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Abstract This paper deals with two problems: the
identification and compensation of hysteresis nonlin-
earity in dynamical systems using nonlinear poly-
nomial autoregressive models with exogenous inputs
(NARX). First, based on gray-box identification tech-
niques, some constraints on the structure and parame-
ters of NARX models are proposed to ensure that the
identified models display a key feature of hysteresis.
In addition, a more general framework is developed
to explain how hysteresis occurs in such models. Sec-
ond, two strategies to design hysteresis compensators
are presented. In one strategy, the compensation law is
obtained through simple algebraic manipulations per-
formed on the identified models. In the second strat-
egy, the compensation law is directly identified from
the data. Both numerical and experimental results are
presented to illustrate the efficiency of the proposed
procedures. Also, it has been found that the compen-
sators based on gray-box models outperform the cases
with models identified using black-box techniques.
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1 Introduction

Hysteresis is a nonlinear behavior that is present in
several systems and devices. It is commonly related
to the phenomena of ferromagnetism, plasticity, and
friction, among others [56]. Some examples include
mechanical, electronic and biomedical systems, as well
as sensors and actuators such as magnetorheological
dampers, piezoelectric actuators, and pneumatic con-
trol valves [20,46,50]. An intrinsic feature of such sys-
tems is the memory effect, meaning that the output
depends on the history of the corresponding input.

In addition to the memory effect, the literature pro-
vides different definitions and conditions to distinguish
such systems and characterize the hysteretic behavior.
In some cases, the occurrence of hysteresis has been
associated with the existence of several fixed points
whenever these systems are subject to a constant [41]
or time-varying [37] input signal. Additionally, hys-
teresis has also been defined as a hard nonlinearity that
depends on the magnitude and rate of the input signal.
These aspects can pose various performance limitations
if not properly taken into account during the control
design [50,55]. Hence, a common goal is to attenuate
the hysteretic behavior of the system [18,57,63] prior
to feedback control design.
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In many approaches, the compensation of hysteresis
starts with obtaining a suitable model. In the literature,
several hysteresis models have been proposed based on
phenomenological, black-box, and gray-box modeling
approaches.

In the realm of models based on first principles,
important contributions have been made based on dif-
ferential equations and operators [28], such as the
Bouc–Wen model [58], the Duhem model [42], the
Preisach model [26], and the Prandtl–Ishlinskii opera-
tor [15]. Thesemodels have beenwidely used to predict
the hysteresis behavior due to their ability to describe
a variety of hysteresis loops that resemble the propri-
eties of awide class of real nonlinear hysteretic systems
[53]. Besides, such models are known to be challeng-
ing for system identification techniques [48]. In some
cases, as for the Bouc–Wen model that has a well-
known structure, the challenge stems from the problem
of estimating its parameters, which appear nonlinearly
in the equation. This has led many works in the litera-
ture to focus onhow to estimate the parameters of such a
model, which often requires sophisticated optimization
algorithms [16,31,60]. Apart from the computational
effort required in the identification of phenomenolog-
ical models, their application in the design of com-
pensators is somewhat limited due to their structural
complexity [28,46].

From the point of view of black-box modeling,
there are few works that compare techniques in the
identification of hysteretic systems [43]. In this con-
text, nonlinear autoregressive with exogenous inputs
(NARX) models are considered a convenient choice
due to their ability to predict a wide class of nonlinear
behaviors [34,35]. Nevertheless, very few works con-
sider NARXmodels, especially in polynomial form, in
the representation of hysteresis, and in most cases, the
approach is black-box and structure selection is mostly
ad hoc. Interesting works that fall in this category are
[43], where the estimated model has 32 terms and [61]
where a model with no less than 84 terms was esti-
mated. Although thesemodels can predict the temporal
response of the hysteretic system, no critical analysis
with respect to their ability to describe behaviors that
are commonly used to characterize such systems, e.g.,
hysteresis loop, was done.

Related work was performed by Masri and co-
workers using continuous-time polynomials [39] in a
black-box fashion. As with the previous papers, the
authors set off with a large model either 22 or 42 terms,

but in a second stage, they prune the model by elimi-
nating those terms with small coefficients. This proce-
dure is known to lack robustness with respect to noise
[1], as was confirmed by the authors in [39]. The need
for a more careful structure selection procedure was
also acknowledged by them. In a similar vein, apart
from continuous-time monomials the authors in [14]
use Chebyshev polynomials and point out that very
compact models were possible to be obtained at the
cost of some performance, but still presenting some
important aspects of hysteresis. It should be empha-
sized that black-box modeling does not rely on prior
knowledge about the system [10,17,25]. Consequently,
relevant features that should be present in a model to
reproduce hysteresis and an appropriate structure for
designing compensators are not ensured by black-box
techniques. Hence, the search for models that have spe-
cific features that are accurate and that have a suitable
structure for designing compensators remains an open
problem. Results in the field of neural networks can be
found in [4,6,45].

As for the use of gray-box techniques, it is first
pointed out that there are very few works in this field
and that the term gray box is applied in a variety
of ways. For instance, one of the very few papers
to address some sort of gray-box modeling for hys-
teretic system is [61]. However, by gray box the authors
refer to the use of physically inspired model struc-
tures. Specifically, they estimate parameters for LuGre
and Maxwell slip models. Hence, despite the title of
the paper, the problem addressed is the estimation of
parameters for such well-established model structures.
It can be argued that this falls into the category of gray-
box modeling where the auxiliary information is the
model structure itself. In this paper, we follow a differ-
ent route in which the auxiliary information assumed is
only that the system that produced the data is hysteretic.

A particular advantage of models obtained using
gray-box techniques is that they can be tailored to
reproduce specific relevant features [3]. For this pur-
pose, the use of NARX models has been found appro-
priate [21,36,37,59], since they have interesting fea-
tures with respect to the ability to predict nonlinear
behaviors and the structural flexibility. In addition, it
has been argued that it is viable to enforce constraints
on the model structure in order to make it suitable for
designing compensators [44].

An important step in modeling the hysteresis non-
linearity was advanced in [37], in which sufficient
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conditions were presented for NARX models to dis-
play a hysteresis loop when subject to a certain class
of input signals. An appealing feature is the perfor-
mance andgenerality achievedwith a simplemodel of 4
terms, which is promising for designing compensators.
Additionally, the concept of a bounding structure H
formed by sets of stable equilibria and its implication
on the existence of the hysteresis loop in the identi-
fied models was introduced in [37]. However, for more
general cases, this concept and conditions need to be
adapted. For instance, the conditions proposed in [37]
are not sufficient to ensure the existence of multiple
fixed points at steady state which is a very important
feature for hysteretic systems [12,41]. Despite this, to
the best of the authors knowledge, there are noworks in
the literature of NARX polynomial models that guar-
antee such a feature. Also, the concept of bounding
structure is limited to cases in which the sets of equi-
libria that form this structure are stable. As with [37],
the approach proposed in this paper does not deal with
non-local memory effect [40].

Finally, as for the compensation of hysteresis, there
are some works in the literature that use specific mod-
els, such as Bouc–Wen [49] and the Prandtl–Ishlinskii
operator [27,50]. However, not every hysteretic system
can be represented by such models. Besides, there are
many challenges related to the estimation of the param-
eters of such nonlinear-in-the-parameter models. Also,
their structural complexity represents an additional dif-
ficulty in the design of compensators. On the other
hand, NARX polynomial models are both quite general
and can present simple structure. However, the litera-
ture on the use of NARX models in the compensation
of hysteresis is still scarce [22,33]. One of the very few
papers that are concerned with obtaining structurally
simple NARX models that are particularly suitable for
model-based control is [36]. Although the authors iden-
tify a compact model for a hysteretic system, they have
not used the identified model in any control or com-
pensation scheme. It is also important to note that the
methodology proposed by them does not guarantee that
the identified models are suitable for designing com-
pensators. This can be verified by manipulating such
a compact model in [36] to obtain a compensator fol-
lowing the strategies provided in the present work. As
a result, it can be seen that the compensator obtained
would have a singularity when the velocity variable is
equal to zero. A similar problem would happen in [33].
The lack ofNARX-basedmethods for hysteresis design

can arguably be explained by the modeling problems
that could not be solved in the context of black-box
techniques. With such hurdles out of the way, simple
model-based techniques can be now developed.

