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Abstract The mathematical model with time delay is
often more practical because it is subject to current and
past state. What remains unclear are the details, such
as how time delay and sudden environmental changes
influence the dynamic behavior of systems. The pur-
pose of this paper is to analyze the long-time behav-
ior of a stochastic Nicholson’s blowflies model, which
includes distributed delay and degenerate diffusion.
The application of the Markov semigroups theory is
to prove that there exists a unique stationary distribu-
tion. What’s more, the expression of probability den-
sity function around the unique positive equilibrium
of the deterministic model is briefly described under
a certain condition. The results of this paper can be
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used to find that the weaker white noise can guarantee
the existence of a unique stationary distribution and
the stronger mortality rate can cause the extinction of
Nicholson’s blowflies. Some numerical examples are
also given to explain the effect of the white noise.
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1 Introduction

In recent decades, using biological models to study the
survival problem of populations is a extraordinary sig-
nificant method and a hot topic of concern. In particu-
lar, attention is concentrated on qualitative analysis of
population model by many mathematicians and biolo-
gists. Besides, Nicholson’s blowflies model belongs to
a class of biological systems and its analog equation is
more consistent with the experimental data [1]. There-
fore, it is more realistic to study the dynamic behavior
of Nicholson’s blowflies model.

To the best of our knowledge, since Gurney et al. [1]
presentedNicholson’s blowfliesmodel, which explains
Nicholson’s blowflies data more accurately, the model
and its modifications have been widely studied [1–5].
For example, Zhu et al. [2] discussed the global exis-
tence of positive solution for a stochastic Nicholson’s
blowflies model with regime switching and obtained
path estimation. Xiong et al. [3] investigated the global
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exponential stability of positive pseudo-almost peri-
odic solution. Next, we will explain why it is more
meaningful to build Nicholson’s blowflies model with
distributed delay and white noise.

On the one hand, whenmodeling ecosystem dynam-
ics, it is desirable to take into account models that
not only depend on the current situation but also on
their past state. The above model cannot explain such
phenomenon [1–5], while the time delay can better
describe this phenomenon [6–9]. Nevertheless, it is
difficult to analyze the long-time behavior of discrete
time-delay equations. Hence, we use distributed delay
to characterize the dynamic behavior of discrete delay
equations. For instance, Wang et al. [6] studied the
asymptotic stability of the positive equilibrium for
a Lotka–Volterra predator–prey system of population
allelopathy with distributed delay and proved Hopf
bifurcations. Al-Omari et al. [8] analyzed global stabil-
ity in a population competition system with distributed
delay and harvesting. However, the difference between
this paper and the above articles is that we study the
long-term behavior of Nicholson’s blowflies model.

On the other hand, few people assume that the envi-
ronment is constant in real life. Due to the influence
of environmental factors (such as weather, food supply
and so on.), it is reasonable and practical to investigate
the biological system with environmental noise. Many
scholars analyzed the time-delay model with random
noise [10–12]. For example, Hu et al. [10] proved that
there is a global almost surely positive solution and
obtained asymptotic path estimation of the solution for
a stochastic Lotka–Volterra system with unbounded
distributed delay. Liu et al. [11] discussed long-time
behavior for a stochastic logisticmodelwith distributed
delay. Even though, as far as we know, very few stud-
ies have been done to think over the influence of dis-
tributed delay and environmental noise into Nichol-
son’s blowflies model.

The originality of this paper is as follows: (i) The
white noise and distributed delay are all taken into
account in theNicholson’s blowfliesmodel. (ii) Extinc-
tion and asymptotic stability for a stochastic Nichol-
son’s blowflies model with distributed delay is solved.
(iii) The expression of the probability density func-
tion around the positive equilibrium point of the deter-
ministic system is obtained. In addition, the questions
addressed of this paper are as follows: (i) What are
the conditions for the existence of probability density
function around the positive equilibrium point of the

deterministic system? (ii) How does the white noise
affect the growth of Nicholson’s blowflies?

To answer the above questions, the layout of this
paper is as follows: the second part mostly formulates
the stochastic Nicholson’s blowflies model with dis-
tributed delay and some preliminaries are put forward.
In Sect. 3,we present themain results for the strong ker-
nel case, which include the existence and uniqueness
of globally positive solution, extinction of Nicholson’s
blowflies, asymptotic stability and probability density
function of Nicholson’s blowflies model. In Sect. 4,
there are some results for the weak kernel. In Sect. 5,
we make simulations to confirm our results. Section 6
concludes the paper.

2 The model formulation and some preliminaries

We first formulate a stochastic Nicholson’s blowflies
model with distributed delay in Sect. 2.1.

2.1 The model formulation

A classic Nicholson’s blowflies model was presented
by Gurney et al. [1] as follows:

d X (t) =
[
−δX (t) + pX (t − τ)e−a X (t−τ)

]
dt, (1)

with initial conditions X (s) = φ(s), for s ∈ [−τ, 0],
φ ∈ C([−τ, 0], [0,+∞)), φ(0) > 0. All parameters
in model (1) are assumed to be positive and listed in
the Table 1.

Noting that the Nicholson’s blowflies model (1) is a
discrete delay equation, but it is not easy for a discrete
delay equation to analyze its long-time behavior. To
better explain the dynamic behavior of the model (1),
we introduce continuous time delay into the model (1)
is as follows:

d X (t) =
[
−δX (t) + p

∫ t

−∞
f (t − s)X (s)e−a X (s)ds

]

dt, (2)

where the kernel f : [0,∞) → [0,∞) is a function of
time. The article [13] of Macdonald demonstrated that
the distribution delay obeys Gamma distribution, that
is,

f (t) = tnαn+1e−αt

n! , t ∈ (0,∞),
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Table 1 List of parameters
and their meanings in model
(1)

Notation Biological meanings

δ Per capita adult mortality rate daily

p Per capita maximum egg production rate daily

τ Time of each generation
1
a The maximum growth rate of reproduction of Lucilia cuprina

with α > 0 and n ≥ 0. As is known to all, we get a
strong kernel for n = 1 while weak kernel for n = 0,
i.e.,

(i) f (t) = α2te−αt (n = 1),

(i i) f (t) = αe−αt (n = 0).

Define

Y (t) =
∫ t

−∞
α2(t − s)e−α(t−s) X (s)e−a X (s)ds,

Z(t) =
∫ t

−∞
αe−α(t−s) X (s)e−a X (s)ds,

according to the linear chain technique, then the fol-
lowing equivalent system of the above system (2) is:⎧⎪⎪⎨
⎪⎪⎩

d X (t) = [−δX (t) + pY (t)] dt,

dY (t) = α [Z(t) − Y (t)] dt,

d Z(t) = α
[

X (t)e−a X (t) − Z(t)
]

dt.

