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Abstract We investigate a (3+ 1)-dimensional non-
linear evolution equation which is a higher-dimensional
generalization of the Korteweg—de Vries equation.
On the basis of the decomposition approach, the N-
antidark soliton solution on a finite background is con-
structed by using the Darboux transformation together
with the limit technique. The asymptotic analysis for
the N-antidark soliton solution is performed, and the
collision between multiple antidark solitons is proved
to be elastic. Under the velocity resonant mechanism,
the antidark soliton molecules on the (x,t), (v,1t),
(v, z) and (¢, z) planes are found instead of the (x, y)
and (x, z) planes. Based on the three- and the four-
antidark soliton solutions, the elastic collision between
a soliton molecule and a common soliton and the elas-
tic collision between two soliton molecules are analyti-
cally demonstrated, respectively. These results may be
useful for the study of soliton molecules in hydrody-
namics and nonlinear optics.
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1 Introduction

Soliton molecules, bound states of solitons, have been
drastically studied to a certain extent due to their sig-
nificant applications in a variety of contexts including
optics [1-4] and Bose—FEinstein condensates [5,6], to
name a few. In 2017, Herink et al. track the formation
of stable soliton molecules and reveal rapid internal
motions for diverse bound states in a femtosecond laser
oscillator of real-time access to multipulse interactions
[3]. In 2018, Liu et al. observe the entire buildup pro-
cess of soliton molecules to explore the complex soli-
ton interaction dynamics in a mode-locked laser [4].
In 2019, Zakharov et al. demonstrate the experimental
observation of shaped breathing soliton molecules in a
standard single-mode fiber [7].

The formation of soliton molecules has always been
an important task to exhibit the bound states of solitons
analogous to molecules in numerous fields of physics
from theoretical and experimental perspectives. More
recently, Lou et al. have developed the velocity reso-
nant mechanism to obtain soliton molecules in many
integrable systems such as the defocusing Hirota equa-
tion [8], the fifth-order Korteweg—de Vries (KdV)
equation [9] and the Sharma-Tasso—Olver—Burgers
equation [10]. Intricate soliton molecules such as
dark molecule, kink—kink molecule, kink—breather
molecule and breather—breather molecule have been
found. Furthermore, Li et al. have studied soliton
molecules in the complex modified KdV equation
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[11], the (2+ 1)-dimensional Sawada—Kotera equation
[12] and the (2 + 1)-dimensional B-type Kadomtsev—
Petviashvili equation [13].

Concerning the realistic physical environment, one
should not confine the soliton molecule investigations
to (1+ 1)-dimensional and (2 + 1)-dimensional models,
although the findings of integrable models in higher
dimensions are not an easy work. As a matter of fact,
the oceanic rogue waves, solitons and lumps are (2 + 1)-
dimensional phenomena [14-20] and in ultrafast optics
and fluids the more complex multidimensional dynam-
ics should be considered [21-31]. Therefore, the
extension of soliton molecules in higher-dimensional
descriptions such as the (3 + 1)-dimensional equations
is essential. In this paper, we consider a (3+1)-
dimensional nonlinear evolution equation ((3+1)D
NEE):

2wwy)y — 2(wyedy ' wy)y =0,

ey

3wyz + Qwy — Wyxx —

where w = w(x,y,t,z) is a real function, the
subscripts denote the partial derivatives and 9, Uis
defined by (3! f)(x) = [* f(s)ds. It is easy to
find that in terms of a simple scale transformation
w — u,t — —633T, x — +/3X, the center
part of Eq. (1) can become the standard KdV equa-
tion ur + uxxx + 6uuy = 0. Consequently, Eq.
(1) can be viewed as a (3+1)-dimensional general-
ization of the KdV equation and has potential appli-
cations in hydrodynamics, nonlinear optics, and so
on.