The main contributions of this work are: the propo-
sition of a specific parameter constraint that ensures
reproducing a key feature of hysteresis through iden-
tified NARX models. A framework is put forward to
explain how the hysteresis loop results from an inter-
play of attracting and repelling regions in the input–
output plane. Moreover, some structural specifications
are enforced during the identification procedure in
such a way that the identified NARX model can be
effectively used to mitigate the hysteresis nonlinear-
ity. Hence, two model-based compensation strategies
are introduced. In the first, the compensation law is
obtained through simple algebraic manipulations per-
formed on the identified models. In the second strat-
egy, the compensation law is directly identified from
the data. It has been found that the compensators based
on gray-box models outperform those that use models
identified following black-box techniques.

This work is organized as follows: Sect. 2 presents
the background. A constraint to ensure hysteresis in
the identified models and a framework for understand-
ing how the hysteresis loop is formed are provided
in Sect. 3. Based on NARX models, two strategies to
design compensators are detailed in Sect. 4. The numer-
ical and experimental results for the model identifica-
tion and the compensator design are, respectively, given
in Sect. 5 and 6 . Section 7 presents the concluding
remarks.

1.1 Notation

Below is a list of some of the symbols and variable
used:

nu, ny : maximum input and output lags;
nθ : dimension of the parameter vector θ ;
τd: pure time delay;
τu, τy : arbitrary input and output delays;
τs: number of time steps that yk should be delayed

with respect to uk ;
Σy : sum of parameters of all linear output regres-

sors;
φ1,k : first difference of the input uk ;
φ2,k : sign(φ1,k);
ū, ȳ: steady-state values of uk and yk ;
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ỹ: output resulting from quasi-static analysis;
rk, mk : reference and compensation signal;
•̆: indicates a variable or function of the inverse

model M̆.

2 Background

A NARX model can be represented as [34]:

yk = F̃
(
yk−1, · · · , yk−ny , uk−τd , · · · , uk−nu

)
, (1)

where yk ∈ R is the output at instant k ∈ N, uk ∈ R is
the input,ny andnu are themaximum lags for the output
and input, respectively, τd ∈ N

+ is the pure time delay,
and F̃(·) is a nonlinear function of the lagged inputs
and outputs.

This work considers a linear-in-the-parameters
extended model set [13] of the NARX model (1) with
the addition of specific functions, such as absolute
value, trigonometric, and sign function. The goal is
to choose functions that allow the models to predict
systems whose nonlinearities cannot be well approx-
imated using only regressors based on monomials of
lagged input and output values. For instance, [13] rec-
ommends the addition of absolute value and sine func-
tions as candidate regressors for the identification of a
damped and forced nonlinear oscillator. In the case of
the identification of systemswith hysteresis, [37] shows
that including the regressor given by sign of the first dif-
ference of the input, i.e., sign(uk −uk−1), in addition to
polynomial terms is a sufficient condition to reproduce
hysteresis. Therefore, in this work the models are of
the type:

yk = F�
(
yk−1, · · · , yk−ny , uk−1, · · · , uk−nu ,

φ1, k−1, φ2, k−1
)
, (2)

where φ1, k=uk −uk−1, φ2, k=sign(φ1, k), and F�(·) is
a polynomial function of the regressor variables up to
degree � ∈ N

+. The addition of the regressors φ1, k and
φ2, k does not affect the number, location, and stability
of fixed points [7]. The definition of fixed points is
given below.

Definition 1 (Fixed points [7]). The steady-state anal-
ysis of the model (2) is computed by taking yk=ȳ, ∀k,
uk=ū, ∀k and, consequently, φ1, k=uk − uk−1=0
and φ2, k=sign(φ1, k)=0, ∀k, yielding ȳ = F̄�(ȳ, ū),
whose solution ȳ for a given constant value of input ū
is defined as the fixed point, or equilibria, of model (2).

��

The number of solutions for which the model
remains invariant, given ū, depends on the maximum
degree of output regressors in the model. Hysteretic
models are characterized by the fact that any solution
obtained with a constant input is an equilibria and,
therefore, such models have a continuum of steady-
state solutions, whose definition is given below which
assumes that F� is smooth.

Definition 2 (Continuumof steady-state solutions [41]).
Let uk=ū, ∀k, be any constant input of model (2).
Hence,φ1, k=uk−uk−1=0 andφ2, k=sign(φ1, k)=0, ∀k,
thus yielding yk=F�(yk−1, · · · , yk−ny , ū), where yk is
the output at instant k given ū. If in steady state, for each
constant ū, yk converges and remains at some constant
value ȳ, then the model (2) has a continuum of steady-
state solutions. ��

Evaluating model (2) along a data set of length N ,
the resulting set of equations can be expressed inmatrix
form as:
y = Ψ θ̂ + ξ , (3)
where y � [yk yk−1 · · · yk+1−N ]T ∈ R

N is the vector
of output measurements, Ψ � [ψT

k−1; · · · ; ψT
k−N ] ∈

R
N×nθ is the regressor matrix composed by the regres-

sors vectors ψk− j ∈ R
nθ which contains linear and

nonlinear combinations of the variables that compose
F�(·) in (2) weighted by the parameter vector θ̂ ∈ R

nθ ,
ξ � [ξk ξk−1 · · · ξk+1−N ]T ∈ R

N is the residual vec-
tor and T indicates the transpose.

The unconstrained least squares batch estimator is
given by θ̂LS = (Ψ TΨ )−1Ψ T y. A set of equality con-
straints on the parameter vector is c = Sθ , where
c ∈ R

nc and S ∈ R
nc×nθ are known constants. Then,

the constrained least squares estimation problem is
θ̂CLS = argmin

θ : c=Sθ

[
ξ T ξ

]
, (4)

whose solution is [23]:

θ̂CLS=θ̂LS−(Ψ TΨ )−1ST [S(Ψ TΨ )−1ST ]−1(Sθ̂LS−c).

(5)
In this paper, the model structure is chosen using the

error reduction ratio (ERR) [19] together withAkaike’s
information criterion (AIC) [8]. Other approaches that
have proved to be useful in more demanding contexts
are presented in [9,24,38,47,51].

3 Identification of systems with hysteresis

Some of the features of hysteretic systems are: a char-
acteristic loop behavior displayed on the input–output
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plane [12], several stable fixed points [41], and multi-
valued mapping [21]. However, which and how these
features can be used in the identification procedure
remains an open problem.

In what follows, a constraint is proposed to ensure
a key feature of hysteresis. Also, it is shown how the
hysteresis loop can be seen as an interplay of attracting
and repelling regions in the input–output plane of cer-
tain models. Then, in the sequel the resulting models
will be used to design compensators. We start with a
property (see [12,37,41]).

Property 1 An identified hysteretic model, under a
constant input, has two or more real non-diverging
equilibria. ��

In [37], Property 1 was attained by ensuring that
the model had at least one fixed point under loading–
unloading inputs, with different values for loading and
unloading. Thus, in (2) φ1, k=uk − uk−1 and φ2, k =
sign(φ1, k), with φ2, k=1 for loading, and φ2, k=−1 for
unloading.

Hysteresis is a nonlinear behavior that appears in
both the static response and the dynamics. In some
works, this nonlinearity is classified as quasi-static
because the analyses are performed when the system is
excited by a periodic signal that is very slow compared
to the system dynamics [29].

Based on a static analysis of NARX models (2), we
will show which constraints need to be considered in
the identification procedure in order for Property 1 to
be satisfied. Thereafter, a quasi-static analysis will be
used to describe how hysteresis happens in these mod-
els and an illustrative example will be presented.

3.1 Static analysis

By means of static analysis, it is possible to determine
the fixed points of amodel, as described inDefinition 1.

