[
a1(t) + a2(t)(1 − m)Mε

1

]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

+ e(t)
[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )2

]
> 0,

where mε
1, M

ε
1 ,m

ε
2, M

ε
2 are defined in Theorem 3.2,

then the model system (1) has a unique positive almost-
periodic solution, which is globally asymptotically sta-
ble and uniformly globally stable in κε .

Proof For (x, y) ∈ R
2+, we define ||(x, y)T || = x + y.

In order to prove that the model system (1) has a unique
positive almost-periodic solution, which is uniformly
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asymptotically stable in κε , it is equivalent to show
that model system (22) has a unique almost-periodic
solution to be uniformly asymptotically stable in κ∗

ε .
Consider the product system of (22)

dx̄1(t)

dt
= a(t) − b(t) exp(x̄1(t))

− c(t)(1 − m) exp(ȳ1(t))

a1(t) + a2(t)(1 − m) exp(x̄1(t)) + a3(t) exp(ȳ1(t)) + a4(t)(1 − m) exp(x̄1(t)) exp(ȳ1(t))
,

d ȳ1(t)

dt
= d(t) − e(t) exp(ȳ1(t))

k(t) + (1 − m) exp(x̄1(t))
,

dx̄2(t)

dt
= a(t) − b(t) exp(x̄2(t))

− c(t)(1 − m) exp(ȳ2(t))

a1(t) + a2(t)(1 − m) exp(x̄2(t)) + a3(t) exp(ȳ2(t)) + a4(t)(1 − m) exp(x̄2(t)) exp(ȳ2(t))
,

d ȳ2(t)

dt
= d(t) − e(t) exp(ȳ2(t))

k(t) + (1 − m) exp(x̄2(t))
. (25)

Nowwe define aLyapunov function on [0,+∞)×κ∗
ε ×

κ∗
ε as follows-

V (t, x̄1, ȳ1, x̄2, ȳ2) = |x̄1(t) − x̄2(t)|
+|ȳ1(t) − ȳ2(t)|.

Then condition 1 of Lemma 5.2 is satisfied for α(γ ) =
β(γ ) = γ for γ ≥ 0. Additionally

|V (t, x̄1, ȳ1, x̄2, ȳ2) − V (t, x̄1, ȳ1, x̄2, ȳ2)|
= (|x̄1(t) − x̄2(t)| + |ȳ1(t) − ȳ2(t)|)

− (|x̄3(t) − x̄4(t)| + |ȳ3(t) − ȳ4(t)|)

≤ |x̄1(t) − x̄3(t)| + |ȳ1(t) − ȳ3(t)|
+ |x̄2(t) − x̄4(t)| + |ȳ2(t) − ȳ4(t)|

≤ ||(x̄1(t), ȳ1(t)) − (x̄3(t), ȳ3(t))||
+ ||(x̄2(t), ȳ2(t)) − (x̄4(t), ȳ4(t))||, (26)

which shows that condition 2 of Lemma 5.2 is also
satisfied.

Let (x̄i (t), ȳi (t))T , i = 1, 2, be any two solutions
of (22) defined on [0,+∞)× κ∗

ε × κ∗
ε . Calculating the

right derivative of V (t) along the solutions of (22), we
obtain

D+V (t) =A × sgn(x̄1(t) − x̄2(t))

+ B × sgn(ȳ1(t) − ȳ2(t)),
(27)

where

A = −b(t)(exp(x̄1(t)) − exp(x̄2(t)))

−
(

c(t)(1 − m) exp(ȳ1(t))

a1(t) + a2(t)(1 − m) exp(x̄1(t)) + a3(t) exp(ȳ1(t)) + a4(t)(1 − m) exp(x̄1(t)) exp(ȳ1(t))

− c(t)(1 − m) exp(ȳ2(t))

a1(t) + a2(t)(1 − m) exp(x̄2(t)) + a3(t) exp(ȳ2(t)) + a4(t)(1 − m) exp(x̄2(t)) exp(ȳ2(t))

)
,

B = −
(

e(t) exp(ȳ1(t))

k(t) + (1 − m) exp(x̄1(t))
− e(t) exp(ȳ2(t))

k(t) + (1 − m) exp(x̄2(t))