(3)

If δ < p, then there exists a unique positive equilibrium
point:

E∗ = (X∗, Y ∗, Z∗)

=
(

−1

a
ln

δ

p
,− δ

ap
ln

δ

p
,− δ

ap
ln

δ

p

)
.

Model (3) is unavoidable affected by external envi-
ronment factors due to the randomness of real life. We
consider that the per capita adult mortality daily rate
δ is subject to the white noise. Thus, δ is replaced by
δ − σ Ḃ(t) , where B(t) is a one-dimensional standard
Brownian motion and σ 2 is the white noise intensity.
The deterministic Nicholson’s blowflies model with
distributed delay can be transformed into the follow-
ing stochastic model:⎧
⎪⎪⎨
⎪⎪⎩

d X (t) = [−δX (t) + pY (t)] dt + σ X (t)d B(t),

dY (t) = α [Z(t) − Y (t)] dt,

d Z(t) = α
[

X (t)e−a X (t) − Z(t)
]

dt.

(4)

We will present the following desirable definitions
and lemmas in Sect. 2.2 after we formulate the stochas-
tic model with distributed delay.

2.2 Some preliminaries

We define (�,F , {Ft }t≥0,P) be a complete probabil-
ity space with a natural filtration {Ft }t≥0 satisfying the
usual conditions (i.e., it is increasing and right con-
tinuous while F0 contains all P-null sets), and B(t)
is defined on this complete filtrated probability space.
Define

R
3+ = {(X, Y, Z) ∈ R

3 : X > 0, Y > 0, Z > 0}.
Consider the n-dimensional SDE:

d X̂(t) = b̃(X̂(t), t)dt + g(X̂(t), t)d B(t), (5)

with its initial value X̂(0) = X̂0 ∈ R
n . Let C2,1(Rn ×

[t0,∞);R+) be the family of all nonnegative real-
valued functions V (X̂ , t) defined on R

n × [t0,∞)

which satisfies continuously twice differentiable in X̂
and once in t . The differential operator L of Eq. (5) is
defined as

L = ∂

∂t
+

r∑
r=1

b̃r (X̂(t), t)
∂

∂ X̂i

+1

2

r∑
i, j=1

[gT (X̂(t), t)g(X̂(t), t)]i j
∂2

∂ X̂i∂ X̂ j
.

If L acts on a function V ∈ C2,1(Rn × [t0,∞);R+),
then

LV (X̂ , t) = Vt (X̂ , t) + VX̂ (X̂ , t)b̃(X̂(t), t)

+1

2
trace[gT (X̂(t), t)VX̂ X̂ g(X̂(t), t)],

where Vt = ∂V
∂t , VX̂ = ( ∂V

∂ X̂1
, ∂V

∂ X̂2
, . . . , ∂V

∂ X̂n
) and

VX̂ X̂ = ( ∂2V
∂ X̂i ∂ X̂ j

)n×n .

Lemma 2.1 [2] If F(x) = xe−ax , ∀a > 0, x > 0,
then F(x) ≤ 1

ae .

2.2.1 Markov semigroup

Next, some fundamental definitions and results with
regard to Markov semigroup are proposed.
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Define X = R
3+, 	 = D be the σ -algebra of Borel

subsets ofX and m be a Lebesgue measure of the space
(X, 	). Let D contain all densities, i.e.,

D = {g ∈ L1 : g ≥ 0, ‖g‖ = 1},
where ‖ · ‖ is the norm of the Lebesgue measure space
L1 = L1(X, 	, m). If P(D) ⊂ D, then a linear map-
ping P : L1 → L1 is known as Markov operator [14].

Definition 2.2 [15] If there is a measurable function
k : X × X → [0,∞) satisfying
∫

X

k(x, y)m(dx) = 1, ∀ y ∈ X,

then

Pg(x) =
∫

X

k(x, y)g(y)m(dy),

P is called an integralMarkovoperator and the function
k a kernel.

A family ofMarkov operators {P(t)}t≥0 which satisfies
the following three conditions:

(1) P(0) = I d (I d is the identity matrix);
(2) P(t + s) = P(t)P(s) for every s, t ≥ 0;
(3) ∀g ∈ L1, the function t �→ P(t)g is continuous

concerning the L1-norm; is known as a Markov
semigroup.

Definition 2.3 [15] AMarkov semigroup {P(t)}t≥0 is
known as asymptotically stable if there is an invariant
density g∗ satisfies

lim
t→∞ ‖P(t)g − g ∗ ‖ = 0, ∀g ∈ D.

Definition 2.4 [15] AMarkov semigroup {P(t)}t≥0 is
known as sweeping concerning a set A ∈ 	 if

lim
t→∞ P(t)g(X)m(dX) = 0, ∀g ∈ D.

Lemma 2.5 [15]Assume that {P(t)}t≥0 be an integral
Markov semigroup with the continuous kernel k(t, x, y)

for t > 0 of satisfying
∫
X

k(t, x, y)m(dx) = 1 for all
y ∈ X. If
∫ ∞

0
P(t)g(x)dt > 0, ∀g ∈ D a.e.

Then the Markov semigroup is asymptotically stable or
is sweeping concerning compact sets.

If aMarkov semigroup {P(t)}t≥0 is asymptotically sta-
ble or is sweeping for a sufficiently large family sets,
then its property is known as the Foguel alternative.

2.2.2 Fokker–Planck equation

Denote the transitionprobability functionbyP(t, x, y,

z, A), for any A ∈ 	 and the diffusion process
(X (t), Y (t), Z(t)), i.e.,

P(t, x, y, z, A) = Prob{(X (t), Y (t), Z(t)) ∈ A},
where (X (t), Y (t), Z(t)) of (4) is a solution with
the initial condition (X (0), Y (0), Z(0)) = (x, y, z).
If t > 0, the distribution of (X (t), Y (t), Z(t)) is
absolutely continuous with regard to the Lebesgue
measure, then there is also a density U (t, x, y, z)
of (X (t), Y (t), Z(t)) which satisfies the following
Fokker–Planck equation [16]:

∂U

∂t
= σ 2

2

∂2(x2U )

∂x2
− ∂( f1(x, y, z)U )

∂x

−∂( f2(x, y, z)U )

∂y
− ∂( f3(x, y, z)U )

∂z
, (6)

where

f1(x, y, z) = −δx + py, f2s(x, y, z)=α(z − y) and

f3(x, y, z) = α(xe−ax − z).

