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Abstract We investigate a (3+1)-dimensional non-
linear evolution equationwhich is a higher-dimensional
generalization of the Korteweg–de Vries equation.
On the basis of the decomposition approach, the N -
antidark soliton solution on a finite background is con-
structed by using the Darboux transformation together
with the limit technique. The asymptotic analysis for
the N -antidark soliton solution is performed, and the
collision between multiple antidark solitons is proved
to be elastic. Under the velocity resonant mechanism,
the antidark soliton molecules on the (x, t), (y, t),
(y, z) and (t, z) planes are found instead of the (x, y)
and (x, z) planes. Based on the three- and the four-
antidark soliton solutions, the elastic collision between
a soliton molecule and a common soliton and the elas-
tic collision between two soliton molecules are analyti-
cally demonstrated, respectively. These results may be
useful for the study of soliton molecules in hydrody-
namics and nonlinear optics.
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1 Introduction

Soliton molecules, bound states of solitons, have been
drastically studied to a certain extent due to their sig-
nificant applications in a variety of contexts including
optics [1–4] and Bose–Einstein condensates [5,6], to
name a few. In 2017, Herink et al. track the formation
of stable soliton molecules and reveal rapid internal
motions for diverse bound states in a femtosecond laser
oscillator of real-time access to multipulse interactions
[3]. In 2018, Liu et al. observe the entire buildup pro-
cess of soliton molecules to explore the complex soli-
ton interaction dynamics in a mode-locked laser [4].
In 2019, Zakharov et al. demonstrate the experimental
observation of shaped breathing soliton molecules in a
standard single-mode fiber [7].

The formation of soliton molecules has always been
an important task to exhibit the bound states of solitons
analogous to molecules in numerous fields of physics
from theoretical and experimental perspectives. More
recently, Lou et al. have developed the velocity reso-
nant mechanism to obtain soliton molecules in many
integrable systems such as the defocusing Hirota equa-
tion [8], the fifth-order Korteweg–de Vries (KdV)
equation [9] and the Sharma–Tasso–Olver–Burgers
equation [10]. Intricate soliton molecules such as
dark molecule, kink–kink molecule, kink–breather
molecule and breather–breather molecule have been
found. Furthermore, Li et al. have studied soliton
molecules in the complex modified KdV equation
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[11], the (2+1)-dimensional Sawada–Kotera equation
[12] and the (2+1)-dimensional B-type Kadomtsev–
Petviashvili equation [13].

Concerning the realistic physical environment, one
should not confine the soliton molecule investigations
to (1+1)-dimensional and (2+1)-dimensional models,
although the findings of integrable models in higher
dimensions are not an easy work. As a matter of fact,
the oceanic roguewaves, solitons and lumps are (2+1)-
dimensional phenomena [14–20] and in ultrafast optics
and fluids the more complex multidimensional dynam-
ics should be considered [21–31]. Therefore, the
extension of soliton molecules in higher-dimensional
descriptions such as the (3+1)-dimensional equations
is essential. In this paper, we consider a (3+1)-
dimensional nonlinear evolution equation ((3+1)D
NEE):

3wxz + (2wt − wxxx − 2wwx )y − 2(wx∂
−1
x wy)x = 0,

(1)

where w = w(x, y, t, z) is a real function, the
subscripts denote the partial derivatives and ∂−1

x is
defined by (∂−1

x f )(x) = ∫ x−∞ f (s)ds. It is easy to
find that in terms of a simple scale transformation
w → u, t → −6

√
3T , x → √

3X , the center
part of Eq. (1) can become the standard KdV equa-
tion uT + uXXX + 6uuX = 0. Consequently, Eq.
(1) can be viewed as a (3+1)-dimensional general-
ization of the KdV equation and has potential appli-
cations in hydrodynamics, nonlinear optics, and so
on.

The (3+1)D NEE (1) was first proposed by Geng
when studying algebraic–geometrical solutions for
multidimensional nonlinear evolution equations [32].
As pointed out by Geng, Eq. (1) can be decom-
posed into three (1+1)-dimensional AKNS equations,
i.e., the nonlinear Schrödinger (NLS) equation, the
complex modified KdV (cmKdV) equation and the
Lakshmanan–Porsezian–Daniel (LPD) equation, and
hence justifies its physical application in turn. In the
past few years, finding exact solutions for the (3+1)D
NEE (1) has attracted considerable attention, and its
soliton solutions, lump solutions and various types of
interactional solutions on the zero background have
been constructed via Hirota’s bilinear method [33–35].
Particularly, Wazwaz has derived the multiple-soliton
solutions and multiple singular soliton solutions for
Eq. (1) through the simplified Hirota’s bilinear method

[36]. Additionally, Wang et al. [37] have recently stud-
ied its rational solutions that have been shown to exhibit
doubly localized lumps and line rogue waves on a
finite background by utilizing the Darboux transfor-
mation (DT) method. Note that in our previous work
[37], the construction of rational solutions for Eq. (1) is
based on the fact that Eq. (1) is decomposed into three
(1+1)-dimensional AKNS equations with the focus-
ing case, while for the defocusing case, to our knowl-
edge, has not been considered by any authors. Based
on this point of view, our paper aims to investigate
antidark solitons and soliton molecules in Eq. (1) on a
finite background instead of zero background [33–36]
through the DT method [38–42] and limit technique
[43–52].