)
.
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After some algebraic calculation, we obtain

A × sgn(x̄1(t) − x̄2(t))

≤
⎡
⎣−b(t) +

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

⎤
⎦ | exp(x̄1(t)) − exp(x̄2(t))|

+ c(t)(1 − m)
[
a1(t) + a2(t)(1 − m)Mε

1

]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

| exp(ȳ1(t)) − exp(ȳ2(t))|

and

B × sgn(ȳ1(t) − ȳ2(t))

≤ −e(t)
[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )

2 | exp(ȳ1(t)) − exp(ȳ2(t))|

+ e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2 | exp(x̄1(t)) − exp(x̄2(t))|.

Note that

exp(x̄1(t)) − exp(x̄2(t)) = exp(ρ1(t))(x̄1(t) − x̄2(t)),

exp(ȳ1(t)) − exp(ȳ2(t)) = exp(ρ1(t))(ȳ1(t) − ȳ2(t)),

(28)

where ρ1(t) lies between x̄1(t) and x̄2(t) and ρ2(t) lies
between ȳ1(t) and ȳ2(t). Hence, we obtain

D+V (t) ≤ −
⎡
⎣b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

− e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

]
mε

1|x̄1(t) − x̄2(t)|

−
[
− c(t)(1 − m)

[
a1(t) + a2(t)(1 − m)Mε

1

]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

+e(t)
[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )

2

]
mε

2|ȳ1(t) − ȳ2(t)|

≤ −μ(|x̄1(t) − x̄2(t)| + |ȳ1(t) − ȳ2(t)|)
= −μ||(x̄1(t), ȳ1(t)) − (x̄2(t), ȳ2(t))||,

where

μ = min

⎧⎨
⎩inf

t∈R

⎧⎨
⎩

⎡
⎣b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

− e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

]
mε

1

}
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and

inf
t∈R

{[
− c(t)(1 − m)

[
a1(t) + a2(t)(1 − m)Mε

1

]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

+ e(t)
[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )2

]
mε

2

}}
> 0.

Hence condition 3 of Lemma 5.2 is also satisfied.
Therefore, by Theorem 5.1 and Lemma 5.2, it can be
concluded that the model system (22) has a unique
almost-periodic solution (x̄∗(t), ȳ∗(t)) (say) in κ∗

ε ,
which is uniformly asymptotically stable in κ∗

ε . Hence
the model system (1) has a unique positive almost-
periodic solution (x̄∗(t), ȳ∗(t)) in κ∗

ε , which is uni-
formly asymptotically stable in κ∗

ε . From Theorem 3.7,
we have that (x̄∗(t), ȳ∗(t)) is globally asymptotically
stable, which completes the proof. ��

6 Examples and numerical simulation

In order to show analytical results obtained in the previ-
ous sections graphically, we numerically simulate the
solutions of ourmodel system (1). For this, we consider
the following examples:

Example 6.1 Consider a(t) = 3, b(t) = 2 + cos t ,
c(t) = 1.4, d(t) = 1 + 0.03 cos t , e(t) = 3, m = 0.7,
a1(t) = k(t) = 0.2 + 0.1 sin t , a2(t) = 3 + 0.2 sin t ,
a3(t) = 2+cos t , a4(t) = 0.01+0.01 sin t andω = 2π
then the model system (1) takes the following form

dx(t)

dt
= x(t)

(
3 − (2 + cos t)x(t)

− 1.4(1 − 0.7)y(t)

0.2 + 0.1 sin t + 0.3(3 + 0.2 sin t)x(t) + (2 + cos t)y(t) + 0.3(0.01 + 0.01 sin t)x(t)y(t)

)
,

dy(t)

dt
= y(t)

(
1 + 0.03 cos t − 3y(t)

0.2 + 0.1 sin t + 0.3x(t)

)
. (29)

By easy calculations, one can obtain that â = 3, b̂ =
2, ĉ = 1.4, d̂ = 1, ê = 2, â3 = 2 and furthermore

â = 3 >
(̂ c

a3

)
=

( ĉ

â3

)
= 1.4

2
= 0.7.