Assumption 1 (Systems with hysteresis). In order to
comply with Property 1, following the recommenda-
tion of the literature, the identified models should not
have the following regressors:

(i) y pk−τy
, y pk−τy

φm
1, k−τu

and y pk−τy
φm
2, k−τu

for p>1, ∀m
[7],

(ii) sign(uk−τu −uk−τu−1)
m = φm

2, k−τu
form > 1 [37],

as will be shown in this paper, the following regressors
can also be removed

(iii) y pk−τy
umk−τu

and umk−τu
∀p, m,

where τy and τu are any time lags. ��
The steady-state analysis is done by taking yk =

ȳ, ∀k, uk = ū, ∀k and, consequently, φ1, k = uk −
uk−1 = 0 φ2, k = sign(φ1, k) = 0, ∀k. For a model
that complies with Assumption 1, we get ȳ = Σy ȳ,
where Σy is the sum of all parameters of all linear
output regressors. For the sake of clarity, we discuss
the most common case, in which the hysteretic model
only has one linear output term: θ1yk−1 [33,37]. Hence,
the model only has one fixed point for which stability
analysis yields the following: if |θ1| < 1 (|θ1| > 1),
then ȳ = 0 is a single asymptotically stable (diverging)
equilibria and, as a result, Property 1 is not satisfied.
To overcome this problem, with Definition 2 in mind,
the following lemma is stated.

Lemma 1 Given that Assumption 1 holds, if θ1 = 1,
then the identified model has a continuum of solutions
at steady state. ��
Proof The steady-state analysis of a model that satis-
fies Assumption 1 and Lemma 1 yields ȳ = ȳ which
is trivially true for any value ȳ. Hence, the model has
a non-hyperbolic fixed point and will display a contin-
uum of steady-state solutions which will play the role
required by Property 1. ��
Remark 1 Lemma 1 guarantees that the model fixed
point is non-hyperbolic and in that way it will be able
to guarantee multiple steady-state solutions. However,
the case of a non-hyperbolic fixed point is known to be
structurally unstable. Hence, unless the constraint in
Lemma 1 is used, the probability of estimating a model
with a non-hyperbolic fixed point is zero. If the model
has more than one linear output term, the constraint
in Lemma 1 becomes Σy = 1 and this will guaran-
tee that the Jacobian matrix has one eigenvalue at 1. In
order for the model to have a continuum of steady-state
solutions, all the remaining eigenvalues of the Jacobian
matrix evaluated at the fixed point must have modulus
less than one. ��

3.2 Quasi-static analysis

The core idea of the framework proposed in [37] to
identify models with a hysteresis loop is to build a
bounding structure H made of sets of equilibria and
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to ensure that one set is stable during loading and the
other one, during unloading. Such a scenario is effec-
tive, but it does not help to understand models with
more complicated structures and with both attracting
and repelling regions in the u × y plane. This section
aims at enlarging the scenario developed in [37].

In quasi-static analysis, it is assumed that the input
uk is a loading–unloading signal that is much slower
than the system dynamics to the point that, at a given
time k, the systemwill be in a certain attracting region,
avoiding any possible repelling regions. Also, such
regions depend on uk , φ1, k and φ2, k . More specifically,
there will be two sets of regions, one for loading and
another for unloading.

In quasi-static analysis, we assume that yk ≈
yk− j = ỹ, j = 1, 2, . . . , ny , such that (2) is given by

ỹ ≈ F�
(
ỹ, uk−1, · · · , uk−nu , φ1, k−1, φ2, k−1

)
, (6)

which can be usually solved for ỹ, especially if higher
powers of the output are not in F�(·) [7]. This is
achieved in practice by removing such group of terms
from the set of candidates as done in Assumption 1. If
the inputs are all constant, then ỹ will depend on such
values.

Given a slow input, if ỹ is in an attractive region,
then the model output moves toward an attracting solu-
tion. In what follows, ỹaL and ỹaU are, respectively, the
solutions to (6) in attracting regions under loading and
unloading; ỹrL and ỹrU are the counterparts in repelling
regions. The conditions for ỹ to be attracting are
∣∣∣∣eig

(
∂F�(y, uk−1, φ1, k−1, φ2, k−1)

∂y

)∣∣∣∣ < 1, (7)

where y = [yk−1 . . . yk−ny ]T . This procedure resem-
bles that of determining the stability of fixed points
[7]. Here the Jacobian matrix is not evaluated at fixed
points. Hence, we do not speak in terms of stable and
unstable fixed points.

To illustrate how this helps to understand the forma-
tion of a hysteresis loop, consider the schematic rep-
resentation in Fig. 1. The input is a loading–unloading
signal such that umin ≤ uk ≤ umax, ∀k. The sets ỹaL,
ỹaU, ỹ

r
L and ỹrU are shown. Consider the point A, which

takes place under loading; hence, only solutions ỹrL and
ỹaL are active and should be considered. Given that the
system is under the direct influence of ỹrL, which is
responsible for pushing upwards (see vertical compo-
nent yA), and it is the loading regime, there is a horizon-
tal component uA (related to the input) that points to

Fig. 1 Schematic representation of hysteresis loop in the u ×
y plane. Attracting sets are shown in black continuous lines,
whereas the repelling sets are indicated in red dash dot. The
hysteresis loop is indicated by dotted lines

the right. The resulting effect is to pull the system along
the loop in the NE direction. The same can be said for
point B; however, at that point the vertical component
is the result of the attracting action of ỹaL. A similar
analysis can be readily done for the unloading regime,
given by points D and E. At the turning points C and
F, φ2, k switches from 1 to -1 and from -1 to 1, respec-
tively. Hence, the analysis also switches from using ỹaL
and ỹrL, to using ỹaU and ỹrU. This analysis is useful in
Sect. 5 to understand the formation of hysteresis loops
in identified models.

It is important to point out that the assumption that
the set ỹ comes in two disjoint parts, either for load-
ing or unloading, is a consequence of the solution of
(6) being rational instead of polynomial. This is use-
ful to analyze models with more general model struc-
tures. In addition, a NARX polynomial model, due to
its simplicity, is typically unable reproduce a number
of aspects found in more sophisticated hysteretic mod-
els, as in the Preisach model [26] and in the Masing
model [30] that present some more subtle aspects of
hysteresis.

It should be noted that the use of Lemma 1 enables to
the model to “remember” its last state and remain there
even when the input goes to zero (this was not the case
in [37]). Also, since the hysteresis branches are here
formed as a result of the position of fixed points, which
depend on the model parameters which are fixed in this
paper, so is the hysteresis loop. In order to enable the
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model to follow other branches, as seen in the Preisach
model, we would need some mechanism for updating
parameters recursively. This is not a concern in this
work.

The following example illustrates the application of
this analysis.

Example 1 Consider the following NARX model that
complies with Assumption 1:

yk = θ1yk−1 + θ2φ2, k−1+θ3φ1, k−1uk−1

+ θ4φ2, k−1φ1, k−1yk−1+θ5φ1, k−1. (8)

In this case, the constraint θ1 = 1 will be achieved
using estimator (5) with c = 1 and S = [1 0 0 0 0].
Hence, according to Lemma 1, the resulting model will
have a continuum of steady-state solutions.

For a more complicated model structure, the con-
straint in Lemma 1 is still in the form 1 = Sθ (4) but
with S havingmore than one element equal to one, e.g.,
as shown in [2] to obtain NARX models able to repro-
duce dead zone and in [5] for a quadratic nonlinearity.

The quasi-static analysis of model (8) is performed
following the steps provided in Sect. 3.2. So rewriting
this model as (6), we have

ỹ ≈ θ1 ỹ+θ2φ2,k−1+θ3φ1,k−1uk−1

+ θ4φ2,k−1φ1,k−1 ỹ+θ5φ1,k−1,

which can be described by

ỹ(u, φ1, φ2)≈

⎧
⎪⎨

⎪⎩

θ2 + θ3φ1u + θ5φ1

1 − θ1 − θ4φ1
, for φ2= 1;

−θ2 + θ3φ1u + θ5φ1

1 − θ1 + θ4φ1
, for φ2=−1,

(9)

where the time indices have been omitted for simplicity.
Therefore, the solution given at the top in (9) represents
the set ỹL, while the bottom is the set ỹU.