The paper can be arranged as follows. In Sect. 2,
based on the decomposition approach [32,53,54], we
firstly decompose Eq. (1) into the NLS equation, the
cmKdV equation and the LPD equation with the defo-
cusing case. Then, we introduce a quartet Lax pair and
construct the N -fold DT for the linear eigenvalue prob-
lem. In Sect. 3, we derive the N -antidark soliton solu-
tion represented in a compact determinant form as well
as Hirota’s bilinear N -soliton solution form [55]. The
asymptotic behavior [56–58] for the N -antidark soliton
solution is discussed, and the property of elastic colli-
sion between multiple antidark solitons is preserved.
In Sect. 4, under the velocity resonant mechanism, we
demonstrate that the soliton molecules can exist on the
(x, t), (y, t), (y, z) and (t, z) planes rather than the
(x, y) and (x, z) planes. The elastic collision between
a soliton molecule and a common soliton and the elas-
tic collision between two soliton molecules are analyt-
ically shown with the help of the three- and the four-
antidark soliton solutions, respectively. Finally,we give
our conclusion.

2 Decomposition and Darboux transformation

In this section, we shall decompose the (3+1)D NEE
(1) into the NLS equation, the mKdV equation and
the LPD equation with the defocusing case. To this
end, we consider the first three members of the AKNS
hierarchy:

iqy + 1

2
qxx − q2r = 0, iry − 1

2
rxx + r2q = 0, (2)

qt + qxxx − 6qrqx = 0, rt + rxxx − 6qrrx = 0, (3)

123



Antidark solitons and soliton molecules 365

and

iqz + 1

2
(qxxxx − 8qrqxx

+ 6q3r2 − 4qxrxq − 6rq2x − 2q2rxx ) = 0,

irz − 1

2
(rxxxx − 8qrrxx + 6r3q2

− 4qxrxr − 6qr2x − 2r2qxx ) = 0. (4)

It is not difficult to verify that Eqs. (2)–(4) are compat-
ible since the flows determined by them can commute.
We thus have the following proposition.

Proposition 1 Let (q, r) be a compatible solution of
Eqs. (2)–(4), then the constraint

w = −3qr (5)

solves the (3+1)D NEE (1).

Proof In terms of Eqs. (2)–(4), one obtains

wy = −3

2
i(rqxx − qrxx ), ∂−1

x wy

= −3

2
i(rqx − qrx ),

wxxxy = −3

2
i(rqxxxx − qrxxxx )x

− 3i(rxqxxx − qxrxxx )x ,

wt = 3(qrxxx + rqxxx ) − 2w2wx , wx∂
−1
x wy

= 9

2
i(r2q2x − q2r2x ),

wt y = −3

2
i(qrxxxx − rqxxxx )x

− 3

2
i(qxxxrx − rxxxqx )x − 2(w∂−1

x wy)xx ,

wzx = −3

2
i(rqxxxx − qrxxxx )x

+ 2(wwy + wx∂
−1
x wy)x ,

which lead to the (3+1)D NEE (1). ��
Next, we show that Eqs. (2)–(4) are completely inte-

grable and can be cast into a quartet Lax pair

Φx = UΦ, U =
(−iλ q

r iλ

)

, (6)

Φy = V (1)Φ, V (1) =
⎛

⎜
⎝

−iλ2 − i

2
qr λq + i

2
qx

λr − i

2
rx iλ2 + i

2
qr

⎞

⎟
⎠ ,

(7)

Φt = V (2)Φ, V (2) =
(
V (2)
11 V (2)

12

V (2)
21 −V (2)

11

)

, (8)

Φz = V (3)Φ, V (3) =
(
V (3)
11 V (3)

12

V (3)
21 −V (3)

11

)

, (9)

whereΦ = (ψ, ϕ)T is the eigenfunction, λ is the spec-
tral parameter and

V (2)
11 = −4iλ3 − 2iλqr + rqx − qrx ,

V (2)
12 = 4λ2q + 2iλqx + 2q2r − qxx ,

V (2)
21 = 4λ2r − 2iλrx + 2r2q − rxx ,

V (3)
11 = 4iλ4 + 2iλ2qr − λ(rqx − qrx )

+ i

2
(3q2r2 − qrxx − rqxx + qxrx ),

V (3)
12 = −4λ3q − 2iλ2qx + λ(qxx − 2q2r)

+ i

2
(qxxx − 6qrqx ),

V (3)
21 = −4λ3r + 2iλ2rx + λ(rxx − 2r2q)

− i

2
(rxxx − 6qrrx ).

