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Abstract In this work, theoretical and experimental
analysis of a piezoelectric energy harvester with para-
metric base excitation is presented under combination
parametric resonance condition. The harvester consists
of a cantilever beam with a piezoelectric patch and an
attached mass, which is positioned in such a way that
the system exhibits 1:3 internal resonance. The gener-
alized Galerkin’s method up to two modes is used to
obtain the temporal form of the nonlinear electrome-
chanical governing equation of motion. The method
of multiple scales is used to reduce the equations of
motion into a set of first-order differential equations.
The fixed-point response and the stability of the sys-
tem under combination parametric resonance are stud-
ied. The multi-branched non-trivial response exhibits
bifurcations such as turning point and Hopf bifurca-
tions. Experiments are performed under various reso-
nance conditions. This study on the parametric exci-
tation along with combination and internal resonances
will help to harvest energy for a wider frequency range
from ambient vibrations.
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1 Introduction

The low-powered microelectronic systems [1], which
are used as sensors and actuators, need to be self-reliant
in the energy front for remote operations. The ambient
kinetic energy available from sources such as winds
and vibrating structures can be utilized to convert into
electricity by several mechanisms. These transduction
mechanisms [2,3] are piezoelectric, electromagnetic,
and electrostatic, which are extensively utilized for
energy harvesting purposes mostly in the linear range
of oscillations. The combination of these three trans-
duction mechanisms is also explored as hybrid energy
harvesters [4–6]. Among them, the piezoelectric-based
energy harvesting has been the most attractive one due
to its energy extracting capabilities over awide range of
available frequencies. Researchers started with linear
vibration-based harvesters [7,8], but the limitations of
having limited frequency bandwidth and very few res-
onance conditions lead to shift their focus on nonlinear
vibration-based harvesters [9–17]. The term bandwidth
is defined as the range of frequency that is available for
energy transduction. Wider bandwidth means a higher
range of ambient frequency over which energy trans-
fer is possible. Rich dynamical behavior (e.g., mul-
tiple resonances, bifurcation, internal resonance, and
chaos) [18,19] of nonlinear vibration-based harvesting
systems brings several advantages in power harvesting
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capabilities as the ambient vibration contains a wide
range of frequencies and hence outperforms the lin-
ear harvesters. There has been an enormous amount
of literature available where piezoelectric energy har-
vester (PEH)with harmonic excitation (direct) has been
analyzed. Very few researchers analyzed or developed
the parametrically excited PEH systems even though in
the case of parametric excitation [20–22] a small input
amplitude can create large deflection.

Daqaq et al. [23] was the first to investigate a non-
linear parametrically excited cantilever beam as energy
harvester considering lumped parameter model with
single-mode approximation. The broadband charac-
teristics of the harvester are found to be affected by
the coupling coefficient and load resistance. It is also
observed that a critical amplitude of excitation should
always be maintained for the nontrivial response.
Abdelkefi et al. [24] developed a distributed parameter
model of parametrically excited nonlinear PEH system,
which consists of a cantilever beam with a tip mass. Jia
et al. [25] shown that when it comes to power har-
vesting, the parametric resonance is found to be supe-
rior over ordinary resonance. In this case, one has to
overcome some limitations such as a requirement of a
critical amplitude of excitation and requirement of ini-
tial push for a nontrivial solution. Other recent notable
works where parametric excitation is used in PEH sys-
tems are referenced here [26–28]. Nonlinearity brings
an interesting dynamic phenomenon, i.e., internal reso-
nance (IR) in multimode systems. While in the case of
linear systems, the different modes can be excited sepa-
rately by adjusting the external excitation, in nonlinear
systems, coupling among different modes is possible
[29–31]. Internal resonance arises when the modal fre-
quencies are in integer relationship with each other. For
example, if the second modal frequency is near twice
the first-mode frequency, one may observe 1:2 internal
resonance condition. In other words, this commensu-
rable or nearly commensurable frequency ratios [32]
causes themode coupling phenomenon [33] and energy
transfer takes place between participating modes of
the system. This leads to periodic, quasi-periodic, and
chaotic responses [34,35]. Such responses attracted the
scientific community from time to time and inspired
them to apply internal resonance condition in multi-
dimensional interconnected systems for a large num-
ber of application fields. In order to seek better perfor-
mance in the field of PEH, few recently developed sys-
tems [36–40] incorporated the internal resonance con-

dition of 1:2. Similarly, Yan and Hajj [41] investigated
an autoparametric vibration-based PEH for enhanced
frequency bandwidth where the frequency ratio of the
beam to the base structure is taken as 1:2 that causes
the beam motion. A hybrid PEH system with internal
resonance (2:1) is explored by Yang and Towfighian
[6], where an axially movable magnet-based bistable
configuration is analyzed. It is observed that largemag-
netization moment and closely placed magnets lead to
wide bandwidth. In all these internal resonances-based
PEH systems, an auxiliary system is attached to the
main system in such a way that the combined system
exhibits internal resonance. To the best of the authors’
knowledge, no attempt has beenmadewhere a compact
system (without auxiliary system) with internal reso-
nance is developed as a PEH system. As mentioned
before, few researchers have considered parametrically
excited PEH with principal parametric resonance con-
ditions; none of them has explored the PEH system
with a combination parametric resonance condition. As
superposition rule is not valid for nonlinear systems,
one cannot extend the results of principal parametric
resonance condition for combination parametric reso-
nance condition. Hence, the study of a nonlinear PEH
subjected to combination parametric resonance condi-
tion is attempted in this work.

In the present work, an energy harvesting system
consists of a harmonic base excited vertical cantilever
beam with bimorph piezoelectric patches considered
for dynamic analysis. To achieve an internal resonance
of 1:3, a mass is attached at a particular position along
the beam. In this case, the frequency of external excita-
tion is taken as the sum of the first two modal frequen-
cies, and hence, the system is subjected to combination
parametric resonance of the sum type. In the present
work, the governing spatiotemporal electromechanical
equation of motion is derived using extended Hamil-
ton’s principle and it is discretized to its temporal form
by using generalized Galerkin’s method. The method
of multiple scales (MMS) is used to reduce the non-
linear governing differential equations of motion into
first-order differential equations to obtain the steady-
state response and output voltage. The dynamics of the
system are analyzed for combination parametric with
internal resonance condition of 1:3 in order to achieve a
wide frequency bandwidth. Itmay be noted that authors
have studied the PEH with principal parametric reso-
nance condition with 1:3 internal resonance in their
earlier work [42].
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2 Modeling and governing equation

A vertical slender cantilever beam-based energy har-
vester (Fig. 1) having length L and attached mass m
at an arbitrary position d from the base with bimorph
piezoelectric patches of length L p (L p = L2 − L1)
is subjected to a harmonic base excitation z(t) =
z0 cos(�t). Considering an arbitrary point along the
longitudinal direction of the beam, at a curvilinear dis-
tance s from the base, the transverse and axial displace-
ments are expressed as v(s, t) and u(s, t), respectively.
Due to large deflection, the displacement–curvature
relation of the beam is considered as nonlinear. The
Hamilton’s principle