The (3+1)D NEE (1) was first proposed by Geng
when studying algebraic—geometrical solutions for
multidimensional nonlinear evolution equations [32].
As pointed out by Geng, Eq. (1) can be decom-
posed into three (1 + 1)-dimensional AKNS equations,
i.e., the nonlinear Schrédinger (NLS) equation, the
complex modified KdV (cmKdV) equation and the
Lakshmanan—Porsezian—Daniel (LPD) equation, and
hence justifies its physical application in turn. In the
past few years, finding exact solutions for the (3+1)D
NEE (1) has attracted considerable attention, and its
soliton solutions, lump solutions and various types of
interactional solutions on the zero background have
been constructed via Hirota’s bilinear method [33-35].
Particularly, Wazwaz has derived the multiple-soliton
solutions and multiple singular soliton solutions for
Eq. (1) through the simplified Hirota’s bilinear method
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[36]. Additionally, Wang et al. [37] have recently stud-
ied its rational solutions that have been shown to exhibit
doubly localized lumps and line rogue waves on a
finite background by utilizing the Darboux transfor-
mation (DT) method. Note that in our previous work
[37], the construction of rational solutions for Eq. (1) is
based on the fact that Eq. (1) is decomposed into three
(1+1)-dimensional AKNS equations with the focus-
ing case, while for the defocusing case, to our knowl-
edge, has not been considered by any authors. Based
on this point of view, our paper aims to investigate
antidark solitons and soliton molecules in Eq. (1) on a
finite background instead of zero background [33-36]
through the DT method [38—42] and limit technique
[43-52].

The paper can be arranged as follows. In Sect. 2,
based on the decomposition approach [32,53,54], we
firstly decompose Eq. (1) into the NLS equation, the
cmKdV equation and the LPD equation with the defo-
cusing case. Then, we introduce a quartet Lax pair and
construct the N-fold DT for the linear eigenvalue prob-
lem. In Sect. 3, we derive the N-antidark soliton solu-
tion represented in a compact determinant form as well
as Hirota’s bilinear N -soliton solution form [55]. The
asymptotic behavior [56-58] for the N-antidark soliton
solution is discussed, and the property of elastic colli-
sion between multiple antidark solitons is preserved.
In Sect. 4, under the velocity resonant mechanism, we
demonstrate that the soliton molecules can exist on the
(x,1), (v, 1), (v,2) and (t, z) planes rather than the
(x, ¥) and (x, z) planes. The elastic collision between
a soliton molecule and a common soliton and the elas-
tic collision between two soliton molecules are analyt-
ically shown with the help of the three- and the four-
antidark soliton solutions, respectively. Finally, we give
our conclusion.

2 Decomposition and Darboux transformation

In this section, we shall decompose the (3+1)D NEE
(1) into the NLS equation, the mKdV equation and
the LPD equation with the defocusing case. To this
end, we consider the first three members of the AKNS
hierarchy:

2 : 1 2
—qr=0, 1ry—§rxx+r q=0, (2

. 1
19y + qux

qr + Gxxx —6qrgy =0, 11 + 1y —6grry =0, (3)
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and
. 1
1q9; + E(Qxxxx — 8qrqxx
+6q3r2 —4qyryq — 6”‘])% - Zq2rxx) =0,
: 1 32
ir, — E(r”“ —8qrryx +6r’q
—A4qurer —6qr? —2rtq.,) = 0. 4)

It is not difficult to verify that Egs. (2)—(4) are compat-
ible since the flows determined by them can commute.
We thus have the following proposition.

Proposition 1 Let (g, r) be a compatible solution of
Egs. (2)—(4), then the constraint

w = —3qr ®))
solves the (3+ 1)D NEE (1).