The compatible conditions of this linear eigenvalue
problem, i.e., Utm − V (m)

x + UV (m) − V (m)U = 0
(tm = y, t, z,m = 1, 2, 3), can reproduce Eqs. (2)–
(4), respectively. In view of Eq. (5), we know that there
are two kinds of decomposition for Eq. (1), namely
w = 3|q|2 the focusing reduction of the linear eigen-
value problem

r = −q∗, U†(λ) = −U (λ∗), V ( j)†(λ) = −V ( j)(λ∗),
(10)

and w = −3|q|2 the defocusing reduction of the linear
eigenvalue problem

r = q∗, U †(λ) = −ΛU (λ∗)Λ, V ( j)†(λ)

= −ΛV ( j)(λ∗)Λ, (11)

where Λ = diag(1,−1), j = 1, 2, 3. Noteworthily,
the focusing case has been considered in our recent
work [37] and the rational solutions for Eq. (1) have
been investigated. In this paper, we discuss the defo-
cusing case and concentrate on the antidark solitons
and soliton molecules in Eq. (1).

At this point, assuming that Φi (i = 1, 2, . . . , N )
are N solutions for the linear eigenvalue problem (6)–
(9) with the symmetry reduction (11) at q = q[0] and
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λ = λi , then the N -fold DT takes the form

T [N ] =
N∑

j=1

Tj

λ − λ∗
j

= I − XM−1(λ − D)−1X†Λ,

(12)

where

X = (Φ1, Φ2, . . . , ΦN ), D = diag(λ∗
1, λ

∗
2, · · · , λ∗

N ),

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ
†
1Φ1

λ1 − λ∗
1

Φ
†
1Φ2

λ2 − λ∗
1

· · · Φ
†
1ΦN

λN − λ∗
1

Φ
†
2Φ1

λ1 − λ∗
2

Φ
†
2Φ2

λ2 − λ∗
2

· · · Φ
†
2ΦN

λN − λ∗
2

...
...

. . .
...

Φ
†
NΦ1

λ1 − λ∗
N

Φ
†
NΦ2

λ2 − λ∗
N

· · · Φ
†
NΦN

λN − λ∗
N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Then, by applying

T [N ]x + T [N ]U = U [N ]T [N ], U [N ] = U (λ, q[N ]),
T [N ]y + T [N ]V (1) = V (1)[N ]T [N ],
V (1)[N ] = V (1)(λ, q[N ]),
T [N ]t + T [N ]V (2) = V (2)[N ]T [N ],
V (2)[N ] = V (2)(λ, q[N ]),
T [N ]z + T [N ]V (3) = V (3)[N ]T [N ],
V (3)[N ] = V (3)(λ, q[N ]),

we have

q[N ] = q[0] + 2i
N∑

j=1

T [12]
j ,

and

|q[N ]|2 = |q[0]|2 + i
∂

∂x

N∑

j=1

(
T [11]
j − T [22]

j

)
.

Additionally, using
(

Φ
†
i Φ j

λ j − λ∗
i

)

x

= −iΦ†
i Φ j ,

one obtains the new potential expressed in a compact
determinant form

q[N ] = q[0] − 2i
det(M1)

det(M)
, (13)

where

M1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

Φ
†
1Φ1

λ1 − λ∗
1

Φ
†
1Φ2

λ2 − λ∗
1

· · · Φ
†
1ΦN

λN − λ∗
1

ϕ∗
1

Φ
†
2Φ1

λ1 − λ∗
2

Φ
†
2Φ2

λ2 − λ∗
2

· · · Φ
†
2ΦN

λN − λ∗
2

ϕ∗
2

...
...

. . .
...

...

Φ
†
NΦ1

λ1 − λ∗
N

Φ
†
NΦ2

λ2 − λ∗
N

· · · Φ
†
NΦN

λN − λ∗
N

ϕ∗
N

ψ1 ψ2 · · · ψN 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and its intensity

|q[N ]|2 = |q[0]|2 − ∂2

∂x2
ln det(M). (14)

3 Antidark solitons and elastic collisions

For our studies, we start from the general plane-wave
solution of Eqs. (2)–(4), that is,

q[0] = ceiθ , θ = ax + by + dt + ez, (15)

where c and a are real constants and stand for the back-
ground and frequency of the complex field envelope q,
respectively, and b, d, e are wave numbers such that

b = −1

2
a2 − c2, d = a3 + 6ac2, e = 1

2
a4 + 6a2c2 + 3c4.