To define whether the solutions to (9) are in the
attracting or repelling regions, (7) should be computed
for model (8). This yields

−1 < θ1 + θ4φ2,k−1φ1,k−1 < 1,
−1 − θ1

θ4φ2,k−1
< φ1,k−1 <

1 − θ1

θ4φ2,k−1
. (10)

Since it is assumed that the input uk is a loading–
unloading signal, the conditions (10) to ensure that the
solutions (9) are in attracting regions can be readily
verified numerically. In Sects. 5 and 6, this analysis
will be performed for the identified models. ��

(a)

(b)

Fig. 2 Compensator design based on identified NARX models.
aModel identification and b compensator design based on iden-
tified models

4 Compensator design

Two procedures are proposed. The first one designs a
compensator from a model M identified from u and
y with output ŷk (Sect. 4.2). The second is based on
a model of the inverse relationship, in which case a
modelM̆ is obtained to yield ûk (Fig. 2a and Sect. 4.3).
Some of the algorithms and considerations adopted in
the three main steps of system identification are also
outlined in Fig. 2a.

4.1 Preliminaries

Given a nonlinear system S, the first step is to obtain
hysteretic models for S (Fig. 2a). In the second step,
the identified model is used to design a compensator
C that yields the compensation signal mk for a given
reference rk (Fig. 2b).

In this paper, the following additional assumptions
are made for NARX models (2).

Remark 2 For design, in models M and M̆, yk is
replaced by rk and uk by mk , respectively. The moti-
vation behind this is that yk should ideally be equal to
rk under compensation, that is, when mk is used as the
input to the dynamical system. ��
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4.2 Model-based compensation

In what follows, the main idea is to specify a general
model structure forM to determine the compensation
input mk−τd+1. The following assumption is needed.

Assumption 2 (The general case). It is assumed that:
(i) the only regressor involving uk−τd is linear; (ii) nu >

τd; (iii) the compensation signalmk is known up to time
k−τd; and (iv) the reference rk is knownup to time k+1.

��
Assumption 2 imposes conditions on the selection

of the model structure (Fig. 2a). Note that (i) ensures
that uk−τd can be isolated; (ii) allows having as regres-
sors input terms with a delay greater than τd; and the
other constraints guarantee that the control action can
be computed from known values. Therefore, the model
M is rewritten as:

A(q)yk = B(q)uk+ f
(
yk−1, · · ·, yk−ny ,

uk−τd−1, · · ·, uk−nu

)
, (11)

where q−1 is the backward time shift operator such that
q−1uk=uk−1, and the linear regressors are grouped in
A(q)yk and B(q)uk with

A(q) = 1 − a1q
−1 − a2q

−2 − · · · − anyq
−ny ,

(12)

B(q) = bτdq
−τd + bτd+1q

−τd−1 + · · · + bnuq
−nu

︸ ︷︷ ︸
B∗(q)

,

(13)

and f (·) includes all the nonlinear terms and possibly
the constant term of the NARX model (2). Using (13),
model (11) can be rewritten as

A(q)yk = bτduk−τd+B∗(q)uk+ f
(
yk−1, · · · , yk−ny ,

uk−τd−1, · · · , uk−nu

)
. (14)

From Remark 2, we have

A(q)rk+1 = bτdmk−τd+1+B∗(q)mk+1+ f
(
rk, · · · ,

rk−ny+1,mk−τd , · · · ,mk−nu+1
)
, (15)

which, for convenience, has been written an instant of
time ahead, i.e., k → k + 1. From Assumption 2, the
compensation input can be obtained from (15) as

mk−τd+1 = 1

bτd

[
A(q)rk+1 − B∗(q)mk+1 − f

(
rk, · · · ,

rk−ny+1,mk−τd , · · · ,mk−nu+1
)]

. (16)

Assumption 3 In the case of systems with hysteresis,
it should be remembered that according to Assump-
tion 1-(iii) regressors involving umk−τu

∀m and any τu
are removed. Therefore, Assumption 2-(i) should read:
the only regressor involving φ1, k−τd is linear, and the
other items are maintained. ��

This is illustrated in the following example.

Example 2 Consider the NARX model that complies
with Assumptions 1 and 3 described by:

yk = θ1yk−1+θ2φ2, k−2+θ3φ1, k−2uk−2

+ θ4φ2, k−2φ1, k−2yk−1+θ5φ1, k−1. (17)

Since φ1, k=uk − uk−1 and φ2, k=sign(φ1, k), we have

yk = θ1yk−1+θ2sign(uk−2−uk−3)+θ3[uk−2−uk−3]uk−2

+ θ4sign(uk−2−uk−3)[uk−2−uk−3]yk−1

+ θ5[uk−1−uk−2],

which is in the form (11) and, therefore,

A(q)yk = B(q)uk+ f
(
yk−1, uk−2,

uk−3, sign(uk−2 − uk−3)
)
, (18)

where A(q) = 1−θ1q−1, B(q) = θ5q−1−θ5q−2, and

f (·) = θ2sign(uk−2 − uk−3)+θ3[uk−2 − uk−3]uk−2

+ θ4sign(uk−2 − uk−3)[uk−2 − uk−3]yk−1.

From Remark 2, the model (18) is recast as

A(q)rk+1=θ5mk− θ5mk−1+ f
(
rk,mk−1,mk−2,

sign(mk−1 − mk−2)
)
, (19)

and, because Assumption 3 is satisfied, we have:

mk = 1

θ5

[
A(q)rk+1+θ5mk−1

− f
(
rk,mk−1,mk−2, sign(mk−1−mk−2)

)]
,

= 1

θ5

[
rk+1 − θ1rk+θ5mk−1

− θ2sign(mk−1−mk−2) − θ3[mk−1−mk−2]mk−1

− θ4sign(mk−1−mk−2)[mk−1−mk−2]rk
]
. (20)

��
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4.3 Compensation based on compensator identification

Here, the strategy is to identify NARX models M̆ that
describe the inverse relationship between u and y of
S. The advantage is that the compensator C is obtained
directly fromM̆ (seeRemark 2).However, some issues
related to the identification procedure of these models
need to be addressed. For simplicity, in this section, we
assume that τd = 1.

For the inverse model M̆, the output ûk depends on
yk . Hence, in order to avoid the lack of causality, yk
should be delayed by τs time steps with respect to uk ,
yielding [62]:

ûk=F̆
(
ûk−1, · · · , ûk−nu , yk−1+τs , · · · , yk−ny+τs

)
,

(21)

where F̆(·) is the inverse nonlinear function and ûk ∈ R

and yk ∈ R are related as shown in Fig. 2a. It should
be noted that τs ≥ τd + 1, where usually the equality is
preferred. Similar ways to avoid noncausal models can
be found in the literature [33,49].

Assumption 4 It is assumed that: (i) there is at least
one regressor of the output (yk) j for j ≥ 1; (ii) the
compensation signalmk is known up to time k−1; and
(iii) the reference rk is known up to time k − 1+ τs. ��

Assumption 4 should be observed during the struc-
ture selection of the inverse model M̆. Note that
(i) ensures that there is at least one input signal yk in
the identified models; (ii) and (iii) ensure that mk to
be computed at time k is the only unknown variable.
Given Assumption 4 and Remark 2, the compensation
signal mk can be obtained directly from M̆ as

mk=F̆
(
mk−1, · · · ,mk−nu , rk−1+τs , · · · , rk−ny+τs

)
.

(22)

5 Numerical results

Two simulated examples are detailed in what follows.
An experimental system is addressed in Sect. 6.