Proof In terms of Eqgs. (2)—(4), one obtains
3. 1
wy = _El(r‘Ixx —qrxx), 0 Wy
3.
= _El(r%c - qrx)»

Wxxxy = _zl(rq,\fxxx — qFxxxx)x

= 3i(ryGrxx — Gxlxxx)x

Wy = 3(qTxxx + 7 Gxxx) — 2w2wxv wxa;lwy

9.
= —1(r2q§ — qzrf),
2
Wty = _Ei(qrxxxx — I'Qxxxx)x
- zi(CIxxxVx — Fxxxqx)x — 2(wa;1 wy)xxs

Wzx = _Ei(r‘bcxxx — qTxxxx)x
+ 2(wwy + wxax_]wy)x,

which lead to the (3+1)D NEE (1). |

Next, we show that Egs. (2)—(4) are completely inte-
grable and can be cast into a quartet Lax pair

_ _(-ir g
q)x_Uq),U_(r m), ©)

i i
—inZ2 = Zgr A Z
o, = V(l)(p’ v — 1 izqr q+ %QX ’
Ar — Erx irz+ Eqr

(N

2) ()
V V
@ =vP0, v = ( ) ‘2@)), ®)
V2] _Vll
(3) (3)
Vv Vv
. =vP0, v = <V1<13> ‘1,2(@) : ©)
21 11

where @ = (¥, ¢)7 is the eigenfunction, A is the spec-
tral parameter and

V) = —4ix® = 2ingr + rqx — g,
V1(22) = 4)L2q =+ 2ikqx + 26]27 —Yqxx>
v2(12) =402 — 2iAry + 21"26] — Fxx,
VD =4t +2i0%qr — A(rq. — qry)
+LGgPr? — gry -
z q°r qrxx Iqxx +erx)s
3 .
v = —433q — 2i32q, + Mqux — 24°1)
i
+§(Qxxx - 66[7’6])5),
VD = —a3r 4 2028, 4 A(rex — 26%9)

1
— = (Fyxx — 6grry).

2

The compatible conditions of this linear eigenvalue
problem, ic., U, — V™ + Uuvm — ymy = ¢
(tmw = y,t,z,m = 1,2,3), can reproduce Eqs. (2)-
(4), respectively. In view of Eq. (5), we know that there
are two kinds of decomposition for Eq. (1), namely
w = 3|g|? the focusing reduction of the linear eigen-
value problem

r=—q*, UT()\.) =—U@OY), V(j)T()\.) — —V(j)()»*),

(10)
and w = —3|q|? the defocusing reduction of the linear
eigenvalue problem
r=q*, U'() = -AUGNHA, V()

=—-AVvPoA, (11)

where A = diag(l, —1), j = 1,2, 3. Noteworthily,
the focusing case has been considered in our recent
work [37] and the rational solutions for Eq. (1) have
been investigated. In this paper, we discuss the defo-
cusing case and concentrate on the antidark solitons
and soliton molecules in Eq. (1).

At this point, assuming that &; (i = 1,2,..., N)
are N solutions for the linear eigenvalue problem (6)—
(9) with the symmetry reduction (11) at ¢ = ¢[0] and
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A = A;, then the N-fold DT takes the form where
olo; oo, oloy
c=1-XM"~ ‘- D)y 'x74, M= A =y a9
i PP IOy BIDy
(12) M—A A=A A=A T2
My = : : : ;
where : : :
t i i
DD DD DDy
_ T * gk % N N N *
- (¢11¢;27-~'1¢§/)’ D—dlag()\ 7)‘423 3)"N)’ )\1 _)\'7\/ )\'2_)\*1\] )\-N_}\-* N
ole, oo, ooy V1 V2 yn 0
A 1— VSIS 1— Ay )»NT— Al and its intensity
;81 PP BBy 52
M= M4 -2 Ay — A3 [N = 1g[011” = —— In det(M). (14)
olo, D@ ol - . .. collisi
NT1 NZ2 __TNTN 3 Antidark solitons and elastic collisions
MmN = A Av =AY

Then, by applying

T[N]y + TINJU = U[N]T[N], U[N] =
T[N]y + TINIV®D = VIDINITN],
VIOINT =V, g[ND),
T[N, + TINIV® = VO[NIT[N],
VOINT = V@, q[ND),
T[N]. + TINIV® = VO[NIT[N],
[

VOINTI = Vv @, ¢[ND),

we have

N
_ - [12]
gIN1 = ql01+2i ) 7/"),
j=1
and

N

lg[011* + i% 3 (Tj[lll _ Tj[22]> .