Thus, the parametric values in Example 6.1 satisfy con-
dition (9). Hence, the model system (29) has at least
one globally attractive positive 2π -periodic solution.
Its phase-plane diagram is shown in Fig. 1i. We plot
here three trajectories (denoted by blue, red and green
curves) which start from three different initial points
(denoted by black bullets) and they gradually converge
to the 2π -periodic limit cycle (denoted by thick black
closed loop). Figure 1ii, iii is the time series represen-
tation of prey (x) and predator (y), respectively, of the
system (29).

Example 6.2 Consider m = 0.7, a(t) = 3.2, b(t) =
2 + cos t , c(t) = 1.5, d(t) = 2 + 1

30 cos t , e(t) = 0.5,
k(t) = 1

5 + 1
10 sin t , a1(t) = 1

5 + 1
10 sin t , a2(t) =

3 + 1
5 sin t , a3(t) = 2 + cos t , a4(t) = 1

20 + 1
30 sin t ,

then the model system (1) takes the following form:

dx(t)

dt
= x(t)

(
3.2 − (2 + cos t)x(t)

− 1.5y(t)
1
5 + 1

10 sin t + (3 + 1
5 sin t)x(t) + (2 + cos t)y(t) + ( 1

20 + 1
30 )x(t)y(t)

)
,

dy(t)

dt
= y(t)

(
2 + 1

30
cos t − 0.5y(t)

1
5 + 1

10 sin t + (1 − m)x(t)

)
. (30)
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Fig. 1 Phase-plane diagram (i) and time series solutions (ii, iii) of system (29). Parameters are written in the text

One can compute bounds of all the time-dependent
coefficients. Here, aL = aM = 3.2, bL = 1, bM =
3, cL = cM = 1.5, dL = 1

60 , dM = 1
12 , eL = eM =

3, a1L = 1
10 , a1M = 3

10 , a2L = 14
5 , a2M = 16

5 , a3L =
a3M = 3, a4L = 1

60 , a4M = 1
12 , M1 = 3.2, M2 =

0.14. Furthermore we have

aLa1L = 0.32 > 0.189 = (1 − m)cMM2.

Thus the parametric values mentioned in the Exam-
ple 6.2 satisfy the condition (5). Hence, Theorem 3.3
ensures that the model system (30) is permanent which
can also be ensured from Fig. 2ii, iii. More precisely,
phase plane diagram is shown in Fig. 2i (representa-
tion is carrying the similar meaning of Fig. 1i) while

the integral curves are shown in Fig. 1ii (for prey (x))
and Fig. 1iii (for predator (y)), respectively.

Example 6.3 Let a(t) = 9.9 + sin 5t , b(t) = 10.9,
c(t) = 0.3+0.19 sin 5t ,m = 0.7, a1(t) = 8+cos 11t ,
a2(t) = 10 + sin 3t , a3(t) = 5, a4(t) = 0.1, d(t) =
0.5 + 0.29 sin 3t , e(t) = 12 + 0.2 sin 13t , k(t) = 2,
then the model system (1) becomes:

dx(t)

dt
= x(t)

(
9.9 + sin 5t − 10.9x(t)

− 0.3(0.3 + 0.19 sin 5t)y(t)

8 + cos 11t + 0.3(10 + sin 3t)x(t) + 5y(t) + (0.1)(0.3)x(t)y(t)

)
,

dy(t)

dt
= y(t)

(
0.5 + 0.29 sin 3t − (12 + 0.2 sin 13t)y(t)

2 + 0.3x(t)

)
. (31)
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Fig. 2 Phase-plane diagram (i) and time series solutions (ii, iii) of the system (30). Parameters are written in the text