Substituting Eq. (15) and λ = λ j ( j = 1, 2, · · · , N )
into the quartet Lax pair (6)–(9), we can arrive at the
fundamental solution

Φ j =
⎛

⎝
1 1
2ic

χ j + a

2ic

χ∗
j + a

⎞

⎠

(
eiω j

α j (λ
∗
j − λ j )e

iω∗
j

)

,

where α j is an arbitrary complex constant,

χ j = 2λ j +
√

(2λ j + a)2 − 4c2,

χ∗
j = 2λ j −

√
(2λ j + a)2 − 4c2,

and

ω j =
(

λ j − 1

2
χ j

)

(x − ν j1y − ν j2t − ν j3z),

with

ν j1 = −
(

λ j − 1

2
a

)

, ν j2 = −(4λ2 − 2aλ + 2c2 + a2),

ν j3 = 4λ3 − 2aλ2 + (a2 + 2c2)λ − 1

2
a(a2 + 6c2).

Here,

Im(χ j ) =
√

−(2λ j + a)2 + 4c2 > 0,
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such that

− c − 1

2
a < λ j < c − 1

2
a, λ j ∈ R. (16)

On account of the N -fold DT and the limit λ∗
j → λ j ,

we can derive the N -dark soliton solution of Eqs. (2)–
(4), as

q[N ] = ceiθ
[

1 − 2i
det(M̂1)

det(M̂)

]

, (17)

where

M̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

χ1 − χ∗
1
[e−2Im(ω1) + β1] 1

χ2 − χ∗
1
e−i(ω∗

1−ω2) · · · 1

χN − χ∗
1
e−i(ω∗

1−ωN )

1

χ1 − χ∗
2
e−i(ω∗

2−ω1)
1

χ2 − χ∗
2
[e−2Im(ω2) + β2] · · · 1

χN − χ∗
2
e−i(ω∗

2−ωN )

...
...

. . .
...

1

χ1 − χ∗
N
e−i(ω∗

N−ω1)
1

χ2 − χ∗
N
e−i(ω∗

N−ω2) · · · 1

χN − χ∗
N

[e−2Im(ωN ) + βN ]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

M̂1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1

χ1 − χ∗
1

[e−2Im(ω1)+β1]
1

χ2 − χ∗
1
e−i(ω∗

1−ω2) ··· 1

χN − χ∗
1
e−i(ω∗

1−ωN ) − i

2(χ∗
1 + a)

e−iω∗
1

1

χ1 − χ∗
2
e−i(ω∗

2−ω1)
1

χ2 − χ∗
2

[e−2Im(ω2)+β2] ··· 1

χN − χ∗
2
e−i(ω∗

2−ωN ) − i

2(χ∗
2 + a)

e−iω∗
2

...
...

. . .
...

...
1

χ1 − χ∗
N

e−i(ω∗
N−ω1)

1

χ2 − χ∗
N

e−i(ω∗
N−ω2) ··· 1

χN − χ∗
N

[e−2Im(ωN )+βN ] − i

2(χ∗
N + a)

e−iω∗
N

eiω1 eiω2 ··· eiωN 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with

β j = −Im(χ j )Im

[

α∗
j

(

1 − 4c2

(χ j + a)2

)]

> 0,

and

Im(ω j ) = m j (x − ν j1y − ν j2t − ν j3z),

m j = −1

2
Im(χ j ) < 0.

At this time, returning to Eq. (5) with the symmetry
reduction r = q∗ and Eq. (14), we can present the
N -antidark soliton solution for Eq. (1), namely

w[N ] = −3

[

c2 − ∂2

∂x2
ln det(M̂)

]

. (18)

Explicitly, for N = 1 in the above formula, we can get
the one-antidark soliton solution

w[1] = −3
[
c2 − m2

1sech
2(K1)
]
,

where

K1 = m1(x − ν11y − ν12t − ν13z) + 1

2
ln β1.

It can be computed that the maximum amplitude of
w[1] is
w[1]max = −3(c2 − m2

1) = −3

4
(2λ1 + a)2, (19)

and it is localized at the line

x − ν11y − ν12t − ν13z = − ln β1

2m1
.

In addition, we find w[1] → −3c2 for x → ±∞,
which implies that the antidark soliton propagates on a
finite background instead of the zero background.

To proceed, the two-antidark soliton solution can be
explicitly written as

w[2] = −3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K1 + e−2K2

+e−2(K1+K2+A12)
]
)

, (20)

where

A12 = ln
|χ1 − χ∗

2 |
|χ1 − χ2| ,

Kl = ml(x − νl1y − νl2t − νl3z) + 1

2
ln βl , l = 1, 2.