J=1

lg[N1* =

Additionally, using

oD, .
— ) ——io]o;,
)\.j—)\i . ’

one obtains the new potential expressed in a compact
determinant form

det(M)
det(M)’

q[N]1=q[0] —2i 13)
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U, q[ND),

For our studies, we start from the general plane-wave
solution of Egs. (2)—(4), that is,

ql0] = ce’, 6 = ax + by + dt + ez, (15)

where ¢ and a are real constants and stand for the back-
ground and frequency of the complex field envelope ¢,
respectively, and b, d, e are wave numbers such that

2

1
b=—=a®—c%, 4
2

1
d=a> +6acz, e= §a4+6a2c2+3c .

Substituting Eq. (15) and A = 4; (j = 1,2,--- , N)
into the quartet Lax pair (6)—(9), we can arrive at the
fundamental solution

Zic 2%0 ( e . *>
xi+a xj+a) \% (A5 = apes )’
where o/ is an arbitrary complex constant,
Xj=2hj+ \/m ’

X; =2k —,/(24; +a)? —4c2,

and

1
wj = <Xj — EX]) (x — Vj1y — vjot — l)jgz),

with

D =

1 2 2 2
Vi1 =— A] _Ea , Vj2 = —(4)\ —2al+2c*+a ),
1
vj3 =427 = 2037 + (@ + 200 — Sa(@® + 6%).
Here,

Im(x;) = \/—(ij +a)?+4c% >0,
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such that

1 1
—c——a<kj<c—§a,AjER. (16)
On account of the N-fold DT and the limit Ajf — Aj,
we can derive the N-dark soliton solution of Egs. (2)—
(4), as

where
1
Ky =mi(x —vi1y —viat —v132) + 5111,31-

It can be computed that the maximum amplitude of
w[1]is

2 2 3 2
W[ max = =3(c” —m7) = —Z(2M +a)’, (19)
gIN] = cei? [1 _ 21““(_1‘{1)] , (17)  and it is localized at the line
det(M) In B
— — vt — =— .
where X vi1y V12 V132 2m1
1 —21 —i(w*— 1 —i(wt—
——[e7 M@ 4 8] —e (o] —w2) —e i(w]—wnN)
Xl—Xlik X2 — Xxi XN — X4
—e—i(wg—wl) —[e—QIm(wz) + o] - —e—i(w;—wN)
M= X1 — X3 X2 — X3 XN — X5 ,
1 o 1 o 1 -
L ei@h—en L ei@men L [eMmn) 4 gy
X1 — Xy X2 — XN AN — XN
1 [672Im(w1)+ﬂl] e—i(w’{—wz) 1 e—i(wT—wN) _ 1 e—iw*
xXi—xi X2 —xi XN — X 2(x7 +a)
1 i@3—0p) e M) gy . 1 i@y _ i i}
=] % X2 = X3 AN = X3 2(x3 +a)
1 . 1 L 1 ’ i .
efl(wN —w1) efl(wawz) [e—Zlm(wN)+ﬂN] _ efle
X1 = XN X2 — XN XN — XN 2(x5 +a)
ei‘”l ei“’2 ei"’N 0
with

4c?

and
Im(w;) =m;(x —vj1y —vjot —v;32),

1
mj = _Elm(Xj) < 0.

At this time, returning to Eq. (5) with the symmetry
reduction » = ¢* and Eq. (14), we can present the
N-antidark soliton solution for Eq. (1), namely

2
w[N] = -3 |:c2 - 387 In det(}\?)} . (18)

Explicitly, for N = 1 in the above formula, we can get
the one-antidark soliton solution

wll] = =3 [c2 _ m%sechZ(Kl)] ,

In addition, we find w[1] — —3c2 for x — o0,
which implies that the antidark soliton propagates on a
finite background instead of the zero background.