A Markov semigroup related to (6) is briefly
described now. Let P(t)V (x, y, z) = U (t, x, y, z),
∀ V ∈ D. Based on the operator P(t) is a contrac-
tion on D, it can be extended to a contraction on L1.
The operators {P(t)}t≥0 can formaMarkov semigroup.
The infinitesimal generator of {P(t)}t≥0 is denoted by
A , i.e.,

A V = σ 2

2

∂2(x2V )

∂x2
− ∂( f1(x, y, z)V )

∂x

−∂( f2(x, y, z)V )

∂y
− ∂( f3(x, y, z)V )

∂z
.

The adjoint operator of A is:

A ∗V = σ 2

2

∂2(x2V )

∂x2
+ ∂( f1(x, y, z)V )

∂x

+∂( f2(x, y, z)V )

∂y
+ ∂( f3(x, y, z)V )

∂z
. (7)

3 Main results in the strong kernel case

Firstly, the existence and uniqueness of globally posi-
tive solution of (4) is discussed, then investigating the
long-term behavior of the model (4) is desirable.
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3.1 Existence and uniqueness of globally positive
solution

Theorem 3.1 For any initial value (X (0), Y (0), Z(0))
∈ R

3+, there exists a unique solution of the system (4)
with the strong kernel, which will remain in R

3+ with
probability one.

Proof The proof is similar to that in [2,17,18]. Here
we omit it. �


The aim of this theorem is to prove the population X (t)
of the stochastic system (4) becomes extinct.

3.2 Extinction

Theorem 3.2 Let (X (t), Y (t), Z(t)) be a solution of
the stochastic system (4) with the strong kernel, for any
given initial value (X (0), Y (0), Z(0)) ∈ R

3+. If p < δ,
then

lim
t→∞ X (t) = 0, lim

t→∞ Y (t) = 0 and lim
t→∞ Z(t) = 0 a.s.

That is to say, the population X (t) of the stochastic
system (4) becomes extinct with probability one.

Proof Let

λ(ω1, ω2, ω3) = (ω1, ω2, ω3)M0,

where

λ = 3

√
p

δ
, (ω1, ω2, ω3) = (1, λ2, λ) and

M0 =
⎛
⎝
0 p

δ
0

0 0 1
1 0 0

⎞
⎠ .

Define a C2-function V1(t): R3+ → R+

V1(t) = c1X (t) + c2Y (t) + c3Z(t),

where c1 = ω1
δ
, c2 = ω2

α
and c3 = ω3

α
. Using Itô’s

formula [19] to system (4) leads to

d(log V1(t)) = L(log V1(t))dt + c1σ X (t)

V1(t)
d B(t), (8)

where

L(log V1(t)) = 1

V1(t)

(
c1(−δX (t) + pY (t))

+ c2α(Z(t) − Y (t)) + c3α(X (t)e−a X (t)

− Z(t))

)
− c21σ

2X2(t)

2V 2
1 (t)

≤ 1

V1(t)

(
c1(−δX (t) + pY (t))

+ c2α(Z(t) − Y (t)) + c3α(X (t) − Z(t))

)

= 1

V1(t)
(ω1, ω2, ω3)

[ ⎛
⎝
0 p

δ 0
0 0 1
1 0 0

⎞
⎠ −

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠

] ⎛
⎝

X (t)
Y (t)
Z(t)

⎞
⎠

= 1

V1(t)
(λ − 1)(ω1X (t)

+ ω2Y (t) + ω3Z(t))

≤ min{δ, α}(λ − 1).

(9)

Substituting (9) into (8) yields

d(log V1(t)) ≤ min{δ, α}(λ − 1)dt

+c1σ X (t)

V1(t)
d B(t). (10)

Integrating it from 0 to t and dividing t on both sides,
we obtain

log V1(t)

t
≤ log V1(0)

t
+ min{δ, α}(λ − 1)

+1

t

∫ t

0

c1σ X (s)

V1(s)
dB(s), (11)

where let M(t) = ∫ t
0

c1σ X (s)
V1(s)

dB(s), which is a local
martingale with M(0) = 0. Moreover, using the strong
law of large numbers [19] yields

lim
t→∞

M(t)

t
= 0 a.s. (12)

Since p < δ, λ = 3
√

p
δ

< 1, substituting (12) into (11)
and then taking the superior limit, we obtain

lim sup
t→∞

log V1(t)

t
≤ min{δ, α}(λ − 1) < 0 a.s.,

therefore,

lim
t→∞

log X (t)

t
= 0, lim

t→∞
log Y (t)

t
= 0 and
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lim
t→∞

log Z(t)

t
= 0 a.s.,

which means that

lim
t→∞ X (t)=0, lim

t→∞ Y (t) = 0 and lim
t→∞ Z(t)=0 a.s.

In otherwords, the population X (t) is arrived at becom-
ing extinct with probability one. �

Next, we discuss the existence of a unique stable sta-
tionary distribution.

3.3 Asymptotic stability

Theorem 3.3 Let (X (t), Y (t), Z(t)) be a solution
of the stochastic system (4) with the strong kernel.
The distribution of (X (t), Y (t), Z(t)) has a density

U (t, x, y, z), ∀t > 0. If p > δ + σ 2

2 , then there is
a unique density U∗(x, y, z) satisfies

lim
t→∞

∫∫

R
3+

|U (t, x, y, z) − U∗(x, y, z)|dxdydz = 0.

The proof of the above Theorem 3.3 consists of the
following steps:

(1) Based on the Hörmander condition [14], it indi-
cates that the kernel function of the process
(X (t), Y (t),
Z(t)) is absolutely continuous.

(2) According to support theorems [20], we prove that
the kernel function is positive on R

3+.
(3) We demonstrate that the Markov semigroup is

asymptotically stable or is sweeping with respect
to compact sets by Lemma 2.5.

(4) Since there exists a Khasminskiĭ function, we
exclude sweeping.

Next, to accommodate the above steps, we therefore
give the following Lemmas 3.4–3.7.

Lemma 3.4 For every (x0, y0, z0) ∈ X and t > 0, the
transition probability function P(t, x0, y0, z0, A) has a
continuous density k(t, x, y, z; x0, y0, z0) with regard
to Lebesgue measure.

Proof If a(x) ∈ R
3+ and b(x) ∈ R

3+ are vector fields,
then the Lie bracket [a, b] is a vector field expressed
by

[a, b] j (x) =
3∑

i=1

(
ai

∂b j

∂xi
− bi

∂a j

∂xi

)
, j = 1, 2, 3.