5.1 Identification of a bench test system

Consider the piezoelectric actuatorwith hysteretic non-
linearity modeled by the Bouc–Wen model [58] and
whose mathematical model is given by [49]

(a)

(b)

Fig. 3 Identification data obtained from (23). a Excitation and
b output

{
ḣ(t) = Au̇(t) − β|u̇(t)|h(t) − γ u̇(t)|h(t)|,
y(t) = dpu(t) − h(t),

(23)

where y(t) is the displacement, u(t) is the voltage
applied to the actuator, dp =1.6 μm

V is the piezoelectric
coefficient, h(t) is the hysteretic nonlinear term and
A = 0.9 μm

V , β = 0.008V−1 and γ = 0.008V−1 are
parameters that determine the shape and scale of the
hysteresis loop.

Model (23) was integrated numerically using a
fourth-orderRunge–Kuttamethodwith integration step
δt = 0.001 s. The excitation signal was generated by
low-pass filtering a white Gaussian noise [37]. In this
work, a fifth-order low-pass Butterworth filter with a
cutoff frequencyof 1Hzwasused; seeFig. 3a. The sam-
pling time is set to Ts = δt = 0.001 s and an input with
frequency of 1Hz is chosen to validate the identified
models [49]. The data sets are 50 s long (N = 50000).
The identification data are shown in Fig. 3. The meta-
parameters are � = 3 and ny = nu = 1. This choice is
based on the discussion in [33,37].

5.1.1 EstimatingM

In this example, we take nu = 2 which is the smallest
value that complies with Assumption 2-(ii), while ny
and � were chosen as detailed above. Using the data
shown in Fig. 3, Assumption 1 and the ERR criterion
the regressors were ranked according to importance.
Then, AIC was used to determine the final number of
parameters of the model:
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Table 1 Model parameters obtained with (5) and (25)

Model Values

(24) θ1=1.00 θ2=0.77

θ3=1.44 × 10−2 θ4= − 9.60 × 10−3

θ5=3.15 × 10−4 θ6= − 2.47 × 10−4

(28) θ1=1.00 θ2=1.27

θ3= − 2.13 × 10−2 θ4=1.37 × 10−2

θ5= − 1.07 × 10−5 θ6=7.99 × 10−6

yk = θ1yk−1 + θ2φ1, k−1 + θ3φ2, k−2φ1, k−2uk−2

+ θ4φ2, k−2φ1, k−2yk−1 + θ5φ1, k−2u
2
k−2

+ θ6φ1, k−2uk−2yk−1. (24)

Based on Lemma 1 and Example 1, for model (24)
to fulfill Property 1, the constraint θ1 = 1 should be
imposed. This can be done using (5) with the constraint
written as:

c = 1; S=[1 0 0 0 0 0]. (25)

Hence, the parameter values estimated by the con-
strained least squares estimator (5) are shown in
Table 1.

A quasi-static analysis is performed (see Sect. 3.2
andExample 1). First, wewrite for (24) the correspond-
ing to (6) as

ỹ ≈ θ1 ỹ + θ2φ1,k−1 + θ3φ2,k−2φ1,k−2uk−2

+ θ4φ2,k−2φ1,k−2 ỹ+θ5φ1,k−2u
2
k−2+θ6φ1,k−2uk−2 ỹ,

yielding

ỹ(u, φ1, φ2)≈

⎧
⎪⎪⎨

⎪⎪⎩

θ2φ1 + θ3φ1u + θ5φ1u2

1 − θ1 − θ4φ1 − θ6φ1u
, for φ2= 1;

θ2φ1 − θ3φ1u + θ5φ1u2

1 − θ1 + θ4φ1 − θ6φ1u
, for φ2= − 1,

(26)

where the time indices have been omitted for brevity.
The top expression in (26) gives the set ỹL, while the

bottom one ỹU. Computing the derivative of (24) with
respect to yk−1 and using (7), we obtain

− 1 < θ1+θ4φ1,k−2φ2,k−2+θ6φ1,k−2uk−2 < 1,

−1−θ1−θ4φ1,k−2φ2,k−2

θ6φ1,k−2
< uk−2 <

1−θ1−θ4φ1,k−2φ2,k−2

θ6φ1,k−2
.

(27)

Fig. 4 Results of quasi-static analysis for model (24) with
input uk=70 sin(2πk)V. The hysteresis loop indicated with
(· · · ) is a result of the interaction of (—) attracting (ỹaL, ỹ

a
U) and

(- · -) repelling (ỹrL, ỹrU) sets. (A ) indicates the orientation of the
hysteresis loop. Compare to Fig. 1

Taking φ2,k−2=1 or φ2,k−2= − 1, the conditions
for attracting regions under load or unloading, respec-
tively, are obtained. Considering the parameter values
presented in Table 1 and a loading–unloading input sig-
nal, the points (26) and their attraction conditions (27)
are computed numerically and shown in Fig. 4. Hence,
in this way it is possible to see how model (24) is able
to describe the hysteresis nonlinearity.

Model (24) is simulated with a loading–unloading
input (see left side of Fig. 5) and, in cases where
the input becomes constant, either during loading or
unloading (see right side of Fig. 5), the system remains
at the corresponding point of the hysteresis loop. This
is a direct consequence of using Lemma 1. This feature
is not generally present in identified models found in
the literature.

The improvement due to using Lemma 1 is shown in
Fig. 6. Despite different initial conditions, all models
tend to the behavior of the dynamical system after a
transient. The main difference is the ability of model
(24) to predict the hysteretic behavior even when the
input becomes constant.On the other hand,models esti-
mated using black-box techniques and the model iden-
tified without using Lemma 1 [37] diverge.Most works
in the literature [21,33,36,43,59,61] do not test for this
feature which in this paper is guaranteed by Lemma 1.

5.1.2 Estimating M̆

The identifiedmodel that complies withAssumptions 1
and 4 is given by
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Fig. 5 Free-run simulation of model (24), a sinusoidal input
of voltage uk=40 sin(2πk)V and in b the case where this input
becomes constant during loading (•) and unloading (�) with final
value 16.8V, temporal responses are in c and d while the hys-
teresis loops are in e and f, respectively. (—) represents original
data and (- -) is the estimated model output
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Fig. 6 Model outputs to an input which is uk=40 sin(2πk)V
up to a certain point and then remains constant; (—) the original
output, (- -) model (24) that uses Lemma 1, (· · · ) a black-box
model, (- · -) a gray-boxmodel but without considering Lemma 1
[37]

ûk = θ1ûk−1 + θ2φ̆1, k−1 + θ3φ̆2, k−1φ̆1, k−1ûk−1

+ θ4φ̆2, k−1φ̆1, k−1yk−1 + θ5φ̆2, k−1yk−1ûk−1

+ θ6φ̆2, k−1y
2
k−1, (28)

where φ̆1, k = yk − yk−1, φ̆2, k = sign(φ̆1, k), ûk is the
estimated input (model output), and yk is the output of
system (23) (model input).
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Fig. 7 Results of quasi-static analysis for model (28). For mean-
ing of line patterns, refer to captions of Figs. 1 and 4

Table 2 Model performance

Context Model MAPE

Section 4.2 (24) 0.398

Section 4.3 (28) 0.413

Black box Not shown 1.494

Note that the regressors of (24) and of (28) are dif-
ferent. In both cases, the regressors are automatically
chosen from the pool of candidates using the ERR
criterion. Nevertheless, also for (28), the steady-state
analysis yields ¯̂u=θ1 ¯̂u, which is similar to the result
found for model (24). Proceeding as before, the con-
strained least squares estimated parameters are shown
in Table 1.

The formation of the hysteresis loop for this model
(28) is shown in Fig. 7. The different orientation of the
hysteresis loop has been discussed in [27].

The mean absolute percentage error (MAPE)

MAPE = 100
∑N

k=1 |yk − ŷk |
N |max( y) − min( y)| , (29)

was computed for models (24) (28) and a black-
box NARX polynomial model for sinusoidal input
(Table 2). The results obtained for (28) are similar to
those shown in Fig. 5 and are omitted for brevity.