∫ t2
t1

δ̂ (T −U + Wnc) dt is used to
find the governing equation of motion of the beam-
based energy harvester. The kinetic energy (T ) and
potential energy (U ) of the harvester are expressed as:

T = 1

2

L∫

0

ρ∗(s)
(
u̇(s, t)2 + v̇(s, t)2

)
ds + 1

2
J0ϕ̇(d)2

(1)

U = 1

2

L∫

0

Eb Ibϕ
′(s)2 ds −

L∫

0

ρ∗(s)g u(s, t) ds. (2)

Here, ρ∗(s) = [ρ + mδ (s − d)] , ρ = ρb Ab + 2(
HL1 − HL2

)
ρp Ap, δ, J0, ϕ, and Eb Ib, respectively,

denotes the mass per unit length, Dirac delta function,
polarmoment of inertia of the attachedmassm, rotation
angle of the beam from the x-axis, and flexural rigidity
of the beam. Also, ρb, ρp, Ab, Ap, and H are mass
density of beam, mass density of patch, area of cross
section of beam, area of cross section of patch, and
Heaviside step function, respectively. Further, follow-
ing similar to thework ofZavodney andNayfeh [43] the
relation between the lateral and longitudinal displace-
ment is considered to be governed by the inextensibility
condition, which can be expressed as follows:

u(s, t) = (1
2

)
∫ s

0

{
v′(ξ, t)

}2dξ + z(t). (3)

By observing the deflected beam geometry, the rela-
tion between the angle of rotation ϕ(s) and trans-
verse deflection v(s, t) is defined as sin ϕ = v′ and
cosϕ = (1 − v′2)1/2. As per the Euler–Bernoulli beam
theory, the curvature κ(s, t) is written as follows:

κ(s, t) = ∂ϕ(s)

∂s
= v′′

cosϕ
= v′′
√
1 − v′2

≈ v′′
(

1 + 1

2
v′2
)

. (4)

The non-conservative virtual work done Wnc involves
the work done in dissipation of energy by viscous force
Wd and electrical forces Wele [44] which is because of
piezoelectric elements attached with the beam system.
The virtual work done Wnc (Wnc = Wd + Wele) is
expressed as follows:

δ̂Wnc = −
L∫

0

cv̇(s, t)δv ds

−
L∫

0

(
HL1 − HL2

)
Mele(s, t)δκ(s)ds. (5)

The total moment Mele due to piezoelectric patches is
expressed as follows:

Mele =
−h1∫

−h2

d31EpbpEe y dy+
h2∫

h1

d31Epbp(−Ee) y dy.

Here,

Ee = V̄ (t)

tp
; h1 = 1

2 tb; h2 = 1
2 tb + tp.

Here, d31, Ep, bp, tp, Ee, and V̄ are piezoelectric strain
coefficient, Young’s modulus of piezoelectric patch,
patch width, patch thickness, electric field, and voltage
across the electrodes, respectively. Further, following
the work of Zavodney and Nayfeh [43], Erturk and
Inman [44] and Kar and Dwivedy [45], the nonlin-
ear coupled electromechanical governing equation of
motions which represents the dynamics of the PEH can
be expressed as follows:
[
ρb Ab + 2

(
HL1 − HL2

)
ρp Ap + mδ(s − d)

]
vt t + cvt

+(Eb Ib + 2
(
HL1 − HL2

)
Ep Ip

)

× [
vssss + {vs(vsvss)s}s

]

−[(J0δ(s − d))(vs)t t
]
s−(Nvs)s−HssηV̄ = 0.

(6)

Here,

η = e31bp
tp

[
(tp + 1

2 tb)
2 − 1

4 tb
2
]
,

Ab = bbtb, Ap = bptp,

H = HL1 − HL2 = H(s − L1) − H(s − L2),
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Fig. 1 a Schematic
diagram of
piezoelectric-based energy
harvester, b cross section

e31 = d31Ep,

Ip = 1
3bp

[
(tp + 1

2 tb)
3 − 1

8 tb
3
]
, Ib = 1

12bbtb
3,

L p = L2 − L1

N =
L∫

s

[
ρb Ab + 2Hρp Ap + mδ(s − d)

]

×
⎛

⎝1

2

ξ∫

0

(v2s )t tdη + (ztt − g)

⎞

⎠ dξ

where subscript ‘p’ is used to denote terms related to
Macro Fiber Composite (MFC) and ( )s , ( )t denotes
the differentiation w.r.t curvilinear coordinate ‘s’, i.e.,
d ( )
ds and time d ( )

dt , respectively. Term N denotes the
longitudinal load at ‘s’. The electric circuit equation
in bimorph configuration (with parallel connection,
Fig. 2) can be obtained by applying the Gauss’s law
[44,46]

dQ(t)

dt
= d

dt

∫

Ap

D .n dAp. (7)

Here, Q, D, and n denote the developed electric
charge, electric displacement vector, and outward nor-
mal to the surface. The electric displacement vector
(D) in terms of axial stress (σp), dielectric permittivity
component ê, and generated electric field (Ee) in the
present case is defined by the following constitutive

Fig. 2 Electric circuit in parallel connection

relation:

D3 = d31σp + ê Ee. (8)

Here, σp = Epεp − e31Ee, εp = −yκ(s, t).
By substituting Eq. (8) into Eq. (7), the circuit equa-

tion becomes as follows:

CpV̄t + 1

2Rl
V̄ − i(t) = 0. (9)

Here, i(t) = −e31tpcbp
∫ L2
L1

(vss)tds, Cp = êbp L p
tp

.
The four boundary conditions at fixed and free ends
are represented as follows:

v(0, t) = 0, vs(0, t) = 0, vss(L , t)

= 0, vsss(L , t) = 0.

At the fixed end displacement, slope is zero, and at the
free end the bending moment and shear forces are zero.
By considering the two-mode approximation in the
Galerkin’s method, the transverse displacement v(s, t)
is represented by a scaling factor r , time modulation
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qn(t), and shape function ψn(s) of the beam system as
v(s, t) = ∑2

n=1 r ψn(s) qn(t). After nondimension-
alizing, the nonlinear coupled electromechanical tem-
poral governing equations of motion for two modes
(n = 1, 2) are as follows:

q̈n + 2εζnq̇n + ω2
nqn + ε

2∑

k,l,m=1

{
αnklmqkqlqm + βn

klmqk q̇l q̇m

+γ n
klmqkql q̈m

}+ εηnV = ε

2∑

m=1

Fnm cos(φτ)qm (10)

V̇ (τ ) + χV (τ ) +
⎛

⎝
2∑

n=1

e31tpcbp
L

r

Cprv

∫ 1

0
ψnxx (x)dx

⎞

⎠ q̇n = 0.