Let

a(X, Y, Z) =
⎛
⎝

−δX + pY
α(Z − Y )

α(Xe−a X − Z)

⎞
⎠ and

b(X, Y, Z) =
⎛
⎝

σ X
0
0

⎞
⎠ .

Then Lie bracket [a, b] is given by

a1 � [a, b] = σ

(
pY, 0,−αe−a X (X − aX2)

)T

and

a2 � [a, a1] =
(

B1, B2, B3

)T

,

where
B1 = σ p(δ − α)Y + αZ ,

B2 = α2σe−a X (X − aX2) and

B3 = (−δX + pY )(aασe−a X (X − aX2)

− ασe−a X (1 − 2aX) − ασ pY e−a X (1 − aX)

− α2σe−a X (X − aX2)),

we have

|b a1 a2| =
∣∣∣∣∣∣
σ X σ pY B1

0 0 B2

0 −σαe−a X (X − aX2) B3

∣∣∣∣∣∣
= σ 2α2e−2a X (X − aX2)2X.

Thus, b, a1 and a2 are linearly independent on R
3+.

Then for each (X, Y, Z) ∈ R
3+, where X �= 1

a , the
vector b, a1 and a2 span the space R3+. Based on the
Hörmander Theorem [21], the transition probability
function P(t, x0, y0, z0, A) has a continuous density
k(t, x, y, z; x0, y0, z0), i.e., k ∈ C∞((0,∞) × R

3+ ×
R
3+). �


Lemma 3.5 For every (x1, y1, z1) ∈ R
3+ and (x2, y2,

z2) ∈ R
3+, there exists T > 0 such that k(T, x2, y2,

z2; x1, y1, z1) > 0.

Proof The method of verifying the positivity of k can
be adopted, based on support theorems [20]. To use the
support theorems, we first give Stratonovich version of
Itô’s form (4):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d X (t) =
[
−(δ + 1

2
σ 2)X (t) + pY (t)

]
dt

+ σ X (t) ◦ d B(t),

dY (t) = α [Z(t) − Y (t)] dt,

d Z(t) = α
[

X (t)e−a X (t) − Z(t)
]

dt.

(13)
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Next, we fix a point (x0, y0, z0) ∈ X and a function
φ ∈ L2([0, T ];R) and the integral system is as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xφ(t) = x0 +
∫ t

0
[−(δ + 1

2
σ 2)Xφ(s) + pYφ(s)

+ σ Xφ(s)φ]ds,

Yφ(t) = y0 +
∫ t

0
α

[
Zφ(s) − Yφ(s)

]
ds,

Zφ(t) = z0 +
∫ t

0
α

[
Xφ(s)e−a Xφ(s) − Zφ(s)

]
ds.

(14)

Let N = (x, y, z)T , N0 = (x0, y0, z0)T , denote DN0;φ
be the Fréchet derivative of the function h �→Nφ+h(T ) :
L2([0, T ];R) → X. If the rank of the Fréchet deriva-
tive DN0;φ is full rank for someφ ∈ L2([0, T ];R), then
k(T, x, y, z; x0, y0, z0) > 0 for N = Nφ(T ) holds. Let

�(t) = f ′(Nφ(t)) + φg′(Nφ(t)),

where f ′ and g′ are the Jacobians of

f =
⎛
⎝

−(δ + σ 2

2 )x + py
α(z − y)

α(xe−ax − z)

⎞
⎠ and g =

⎛
⎝

σ x
0
0

⎞
⎠ ,

respectively. Let Q(t, t0) (0 ≤ t0 ≤ t ≤ T ) be a
matrix function satisfies Q(t0, t0) = I d, ∂ Q(t,t0)

∂t =
�(t)Q(t, t0), then

DN0;φh =
∫ T

0
Q(T, s)g(s)h(s)ds.

Step 1: To illustrate the rank of DN0;φ is 3. Let ε ∈
(0, T ) and h(t) = χ[T −ε,T ](t)

xφ(t) (t ∈ [0, T ]), where χ is
the indicative function on [T − ε, T ]. In the light of
Taylor expansion, namely,

Q(T, s) = I d + �(T )(s − T )

+1

2
�2(T )(s − T )2 + o((s − T )2).

Therefore,

DN0;φh = εv − 1

2
ε2�(T )v + 1

6
ε3�2(T )v + o(ε3),

where v = (−σ, 0, 0)T , then compute

�(T )v = σ

⎛
⎝

−(δ + σ 2

2 ) + αφ p 0
0 −α α

αe−ax (1 − ax) 0 −α

⎞
⎠

⎛
⎝

σ

0
0

⎞
⎠

=
⎛
⎝

σ(−(δ + σ 2

2 ) + αφ)

0
σαe−ax (1 − ax)

⎞
⎠

and

�2(T )v = σ

⎛
⎝

−(δ + σ 2

2 ) + αφ p 0
0 −α α

αe−ax (1 − ax) 0 −α

⎞
⎠

=
⎛
⎝

σ(−(δ + σ 2

2 ) + αφ)

0
σαe−ax (1 − ax)

⎞
⎠

=
⎛
⎝

σ H
σα2K

σαK (H − α)

⎞
⎠ ,

where H = −(δ + σ 2

2 ) + αφ and K = e−ax (1 − ax),
thus

|v �(T )v �2(T )v| =
∣∣∣∣∣∣
σ σ H σ H2

0 0 σα2K
0 σαK σαK (H − α)

∣∣∣∣∣∣
= −σ 3α3e−2a X (1 − aX)2 < 0,

where X �= 1
a , so v, �(T )v and �2(T )v are linearly

independent. Therefore, the rank of DN0;φ is 3.
Step 2: Firstly, we claim that there exists a con-

trol function φ and T > 0 such that Xφ(0) = X0,
Xφ(T ) = X for any two points X0 ∈ R

3+ and X ∈ R
3+

holds, then system (14) can be replaced by the follow-
ing differential equations:
⎧⎪⎪⎨
⎪⎪⎩

X ′
φ(t) = −(δ + 1

2σ 2)Xφ(t) + pYφ(t) + σ Xφ(t)φ,

Y ′
φ(t) = α

[
Zφ(t) − Yφ(t)

]
,

Z ′
φ(t) = α

[
Xφ(t)e−a Xφ(t) − Zφ(t)

]
.

(15)

Toconstruct the functionφ, first of all,wefindapositive
constant T and a C3-function Yφ : [0, T ] → (0,+∞)

such that
{

αZφ(t) = Y ′
φ(t) + αYφ(t) > 0,

Xφ(t)e−a Xφ(t) = Y ′′
φ (t) + 2αY ′

φ(t) + α2Yφ(t) > 0.