Following the standard asymptotic analysis process,we
have:
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Fig. 1 Collision of two antidark solitons in Eq. (20). The parameters are c = 1, a = 1
2 , λ1 = 0, λ2 = 1

3 , χ1 = i
2

√
15, χ2 =

2
3 + i

6

√
95, β1 = 1

10,000 , β2 = 10,000

(i) If K1 = m1(x − ν11y − ν12t − ν13z) + 1
2 ln β1 =

constant,

w[2] →
{−3
[
c2 − m2

1sech
2(K1)
]
, K2 → +∞,

−3
[
c2 − m2

1sech
2(K1 + A12)

]
, K2 → −∞.

(ii) If K2 = m2(x − ν21y − ν22t − ν23z) + 1
2 ln β2 =

constant,

w[2] →
{−3
[
c2 − m2

2sech
2(K2 + A12)

]
, K1 → −∞,

−3
[
c2 − m2

2sech
2(K2)
]
, K1 → +∞.

We exhibit in Fig. 1 the collision of two antidark
solitons on the (x, y), (x, t), (x, z), (y, t), (y, z)
and (t, z) planes. It is shown that the collision
is elastic since the amplitude, velocity and shape
of each soliton are unchanged after the collision
except for a phase difference which is given by

A12 = ln
|χ1−χ∗

2 |
|χ1−χ2| .

Furthermore, the explicit three-antidark soliton solu-
tion is found to be

w[3] = −3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K1 + e−2K2 + e−2K3

+e−2(K1+K2+A12) + e−2(K1+K3+A13)

+e−2(K2+K3+A23) + e−2(K1+K2+K3+A12+A13+A23)
]
)

,

(21)

where

A jl = ln
|χ j − χ∗

l |
|χ j − χl | ,

Kl = ml(x − νl1y − νl2t − νl3z) + 1

2
ln βl ,

j < l = 1, 2, 3.

Similarly, we have the following asymptotic behaviors:

(i) If K1 = m1(x − ν11y − ν12t − ν13z) + 1
2 ln β1 =

constant,

w[3] →
{−3
[
c2 − m2

1sech
2(K1)
]
, K2 → +∞, K3 → +∞,

−3
[
c2 − m2

1sech
2(K1 + A12 + A13)

]
, K2 → −∞, K3 → −∞.
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Fig. 2 Collision of three antidark solitons in Eq. (21). The parameters are c = 1, a = 1
2 , λ1 = 0, λ2 = 1

3 , λ3 = 1
2 , χ1 = i

2

√
15, χ2 =

2
3 + i

6

√
95, χ3 = 1 + i

2

√
7, β1 = 1

10,000 , β2 = 10,000, β3 = 20,000

(ii) If K2 = m2(x − ν21y − ν22t − ν23z) + 1
2 ln β2 =

constant,

w[3] →
{−3
[
c2 − m2

2sech
2(K2 + A23)

]
, K1 → +∞, K3 → −∞,

−3
[
c2 − m2

2sech
2(K2 + A12)

]
, K1 → −∞, K3 → +∞.

(iii) If K3 = m3(x − ν31y − ν32t − ν33z) + 1
2 ln β3 =

constant,

w[3] →
{−3
[
c2 − m2

3sech
2(K3 + A13 + A23)

]
, K1 → −∞, K2 → −∞,

−3
[
c2 − m2

3sech
2(K3)
]
, K1 → +∞, K2 → +∞.

The elastic collision property of three antidark soli-
tons is kept, as seen in Fig. 2.

Next, by calculating the determinant of the N × N
Cauchy-type matrix in Eq. (18), we can put forward
the N -antidark soliton solution for Eq. (1) in Hirota’s
bilinear N -soliton solution form

w[N ] = −3

(

c2 − ∂2

∂x2
ln

[ ∑

μ=0,1

e−2(
∑N

j=1 μ j K j+∑N
1≤ j<l μ jμl A jl )

])

,

(22)

where

A jl = ln
|χ j − χ∗

l |
|χ j − χl | , Kl = ml(x − νl1y − νl2t

−νl3z) + 1

2
ln βl , j < l = 1, 2, · · · , N .

The detailed derivation for the above formula is given
in Appendix. Further, we make the asymptotic analysis
for the N -antidark soliton solution by assuming Kk =
mk(x − νk1y− νk2t − νk3z)+ 1

2 ln βk = constant (1 ≤
k ≤ N ), we conclude that
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w[N ] →
{−3
[
c2 − m2

ksech
2(Kk + Δ−

k )
]
, Ki → +∞, K j → −∞

−3
[
c2 − m2

ksech
2(Kk) + Δ+

k

]
, Ki → −∞, K j → +∞ , 1 ≤ i < k < j ≤ N ,

where

Δ−
k =

⎧
⎪⎨

⎪⎩

ln
n∏

l=k+1

∣
∣χk − χ∗

l

∣
∣

|χk − χl | , 1 ≤ k ≤ N − 1,

0, k = N ,

and

Δ+
k =

⎧
⎪⎨

⎪⎩

0, k = 1,

ln
k−1∏

l=1

∣
∣χk − χ∗

l

∣
∣

|χk − χl | , 2 ≤ k ≤ N .