(11)

Here,

x = s

L
, β = d

L
, τ = θ1t, ωn = θn

θ1
, λ = r

L
,

μ = m

ρL
, J = J0

ρLr2
, tpc = (tp + tb)/2,

φ = �

θ1
, ζn = ζ ∗

n
ν

ε
, Γ = z0

zr
, Fnm = F∗

nm
Γ

ε
,

ηn = −ηrv
ρh̄nθ21 rεL

2

∫ 1

0
{δx (x) − δx (x − 1)} ψn(x)dx,

χ = 1
2Cpθ1Rl

, K̄n = e31tpcbp
L

∫ 1

0
ψnxx (x)dx,

Kn = K̄nr

Cprv
, rv = V̄

V
= K̄nr

Cp

where
·

( ) = d( )
dτ

. Here, the damping, geometric and
inertial nonlinearities, electromechanical coupling and
excitation terms are small and hence considered of
the order of ε (bookkeeping parameter). The coeffi-
cients of linear (ζn , θn), nonlinear (αn

klm , βn
klm , γ n

klm),
coupling (ηn), and forcing term (Fnm), which appear
in the governing Eqs. (10) and (11), are defined in
“Appendix A.” By observing the RHS term of Eq. (10),
the time-varying forcing term appears as a parameter
[21], which is a typical characteristic of parametrically
excited systems. It may be noted that in the absence
of piezo-patches with single-mode approximation, the
equation of motion of the system reduces to that of
the model investigated theoretically and experimen-
tally by Zavodney and Nayfeh [43]. Also, with two-
mode approximation, the governing equation ofmotion
without piezoelectric patches reduces to that of Kar
and Dwivedy [45]. The present mathematical model
accommodates the variation in the position of piezo-
electric patches. A similar approach is adopted by Yan

and Hajj [41] in the development of the autoparametric
PEH system, where tip mass is used.

3 Solution of the temporal equation

A uniform first-order approximate analytical solution
of Eqs. (10) and (11) is obtained by using the stan-
dard method of multiple scales (MMS). Though in
the present case combination parametric resonance is
studied, in Zavodney and Nayfeh [43], and Kar and
Dwivedy [45], principal parametric resonance condi-
tions were discussed. In the work by Dwivedy and
Kar [47] and Dwivedy and Kar [34], the combi-
national resonance cases were discussed where the
dynamic analysis of the beam is studied. However, in
the present work, the nonlinear electromechanical sys-
tem is explored as an energy harvester. The time depen-
dence is expressed into multiple timescales as Tn =
εnτ ; n = 0, 1, 2, . . ., and the time derivatives can be
d
dτ

= D0+εD1+O(ε2), d2

dτ 2
= D2

0+2εD0D1+O(ε2)

where Di = ∂
∂Ti

. The solution of the system (qn, V )

can be expanded in the following form:

qn(τ ; ε) = qn0 (T0, T1) + εqn1 (T0, T1) + O(ε2)

(12)

V (τ ; ε) = V0 (T0, T1) + εV1 (T0, T1) + O
(
ε2
)

.

(13)

Substituting Eqs. (12) and (13) into Eqs. (10) and (11)
and further equating the coefficient involving the terms
of ε0 and ε1 to zero yields the set of equations in dif-
ferent order of ε

O(ε0) :

D2
0qn0 + ω2

nqn0 = 0;
D0V0 + χV0 = −K1D0q10 − K2D0q20

(14)

O(ε1) :
D2
0qn1 + ω2

nqn1 = −2ζnD0qn0 − 2D0D1qn0

+
2∑

n,m=1

Fnmqm0 cosφτ − ηnV0

−
∑

klm

(
αn
klmqk0ql0qm0 + βn

klmqk0D0ql0D0qm0

+γ n
klmqk0ql0D

2
0qm0

)

D0V1 + χV1 = −D0V0 − K1 (D0q11 + D1q10)
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−K2 (D0q21 + D1q20) . (15)

The solution of differential equations (Eq. (14)) of
O(ε0) is expressed as

qn0 = An(T1) exp(iωnT0) + cc,

V0 = −
2∑

n=1
KnZn An(T1) exp(iωnT0) + cc.

(16)

Here, cc is the complex conjugate of the preceding
terms and is an unknown complex function to be deter-
mined later. By substituting Eq. (16) into Eq. (15), the
following secular and near secular terms for first two
modes (n = 1, 2) are obtained which should be elim-
inated for finite amplitude response of the system:

n = 1 : 1

2
ei(φ−ω2)T0F12 Ā2 − Q∗

1A2 Ā
2
1e

i(ω2−2ω1)T0

+ eiω1T0

⎡

⎣− 2iω1
(
ζ1A1 + A1

′)+ η1K1Z1A1

−
2∑

j=1

αe1 j A j Ā j A1

⎤

⎦ = 0 (17)

n = 2 : 1

2
ei(φ−ω1)T0F21 Ā1 − Q∗

2e
3iω1T0 A1

3

+ eiω2T0

⎡

⎣− 2iω2(ζ2A2 + A2
′) + η2K2Z2A2

−
2∑

j=1

αe2 j A j Ā j A2

⎤

⎦ = 0 (18)

Equations (17) and (18) are obtained by considering a
particular case of combination resonance of sum type

when the frequency of external excitation is nearly
commensurate to the sum of first two natural frequen-
cies of the system, i.e., φ ≈ ω1 + ω2. Also, 1:3 inter-
nal resonance condition is considered here by taking
ω2 ≈ 3ω1. Here, terms Q∗

1 and Q∗
2 are the functions of

αn
klm ,β

n
klm , γ

n
klm andωn which are defined in “Appendix

A.” To express the nearness of φ to that of ω1 +ω2 and
ω2 to that of ω1, the detuning parameters σ1 and σ2 are
introduced as follows:

ω2 = 3ω1 + εσ2,

φ = 4ω1 + εσ1 = ω1 + ω2 + ε(σ1 − σ2).
(19)

The complex function An(T1) is expressed into its
polar form as An(T1) = 1

2an(T1)e
iϑn(T1), where ampli-

tude an(T1) and phase ϑn(T1) are slowly varying func-
tions of timescale T1. Now by using this polar form in
Eqs. (17) and (18) and eliminating the secular term (the
coefficient of eiωnT0 ) to find the bounded solution, one
obtains the following reduced equations:

2ω1a1
′ = −2ω1ζ1a1 + 1

2
{F12a2 sin(γ1 + γ2)} − 1

4
Q∗

1a2a1
2 sin(3γ1 − γ2) + Πaa1 (20)

2ω1a1γ1
′ = 0.5ω1a1σ1 + 1

2
{F12a2 cos(γ1 + γ2)} − 1

4

2∑

j=1

αe1 j a j
2a1 − 1

4
Q∗

1a2a1
2 cos(3γ1 − γ2) + Πba1 (21)

2ω2a2
′ = −2ω2ζ2a2 + 1

2
F21a1 sin(γ2 + γ1) − 1

4
Q∗

2a1
3 sin(γ2 − 3γ1) + Πca2 (22)

2ω2a2γ2
′ = ω2a2(1.5σ1 − 2σ2) + 1

2
F21a1 cos(γ2 + γ1) − 1

4

2∑

j=1

αe2 j a j
2a2 − 1

4
Q∗

2a1
3 cos(γ2 − 3γ1)

+Πda2. (23)

Here,

Πa = K1η1χω1

(χ2 + ω1
2)

, Πb = K1η1ω1
2

(χ2 + ω1
2)

,

Πc = K2η2χω2

(χ2 + ω2
2)

, Πd = K2η2ω2
2

(χ2 + ω2
2)

Zn = ωn
2 + iχωn

(χ2 + ωn
2)

, γ1 = −ϑ1 + 0.25σ1T1,

γ2 = −ϑ2 + 0.75σ1T1 − σ2T1.