To proceed, the two-antidark soliton solution can be
explicitly written as
2

a
w2] = =3 (c? — — In[l+e 2K 42k
ax2
+e—2(K1+K2+A12)]> , (20)
where
_ *
Ap =1 [x1 le’
[x1 — x2|

1
K; =mi(x — vy — vt —v3z) + 3 Ing, I =1,2.

Following the standard asymptotic analysis process, we
have:
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x=z=0 x=y=0

Fig. 1 Collision of two antidark solitons in Eq. (20). The parameters are ¢ = l,a = 5,11 = 0,1, = % X1 = %x/lS, X2 =
3+ £V95, B1 = 15505 B2 = 10,000

(1) If Ky =mp(x — vy —viot —v132) + %ln B = Furthermore, the explicit three-antidark soliton solu-
constant, tion is found to be
—3[c? —misech*(K1)], Kz — 400 , 97 2Ky | —2K» | —2K
’ ’ 3]=-3{c"*— — In[1+ L4 2 4 3
wi2] =~ { -3 [02 — m%sechz(Kl + A12)] , Ky — —o0. widl ¢ dx2 n[ ¢ ¢ ¢

+e—2(K| +K2+A2) + e 2(K1+K3+A13)

. 1
il) If Ko = ma(x —vo1y — vt —v3z) + 51Infr =
(i1) 2 2( 21Y 22 232) + 57 In o e 2(KatK3+AR) | C—Z(Kl+K2+K3+A12+A13+A23)])

constant,
21
=3 2 — m3sech? (K, + Ap)], Ky — —oo, @D
w(2] — ) 5 2
-3 [c — mjsech (Kz)], K| — +o0. where
We exhibit in Fig. 1 the collision of two antidark Ay =In Ixj — X'l
solitons on the (x,y), (x,1), (x,2), (v, 1), (¥, 2) / Ixj — xl’
and (¢, z) planes. It is shown that the collision
is elastic since the amplitude, velocity and shape Ky =mi(x —vny —viat —vizz) + ) In gy,
of each soliton are unchanged after the collision j<l=1,223.
t f hase diff hich is gi b
Zxcep lorlx?})a(;lase Hetence wineh 1s given by Similarly, we have the following asymptotic behaviors:
12 = 1n .
[x1—xal .
() If Ky = mi(x —vi1y — viat —vi32) + 5 In By =
constant,
w[3] — -3 [02 - m%sechz(Kl)], Ky — 400, K3 — +00,
—3[c? — misech®(K| + A1p + A13)], K2 > —o0, K3 — —o0.
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y=z=0 y=t=0

1060

Fig. 2 Collision of three antidark solitons in Eq. (21). The parametersare c = l,a = 3,41 =0, A2 = $. A3 = 3, 1 = V15, 0o =

34 V95, 3 =1+ 5v7, B1 = 150505 B2 = 10,000, B3 = 20,000

(i) If Ko = ma(x — va1y — vaot — 1232) + 5 In By =
constant,

3 [C2 — m%sechz(Kz + A23)] , K| > 400, K3 > —0o0,

wi3l = { -3 [62 - m%sechZ(Kz + A]z)] , K1 > —00, K3 —> +4o00.

(iii) If K3 = m3(x — v31y — viot — v332) + 5 In B3 =

constant,
—3[c* — m3sech?(K3 + A13 + Az)], K1 = —o0, K» — —o0,

w([3] — 5 3 5
—3[c* — m3sech’(K3)], K| — +o0, K» — +o0.