4 Antidark soliton molecules

In this section, we utilize the velocity resonant method
to discuss the possible formation of antidark soliton
molecules on the (x, y), (x, t), (x, z), (y, t), (y, z) and
(t, z) planes. We first consider the resonant condition
on each plane.

(i) On the (x, y) plane, the resonant condition is ν11 =
ν21 and we have

λ2 = λ1. (23)

(ii) On the (x, t) plane, the resonant condition is ν12 =
ν22 and we obtain

λ2 = 1

2
(a − 2λ1). (24)

(iii) On the (x, z) plane, the resonant condition is ν13 =
ν23 and it holds that

λ2 = 1

4
(a − 2λ1) ± 1

2

√

−3

(

λ1 − 1

6
a

)2
− 2

3
a2 − 2c2.

(25)

(iv) On the (y, t) plane, the resonant condition is
ν11

ν21
=

ν12

ν22
and it follows that

λ2 = aλ1 + c2

2λ1 − a
. (26)

(v) On the (y, z) plane, the resonant condition is
ν11

ν21
=

ν13

ν23
and it yields

λ2 = 1

4
(a − 2λ1) ± 1

4√
−8λ31 − 4aλ21 + 2a2λ1 + a3 + 16ac2

a − 2λ1
.

(27)

(vi) On the (t, z) plane, the resonant condition is
ν12

ν22
=

ν13

ν23
and it implies

λ2 = 1

2(4λ21 − 2aλ1 + 2c2 + a2)

(2aλ21 − a2λ1 − 2ac2 ± √
υ), (28)

where

υ = −(12a2 + 32c2)λ41 + 4a(a2 − 4c2)λ31
− (3a4 + 32c4)λ21 − 8ac2(a2 + c2)λ1

+ 2c2(a4 + 2a2c2 − 4c4).

From Eqs. (23) and (25), one can find that it is
impossible to choose two different real spectral
parameters to yield the resonant conditions, and
hence the antidark soliton molecules on the (x, y)
and (x, z) planes cannot be formed. Nevertheless,
the antidark soliton molecules on the (x, t), (y, t),
(y, z) and (t, z) planes can be obtained as long as
Eqs. (24), (26), (27) and (28) are satisfied, respec-
tively.

Meanwhile, we would like to say that the interesting
collision between a soliton molecule (SM) and a com-
mon soliton (S) is also elastic, which can be proved by
the other asymptotic analysis of w[3]:
(i) If K1, K2 = constant,

w[3]SM+S →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K1 + e−2K2 + e−2(K1+K2+A12)

]
)

, K3 → +∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K̃1 + e−2K̃2 + e−2(K̃1+K̃2+A12)

]
)

, K3 → −∞,
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where

K̃1 = K1 + A13, K̃2 = K2 + A23.

(ii) If K1, K3 = constant,

w[3]SM+S →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K̂1 + e−2K̂3 + e−2(K̂1+K̂3+A13)

]
)

, K2 → −∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K1 + e−2K3 + e−2(K1+K3+A13)

]
)

, K2 → +∞,

where

K̂1 = K1 + A12, K̂3 = K3 + A23.

(iii) If K2, K3 = constant,

w[3]SM+S →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K2 + e−2K3 + e−2(K2+K3+A23)

]
)

, K1 → +∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K̄2 + e−2K̄3 + e−2(K̄2+K̄3+A23)

]
)

, K1 → −∞,

where

K̄2 = K1 + A12, K̄3 = K3 + A13.

The antidark soliton molecule and the elastic col-
lision between a soliton molecule and a common
soliton on the (x, t), (y, t), (y, z) and (t, z) planes
can be presented by choosing adequate parameters,
as seen in Figs. 3, 4, 5 and 6.

Finally, we discuss the elastic collision of two anti-
dark soliton molecules based on the four-antidark soli-
ton solution. By use of the asymptotic analysis, we
have:

(i) If K1, K2 = constant,

w[4]SM+SM →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K1 + e−2K2 + e−2(K1+K2+A12)

]
)

, K3, K4 → +∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2˜̂K 1 + e−2˜̂K 2 + e−2(˜̂K 1+˜̂K 2+A12)

]
)

, K3, K4 → −∞,

where

˜̂K 1 = K1 + A13 + A14,
˜̂K 2 = K2 + A23 + A24.