The stability of nontrivial state can be obtained by per-
turbing Eqs. (20)–(23). But for the trivial state, the sta-
bility cannot be determined by perturbing Eqs. (21)
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and (23) as the perturbation will not contain the term
Δγ ′

1 and Δγ ′
2 due to the presence of coupled term a1γ ′

1
and a2γ ′

2. By using the transformation pi = ai cos γi ;
qi = ai sin γi ; i = 1, 2, the following normalized
reduced equations in Cartesian form are obtained:

p′
1 = −1

2ω1

⎡

⎢
⎣

2ω1ζ1 p1 + 1
2ω1σ1q1 − 1

2 F12q2 + 1
4Q

∗
1

{
q2
(
q21 − p21

)+ 2p1 p2q1
}

− 1
4

2∑

j=1
αe1 j q1

(
p2j + q2j

)
− Πa p1 + Πbq1

⎤

⎥
⎦ (24)

q ′
1 = −1

2ω1

⎡

⎢
⎣

2ω1ζ1q1 + 1
2ω1σ1 p1 − 1

2 F12 p2 + 1
4Q

∗
1

{
p2
(
p21 − q21

)+ 2p1q1q2
}

+ 1
4

2∑

j=1
αe1 j p1

(
p2j + q2j

)
− Πbq1 − Πa p1

⎤

⎥
⎦ (25)

p′
2 = −1

2ω2

⎡

⎢
⎣

2ω2ζ2 p2 − ω2 (2σ2 − 1.5σ1) q2 − 1
2 F21q1 − 1

4Q
∗
2

{
q1
(
3p21 − q21

)}

− 1
4

2∑

j=1
αe2 j q2

(
p2j + q2j

)
− Πc p2 + Πdq2

⎤

⎥
⎦ (26)

q ′
2 = −1

2ω2

⎡

⎢
⎣

2ω2ζ2q2 + ω2 (2σ2 − 1.5σ1) p2 − 1
2 F21 p1 + 1

4Q
∗
2

{
p1
(
p21 − 3q21

)}

+ 1
4

2∑

j=1
αe2 j p2

(
p2j + q2j

)
− Πcq2 − Πd p2

⎤

⎥
⎦ . (27)

Here, Newton’s method is used to find the nontrivial
fixed-point responses of the system. Further to find
the stability of the obtained fixed-point responses, the
above reduced modulation equations [Eqs. (24)–(27)]
are then perturbed to obtain the following equations:
{
Δp′

1,Δq ′
1,Δp′

2,Δq ′
2
}T

= [J ]{Δp1,Δq1,Δp2,Δq2}T (28)

where Δ, superscript T , and matrix [J ] denote the
perturbation to the fixed point, the transpose, and the
Jacobian matrix, respectively. The stability and bifur-
cation of the fixed-point response of the system can be
obtained by finding the eigenvalue of the Jacobian [J ].
It may be noted that the solutions having eigenvalues
with negative real parts are stable solutions and those
with positive real parts are unstable solutions. One can
obtain the steady-state deflection of the beam v, out-
put voltage V , and power P , by using the following
expressions:

v(s, τ ) =
2∑

n=1

r ψn(s)an0 cos(ωnτ + ϑn) (29)

V (τ ) =
2∑

n=1

rv Kn
ωn√

χ2+ω2
n
an0 cos(ωnτ + ϑn + δn)

(30)

P = 1

Rl

(
2∑

n=1

rv Kn
ωn√

χ2+ω2
n
an0

)2

. (31)

Here, δn = tan−1
(

χ
ωn

)
.

4 Results and discussion

This section deals with the parametric study of energy
harvester for combination parametric and 1:3 internal
resonance condition using the reduced equations devel-
oped in the previous section. The material and geomet-
ric properties of the substrate and piezoelectric patch
considered in this work are given in Table 1. The triv-
ial state instability regions are obtained by finding the
eigenvalues of the Jacobianmatrix [J ] [Eqs. (24)–(27)]
by substituting p1 = p2 = q1 = q2 = 0. Figure 3a
shows the trivial state instability regions with varia-
tion in load resistance (Rl ) for damping parameter ν =
0.0005. In this figure, the abbreviation S andUS denote
the stable and unstable trivial state regions. It may be
noted that there exists a critical value of the nondimen-
sional amplitude of excitation Γcrit below which for
all the frequency range, the trivial state remains sta-
ble. Hence, there will be no transverse vibration of the
beam system and hence no power generation is pos-
sible. Further, it may be observed (Fig. 4) that in the
US region, branches of nontrivial fixed-point response
and periodic responses are possible and hence for this
trivial state unstable region, the energy harvesting is
possible. As the load resistance (Rl ) increases, insta-
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Table 1 Material and geometric properties of substrate and
piezoelectric patches

Property Piezo-patch Substrate

Young’s modulus, GPa Ep = 15.86 Eb = 130

Density, kg m−3 ρp = 5440 ρb = 1794

Length, m L p = 7.6 × 10−2 Lb = 32 × 10−2

Width, m bp = 1.8 × 10−2 bb = 1.8 × 10−2

Height, m tp = 1.25 × 10−4tb = 2.5 × 10−4

Permittivity, nF m−1 ê = 19.36 −
Piezoelectric constant, Cm−2e31 = −19.84 −
Subscript p:piezo b:beam

bility regions shifted slightly toward the higher fre-
quency side. For example, the critical value of Γ above
which trivial state loses its stability gets increased from
Γ = 0.55 (φ = 4.026 for Rl = 0.5 k�) to Γ =
3.55 (φ = 4.033 for Rl = 10 k�). In Fig. 4, the time
response for three data points O1(φ = 3.95, Γ = 6),
O2(φ = 4.00, Γ = 6) and O3(φ = 4.10, Γ = 6)
shows that there is no voltage generation in the region
marked with S and only the region marked with US
is available for harvesting. Further, it may be noted
that for a particular value of Γ , as the unstable range
increases with an increase in Rl , suitable value of Rl

may be taken depending on the requirement of the
available amplitude and frequency range of the ambient
vibration source for the PEH applications.