By simple numerical computations, one can obtain that
aL = 8.9, aM = 10.9, bL = bM = 10.90, cL =
0.11, cM = 0.49, dL = 0.21, dM = 0.79, eL =
11.8, eM = 12.2, kL = kM = 2, a1L = 7, a1M =
9, a2L = 9, a2M = 11, a3L = a3M = 5,= 0.09, a4L =
a4M = 0.1,= 0.5, M1 = 1, M2 = 0.20,m1 =
0.82,m2 = 0.04 and furthermore
aLa1L = 62.3 > (1 − m)cMM2 = 0.147 × 0.04 =
0.0059 and

inf
t∈R

{
b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

− e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

}
= 10.754 > 0,

and

inf
t∈R

{
− c(t)(1 − m)[a1(t) + a2(t)(1 − m)Mε

1 ]
(a1(t) + a2(t)(1 − m)mε

1 + a3(t)mε
2 + a4(t)(1 − m)mε

1m
ε
2)

2

+ e(t)
[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )2

}
= 5.009 > 0.

Thus the parametric values in the Example 6.3 sat-
isfy conditions (5) and (6) stated in Theorems 3.3
and 3.7. Hence Theorem 3.7 ensures the global attrac-
tivity (global asymptotic stability) of the bounded pos-
itive solution (x(t), y(t)) of the system (31). Here, in
Fig. 3i,we draw the globally attractive periodic solution
whereas in Fig. 3ii, iii we show its time series solutions
for prey (x) and predator (y), respectively.
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Fig. 3 Phase-plane diagram (i) and time series solutions (ii, iii) of the system (31). Parameters are written in the text

Example 6.4 Let a(t) = 5, b(t) = 3 + sin t , c(t) =
2.5, d(t) = 0.22 + 0.05 cos t , e(t) = 1, m = 0.9,
a1(t) = 0.5, k(t) = 0.2, a2(t) = 0.9 + 0.01 cos t ,
a3(t) = 1+ 0.0001 sin t , a4(t) = 3+ 0.1 sin t , and let
ε = 0.0001 and ω = 2π then the model system (1)
takes the following form:

dx(t)

dt
= x(t)

(
5 − (3 + sin t)x(t)

− ((1 − 0.9)2.5y(t)

0.5 + (0.1)(0.9 + 0.01 cos t)x(t) + (1 + 0.001 sin t)y(t) + (0.1)(3 + 0.1 sin t)x(t)y(t)

)
,

dy(t)

dt
= y(t)

(
0.22 + 0.05 cos t − y(t)

0.2 + (1 − 0.9)x(t)

)
. (32)

By simple calculations, one can obtain that bM = 4,
bL = 2, dM = 0.27, dL = 0.17, a2M = 0.91, a2L =
0.89, a3M = 1.001, a3L = 0.999, a4M = 3.1, a4L =
2.9, M1 = 1.25, M2 = 0.392,m1 = 1.2,m2 = 0.238
and furthermore
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aLa1L = 2.5 > (1 − m)cMM2 = 0.09790675,

inf
t∈R

{
b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

− e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

}
= 1.594 > 0

and

inf
t∈R

{
− c(t)(1 − m)[a1(t) + a2(t)(1 − m)Mε

1 ]
(a1(t) + a2(t)(1 − m)mε

1 + a3(t)mε
2 + a4(t)(1 − m)mε

1m
ε
2)

2

+ e(t)
[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )2

}
= 3.006 > 0.

Thus the parametric values in the Example 6.4 satisfy
conditions (5) and (6) stated in Theorems 3.3 and 3.7.
Hence, Theorem 3.7 ensures the global attractivity of
the bounded positive solution (x(t), y(t)) of the system
(32). Also,

â = 5 >
(̂ c

a3

)
=

( ĉ

â3

)
= 2.5.

Thus the parametric values in the Example 6.4 satisfy
condition (9). Hence the model system (32) has at least
one globally attractive positive 2π -periodic solution. In
Fig. 6i,we draw the globally attractive periodic solution
and in Fig. 6ii, iii we show its time series solutions for
prey (x) and predator (y), respectively.