(16)

and the following boundary value conditions are met:

Yφ(0) = y1, Yφ(T ) = y2,

Y ′
φ(0) = α(z1 − y1) � C1, Y ′

φ(T ) = α(z2 − y2) � D1,

Y ′′
φ (0) = α(z′

1 − y′
1) = α2(x1e−ax1 − 2z1 + y1) � C2,

Y ′′
φ (T ) = α(z′

2 − y′
2) = α2(x2e−ax2 − 2z2 + y2) � D2.

(17)

Next we separate the construction of the function Yφ on
three subintervals [0, ε1], [ε1, T − ε2] and [T − ε2, T ],
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where 0 < ε1, ε2 < T
2 , will be determined later. We

choose the C3-function Yφ on [0, ε1] as follows:

Yφ(t) = y1 + C1t + C2

2
t2 + At3, ∀t ∈ [0, ε1], (18)

where the coefficients C1, C2 and y1 are given in (17),
then the coefficient A satisfies

Z ′
φ(ε1) = 1

α
Y

′′
φ (ε1) + Y

′
φ(ε1)

= 1

α
(C2 + 6Aε1) + C1 + C2ε1 + 3Aε21 = 0,

thus,

A = −C2 + αC1 + αC2ε1

σε1 + 3σε21
.

When t = 0, Yφ(0) = y1, Y ′
φ(0) = C1, Y ′′

φ (0) = C2

from (18), namely, the conditions (17) hold. Next, we
intend to prove (16). Due to

αZφ(0) = Y ′
φ(0) + Yφ(0) = C1 + αy1 > 0,

Xφ(0)e−a Xφ(0) = Y ′′
φ (0) + 2αY ′

φ(0) + α2Yφ(0)

= C2 + 2αC1 + α2y1 > 0,

then there is a sufficiently small ε1 ∈ (0, C1+αy1
|C2| ) such

that for t ∈ (0, ε1),

Y ′
φ(t) + αYφ(t) = Aαt3

+ (3A + C2

2
α)t2 + (C2 + C1α)t + C1 + αy1 > 0,

G1(t) � Aα2t3 + (6αA + C2

2
α2)t2

+ (2αC2 + α2C1)t + C2 + 2αC1 + α2y1 > 0,

G2(t) � Aα2t3 + (6αA + C2

2
α2)t2 + (2αC2

+ α2C1)t + α(C1 + αy1) − αC2ε1 > 0.

(19)

According to (19), the first inequality of (16) is satis-
fied. And the second inequality of (16) also holds since

Y ′′
φ (t) + 2αY ′

φ(t) + α2Yφ(t) = 6At + G1(t).

It can be discussed in two cases.
Case 1. If C2 + αC1 + αC2ε1 ≤ 0, i.e., A ≥ 0, then

Y ′′
φ (t) + 2αY ′

φ(t) + α2Yφ(t) = 6At

+G1(t) ≥ G1(t) > 0 by (19).

Case 2. If C2 + αC1 + αC2ε1 > 0, then

!‘Y ′′
φ (t) + 2αY ′

φ(t) + α2Yφ(t)

= 6At + G1(t) ≥ 6Aε1 + G1(t)

≥ −(C2 + αC1 + αC2ε1) + G1(t) = G2(t) > 0 by (19).

Thus, Yφ(t) satisfies (16) and (17) for t ∈ [0, ε1]. The
same proof for t ∈ [T − ε2, T ], we also find a C3-
function Yφ(t): [T − ε2, T ] → (0,∞) such that

Yφ(T ) = y1, Y ′
φ(T ) = C1,

Y ′′
φ (T ) = C2, Z ′

φ(ε2) = 0,

and Yφ(t) satisfies inequalities (16) for t ∈ [T −ε2, T ].
We choose T sufficiently large and extend the function
Yφ(t) : [0, ε1]∪[T −ε2, T ] → (0,∞) to aC3-function
Yφ(t) defined on [0, T ] such that (15)–(17) hold.

Then from the second and the third equations of
(15), two C1-function Zφ(t) and Xφ(t) can be found
to satisfy (16) and (17), respectively. Finally there is
a continuous control function φ which can be deter-
mined from the first equation of (15). This completes
the proof. �


Lemma 3.6 The Markov semigroup {P(t)}t≥0 is asymp-
totically stable or is sweeping concerning compact sets.

Proof Based on the result of Lemma 3.4, it shows that
{P(t)}t≥0 is an integral Markov semigroup, which has
a continuous density k(t, x, y, z) for t > 0. By Lemma
3.5, we know for every g ∈ D,
∫ ∞

0
P(t)gdt > 0, a.s. on R

3+,

due to k(t, x, y, z) > 0 and P(t)g = ∫
R
3+ k(t, x)g(x)m

(dx), where x = (x, y, z). Therefore, according
to Lemma 2.5, the Markov semigroup {P(t)}t≥0 is
asymptotically stable or is sweeping concerning com-
pact sets. �


Lemma 3.7 If p > δ+ σ 2

2 , then the Markov semigroup
{P(t)}t≥0 is asymptotically stable.

Proof By virtue of the Lemma 3.6, it implies that the
semigroup {P(t)}t≥0 satisfies the Foguel alternative. In
order to exclude sweeping, we construct a nonnegative
C2-function V and a closed set � ∈ R

3+ such that

sup
(X,Y,Z)∈R3+\�

A ∗V < 0,

where the C2-function V is known as Khasminskiĭ
function [22].
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Define a nonnegative C2-function V by

V (X, Y, Z) = M

(
− log X − p

α
log Y

− p

α
log Z

)
− log Y − log Z

+ 1

θ + 1

(
X + 2p

α
Y + 3p

α
Z

)θ+1

:= V2 − log Y − log Z + V3,

where M and 0 < θ < 1 will be determined later. First,
by Lemma 2.1, we compute

A ∗V2 = M

(
δ + σ 2

2
+ 2p −

(
p

Y

X
+ p

Z

Y
+ p

Xe−a X

Z

) )

≤ M

(
δ + σ 2

2
+ 2p − 3

(
p3

Y

X
· Z

Y
· Xe−a X

Z

) 1
3
)

= M

(
δ + σ 2

2
+ 2p − 3pe− a X

3

)

= M

(
δ + σ 2

2
+ 2p − 3p + 3p

(
1 − e− a X

3

))

≤ M

(
− p + δ + σ 2

2
+ paX

)
. (20)

A ∗V3 =
(

X + 2p

α
Y + 3p

α
Z

)θ

(
− δX + pY + 2p(Z − Y ) + 3p(Xe−a X − Z)