Figure 3b shows the instability region plot in Γ −φ

plane, with variation in damping parameter, ν =
0.0005, 0.001, 0.005, 0.01 for a load resistance of Rl =
0.5 k�. As the nondimensional damping parameter ν

increases, the stability region shifts toward higher val-
ues of Γ . Hence, similar to the previous case, here with
an increase in ν, the critical value ofΓ above which the
PEH can operate becomes higher. In Fig. 5, frequency
response curves are plotted for the system parameters
ν = 0.0005, Γ = 4 , Rl = 0.5 k� along with variation
of voltage and power with respect to the frequency of
the excitation φ. In all the frequency response plots, the
stable solutions are shown in black color and the unsta-
ble solutions are shown in blue color. It may clearly
be observed from Figs. 3, 4, and 5 that the trivial state
loses its stability by Hopf bifurcation (left HBL

T) at φ =
3.99 and remain unstable up to φ = 4.057 (right HBR

T).
Among all the nontrivial branches, only two are sta-
ble (as shown by black color) and loses its stability by

Hopf bifurcation (HB) at φ = 3.970 (left HBL
NT) and

φ = 4.007 (right HBR
NT), respectively. If one sweeps

down the frequency fromφ >4.057, as the stable trivial
state loses its stability at rightHBpoint (φ =4.057), the
response will jump to the nontrivial stable branch. For
further sweeping down the frequency φ, the nontrivial
response remains stable in the considered range and
one may observe a decrease in amplitude, voltage, and
power. Further, sweeping up the frequency φ, the non-
trivial response remains stable and an increase in ampli-
tude, voltage, and power is observed. For example, for a
positively tuned system (i.e., σ1 > 0)whenφ = 4.1, the
voltage and power are 1.8 V and 6.3 mW, respectively.
Similarly, for φ = 4.2, the voltage and power increase
to 2.46V and 12.1mWand negatively tuned cases such
asφ =3.5, the voltage and power are found to be 1.03V
and 2.08 mW, respectively. So, depending on the appli-
cations, the harvester may be operated at a particular
frequency to obtain the required voltage and power.

As four state vectors (a1, a2, γ1, γ2) are there to
represent the response of the system, it is difficult to
show the basin of attraction. Hence, keeping γ1 =
3.78 and γ2 = 4.97, which are obtained from the fre-
quency response plots, the basin of attraction is plot-
ted in a1 − a2 plane at frequency of excitation, φ =
3.7. To achieve this, a grid of 30 × 30 is considered in
a1−a2 plane. So, taking 900 initial conditions the time
responses have been plotted which are shown in Fig. 6.
It may clearly be observed that few points marked in
this figure are matching with the response amplitude
present in the frequency plot shown in Fig. 5a, b. In
addition to these fixed-point responses, some periodic
responses are also observed which are shown in Fig. 7
due to the existence ofHopf bifurcation. Then, the basin
of attraction is plotted by marking all the grid points
( ) going to the same final equilibrium points
( ) in same color as shown in Fig. 8.

Figure 9 shows the variation of voltage (V ) and
power (P) with frequency φ for amplitude of exci-
tation Γ = 2 and 4. One may observe that when Γ

is decreased from 4 to 2, keeping the other parame-
ters (ν, Rl ) constant, the stable nontrivial (N-T) branch
for φ < 4 disappears. Also, the trivial unstable zone
broadens for the higher amplitude of excitation and
HB point gets shifted toward negative detuning from
φ = 4.014 to φ = 4.007. The voltage output increases
for a higher Γ value. For example, the output voltage
increases from 1.13 V to 1.32 V and power increases
from 2.55 mW to 3.45 mW at a particular value of φ =
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(a) (b)

Fig. 3 Instability plot with a variation in load resistance Rl = 0.5, 1, 5, 10 k� for ν = 0.0005 and b variation in damping parameter ν

with Rl = 0.5 k�

(a) (b) (c)

Fig. 4 Time response corresponding to the points O1(3.95,6), O2(4.00,6), and O3(4.10,6)

4.050. For φ < 3.969, the energy harvesting is possi-
ble in the case of Γ = 4, which depends on the ini-
tial conditions since the trivial branch is also stable for
the mentioned zone of frequency. The N-T stable and
unstable branches follow similar trends for positively
tuned cases, and voltage increaseswith an increase inφ.

Figure 10 shows the frequency response curve for
parameters ν = 0.0005 and Γ = 4 with the variation
in load resistance Rl = 0.1, 0.5, 1, 2 k�. It is observed
that the voltage and power increase significantly as Rl

increases which shows that the load resistance plays an
important role in achieving an optimum power output.
Here, at φ = 4.5, a voltage of 0.77, 3.8, 7.77, and 15.3
Vwith corresponding power of 5.9, 29.5, 58.9, and 117
mW is achievable as the load resistance increases from
Rl = 0.1 k� to Rl = 2 k�.

In this case, the unstable trivial frequency zone
remains fixed (4.001 < φ < 4.054, Δφ = 0.053) and

stable nontrivial branches for frequencies φ < 4.001
disappear (as shown in the inset of Fig. 10a, only show-
ing stable trivial and stable nontrivial branches) for
higher load resistance values Rl > 1 k�.

Figure 11 shows the variation of voltage and power
with frequency when damping parameter (ν) of the
system increases from 0.0005 to 0.005 (for Γ = 10
and Rl = 0.5 k�). The unstable trivial zone decreases
slightly (Δφ = 0.017), and the nontrivial branch which
lies in the negative detuning zone (φ < 3.813, ν =
0.0005) disappears as ν increases.However, the voltage
and power reductions are not significant for a positively
tuned systemandboth increase as the frequencyof exci-
tation increases. On the contrary, a significant change
in the topology of the N-T branch of the solution is
observedwhen damping parameter changes from0.001
to 0.01, as shown in Fig. 12. The N-T stable and unsta-
ble branches in the positively tuned zone form a closed
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Fig. 5 a, b Frequency
response plot, variation of c
voltage and d power with
frequency; for parameters
ν = 0.0005, Γ = 4, and
Rl = 0.5 k�

(a) (b)

(c) (d)
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Fig. 6 Collection of time responses in a continuous time (τc),
for different sets of initial conditions (a1, a2) while keeping γ1 =
3.78 and γ2 = 4.97 for a amplitude a1 b amplitude a2, at a partic-

ular frequency of excitation, φ = 3.7; here, the system parameter
is similar to that of Fig. 5, i.e., ν = 0.0005, Γ = 4, and Rl = 0.5
k�
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Fig. 7 Time responses of amplitudes a1 and a2 at selected ellipsoidal zones of a NT Sa1−1 b NT Sa1−2 c NT Sa2−1 and d NT Sa2−2,
from Fig. 6

Fig. 8 The basin of
attraction in a1 − a2 plane,
while keeping γ1 and γ2
fixed

loop and stable branch loses stability at saddle node
bifurcation point (φ = 4.01, ν = 0.01) where voltage
output is found to be 0.54 V which is much reduced
from 2.118 V for ν = 0.001. Similar to the previous
case here also the nontrivial branch, which lies in the
negative detuning zone (φ < 3.883, ν = 0.001), dis-
appears as ν increases and forms a close unstable N-
T branch of solution. The trivial unstable zone gets
reduced.