5.2 Compensation of a bench test system

Next, the models identified in the previous section are
used to design compensators using the procedure illus-
trated in Fig. 2b.
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Table 3 Compensator performance

Design Strategy Compensator MAPE NSAVI

Section 4.2 (30) 0.322 1.13

Section 4.3 (31) 0.425 1.14

Black box Not shown 1.819 1.15

No compensation 6.536 1.00

5.2.1 Design of the compensation input signals

Applying the steps described in Sect. 4.2 tomodel (24),
the following compensation signal is obtained

mk = 1

θ2

[
rk+1 − θ1rk+θ2mk−1

− [θ3mk−1+θ4rk ]sign(mk−1−mk−2)[mk−1−mk−2]
− [θ5m2

k−1+θ6mk−1rk ][mk−1 − mk−2]
]
. (30)

Similarly, following Sect. 4.3, after the change of
variables in (28) the following compensator is obtained:

m̆k = θ1m̆k−1+θ2[rk+1 − rk]
+ [θ3m̆k−1 + θ4rk+1]sign(rk+1 − rk)[rk+1 − rk]
+ [θ5rk+1m̆k−1 + θ6r

2
k+1]sign(rk+1 − rk). (31)

The parameters of compensators (30) and (31) are
given in Table 1.

5.2.2 Compensation performance

The designed compensators were applied to the piezo-
electric actuator (23) with results summarized in Fig. 8.
From the hysteresis loops (Fig. 8c), it is clear that a
practically linear relation between the reference and
the output was achieved. This would greatly facilitate
the design and increase the performance of a feedback
controller.

The accuracy achieved by each compensator was
quantified by the MAPE index (29). In order to quan-
tify the compensation effort, the normalized sum of the
absolute variation in the input (NSAVI)

NSAVI =
N−1∑

k=1

∣
∣mk+1 − mk

∣
∣

∣∣rk+1 − rk
∣∣ , (32)

is calculated. These indices are shown in Table 3.
The results shown in Fig. 8 and Table 3 indicate that

the compensators may provide a significant improve-
ment in the tracking performance of system (23). The

(a)

(b)

(c)

Fig. 8 Hysteresis compensation for the piezoelectric actuator
(23). a Compensation inputs, b outputs and in c hysteresis
loops. (- -) results obtained with compensator (30) (· · · ) results
with compensator (31), (- · -) uncompensated system output and
(—) reference r = 40 sin(2π t) μm

tracking errorwas reduced by about 93%at the cost of a
14% increase in the compensation effort. Although the
compensator strategies yield similar results, the design
strategy of Sect. 4.2 yielded results with lower com-
pensation effort and tracking error.

To further characterize the performance of the pro-
posed designs, the influence of the sampling time Ts
was also investigated. In Fig. 9, it can be seen that
the model accuracy somewhat deteriorates as Ts is
increased. It should be noted that even the largest values
of Ts in Fig. 9 are still comfortably small in terms of the
sampling theorem.However, since one of the regressors
is the first difference of the input, the identification of
systems with hysteresis seems to be particularly sen-
sitive to the sampling time [32]. Another conclusion
that can be drawn from Fig. 9 is that, for both design
strategies, the compensation performance is correlated
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Fig. 9 MAPE index (29) computed for the models and compen-
sators described, respectively, by equations a (24) and (30); b
(28) and (31). (◦) model and (•) tracking accuracies. (�) accu-
racy of uncompensated system

β = 0.1β = 0.008β = 0.004

· · · · · ·

Fig. 10 Bouc–Wen hysteresis loops

to the model accuracy, and that the strategy in Sect. 4.2
(Fig. 9a) is somewhat less sensitive to such accuracy.

Finally, the same analysis was carried out for situa-
tions with different shapes of the hysteresis loop vary-
ing β in the range 0.004 ≤ β ≤ 0.1 with increments of
Δ = 0.002 (see Fig. 10). The results are quite similar
to the ones described so far and are not shown.

6 Experimental results

Both identification and compensation strategies are
now applied to an experimental pneumatic control
valve. This type of actuator is widely used in industrial
processes, for which control performance can degrade
significantly due to valve problems caused by nonlin-
earities [54] such as friction [11,52], dead zone, dead
band, and hysteresis [20]. Hence, in this section we aim
at compensation hysteresis using the developed tech-
niques.

The measured output is the stem position of the
pneumatic valve, and the input is a signal that, after
passing V/I and I/P conversion, becomes a pressure
signal applied to the valve. The sampling time is Ts =
0.01 s. Formodel identification, the input is set as white
noise low pass filtered at 0.1Hz. For model validation,
the input is a sinusoid with frequency 0.1Hz. Both data
sets are 200 s long (N = 20000). The identification of
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Fig. 11 Left column refers to model (33) and right column to
model (34). a input uk=0.56 sin(0.2πk) + 3V and c the corre-
sponding measured output (—) y and (- -) model (33) free-run
simulation; b smoothed version of y in c; d the corresponding
output which is uk in a and (- -) model (34) free-run simulation.
e and f show the same data as c and d, respectively

the directM and inverse M̆models was performed as
in Sect. 5. The pool of candidate terms is generatedwith
� = 3, ny = 1 and nu = 2. The model parameters are
estimated using (5) in order to comply with Lemma 1.

The estimated model M is

yk = yk−1 − 19.76φ1, k−2 + 19.32φ1, k−1

+ 9.44φ2, k−2φ1, k−2uk−2−12.61φ2, k−2φ1, k−2yk−1,

(33)

and the inverse model M̆ is

ûk = ûk−1 + 86.67φ̆1, k−1 − 85.02φ̆1, k−2−0.98φ̆1, k−1yk−2

+ 1.72φ̆2, k−2φ̆1, k−2yk−2−1.13φ̆2, k−2φ̆1, k−2ûk−1,

(34)

which was estimated from a smoothed version of yk
obtained by quadratic regression. This is done only to
estimate M̆ to avoid the error-in-the-variables prob-
lem, since yk serves as the input for M̆. Each model
performance is given in Fig. 11 and Table 4.
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Table 4 Experimental model performance

Context Model MAPE

Section 4.2 (33) 3.926

Section 4.3 (34) 2.374
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Fig. 12 Hysteresis compensation for the pneumatic valve. a
Compensation inputs, b and c its temporal responses and in d
and e the hysteresis loops. (- -) illustrates the results obtained
with compensator (35), (· · · ) refers to the results by using com-
pensator (36), (- · -) the system output without compensation, and
(—) the reference r=0.56 sin(0.2π t)+3V

Models (33) and (34) are used to implement the
strategies described in Sects. 4.2 and 4.3 , thus yielding,
respectively, the following compensation inputs:

mk = 1

19.32

[
rk+1−rk+19.32mk−1+19.76[mk−1−mk−2]

−9.44sign(mk−1 − mk−2)[mk−1 − mk−2]mk−1

+12.61sign(mk−1−mk−2)[mk−1−mk−2]rk
]
, (35)

and

m̆k = m̆k−1+86.67[rk+1 − rk ]−85.02[rk − rk−1]
−0.98[rk+1−rk ]rk+1.72sign(rk−rk−1)[rk−rk−1]rk
−1.13sign(rk − rk−1)[rk − rk−1]m̆k−1. (36)

Experimental compensation results are shown in
Fig. 12 and assessed in Table 5. Note that both
approaches significantly reduce the tracking error.

Table 5 Performance of the compensation step. Experimental
results

Design strategy Compensator MAPE NSAVI

Section 4.2 (35) 5.514 1.81

Section 4.3 (36) 2.939 1.61

No compensation 18.602 1.00

The compensation produced by (36) is smoother
than the one obtained with (35); see Fig. 12a. This
occurs because, for the compensator (36), the argu-
ment of the sign function depends on the difference of
the reference signal, while, for the compensator (35), it
depends on the difference of the autoregressive variable
which usually produces stronger oscillations and sud-
den changes; see Fig. 12a, e.g., in the range of 51−53 s.
As a result, larger compensation effort is required as
quantified by NSAVI (32) in Table 5.