Example 6.5 (Existence of Almost Periodic Solution)
Let a(t) = 14+ cos(t), b(t) = 12+ cos(

√
3t), c(t) =

1.5 + sin(t), d(t) = 2 + 0.2 sin(
√
5t), e(t) = 12 +

0.2 sin(
√
13t),m = 0.7,a1(t) = k(t) = 0.2+0.1 sin t ,

a2(t) = 3+ 0.2 sin(
√
7t), a3(t) = 2+ cos(t), a4(t) =

0.01 + 0.001 sin(t), then the model system (1) takes
the following form:

dx(t)

dt
= x(t)

(
14 + cos(t) − (12 + cos(

√
3t))x(t)

− (1 − 0.7)(1.5 + sin(t))y(t)

(0.2 + 0.1 sin t) + (3 + 0.2 sin(
√
7t))(1 − 0.7)x(t) + (2 + cos(t))y(t) + (1 − 0.7)(0.01 + 0.001 sin t)x(t)y(t)

)
,

dy(t)

dt
= y(t)

(
2 + 0.2 sin(

√
5t) − (12 + 0.2 sin(

√
13t))y(t)

(0.2 + 0.1 sin(t)) + (1 − 0.7)x(t)

)
. (33)

By simple calculations, one can obtain that aL = 13,
aM = 15, bM = 13, bL = 11, cL = 0.5, cM = 2.5,
eL = 11.8, eM = 12.2 a1L = 0.1, a1M = 0.3 dM =
2.2, dL = 1.8, a2M = 3.2, a2L = 2.8, a3M = 3, a3L =

1, a4M = 0.011, a4L = 0.009, M1 = 1.363, M2 =
0.310,m1 = 0.821,m2 = 0.136 and furthermore

aLa1L = 1.3 > (1 − m)cMM2 = 0.2326,

inf
t∈R

{
b(t) −

c(t)(1 − m)
[
a2(t)(1 − m)Mε

2 + a4(t)(1 − m)Mε
2
2
]

(a1(t) + a2(t)(1 − m)mε
1 + a3(t)mε

2 + a4(t)(1 − m)mε
1m

ε
2)

2

− e(t)(1 − m)Mε
2

(k(t) + (1 − m)mε
1)

2

}
= 1.65011 > 0

and

inf
t∈R

{
− c(t)(1 − m)[a1(t) + a2(t)(1 − m)Mε

1 ]
(a1(t) + a2(t)(1 − m)mε

1 + a3(t)mε
2 + a4(t)(1 − m)mε

1m
ε
2)

2

+ e(t)
[
k(t) + (1 − m)mε

1

]

(k(t) + (1 − m)Mε
1 )2

}
= 12.734 > 0.

Thus the parametric values in the Example 6.5 satisfy
conditions of Theorem 5.3. One can observe that the
model system (33) posses a unique positive almost peri-
odic solutionwhich is globally attractive and it has been
portrayed by phase-plane diagram in Fig. 4i and corre-
sponding time series in Fig. 4ii for prey x and Fig. 4iii
for predator y, respectively.
Another significant point stressed by the modeling of
[28] is the importance of a “temporal refuge” in the
management of resistance. Hence the temporal refuge
allows for better control of resistant of target population
[46,48]. Marine habitat, in particular, becomes com-
plex in presence of oyster and coral reefs, mangroves,
sea grass beds and salt marshes [21]. In lakes, habitat
heterogeneity is most commonly present in the form
of littoral zone vegetation or a depth-gradient diversity
[15]. Terrestrial and aquatic vegetation diversity are not
constant for any system in nature, these are temporal
effects on the system and sometime give resistance to
system functioning by creating habitat complexity or

refuge [39]. To observe the dynamical behavior of the
system (1)with variation of prey refuge intensity,wefix
the values of all parameters as in Example 6.2 exceptm.
Here also we observe the impact of temporal variation
of prey refuge intensity m(t) on the same system.
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Fig. 4 Phase-plane diagram (i) and time series solutions (ii, iii) of the system (33). Parameters are written in the text

Then it is observed that the sufficient condition (5)
for permanence is well satisfied for all m ∈ [0, 1).
Here for m = 0, we have aLa1L = 0.32 > 0.210 =
(1 − m)cMM2 while for m = 0.99 we have aLa1L =
0.32 > 0.0021 = (1 − m)cMM2. One can also
observe that both the species co-exist periodically for
all m ∈ [0, 1). Moreover, the predator species co-exist
for all values of m which also justify the additional
food for predator species. The phase plane diagrams
of the model system (1) are shown in Fig. 5i–iv for
different values of prey reserve m = 0.1, 0.35, 0.25 +
0.1 sin t, 0.7 + 0.1 cos

√
5t , respectively.