)

+ θ

2
σ 2X2

(
X + 2p

α
Y + 3p

α
Z

)θ−1

≤
(

X + 2p

α
Y + 3p

α
Z

)θ(
− δX − pY − pZ

+ 3p

ae

)
+ θ

2
σ 2X2

(
X + 2p

α
Y + 3p

α
Z

)θ−1

≤ −δX θ+1 − 2θ pθ+1

αθ
Y θ+1

− 3θ pθ+1

αθ
Z θ+1 + 3p

ae

(
X + 2p

α
Y + 3p

α
Z

)θ

+ θ

2
σ 2X θ+1 ≤ −1

2
(δ − θ

2
σ 2)X θ+1

− 2θ−1 pθ+1

αθ
Y θ+1 − 3θ pθ+1

2αθ
Z θ+1 + B. (21)

And

A ∗(− log Y − log Z) = 2α − α
Z

Y
− α

Xe−a X

Z
, (22)

where

B = sup
(X,Y,Z)∈R3+

{
− 1

2
(δ − θ

2
σ 2)X θ+1

−2θ−1 pθ+1

αθ
Y θ+1 − 3θ pθ+1

2αθ
Z θ+1

+3p

ae

(
X + 2p

α
Y + 3p

α
Z

)θ}
,

and δ − θ
2σ 2 > 0, i.e., 0 < θ < 2δ

σ 2 .
Combining (20)–(22), we obtain

A ∗V = A ∗V2 + A ∗(− log Y − log Z) + A ∗V3

≤ M

(
− p + δ + σ 2

2
+ pa X

)

+ 2α + B − α
Z

Y
− α

Xe−a X

Z

− 1

2
(δ − θ

2
σ 2)Xθ+1 − 2θ−1 pθ+1

αθ
Y θ+1

− 3θ pθ+1

2αθ
Zθ+1 = −Mμ + 2α + B + Mpa X

− α
Xe−a X

Z
− α

Z

Y
− 1

2
(δ − θ

2
σ 2)Xθ+1

− 2θ−1 pθ+1

αθ
Y θ+1 − 3θ pθ+1

2αθ
Zθ+1

≤ −2 + Mpa X − α
Xe−a X

Z
− α

Z

Y

− 1

4
(δ − θ

2
σ 2)Xθ+1 − 1

4
(δ − θ

2
σ 2)Xθ+1

− 2θ−1 pθ+1

αθ
Y θ+1 − 3θ pθ+1

2αθ
Zθ+1,

(23)

where μ = p − δ − σ 2

2 > 0, M is a positive constant
satisfying −Mμ + 2α + B ≤ −2.

Define a bounded closed set e

� =
{
(X, Y, Z) ∈ R

3+| ε1 ≤ X ≤ 1

ε1
, ε2 ≤

X ≤ 1

ε2
, ε3 ≤ X ≤ 1

ε3

}
, (24)

where 0 < ε1, ε2, ε3 < 1 are sufficient small real
numbers. In the set R3+ \ �, ε1, ε2 and ε3 satisfy the
following conditions:

0 < ε1 ≤ min

{
θ+1

√
δ − θ

2σ 2

4(H + 1)
,

1

Mpa

}
,

0 < ε3 ≤ min

{
3p

α
θ+1

√
α

6(H + 1)
, ε21e

− a
ε1

}
,

0 < ε2 ≤ min

{
2p

α
θ+1

√
α

4(H + 1)
,

αε3

1 + H

}
,

(25)

where

H = max
X∈(0,+∞)

{
− 2 + MpaX − 1

4
(δ − θ

2
σ 2)X θ+1

}
.
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For the convenience of the following discussion, we
will divide �c = R

3+ \ � into six domains:

�1 =
{
(X, Y, Z) ∈ R

3+| X >
1

ε1

}
,

�2 =
{
(X, Y, Z) ∈ R

3+| Y >
1

ε2

}
,

�3 =
{
(X, Y, Z) ∈ R

3+| Z >
1

ε3

}
,

�4 = {(X, Y, Z) ∈ R
3+| 0 < X < ε1},

�5 = {(X, Y, Z) ∈ R
3+| ε1 ≤ X ≤ 1

ε1
, 0 < Z < ε3},

�6 = {(X, Y, Z) ∈ R
3+| ε1 ≤ X ≤ 1

ε1
,

ε3 ≤ Z ≤ 1

ε3
, 0 < Y < ε2},

clearly, �c = �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5 ∪ �6. Next, we
will prove that A ∗V ≤ −1 for any (X, Y, Z) ∈ �c,
this is equivalent to proving A ∗V ≤ −1 in the above
six domains, respectively. We discuss it in six cases.
Case 1. If (X, Y, Z) ∈ �1, then

A ∗V ≤ H − δ − θ
2σ 2

4
Xθ+1

≤ H − δ − θ
2σ 2

4εθ+1
1

≤ −1, by the first inequality of (25).

Case 2. If (X, Y, Z) ∈ �2, then

A ∗V ≤ H − 2θ−1 pθ+1

αθ
Y θ+1

≤ H − 2θ−1 pθ+1

αθεθ+1
2

≤ −1,

by the third inequality of (25).

Case 3. If (X, Y, Z) ∈ �3, then

A ∗V ≤ H − 3θ pθ+1

2αθ
Z θ+1

≤ H − 3θ pθ+1

2αθεθ+1
3

≤ −1,

by the second inequality of (25).

Case 4. If (X, Y, Z) ∈ �4, then

A ∗V ≤ −2 + MpaX

≤ −2 + Mpaε1 ≤ −1,

by the first inequality of (25).

Case 5. If (X, Y, Z) ∈ �5, then

A ∗V ≤ H − α
Xe−a X

Z
= H − α

X

Z

1

ea X

≤ H − α
ε1

ε3

1

e
a
ε1

≤ −1,

by the second inequality of (25).

Case 6. If (X, Y, Z) ∈ �6, then

A ∗V ≤ H − α
Z

Y
≤ H − α

ε3

ε2
≤ −1, by the third inequality of (25).

To summarize, there exists a closed set � ∈ R
3+ such

that

sup
(X,Y,Z)∈R3+\�

A ∗V ≤ −1 < 0.

According to [22], we know that the existence of
a Khasminskiĭ function shows that the semigroup
{P(t)}t≥0 exclude sweeping from the set�. By Lemma
2.5, we can get that the semigroup {P(t)}t≥0 is asymp-
totically stable. �


3.4 Probability density function

In this part, we will give the probability density func-
tion of quasi-stationary distribution near the positive
equilibrium point of the model (4) with the strong ker-
nel.