7 Conclusions

This work addressed the problems of identification and
compensation of hysteretic systems. In the context of
system identification, the contribution is twofold. First,
we build models with regressors that use the sign func-
tion of the first difference of the input, as proposed
by [37], and present an additional condition in order to
guarantee a continuum of steady-state solutions, which
is an important ingredient for hysteresis [12,41]. To
this aim, a particular constraint on the parameters is
presented in Lemma 1. As a consequence, the identi-
fied models are able to describe both dynamical and
static features of the hysteresis nonlinearity, whose
comparison with other identified models that do not
use Lemma 1 is provided in Fig. 6. Second, follow-
ing a quasi-static analysis of these models, a schematic
framework is proposed to explain how the hysteresis
loop occurs on the input–output plane; see Fig. 1.

In the field of identification, there are promising
approaches based on computational intelligence, such
as those reviewed in [48]. However, this paper uses
NARX polynomials due to the structural simplicity
and fair generality. Such features allow: (i) using con-
straints such that simple models display hysteresis and
(ii) using suchmodels in compensator design by simple
manipulations.

In the context of hysteresis compensation, this paper
proposes two strategies to design compensators. An
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important aspect of such procedures is that they show
how to restrict the pool of candidate regressors aiming
at solving the compensation problem. Such strategies
are not limited to hysteresis and can be extended to
other nonlinearities.

The effectiveness of the compensation schemes is
illustrated by means of numerical and experimental
tests. For the strategy described in Sect. 4.2, the com-
pensation law is obtained from the identified model
by simple algebraic manipulations. In the case of the
strategy introduced in Sect. 4.3, the compensators are
identified directly from the data. The compensators
designed by both strategies can be readily employed
in online compensation schemes.

Based on both numerical and experimental results,
it has been observed that the quality of the achieved
compensation is correlated with the accuracy of the
identified model (compare Table 2 with Table 3 and
Table 4 with Table 5). Also, our results suggest that the
compensation effort tends to be lower and more effec-
tive whenever the identified models are more accurate.
In particular, compensators based on gray-box models
clearly outperformed those based on black-boxmodels.

Finally, as a general remark, we noticed that the
identified models have a discontinuity due to the sign
function used in some regressors. When the model has
many such terms, it sometimes happens that the com-
pensation signal presents abrupt transitions. The use
of smoother functions in place of the sign function, in
order to alleviate this problem, will be investigated in
the future.

Acknowledgements The authors would like to thank Arthur
N. Montanari for the insightful discussions. PEOGBA, BOST,
and LAA gratefully acknowledge financial support from CNPq
(Grant Nos. 142194/2017-4, 310848/2017-2 and 303412/2019-
4) and FAPEMIG (TEC-1217/98).

Compliance with ethical standards

Conflict of interest The authors declare that they have no con-
flict of interest.

References

1. Aguirre, L.A.: Some remarks on structure selection for non-
linear models. Int. J. Bifurc. Chaos 4(6), 1707–1714 (1994)

2. Aguirre, L.A.: Identification of smooth nonlinear dynamical
systems with non-smooth steady-state features. Automatica
50(4), 1160–1166 (2014)

3. Aguirre, L.A.: A Bird‘s Eye View of Nonlinear System
Identification. arXiv:1907.06803 [eess.SY] (2019)

4. Aguirre, L.A., Alves, G.B., Corrêa, M.V.: Steady-state
performance constraints for dynamical models based on
RBF networks. Eng. Appl. Artif. Intel. 20, 924–935 (2007)

5. Aguirre, L.A., Barroso, M.F.S., Saldanha, R.R., Mendes,
E.M.A.M.: Imposing steady-state performance on identi-
fied nonlinear polynomial models by means of constrained
parameter estimation. IEE Proc. Control Theory Appl.
151(2), 174–179 (2004)

6. Aguirre, L.A., Lopes, R.A.M., Amaral, G., Letellier, C.:
Constraining the topology of neural networks to ensure
dynamics with symmetry properties. Phys. Rev. 69, 026701
(2004)

7. Aguirre, L.A., Mendes, E.M.A.M.: Global nonlinear poly-
nomial models: structure, term clusters and fixed points.
Int. J. Bifurc. Chaos 6(2), 279–294 (1996)

8. Akaike,H.:Anew look at the statisticalmodel identification.
IEEE Trans. Autom. Control 19(6), 716–723 (1974)

9. Araújo, I.B.Q., Guimarães, J.P.F., Fontes, A.I.R., Linhares,
L.L.S., Martins, A.M., Araújo, F.M.U.: NARX model
identification using correntropy criterion in the presence of
non-Gaussian noise. J. Control Autom. Electr. Syst. 30(4),
453–464 (2019)

10. Ayala, H.V.H., Habineza, D., Rakotondrabe, M., Klein,
C.E., Coelho, L.S.: Nonlinear black-box system identifica-
tion through neural networks of a hysteretic piezoelectric
robotic micromanipulator. IFAC-PapersOnLine 48(28),
409–414 (2015)

11. Baeza, J.R., Garcia, C.: Friction compensation in pneumatic
control valves through feedback linearization. J. Control
Autom. Electr. Syst. 29(3), 303–317 (2018)

12. Bernstein, D.S.: Ivory ghost (ask the experts). IEEE Control
Syst. Mag. 27(5), 16–17 (2007)

13. Billings, S.A., Chen, S.: Extended model set, global data
and threshold model identification of severely non-linear
systems. Int. J. Control 50(5), 1897–1923 (1989)

14. Brewick, P.T., Masri, S.F., Carboni, B., Lacarbonara,
W.: Data-based nonlinear identification and constitutive
modeling of hysteresis in NiTiNOL and steel strands. J.
Eng. Mech. 142(12), 04016107 (2016)

15. Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.
Springer, New York (1996)

16. Carboni, B., Lacarbonara, W., Brewick, P.T., Masri, S.F.:
Dynamical response identificaiton of a class of nonlinear
hysteretic systems. J. Intel. Mater. Syst. Struct. 29(13),
1–16 (2018)

17. Chan, R.W.K., Yuen, J.K.K., Lee, E.W.M., Arashpour,
M.: Application of nonlinear-autoregressive-exogenous
model to predict the hysteretic behaviour of passive control
systems. Eng. Struct. 85, 1–10 (2015)

18. Chaoui, H., Gualous, H.: Adaptive control of piezoelectric
actuators with hysteresis and disturbance compensation. J.
Control Autom. Electr. Syst. 27(6), 579–586 (2016)

19. Chen, S., Billings, S.A., Luo, W.: Orthogonal least
squares methods and their application to non-linear system
identification. Int. J. Control 50(5), 1873–1896 (1989)

20. Choudhury, M.A.A.S., Shah, S.L., Thornhill, N.F.: Diag-
nosis of Process Nonlinearities and Valve Stiction: Data
Driven Approaches. Springer, Heidelberg (2008)

123

http://arxiv.org/abs/1907.06803


300 P. E. O. G. B. Abreu et al.

21. Deng, L., Tan, Y.: Modeling hysteresis in piezoelectric
actuators using NARMAXmodels. Sens. Actuators A Phys.
149(1), 106–112 (2009)

22. Dong, R., Tan, Y.: Inverse hysteresismodeling and nonlinear
compensation of ionic polymer metal composite sensors.
In: Proceeding of the 11th World Congress on Intelligent
Control and Automation, pp. 2121–2125. Shenyang, China
(2014)

23. Draper, N.R., Smith, H.: Applied Regression Analysis, 3rd
edn. Wiley, New York (1998)

24. Falsone, A., Piroddi, L., Prandini, M.: A randomized algo-
rithm for nonlinear model structure selection. Automatica
60, 227–238 (2015)

25. Fu, J., Liao, G., Yu,M., Li, P., Lai, J.: NARX neural network
modeling and robustness analysis of magnetorheological
elastomer isolator. Smart Mater. Struct. 25(12), 125019
(2016)

26. Ge, P., Jouaneh, M.: Tracking control of a piezoceramic
actuator. IEEE Trans. Control Syst. Technol. 4(3), 209–216
(1996)

27. Gu, G.Y., Yang, M.J., Zhu, L.M.: Real-time inverse hystere-
sis compensation of piezoelectric actuators with a modified
Prandtl–Ishlinskii model. Rev. Sci. Instrum. 83(6), 065106
(2012)