6.1 Sensitivity analysis

The outputs of deterministic models are governed by
the model input parameters, which may exhibit some
uncertainty in their determination or selection. We
employed a global sensitivity analysis to assess the
impact of uncertainty and the sensitivity of the out-
comes of the numerical simulations to variations in
each parameter of the system (1) using Latin Hyper-
cube Sampling (LHS) and partial rank correlation coef-
ficients (PRCC). LHS is a stratified sampling without
replacement technique which allows for an efficient
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Fig. 5 Phase-plane diagrams of the system (30) with different strengths of prey refuge parameter m. Parameters are written in the text

analysis of parameter variations across simultaneous
uncertainty ranges in each parameter [32]. PRCCmea-
sures the strength of the relationship between themodel
outcome and the parameters, stating the degree of the
effect that each parameter has on the outcome. Thus,
sensitivity analysis determines the parameters with the
most significant impact on the outcome of the numer-
ical simulations of the model. To generate the LHS
matrices, we assume that all the model parameters are
uniformly distributed. Then a total of 200 simulations
of the model per LHS run were carried out, using
the baseline values are: Example 6.1 �⇒ Fig. 7a,
b, Example 6.2 �⇒ Fig. 7c, d, Example 6.3 �⇒
Fig. 7e, f, Example 6.4 �⇒ Fig. 7g, h and Exam-
ple 6.5 �⇒ Fig. 7i, j and the ranges as 25% from
the baseline values (in either direction). Note that the

PRCC values lie between −1 and 1. Positive (nega-
tive) values indicate a positive (negative) correlation
of the parameter with the model output. A positive
(negative) correlation implies that a positive (negative)
change in the parameter will increase (decrease) the
model output. Note that the PRCC values lie between
-1 and 1. Positive (negative) values indicate a posi-
tive (negative) correlation of the parameter with the
model output. A positive (negative) correlation implies
that a positive (negative) change in the parameter will
increase (decrease) the model output. The larger the
absolute value of the PRCC, the greater the correlation
of the parameter with the output. The PRCC values are
depicted as bar graphs in Fig. 7a, c, e, g, i and its time
evolution is illustrated in Fig. 7b, d, f, h, j.
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Fig. 6 Phase-plane diagram (i) and time series solutions (ii, iii) of the system (32). Parameters are given in the text

7 Concluding remarks

Variability in environmental factors plays critical role
in the feasibility, uniqueness and shaping intrinsic pop-
ulation dynamics. For example, nature of environmen-
tal variability captured in the form of noise has evi-
dently been shown to determine population extinc-
tion risk [34,42]. We have discussed about an exam-
ple on life history of hilsa fish at GBM basin in our
introduction. Also by real and empirical data sev-
eral authors describe the impact of temporal fluctu-
ations of system parameters on their cultured sys-
tem [15,21,28,39,46,48]. In particular, prey–predator
relationship is one of the basic links among pop-
ulations which determine population dynamics and
trophic structure of our environment. Classic prey–
predator model has commonly been studied in idiosyn-
cratic fashion, without considering variability in the
surrounding environment in which population grow
and survive. In this paper, environmental variabil-
ity is captured in the model parameters with time-
dependent periodic functions, which makes the model
non-autonomous in nature. We have then studied pop-
ulation dynamics of non-autonomous modified Leslie–
Gower prey–predator model with Crowley–Martin

functional response which incorporates the effect of
degree or strength of prey refuge.