(ii) If K1, K3 = constant,

w[4]SM+SM →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2˜̂K 1 + e−2˜̂K 3 + e−2(K̃ 1+K̃ 3+A13)

]
)

, K2, K4 → −∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K1 + e−2K3 + e−2(K1+K3+A13)

]
)

, K2, K4 → +∞,
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Fig. 3 a Antidark soliton molecule in Eq. (20) and b collision
between an solitonmolecule and a common soliton in Eq. (21) on
the (x, t) plane. The parameters are c = 1, a = 1

2 , λ1 = 0, λ2 =

1
4 , λ3 = 1

2 , χ1 = i
2

√
15, χ2 = 1

2 + i
√
3, χ3 = 1 + i

2

√
7, β1 =

1
10,000 , β2 = 10,000, β3 = 20,000

Fig. 4 a Antidark soliton molecule in Eq. (20) and b collision
between an solitonmolecule and a single soliton inEq. (21) on the
(y, t) plane. The parameters are c = 1, a = 1

2 , λ1 = −1, λ2 =

− 1
5 , λ3 = 1

2 , χ1 = −2 + i
2

√
7, χ2 = − 2

5 + i
10

√
399, χ3 =

1 + i
2

√
7, β1 = 1

10,000 , β2 = 10,000, β3 = 20,000

Fig. 5 a Antidark soliton molecule in Eq. (20) and b colli-
sion between an soliton molecule and a single soliton in Eq.
(21) on the (y, z) plane. The parameters are c = 1, a =

1
2 , λ1 = −1, λ2 = 5

8 −
√
545
40 , λ3 = 1

2 , χ1 = −2 + i
2

√
7, χ2 =

−
√
545
20 + 5

4 + i
20

√
−170 + 70

√
545, χ3 = 1 + i

2

√
7, β1 =

1
10,000 , β2 = 10,000, β3 = 20,000
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Fig. 6 a Antidark soliton molecule in Eq. (20) and b collision
between an soliton molecule and a single soliton in Eq. (21)
on the (t, z) plane. The parameters are c = 1, a = 2, λ1 =

− 1
4 , λ2 = − 11

58 − 5
58

√
35, λ3 = − 3

2 , χ1 = − 1
2 + i

2

√
7, χ2 =

− 5
29

√
35 − 11

29 + i
29

√
280 + 470

√
35, χ3 = −3 + i

√
3, β1 =

1
10,000 , β2 = 10,000, β3 = 20,000

where
˜̄K 1 = K1 + A12 + A14,

˜̄K 3 = K3 + A23 + A34.

(iii) If K1, K4 = constant,

w[4]SM+SM →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K1 + e−2K4 + e−2(K1+K4+A14)

]
)

, K2, K3 → +∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2̂̃K 1 + e−2̂̃K 4 + e−2(̂̃K 1+̂̃K 4+A14)

]
)

, K2, K3 → −∞,

where
̂̃K 1 = K1 + A12 + A13,

̂̃K 4 = K4 + A24 + A34.

(iv) If K2, K3 = constant,

w[4]SM+SM →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2̂̃K 2 + e−2̂̃K 3 + e−2(̂̃K 2+̂̃K 3+A23)

]
)

, K1, K4 → −∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K2 + e−2K3 + e−2(K2+K3+A23)

]
)

, K1, K4 → +∞,

where
̂̄K 2 = K2 + A12 + A24,

̂̄K 3 = K3 + A13 + A34.

(v) If K2, K4 = constant,

w[4]SM+SM →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K2 + e−2K4 + e−2(K2+K4+A24)

]
)

, K1, K3 → +∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2 ¯̃K 2 + e−2 ¯̃K 3 + e−2( ¯̃K 2+ ¯̃K 4+A24)

]
)

, K1, K3 → −∞,

where
¯̃K 2 = K2 + A12 + A23,

¯̃K 4 = K4 + A14 + A34.
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Fig. 7 a, b Collision of two antidark soliton molecules in Eq.
(22) for N = 4 on the (x, t) and (y, t) planes. The parameters
are a c = 1, a = 1

2 , λ1 = 0, λ2 = 1
4 , λ3 = 1

3 , λ4 = 7
12 , χ1 =

i
2

√
15, χ2 = 1

2 + i
√
3, χ3 = − 2

3 + i
6

√
143, χ4 = 7

6 + i
3

√
11; b

c = 1, a = 1
2 , λ1 = −1, λ2 = − 1

5 , λ3 = − 1
3 , λ4 = − 5

7 , χ1 =
−2 + i

2

√
7, χ2 = − 2

5 + i
10

√
399, χ3 = − 2

3 + i
6

√
143, χ4 =

− 10
7 + i

14

√
615. The other parameters are β1 = 1

10,000 , β2 =
10,000, β3 = 20,000, β4 = 1

20,000

(vi) If K3, K4 = constant,

w[4]SM+SM →

⎧
⎪⎪⎨

⎪⎪⎩

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2 ¯̂K 3 + e−2 ¯̂K 4 + e−2( ¯̂K 3+ ¯̂K 4+A34)

]
)

, K1, K2 → −∞,

−3

(

c2 − ∂2

∂x2
ln
[
1 + e−2K3 + e−2K4 + e−2(K3+K4+A34)

]
)

, K1, K2 → +∞,

where

¯̂K 3 = K3 + A13 + A23,
¯̂K 4 = K4 + A14 + A24.