28. Hassani, V., Tjahjowidodo, T., Do, T.N.: A survey on
hysteresis modeling, identification and control. Mech. Syst.
Signal Process. 49(1–2), 209–233 (2014)

29. Ikhouane, F., Rodellar, J.: Systems with Hysteresis: Analy-
sis, Identification and Control Using the Bouc-Wen Model.
Wiley, New York (2007)

30. Jayakumar, P.: Modeling and identification in structural
dynamics. Technical Report EERL-87-01, California
Institute of Technology, Pasadena, CA (1987)

31. Kyprianou, A., Worden, K., Panet, M.: Identification of hys-
teretic systems using the differential evolution algorithm. J.
Sound Vib. 248(2), 289–314 (2001)

32. Lacerda Júnior, W.R., Martins, S.A.M., Nepomuceno, E.G.:
Influence of sampling rate and discretization methods in
the parameter identification of systems with hysteresis. J.
Appl. Nonlinear Dyn. 6(4), 509–520 (2017)

33. Lacerda Júnior, W.R., Martins, S.A.M., Nepomuceno, E.G.,
Lacerda, M.J.: Control of Hysteretic Systems Through an
Analytical Inverse Compensation based on a NARXmodel.
IEEE Access pp. 1–1 (2019)

34. Leontaritis, I.J., Billings, S.A.: Input–output paramet-
ric models for non-linear systems part I: deterministic
non-linear systems. Int. J. Control 41(2), 303–328 (1985)

35. Leontaritis, I.J., Billings, S.A.: Input–output parametric
models for non-linear systems part II: stochastic non-linear
systems. Int. J. Control 41(2), 329–344 (1985)

36. Leva, A., Piroddi, L.: NARX-based technique for the
modelling of Magneto–Rheological damping devices.
Smart Mater. Struct. 11(1), 79–88 (2002)

37. Martins, S.A.M., Aguirre, L.A.: Sufficient conditions for
rate-independent hysteresis in autoregressive identified
models. Mech. Syst. Signal Process. 75, 607–617 (2016)

38. Martins, S.A.M., Nepomuceno, E.G., Barroso, M.F.S.:
Improved structure detection for polynomial NARXmodels
using a multiobjective error reduction ratio. J. Control
Autom. Electr. Syst. 24(6), 764–772 (2013)

39. Masri, S.F., Caffrey, J.P., Caughey, T.K., Smyth, A.W.,
Chassiakos, A.G.: Identification of the state equation in
complex non-linear systems. Int. J. Non-Linear Mech.
39(7), 1111–1127 (2004)

40. Mayergoyz, I.D.: Mathematical Models of Hysteresis.
Springer, New York (1991)

41. Morris, K.A.: What is hysteresis? Appl. Mech. Rev. 64(5),
050801 (2011)

42. Oh, J., Bernstein, D.S.: Semilinear Duhem model for
rate-independent and rate-dependent hysteresis. IEEE
Trans. Autom. Control 50(5), 631–645 (2005)

43. Parlitz, U., Hornstein, A., Engster, D., Al-Bender, F.,
Lampaert, V., Tjahjowidodo, T., Fassois, S.D., Rizos, D.,
Wong, C.X., Worden, K., Manson, G.: Identification of
pre-sliding friction dynamics. Chaos 14(2), 420–430 (2004)

44. Pearson, R.K.: Discrete-Time Dynamic Models. Oxford
University Press, Oxford (1999)

45. Pei, J.S., Wright, J.P., Smyth, A.W.: Mapping polynomial
fitting into feedforward neural networks for modeling
nonlinear dynamic systems and beyond. Comput. Methods
Appl. Mech. Eng. 194(42), 4481–4505 (2005)

46. Peng, J., Chen, X.: A survey of modeling and control of
piezoelectric actuators. Mod. Mech. Eng. 3(1), 1–20 (2013)

47. Piroddi, L.: Simulation error minimisation methods for
NARX model identification. Int. J. Model. Identif. Control
3(4), 392–403 (2008)

48. Quaranta, G., Lacarbonara, W., Masri, S.F.: A review on
computational intelligence for identification of nonlinear
dynamical systems. Nonlinear Dyn. 99, 1709–1761 (2020)

49. Rakotondrabe, M.: Bouc–Wen modeling and inverse multi-
plicative structure to compensate hysteresis nonlinearity in
piezoelectric actuators. IEEE Trans. Autom. Sci. Eng. 8(2),
428–431 (2011)

50. Rakotondrabe, M.: Smart Materials-Based Actuators
at the Micro/Nano-Scale: Characterization Control and
Applications. Springer, New York (2013)

51. Retes, P.F.L., Aguirre, L.A.: NARMAX model identifica-
tion using a randomised approach. Int. J. Model. Identif.
Control 31(3), 205–216 (2019)

52. Romano, R.A., Garcia, C.: Valve friction and nonlinear
process model closed-loop identification. J. Process Control
21(4), 667–677 (2011)

53. Smyth, A.W., Masri, S.F., Kosmatopoulos, E.B., Chas-
siakos, A.G., Caughey, T.K.: Development of adaptive
modeling techniques for non-linear hysteretic systems. Int.
J. Non-Linear Mech. 37(8), 1435–1451 (2002)

54. Srinivasan, R., Rengaswamy, R.: Stiction compensation in
process control loops: a framework for integrating stiction
measure and compensation. Ind. Eng. Chem. Res. 44(24),
9164–9174 (2005)

55. Tao, G., Kokotovic, P.V.: Adaptive control of plants with
unknown hystereses. IEEE Trans. Autom. Control 40(2),
200–212 (1995)

56. Visintin, A.: Differential Models of Hysteresis. Springer,
Berlin (1994)

57. Visone, C.: Hysteresis modelling and compensation for
smart sensors and actuators. J. Phys. Conf. Ser. 138(1),
012028 (2008)

58. Wen, Y.K.: Method for random vibration of hysteretic
systems. J. Eng. Mech. Div. 102(2), 249–263 (1976)

123



Identification and nonlinearity compensation of hysteresis using NARX models 301

59. Worden, K., Barthorpe, R.J.: Identification of hysteretic
systems using NARX models, Part I: evolutionary iden-
tification. In: Simmermacher, T., Cogan, S., Horta, L.G.,
Barthorpe, R. (eds.) Topics in Model Validation and Uncer-
tainty Quantification, vol. 4, pp. 49–56. Springer (2012)

60. Worden, K., Hensman, J.J.: Parameter estimation andmodel
selection for a class of hysteretic systems using Bayeisan
inference. Mech. Syst. Signal Process. 32, 153–169 (2012)

61. Worden, K.,Wong, C.X., Parlitz, U., Hornstein, A., Engster,
D., Tjahjowidodo, T., Al-Bender, F., Rizos, D.D., Fassois,
S.D.: Identification of pre-sliding and sliding friction
dynamics: grey box and black-box models. Mech. Syst.
Signal Process. 21(1), 514–534 (2007)

62. Xia, P.Q.: An inverse model of MR damper using optimal
neural network and system identification. J. Sound Vib.
266(5), 1009–1023 (2003)

63. Yi, S., Yang, B., Meng, G.: Ill-conditioned dynamic hys-
teresis compensation for a low-frequency magnetostrictive
vibration shaker. Nonlinear Dyn. 96(1), 535–551 (2019)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Identification and nonlinearity compensation of hysteresis using NARX models
	Abstract
	1 Introduction
	1.1 Notation

	2 Background
	3 Identification of systems with hysteresis
	3.1 Static analysis
	3.2 Quasi-static analysis

	4 Compensator design
	4.1 Preliminaries
	4.2 Model-based compensation
	4.3 Compensation based on compensator identification

	5 Numerical results
	5.1 Identification of a bench test system
	5.1.1 Estimating mathcalM
	5.1.2 Estimating 

	5.2 Compensation of a bench test system
	5.2.1 Design of the compensation input signals
	5.2.2 Compensation performance


	6 Experimental results
	7 Conclusions
	Acknowledgements
	References