Firstly, we have carried out the global qualitative
behavior (permanence and global asymptotic stabil-
ity) of the general non-autonomous proposed model
by constructing a suitable Lyapunov function and using
comparison theorem of differential equation. We have
also investigated the periodicity and almost periodicity
of this model system. One can notice that for ε = 0,
the conditions (3) and (5) are same. Hence the exis-
tence of a positively invariant set is sufficient for the
permanence of the system. Moreover, the equations
(5) and (8) provide the sufficient conditions for per-
manence and global asymptotic stability of the model
system (1), respectively. The condition (5) also pro-
vides threshold level of the prey reserve m for perma-
nence.We have shown that permanence condition (5) is
sufficient for the existence of positive periodic solution
using Brouwer fixed-point theorem. The condition (9)
has ensured the existence of a positive periodic solu-
tion using continuation theorem (coincidence degree
theorem).

Theorem 4.1 determines a threshold value of prey
reserve m while the sufficient condition (9) obtained
from Theorem 4.2 is independent of prey reserve m
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Fig. 7 a Bar graphs of partial rank correlation coefficients
(PRCC) of the parameters of the system (29) and b time course
plots of the PRCCs of the parameters of the system (29) at 10

different time points (days 20, 40, 60, 80, 100, 120, 140, 160,
180, 200). Model parameters were sampled 1000 times. Base-
line parameters are in the text
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Table 1 Comparative
results obtained by using
Brouwer fixed point
theorem and continuation
theorem in coincidence
degree theory

Brouwer fixed point theorem Continuation theorem in
coincidence degree theory

Uses the supremum and infimum
of the parameters (refer the proof
of the Theorem 4.1)

Uses average values of the related
parameters (refer the proof of
Theorem 4.2)

The permanence of the model
system (1) is sufficient for
existence of a positive periodic
solution

The condition (9) is different from
the permanence condition (5)

Guarantees for the existence of a
positive periodic solution under
the condition (5)

Ensures the existence of a positive
periodic solution under the
condition (9)

The condition 4.2 also involves the
coefficient of prey reserve m

Theorem 4.1 provides better result.

The obtained result is also
supported by numerical
simulations

which is also supported by numerical simulation. This
implies the betterment of Theorem 4.2 over Theo-
rem4.1. This also concludes that the prey reserve leaves
no effect on the periodic coexistence scenario. The
obtained results for the non-autonomous model sys-
tem (1) are contrast with those of autonomous model
system studied in [31] and consistent with Chen et al.
[9] who showed that the prey refuge has no influence
on permanence of the concerned autonomous model
system. Some of the comparative results obtained by
using Brouwer fixed point theorem and continuation
theorem in coincidence degree theory are presented in
the following Table 1. We have also discussed more
general case than the existence of periodic solution,
i.e., the existence of a unique globally asymptotically
stable positive almost periodic solution has been estab-
lished under certain sufficient parametric conditions
(refer Theorem 5.3).

At last,wehave also validatedour analytical findings
with respect to different sets of time-varying system
parameters (hypothetical) except prey refuge intensity
(m) through numerical simulations in Sect. 6 and also
these are considered to agree and illustrate the effec-
tiveness of analytical findings. But sometimes depend-
ing upon the environmental conditions and ecological
health, prey refuge intensity is not fix and it varies with
time and in this situation output of the dynamical sys-
tem is different than the system with constant refuge in

density [15,21,28,39,46,48]. We have shown that the
temporal impact on prey refuge intensity and its corre-
sponding dynamical output by considering this param-
eter as periodic function through Fig. 5iii, iv. By these
two figures, it is clear that periodic fluctuation of the
considered system varies with different periodic prey
refuge intensity. So, temporal variability of prey refuge
can also motive that type of system along with other
periodic and almost periodic system parameters.

PRCC sensitivity analysis gives us a conclusion that
sensitivity of any parameter strongly depends upon
the parameter estimation. High, intermediate and low
PRCC values for same parameter for the same system
are shown by the choices of different parameter sets. In
the present study, in the model system (1), the involved
variables x and y are only functions of the time. How-
ever in more general model systems, one can also con-
sider the diffusion of the involved variables. Therefore,
the variables x and y become space and time dependent
and the associated ecological model system is given by
parabolic nonlinear partial differential equations. The
interested readersmay refer to [60] and [61],whichmay
help in understanding the analysis of themodel system.
In [60], authors have discussed a biological model sys-
tem involving one species while in [61] authors have
discussed a model system involving one species and a
chemical signal.
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