The elastic collision property of three antidark soli- where

tons is kept, as seen in Fig. 2. Ly ¥

. . Ajir=1In 1% = % |, Ky =mi(x —vny — vt
Next, by calculating the determinant of the N x N Ixj — xil

Cauchy-type matrix in Eq. (18), we can put forward
the N-antidark soliton solution for Eq. (1) in Hirota’s
bilinear N-soliton solution form The detailed derivation for the above formula is given
W[N] = —3 <02 B 3_2 In in Appendix. Further, we make the asymptotic analysis
9x2 for the N-antidark soliton solution by assuming K =
mp(X — Vk1y — viat — vk32) + % In B = constant (1 <

i|> k < N), we conclude that

1
_vl3z)+§1n,31, j<Il=1,2,---,N.

|: Z 6—2(29’:1quj+Z§V§,<,u,-mAjz)
n=0,1
(22)
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—3[c* = m2sech?(Ky + AD)]. Ki — +o0, Kj — —00
w[N] — ,1<i<k<j<N,
-3 [c2 — m%sech2(Kk) + A,‘:] ,Ki > —00, K; — +00
h A 2
where )\.2=a 1+c. 26)
D=/ 2h —a
__fm [T = 1=sk=N -1, v
Ay = =kt 1 [xe — xil (v) Onthe (y, z) plane, the resonant condition is — =
= 21
prm U
0, k=N L and it yields
and V23 X X
= M= —-(a—2Ar) £ -
O, k 1, 2 4(€l 1) 1
A,J[ = ’Xk 3 2 2 3 2
lnl_[ 2<k<N. —8A7 —4dal{ +2a°A +a’ + 16ac
[xk — le )
a—2\
(27)
4 Antidark soliton molecules (vi) Onthe (¢, z) plane, the resonant condition is e
V22
V13 o
In this section, we utilize the velocity resonant method v_23 and it implies
to discuss the possible formation of antidark soliton 1
A =
molecules on the (x, y), (x,.t), (x,2), (v, 1), (y, Z)’ z}nd 2 2422 = 2an; + 262 + a?)
(t, z) planes. We first consider the resonant condition 5 5 5
on each plane. (ari —a“i1 — 2ac” £ J/v), (28)
where

(i) Onthe (x, y) plane, the resonant condition is vi| =
vp1 and we have

Ay = Aq. 23)

(i1) On the (x, t) plane, the resonant condition is vy =
vy and we obtain

Ay = %(a —2h1). 24)

(iii) On the (x, z) plane, the resonant condition is vi3 =
Vo3 and it holds that

1 1 1\* 2
M=-(a—-2x)x =, /-3(1 — = — —a? —2c2.
2=(a V) 2/ 3(1 6a> 34~k

(25)
v
(iv) Onthe (y, t) plane, the resonant condition is LI
V21
V12 .
—= and it follows that
V22

v=—(12d>+ 326‘2))»‘11 + 4a(a® — 462))»?

— Ba®* +32¢H23 — 8ac?(@® + P

+ 2cz(a4 +2a%* — 4c4).
From Egs. (23) and (25), one can find that it is
impossible to choose two different real spectral
parameters to yield the resonant conditions, and
hence the antidark soliton molecules on the (x, y)
and (x, z) planes cannot be formed. Nevertheless,
the antidark soliton molecules on the (x, 1), (y, t),
(y, z) and (¢, z) planes can be obtained as long as
Egs. (24), (26), (27) and (28) are satisfied, respec-
tively.

Meanwhile, we would like to say that the interesting
collision between a soliton molecule (SM) and a com-
mon soliton (S) is also elastic, which can be proved by
the other asymptotic analysis of w[3]:

(i) If K, Ky = constant,

82
_3 <C2 -3 In [1 4+ e 2K 4 2K 6—2(K1+K2+A12)]) , K3 > +oo,

w[3lsm+s — 2
3 <c2

9 ~ ~ S~
ey In [1 L e 2K L2k 4 eZ(K1+K2+A12)]> , K3 > —o0,
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(ii)

where Finally, we discuss the elastic collision of two anti-
dark soliton molecules based on the four-antidark soli-
ton solution. By use of the asymptotic analysis, we
have:

Ki =K+ A, Ky =Ko+ Ans.