Variation of voltage (V ) and power (P) with ampli-
tude of harmonic excitation Γ is shown in Fig. 13 for

φ=4 (tuned case) for different damping ratios ν =0.001
and 0.005, respectively, along with change in Rl . Both
voltage and power increase, and the critical value of Γ

shifts toward the higher side with Rl . The topology of
the nontrivial branches of solution marginally changes
as ν increases and the nature of stable nontrivial criti-
cal point changes from HB to saddle node bifurcation
point. For example, in Fig. 13a Γcr = 2.96 ( V = 1.67
V, at HB point) for nontrivial branch where Rl = 1.5
k�, while for higher damping ν = 0.005 in Fig. 13c
and Γcr = 5.96 ( V = 1.43 V at SN point) for non-
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Fig. 9 Variation of a
voltage, b power with
frequency of excitation (φ)
for system parameter ν =
0.0005, Γ = 2, 4 and Rl =
0.5 k�

(a) (b)

Fig. 10 Variation of a
voltage and b power with
frequency for ν = 0.0005,
Γ = 4 and load resistance
Rl = 0.1, 0.5, 1, 2 k�

(a) (b)

Fig. 11 The effect of
damping parameter ν on a
voltage and b power
response for ν = 0.0005 and
ν = 0.005 for Γ = 10, Rl =
0.5 k�

(a) (b)

trivial branch where Rl = 1.5 k�. It is also observed
that voltage and power are slightly reduced as damping
increases and a higher damping ratio requires a higher
critical value of Γ for harvesting purposes.

Considering ν = 0.001, Γ = 0-10, and Rl = 0.5 k�
for perfectly tuned (φ = 4, σ1 = 0), negatively tuned
(φ = 3.9), and positively tuned (φ = 4.1) cases, varia-
tion of voltage and power with Γ is shown in Fig. 14.
By Fig. 14(a,b), it has been observed that the voltage

and power remain constant as Γ increases. The trivial
state is stable in negatively and positively tuned cases,
while it loses stability by Hopf bifurcation for a per-
fectly tuned case, as shown in Fig. 14c. The voltage
and power increase as Γ increases for perfectly and
positively tuned cases; however, the values are higher
for the positively tuned case. The unstable nontrivial
branch disappears as the frequency is tuned to perfect
or kept to the positive side.
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Fig. 12 The effect of
damping on voltage
response for a ν = 0.001, b
ν = 0.01 for Γ = 10, Rl =
0.5 k�

(a) (b)

Fig. 13 Voltage and power
variation with amplitude of
excitation (Γ ) for the
system parameters Rl =
0.5, 0.75, 1, 1.25, 1.5 k�,
φ = 4 a, b ν = 0.001 c, d
ν = 0.005

(a) (b)

(c) (d)

Voltage and power variation with load resistance
(Rl ) is shown in Fig. 15 for perfectly and positively
tuned cases, and the effect of amplitude of excitation
Γ on the output voltage and power is also observed.
The trivial branch is unstable for the whole range of
resistance variation for perfectly tuned case (φ = 4),
while it is completely stable for positively tuned case
(φ > 4). Output voltage increases with an increase in
Rl up to a certain value and nontrivial stable branch
loses stability by Hopf bifurcation at 1.545 k� (Γ =

3) and 2.295 k� (Γ = 4) as shown in Fig. 15a. Again
for a range of 2.775 < Rl < 2.905 and 3.870 < Rl <

4.045 for Γ = 3 and Γ = 4, respectively, the stable
branch appears and loses stability by SN bifurcation
point. A similar trend is observed for positively tuned
case (φ = 4.1) except that continuous stable nontrivial
branch exists and loses stability at SN bifurcation as
Rl increases and voltage and power values are signifi-
cantly higher than those of tuned case. The maximum
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Fig. 14 Variation of voltage
and power with amplitude
of excitation (Γ ) for the
system parameters ν =
0.001, Γ = 0-10, Rl=0.5
k� a, b negatively tuned
φ = 3.9 c, d perfectly tuned
φ = 4.0 and e, f positively
tuned φ = 4.1 case

(a) (b)

(c) (d)

(e) (f)
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Fig. 15 Voltage and power
variation with load
resistance (Rl ) for the
system parameter ν = 0.001
and a, b φ = 4, Γ = 3, 4 c,
d φ = 4.1, Γ = 2, 4

(a) (b)

(c) (d)

value of power is found to be 40.46 mW at Rl = 3.485
k� and Γ = 4 as shown in Fig. 15d.

5 On achieving the internal resonance of 1:3

In the present energy harvester, the material proper-
ties of the substrate are considered from the work of
Zavodney and Nayfeh [43]. However, the possibility of
achieving the required commensurate frequency ratio
of 1:3 by considering different values of system param-
eters, i.e., geometric (Ls , ts , β, μ) and material prop-
erties (Es), is explored in this section.

The effect of the distance of arbitrary mass (β)
from the fixed end on frequency ratio ω2

ω1
is shown in

Fig. 16,with a change inmass ratio (μ) and beam length
(Ls). As the mass ratio increases, the frequency ratio
becomes closer to the required value 3. A discontinuity
is observed nearβ = 2.72,which remains invariant toμ

but changes with a change in Ls value. This causes the
frequency ratio ω2

ω1
> 3.4 away from internal resonance

phenomenon. For larger beam length, the discontinuity
occurs at a lower valueofβ andvice versa.These curves

are very much useful while considering the geometry
and location of the arbitrary mass and its distance from
the base in order to achieve or avoid the commensurate
frequency ratio, which depends on the application.

In Fig. 17, variation in material property (Young’s
modulus of the beam, Es) is plotted with frequency
ratio

(
ω2
ω1

)
with a change in substrate length (Ls) and

thickness (ts). As Es increases, the ratio of frequencies
gets reduced and an increase in the length of the beam
causes the curve to shift at a higher frequency ratio
side, as shown in Fig. 17a. However, as the thickness
of the substrate (ts) increases, the curve shifts toward
the lower frequency ratio side. One may choose suit-
able values of system parameters to get the internal
resonance of 1:3, for the present system, which is asso-
ciated with the cubic and inertial nonlinearities due to
the large deformation and an attached arbitrary mass.