First, let u = X −X∗, v = Y −Y ∗ andw = Z −Z∗,
we obtain
⎧
⎪⎪⎨
⎪⎪⎩

du = [−δ(u + X∗) + p(v + Y ∗)
]

dt + σ(u + X∗)d B(t),

dv = α
[
(w + Z∗) − (v + Y ∗)

]
dt,

dw = α
[
(u + X∗)e−a(u+X∗) − (w + Z∗)

]
dt.

(26)

The system (26) can be approximately expressed as:
⎧⎪⎨
⎪⎩

du = (−a11u + a12v)dt + σ X∗d B(t),

dv = (−a21v + a21w)dt,

dw = (a31u − a33w)dt,

(27)

where a11 = δ, a12 = p, a21 = α, a31 = α(1 −
aX∗)e−a X∗ = αδ

p (1 + ln δ
p ) and a33 = α.

Now we give the existence theorem and specific
form of the probability density function of the linear
system (27) of (4).

Theorem 3.8 If

δ < p and δα2(5 + ln
δ

p
) + α(2α2 + δ2) > 0,
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then the distribution of the solution (u, v, w) of system
(27) has a density function �(u, v, w) which takes the
following form

�(u, v, w) = (2π)−
3
2 |	|− 1

2 e− 1
2 (u,v,w)	−1(u,v,w)T

,

and corresponding to the marginal probability density
function

�(u) = 1√
2πσ1

e
− u2

2σ21 ,

where 	 denotes the covariance matrix of (u, v, w),
	−1 = 2

σ 2α2(1−a X∗)2e−2aX∗ (di j )3×3, di j (i, j = 1, 2, 3)

and σ1 are defined as below.

Proof Let y = w − v, by (27), then
{

dy = [a31u − (a21 + a33)y − a33v]dt,

dv = a21ydt.

Let x = a31u − (a21 + a33)y − a33v, we have
⎧
⎪⎨
⎪⎩

dx = −(A11x + A12y + A13v)dt + σa31X∗d B(t),

dy = xdt,

dv = a21ydt,

(28)

where A11 = a11 + a21 + a33 = δ + 2α > 0,
A12 = a11a21 + a11a33 + a21a33 = 2δα + α2 > 0,
A13 = a11a33−a12a31 = −δα ln δ

p > 0.U (x, y, v) be
the density function of (x, y, v), which can be approx-
imated by the following Fokker–Planck equation:

0 = ρ2

2

∂2U

∂x2
− ∂[−(A11x − A12y − A13v)U ]

∂x

−∂(xU )

∂y
− ∂(a21yU )

∂v
,

i.e.,

0 =
(

∂

∂y
− A12

θ22

∂

∂y

)[
ρ2

2

∂U

∂x
+ (θ11x + θ13v)U

]

+
(

A12

θ22

∂

∂x
− a21

θ22

∂

∂v

)[
ρ2

2

∂U

∂y
+ θ22xU

]

+ a21
θ22

∂

∂y

[
ρ2

2

∂U

∂v
+ (θ31x + θ33v)U

]
,

where θ12 = θ21 = θ23 = θ32 = 0. From the above
equation, we get,

θ11 = A11 > 0, θ13 = A13 > 0, θ31 = A11A12 − θ22

a21
,

θ33 = A12A13

a21
> 0,

on account of

θ22 = A11A12 − a21A13 = δα2
(
5 + ln

δ

p

)

+α(2α2 + δ2) > 0.

Obviously, θi j = θ j i and the matrix θ = (θi j )3×3 (i, j
= 1, 2, 3) is positive definite owing to θ11θ22θ33 −
θ213θ22 = θ222

A13
a21

> 0. The joint density function of
(x, y, v) is as follows:

U (x, y, v) = Ce
− 1

ρ2
(θ22x2+θ22 y2+θ33v

2+2θ13xv)

= Ce
− 1

ρ2
(x,y,v)θ(x,y,v)T

,

where C is a positive constant satisfying
∫∫∫

R
3+ U (x,

y, v)dxdydv = 1 and
⎛
⎝

x
y
v

⎞
⎠ =

⎛
⎝

a31 a21 −(a21 + a33)
0 −1 1
0 1 0

⎞
⎠

⎛
⎝

u
v

w

⎞
⎠ � A

⎛
⎝

u
v

w

⎞
⎠ .

Thus, the Gaussian density function corresponding to
(u, v, w) is as follows:

�(u, v, w) = C ′e− 1
ρ2

(u,v,w)AT θ A(u,v,w)T

,

where C ′ is a positive constant satisfying
∫∫∫

R
3+ �(u,

v, w)dudvdw = 1.

	−1 = 2

ρ2 AT θ A � 2

ρ2

D = 2

σ 2α2(1 − aX∗)2e−2a X∗ (di j )3×3,

where 	 denotes the covariance matrix of (u, v, w).
Apparently, the matrix 	−1 is positive definite, then
	 is also positive definite matrix. Therefore, di j =
d ji (i, j = 1, 2, 3). Direct calculation leads to that

d11 = a2
31θ11 = δ2α2

p2
(2α + δ)

(
1 + ln

δ

p

)2

,

d12 = a31(a21θ11 + θ13)

= δα2

p
(1 + ln

δ

p
)

(
2α + δ − δ ln

δ

p

)
,

d13 = −θ11a31(a21 + a33)

= −2δα2

p
(2α + δ)

(
1 + ln

δ

p

)
,

d22 = a21(a21θ11 + 2θ31) + θ22 + θ33

= 2α(2α2 + 3δα + δ2) − δ(α2 + 2δ + α) ln
δ

p
,

d23 = −(a21 + a33)(a21θ11 + θ31) − θ22
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= −α

(
6α2 + 7δα + 2α2 − δα ln

δ

p

)
,

d33 = θ11(a21 + a33)
2 + θ22

= α

(
10α2 + 9δα + 2δ2 + δα ln

δ

p

)
.

Then we have

�(u, v, w) = (2π)−
3
2 |	|− 1

2 e− 1
2 (u,v,w)	−1(u,v,w)T

.

The marginal probability density function is expressed
by

�(u) = 1√
2πσ1

e
− u2

2σ21 .

So, let’s try to find σ 2
1 , we have

	 =
(

2

ρ2 AT θ A

)−1

= ρ2

2
A−1θ−1(A−1)T .

We know that σ 2
1 is the element in the first row and the

first column of the covariance matrix, direct calcula-
tion, we get

σ 2
1 = ρ2

2

θ33

a2
31(θ11θ33 − θ213)

= σ 2(2δ + α)

2a2[(2δ + α)(2δ + α + δα2 ln δ
p )] .