For illustration, we display in Fig. 7(a) and 7(b)
the collisions of two antidark soliton molecules on
the (x, t) and (y, t) planes, respectively. The colli-
sions on the (x, t) and (y, t) planes can be similarly
presented, and here we omit exhibiting them.

5 Conclusion

In summary, based on a quartet lax pair, we have con-
structed the N -antidark soliton solution represented in
a compact determinant form as well as the equiva-
lent Hirota’s bilinear N -soliton solution form for the
(3+1)D NEE (1) by the N -fold DT along with the limit
technique. The (3+1)Dmodel, as a higher-dimensional
generalization of the KdV equation, is decomposed to
three integrable (1+1)D equations, i.e., the NLS equa-
tion, the cmKdV equation and the LPD equation. The
two- and the three-antidark soliton solutions on the

(x, y), (x, t), (x, z), (y, t), (y, z) and (t, z) planes have
been graphically exhibited. The asymptotic analysis
has been rigorously performed for the N -antidark soli-
ton solution. Moreover, by virtue of the velocity reso-
nant method, we have found that the soliton molecule
that has two antidark solitons propagating with the
same velocities can be formed on the (x, t), (y, t),
(y, z) and t, z planes, while on the (x, y) and (x, z)
planes it cannot be obtained. In addition, the elastic
collision between a soliton molecule and a common
soliton has been demonstrated by the asymptotic anal-
ysis method. Lastly, we have graphically and analyti-
cally discussed the elastic collision of two antidark soli-
ton molecules on the basis of the four-antidark soliton
solution. We hope these results may help understand
the soliton molecule dynamics in fields ranging from
hydrodynamics to nonlinear optics, and so on.
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Appendix: The derivation of Eq. (22)

Proof Considering the following N × N determinant
with respect to ζ

g(ζ ) = det

(
β j

χl − χ∗
j
δ jlζ + 1

χl − χ∗
j
ei(θl−θ∗

j )

)

1≤ j,l≤N

,

we have the expansion

g(ζ ) =
(

N∏

i=1

βi

χi − χ∗
i

)

(ζ N + a1ζ
N−1 + · · · + aN ).

Then, one can compute that

aN = g(0)/

(
N∏

i=1

βi

χi − χ∗
i

)

= det

(
1

χl − χ∗
j
ei(θl−θ∗

j )

)

/

(
N∏

i=1

βi

χi − χ∗
i

)

.

In terms of the determinant of the following Cauchy
matrix

det

(
1

χl − χ∗
j

)

=
N∏

i=1

1

χi − χ∗
i

N∏

1≤ j<l

|χ j − χl |2
|χ j − χ∗

l |2 ,

one obtains

aN = ei(θ1−θ∗
1 )+i(θ2−θ∗

2 )+···+i(θN−θ∗
N ) 1

β1β2 · · · βN

N∏

1≤ j<l

|χ j − χl |2
|χ j − χ∗

l |2

= e−2(
∑N

j=1 K j+∑N
1≤ j<l μ jμl A jl ).

Furthermore, we can calculate that

aN−1 = g′(0)/
(
∏N

i=1
βi

χi − χ∗
i

)

= ei(θ2−θ∗
2 )+i(θ3−θ∗

3 )+···+i(θN−θ∗
N ) 1

β2β3 · · · βN
∏N

2≤ j<l
|χ j − χl |2
|χ j − χ∗

l |2
+ei(θ1−θ∗

1 )+i(θ3−θ∗
3 )+···+i(θN−θ∗

N ) 1

β1β3 · · · βN
∏N

1 ≤ j < l,
j �= 2

|χ j − χl |2
|χ j − χ∗

l |2 + · · ·

+ei(θ1−θ∗
1 )+i(θ2−θ∗

2 )+···+i(θN−1−θ∗
N−1)

1

β1β2 · · · βN−1

∏N−1
1≤ j<l

|χ j − χl |2
|χ j − χ∗

l |2 .

Continuing the above process by following

aN−2 = 1

2!g
′′(0)/
(

N∏

i=1

βi

χi − χ∗
i

)

, · · · ,

a1 = 1

(N − 1)!g
N−1(0)/

(
N∏

i=1

βi

χi − χ∗
i

)

,

one can infer that

M̂ = g(1) = det

(
β j

χl − χ∗
j
δ jl + 1

χl − χ∗
j
ei(θl−θ∗

j )

)

=
∑

μ=0,1

e−2(
∑n

j=1 μ j K j+∑n
1≤ j<l μ jμl A jl ).

��
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