In Fig. 18, the variation of mass ratio (μ) with fre-
quency ratio

(
ω2
ω1

)
is observed for different values of

β, Es , Ls , and ts . As the mass ratio increases, the
frequency ratio reduces. As the distance of attached
mass (β) from the fixed end increases, the curve shifts
toward lower frequency ratio side and around β ≈ 0.27
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Fig. 16 The variation of
distance of arbitrary mass
(β) with frequency ratio
(ω2
ω1
) for different values of

a mass ratio μ and b beam
length Ls , while other
geometric and material
system parameters are same
as mentioned in Table 1

(a) (b)

Fig. 17 The variation of
Young’s modulus of beam
(Es ) with frequency ratio(
ω2
ω1

)
for different values of a

beam length, Ls , b substrate
thickness ts , while other
parameters are the same as
in Table 1

(a) (b)

the frequency ratio switches to the higher ratio side as
shown in Fig. 18a. Young’smodulus in the range of 150
< Es < 210 is varied in Fig. 18b, and in every case
one can get a frequency ratio of nearly 1:3. Higher Es

brings the frequency ratio at lower side, and this trend
is similar for thickness ts but opposite for larger beam
length Ls values as shown in Fig. 18c, d, respectively.

6 Experimental findings with MFC patch

To validate the theoretical findings, experiments have
been carried out by using an experimental setup which
was previously used for comparing the results for prin-
cipal parametric resonance condition [42]. The setup is
shown in Fig. 19b, and the details of the setup can be
found in the work of Garg and Dwivedy [48]. It may
be noted that in the present case, the harvester has been
excited at a frequency equal to the sum of the first two
mode frequencies.

The material and geometric properties of the sub-
strate and piezoelectric patch (MFC) used in this exper-

iment are mentioned in Table 2. It may be noted that
these properties are different from those in Garg and
Dwivedy [48]. Here, MFC (M2814-P2, [49]) is used in
place of PZT-5H, which is very brittle and may likely
to be broken under combination parametric resonance
case. The beam specimen is formed by using a laser cut-
ting machine. The beam attached with the MFC patch
and arbitrary mass is shown in Fig. 19a. The beam is
attached to a slider crankmechanism-based shaker. The
MFC patch is attached using 3M 465 film tape. Unlike
the PZT ceramics, theMFCpatch can be detached from
the substrate for reuse purposes.

Figure 20 shows the voltage time response and cor-
responding FFT when the frequency of excitation is
kept nearly 8 Hz, which is close to twice of the first
natural frequency of the system. Here, the mass, its
position along the beam, and load resistance values are
taken as m = 36 gm, β = 0.263, and Rl = 1000 k�.
Two frequency peaks are observed in Fig. 20b with fre-
quencies 4.3 Hz and 8.6 Hz. The MFC patch is placed
nearer to the fixed end of the beam (Table 2), which
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Fig. 18 The variation of
mass ratio (μ) with
frequency ratio

(
ω2
ω1

)
for

different values of a
distance of arbitrary mass, β
b Young’s modulus of
beam, Es a beam length, Ls
and b substrate thickness,
ts , while other parameters
are the same as in Table 1)

(a) (b)

(c) (d)

Table 2 Material and geometric properties of substrate and piezoelectric patches

Property Piezo-patch (M2814-P2) Substrate

Young’s modulus, GPa Ep = 15.86 Eb = 190

Density, kg m−3 ρp = 5440 ρb = 7800

Length, m L p = 28 × 10−3 Lb = 190 × 10−3

Width, m bp = 14 × 10−3 bb = 14 × 10−3

Height, m tp = 0.125 × 10−3 tb = 0.25 × 10−3

Permittivity, nFm−1 ê = 19.36 −
Piezoelectric constant, Cm−2 e31 = −19.84 −
L1, m 10 × 10−3 −
L2, m 38 × 10−3 −

leads to higher strain and, consequently, more output
voltage around 5 V and power of 25 μW.

When the excitation frequency increases to near the
second-mode frequency of the system, the voltage time
response changes (shown in Fig. 21a) and higher fre-
quencies dominate the time response which is visible
in FFT (in 21b). The other parameters, i.e., m, β and
Rl , are kept similar to that of the previous case. Here,
it is observed that the output voltage reduces signifi-

cantly. Two major frequency components are found to
be 14.3 and 50Hz, where the higher frequency is nearly
three times the second-mode frequency of the system.
It may be noted that by using the developed Eqs. (10)
and (11) and the properties given in Table 2 the modal
frequencies are found to be 4.58 and 14 Hz. This is
matching very well with the experimentally obtained
frequencies, as shown in Figs 20 and 21. Further, a
positive detuning from 13 Hz leads to the multimodal
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Fig. 19 a A vertical beam
with unimorph MFC patch
and an attached mass, b
experimental setup

(a)

(b)

Fig. 20 a Voltage time
response and b
corresponding FFT, for
parameters m = 36 gm, β =
0.263, Rl = 1000 k� and
frequency of excitation is 8
Hz (principal parametric
resonance condition with
base acceleration of 16.4
m/s2)

(a) (b)

Fig. 21 a Voltage time
response and b
corresponding FFT, for
parameters m = 36 gm, β =
0.263, Rl = 1000 k�. The
frequency of excitation is 13
Hz which is around the
combination of first two
modal frequencies

(a) (b)

123



PEH under combination parametric and internal resonance 2125

Fig. 22 a Voltage time
response and b
corresponding FFT, for
parameters m = 36 gm, β =
0.263, Rl = 1000 k� and
frequency of excitation is
positively detuned to that of
13 Hz up to 17 Hz

(a) (b)

Fig. 23 Time response
(using ode45 in MATLAB)
for a amplitudes a1 and a2,
b output voltage V , with
system parameters same as
in the experimental work
(Fig. 22)

(a)

(b)

voltage time response (in Fig. 22a) with multiple fre-
quency components in FFT as shown in Fig. 22b. The
following frequency components in the FFT plot are
observed: f1 = 4.3 Hz, f2 = 14.3 Hz, f2 − f1 = 10.1
Hz, f1 + f2 = 18.6 Hz, 2 f1 = 8.5 Hz, 2 f2 = 28.7 Hz.
The higher output voltage is observed here as compared
to the previous case where the excitation frequency is
kept near to the second-mode frequency.

Figure 23 shows the amplitude and voltage time
response obtained numerically solving the reduced
Eqs. (20) to (23) using fourth-order Runge–Kutta
method taking the system parameters as in the exper-
imental work (Fig. 22). The frequency of excitation is
taken as 17 Hz (φ = 3.88) which is the combination of
first two mode frequencies of the system, and the other
parameters are kept same as that of used in the experi-
mental findings, i.e.,m =36gm,β =0.263, Rl =1000
k� (see Fig. 22). The numerically obtained output volt-
age is found to be in good agreement with the exper-

imentally observed voltage. In Fig. 24, few specific
frames are shown, which are related to the first, second,
and combination of excited modes of the PEH system.