�


4 Main results in the weak kernel case

When n = 0, f (t) is weak kernel, i.e., f (t) = αe−αt .

Define

Y (t) =
∫ t

−∞
αe−α(t−s) X (s)e−a X (s)ds,

considering the actual situation, white noise is also
added into (2), then system (2) with weak kernel and
environment noise is becoming:⎧
⎨
⎩

d X (t) = [−δX (t) + pY (t)] dt + σ X (t)d B(t),

dY (t) = α
[

X (t)e−a X (t) − Y (t)
]

dt.
(29)

Using same methods similar to Sect. 3, we have come
to the following conclusions directly:

Theorem 4.1 There exists a unique solution of the sys-
tem (29) with the weak kernel, for any initial value
(X (0), Y (0)) ∈ R

2+, which will remain in R
2+ with

probability one.

Theorem 4.2 Let (X (t), Y (t)) be a solution of the
stochastic system (29) with the weak kernel, for any
given initial value (X (0), Y (0)) ∈ R

2+. If p < δ, then

lim
t→∞ X (t) = 0 and lim

t→∞ Y (t) = 0 a.s.

Theorem 4.3 Let (X (t), Y (t)) be a solution of the
stochastic system (29) with the weak kernel. The distri-
bution of (X (t), Y (t)) has a density U (t, x, y), ∀t > 0.

If p > δ + σ 2

2 , then there is a unique density U∗(x, y)

satisfies

lim
t→∞

∫∫

R
2+

|U (t, x, y) − U∗(x, y)|dxdy = 0.

5 Numerical simulations

Using Milstein’s method [23], the discretized equation
of model (4) is as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xk+1 = Xk + (−δXk + pYk)�t + σ Xk
√

�tξk

+ 1

2
σ 2Xk(ξ

2
k − 1)�t,

Yk+1 = Yk + α (Zk − Yk) �t,

Zk+1 = Zk + α
(

Xke−a Xk − Zk

)
�t,

where ξ2k (k = 1, 2, . . .) are independent Gaussian ran-
dom variables N (0, 1). Next, we give two numerical
examples to support our results.

5.1 Extinction

Using the software MATLAB, we choose right param-
eters δ = 0.3, p = 0.1, a = 2 and the strong kernel
coefficient α = 0.4. For the deterministic system (3)
and the stochastic model (4), we find that the Nichol-
son’s blowflies X (t) will eventually die out, which is
consistent with the result of Theorem 3.2 (see Fig. 1).
Compared with the four pictures (a), (b), (c) and (b)
in Fig. 1, it can be observed that the extinction of the
Nicholson’s blowflies X (t)will be accelerated with the
increase of noise intensity σ .

5.2 Asymptotic stability

For the sake of testing the existence of a stationary
distribution, we choose δ = 0.3, p = 0.7, a = 2
and α = 0.4. For deterministic system (3), there

123



Dynamical behavior of a stochastic Nicholson’s blowflies model 2093

Time t

0

0.01

0.02

0.03

0.04

0.05

0.06
X

(t)

Deterministic
Stochastic

(a) σ = 0.10

Time t

0

0.01

0.02

0.03

0.04

0.05

0.06

X
(t)

Deterministic
Stochastic

(b) σ = 0.13

Time t

0

0.01

0.02

0.03

0.04

0.05

0.06

X
(t)

Deterministic
Stochastic

(c) σ = 0.16

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40

Time t

0

0.01

0.02

0.03

0.04

0.05

0.06

X
(t)

Deterministic
Stochastic

(d) σ = 0.19

Fig. 1 The path of X (t) for the stochastic Nicholson’s blowflies
model (4) (blue line) and its corresponding deterministic
model (red line) with initial parameters (X (0), Y (0), Z(0)) =

(0.05, 0.01, 0.01) under different noise intensities σ = 0.10,
σ = 0.13, σ = 0.16 and σ = 0.19. (Color figure online)

exists a locally asymptotically stable (see the left-
hand side of Fig. 2), where positive equilibrium is
E∗ = (0.4236, 0.1816, 0.1816). We find that there
exists a stationary distribution and a higher σ generates

larger fluctuations of X (t). The distribution of X (t) is
positively skewed with the noise increases as shown in
Fig. 2.
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Fig. 2 Figures on the left-hand side show solution in the total
number of Nicholson’s blowflies X (t) resulting from Eq. (4)
(blue line) and its corresponding deterministic model (red line),
with initial conditions (X (0), Y (0), Z(0)) = (0.05, 0.01, 0.01)
under different noise intensities σ = 0.1 (a), σ = 0.2 (c) and

σ = 0.3 (e). Figures on the right-hand side present histograms
of the probability density function of X(100) with three different
values of σ : σ = 0.1 (b), σ = 0.2 (d) and σ = 0.3 (f). (Color
figure online)
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6 Conclusion

In this paper, we formulate a stochastic Nicholson’s
blowflies model with distributed delay by using the lin-
ear chain technique. The main objective of this paper
is to discuss the long-time behavior of Nicholson’s
blowflies model. Firstly, the existence and uniqueness
of globally positive solution for the stochastic Nichol-
son’s blowflies model is obtained. Then, the sufficient
conditions for the stochastic extinction of Eq. (4) are
established. Generally speaking, due to the diffusion
matrix is degenerate, the uniform elliptic condition is
invalid. So, using Markov semigroup theory, the exis-
tence of a unique stationary distribution of the model
(4) is derived. Finally, particular attention is given to
the expression of the density function around the pos-
itive equilibrium of the deterministic system. Since
the corresponding Fokker–Planck equation is three-
dimensional, the previous method is invalid.While this
paper fills this gap. In order to answer the questions
mentioned in the introduction, we state themain results
as follows:

(i) Theorem 3.2 gives the conclusion of extinction
that if p < δ, then

lim
t→∞ X (t) = 0, lim

t→∞ Y (t) = 0 and

lim
t→∞ Z(t) = 0 a.s.

That is to say, the population X (t) of the stochastic
system (4) becomes extinct with probability one.

(ii) According to Theorem 3.3, the condition for sta-
tionary distribution is p > δ + σ 2

2 .
(iii) Through Theorem 3.8, the conditions for the exis-

tence of probability density function is

δ < p and δα2(5 + ln
δ

p
) + α(2α2 + δ2) > 0.

Many interestingquestions deserve further discus-
sion. For example, a more complex model with
Markovian switching is proposed to consider the
positive recurrence of the system. We’ll leave this
for future work.
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