7 Conclusions

In this work, a harmonically base excited vertical can-
tilever beam with piezoelectric path and attached mass
is used as an energy harvester. The mass is attached
at a position such that the second modal frequency is
thrice the fundamental frequency, and hence the system
exhibits 1:3 internal resonance. The system is excited
at a frequency nearly equal to the combination of the
first and second modal frequencies. The nonlinear gov-
erning equation of motion, which is similar to that of
a parametrically excited system with cubic nonlineari-
ties, is derived and solved using the method of multiple
scales. Initially, the instability regions have been plot-
ted to obtain the range of frequencies for which the har-
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Fig. 24 aFirstmode (principal parametric resonance, seeFig. 20
for corresponding voltage time and FFT), b second mode (see
Fig. 21 for corresponding voltage time and FFT), c combina-

tion of modes (combination parametric resonance, see Fig. 22
for corresponding voltage time and FFT)

vester can be effectively used for various systemparam-
eters such as the load resistance, excitation amplitude,
excitation frequency, and damping. From these insta-
bility regions, it has been observed that there exists a
critical value of the amplitude of the base excitation
for different values of load resistance and damping,
below which the harvester cannot be used as it leads to
trivial state fixed-point response. Then, the frequency
response curves have been plotted for the same param-
eters to obtain the voltage and power of the harvester.
Time responses have been plotted to verify the instabil-
ity regions and the frequency response curves, which
are found to be in good agreement. From the frequency
vs. power curves, it has been observed that there exist
critical values of load resistance for optimum power
generation. A modified form of the basin of attrac-
tion is also plotted which clearly shows the multiple
stable fixed-point responses along with other periodic
responses.

It has been observed that the present harvester will
not only useful in energy extraction in the primary reso-
nance zone but also the higher frequency zone of com-
bination type (ω1 + ω2). Also, parametric excitation
means a high deformation at the cost of very low exci-
tation magnitude, which provides a high conversion
rate of power with the only limitation of crossing the
threshold limit of excitation magnitude necessary for
transverse deflection of the vertical cantilever beam-
based harvester.

For an external frequency of more than 13 Hz,
the FFT of voltage time response for the PEH sys-
tem shows multiple frequency components. Here, due
to modal interactions between several participating
modes, synchronous and sub-synchronous frequencies
are observed, which are generally observed in the rotor-
bearing system. The experimental findings are also
comparedwith the numerically obtained amplitude and
voltage time response for combination parametric res-
onance condition and is found to be in good agreement.

By suitably using different dimensions of the har-
vester, the load resistance, different types of the piezo-
electric patch and base material and attached mass,
one can extend the present analysis using the devel-
oped reduced equations to find the range of voltage
and power of the harvester which can be used for a
wide range of applications. This analysis of combina-
tion parametric resonance may be coupled with other
resonance conditions for harvesting energy for a wider
frequency range as the ambient response contains both
low and high frequencies.
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Appendix A

h11 =
∫ 1

0

ρ(x)
ρb Ab

ψ2
ndx,

h12 =
∫ 1

0
δ(x − β)ψ2

ndx,

h13 =
∫ 1

0
δ(x − β)ψ2

nxdx,

h21 = h11,

h31 =
∫ 1

0
E I ∗(x)ψ2

ndx,

h32 =
∫ 1

0

ρb AbE I ∗(x)
ρ(x) ψ2

ndx,

h33 =
∫ 1

0

ρ
ρb Ab

(1 − x)ψ2
nxdx,

h34 =
∫ 1

0

∫ 1

x
δ(ξ − β)dξψ2

ndx,

h41 = 1

2

∫ 1

0
E I ∗(x)ψkψlxψmxψndx,

h42 = 1

2

∫ 1

0
δ(x − β)E I ∗(x)ψkψlxψmxψndx,

h43 = 3
∫ 1

0
E I ∗(x)ψkxψlxxψmxxxψndx

+
∫ 1

0
E I ∗(x)ψkxxψlxxψmxxψndx,

h51 =
∫ 1

0

{∫ 1

x

(∫ ξ

0
ψlηψmηdη

)

dξ

}
ρ(x)
ρb Ab

ψkxψnxdx,

h52 =
(∫ β

0
ψlxψmxdx

)(∫ β

0
ψkxψnxdx

)

,

h53 = {ψkxψlxψmxψnx }x=β, h61 = h51

h62 =
∫ 1

0

1
2

ρ(x)
ρb Ab

ψkxψlxψmxψndx

−
∫ 1

0

ρ(x)
ρb Ab

ψkxψlxx

(∫ 1

x
ψmdξ

)

dx

h63 = h52, h65 = 0.5h53,

h64 = 1
2 {ψkxψlxψmψnx }x=β

−ψm(β)

∫ β

0
ψkxψlxxψndx

ζ ∗
n = ch21

2εh̄nρb Abθ1
; h̄n = h11 + μh12 + Jλ2h13,

θ2n = κ4
n (h31 + μh32)

ρb AbL4h̄n
− g(h33 + μh34)

Lh̄n
,

Fnm = F∗
nm

Γ

ε
= �2Γ zr

εθ21 h̄n L
(h33 + μh34),

αn
klm = λ2

ερb AbL4h̄nθ21

{
κ4
k (h41 + μh42) + h43

}
,

βn
klm = λ2

εh̄n

{
h51 + μh52 + Jλ2h53

}
,

γ n
klm = λ2

εh̄n

{
h61 − h62 + μ (h63 − h64) + Jλ2h65

}

αenj = αnj + βen + γen,

αnj =
{

3αn
nnn for j = n

2(αn
nj j + αn

j jn + αn
jn j ) for j �= n

}

βnj =
{

ω2
nβ

n
nnn for j = n

2ω2
jβ

n
nj j for j �= n

}

γnj =
{ −3ω2

nγ
n
nnn ; j = n

−2
{
ω2

j

(
γ n
jn j + γ n

nj j

)
+ ω2

nγ
n
j jn

}
; j �= n

}

Q∗
1 = α1

121 + α1
211 + α1

112 + ω1ω2

(
β1
121 + β1

112

)

−ω2
1β

1
211 −

{
ω2
1

(
γ 1
211 + γ 1

121

)
+ ω2

2γ
1
112

}
,

Q∗
2 = α1

111 − ω2
1

(
β1
111 + γ 1

111

)
.

Other parameters are defined as follows:

zr = 1mm, c = 1Ns − mm−2, μ = 3.6,

J = 0.0366, β = 0.27, λ = 0.1

κ1 = 1.791, κ2 = 3.244, ε = 0.001, ω1 = 1,

ω2 = 3.013

αe11 = −9.306, αe12= 9.312, αe21= 60.12,

αe22 − 255.7

f11 = 0.033, f12= 0.0124, f21= 0.0358,

f22 = 0.0852

Q∗
1 = −10.12, Q∗

2 = −37.4, ζ1= 3.126 ν
ε
,

ζ2 = 1.267 ν
ε
.
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