(i) If K, Ky = constant,

w[4]sm+sm — 5
-3 ( 2

0 = = = =
i3 In[1+e K1 4 e72K2 4 e_z(K1+K2+A12)]> , K3, K4 — —00,

82
-3 (c2 ~ 53 In[1+e 2K +e2K2 4 ez(K‘+K2+A‘2)]> , K3, K4 — 400,

X

If K|, K3 = constant,

2= 3_ In [1 4L e 2K 4 o72K5 6*2(K1+K3+A13)]

9x2

92 - - I
_3( 2 Wln[l +€_2K1 +6_2K3 +e—2(K1+K3+A13)]) , Ky > —00,
) , Ky = +o0,

w[3lsm+s — B
_3 (

(iii)

where
Ki =K+ A, K3 = K3 + Ans.

If K, K3 = constant,

2
-3 <C2 _ % In [1 + €_2K2 + e—2K3 + 6—2(K2+K3+A23)]> , K| — +o0,
w[3lsm+s — 3)62 , _ o
-3 (c2 —oah [14+e2K2 42K 4 e_Z(K2+K3+A23)]) , K| — —o0,

X

where

K> =K1+ A, K3 = K3+ Ajs. Where

The antidark soliton molecule and the elastic col- Ki=Ki+Ai3+ A, K=Ky + Az + A,

lision between a soliton molecule and a common (ii) If K1, K3 = constant,
soliton on the (x, t), (v, t), (¥, z) and (¢, z) planes

can be presented by choosing adequate parameters,

as seen in Figs. 3, 4, 5 and 6.

32 = -3 ~ o~
-3 (62 ey In[1+e 2K 4 e72K5 ¢ e_Z(K1+K3+A13)]> , Ky, K4 — —00,
wl4]sm+sm — axz
-3 <c2 — 33 In[1+e 2K +e72K5 4 ez(K‘+K3+A‘3)]) , K>, K4 — 400,
x
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Fig. 3 a Antidark soliton molecule in Eq. (20) and b collision
between an soliton molecule and a common soliton in Eq. (21) on
the (x, t) plane. The parameters are c = 1,a = %, M =0x1=

Fig. 4 a Antidark soliton molecule in Eq. (20) and b collision
between an soliton molecule and a single solitonin Eq. (21) on the
(y, t) plane. The parameters are ¢ = 1,a = % AM=—1,A=

Fig. 5 a Antidark soliton molecule in Eq. (20) and b colli-
sion between an soliton molecule and a single soliton in Eq.
(21) on the (y,z) plane. The parameters are ¢ = 1l,a =

@ Springer

1015

(b)

o005+ B2 = 10,000, B3 = 20,000

x=z=0

—5.h =500 = 2+ 5VT0 = -5+ V3905 =
1+ 537, B1 = 15009, B2 = 10,000, B3 = 20,000

x=t=0

A =—1,)»2=%—7'f(?5,?»3=%,)(1 =24Vl 0=

BB 8 4 1704704585, x5 = 1+ iVTL B =
o000+ B2 = 10,000, B3 = 20,000

o=
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x=y=0 x=y=0

(@)
Fig. 6 a Antidark soliton molecule in Eq. (20) and b collision =R -3VB =3 u=-3+iVie=
between an soliton molecule and a single soliton in Eq. (21) ,2579\/5 — % + 2i*9 280 + 470+/33, 3= —3+iV3, 8 =

on the (¢, z) plane. The parameters are ¢ = l,a = 2,A; =

(iii)

000+ A2 = 10,000, B3 = 20,000

where
Ki=Ki+Apn+ A, K3 =K3+ A + Az
If K|, K4 = constant,

2
-3 <02 - % In[1+e 2K e72Ks 4 ez(K‘J“K”A"‘)]) , K2, K3 — 400,
wl4]sm+sm — axz - - -~

-3 (62 _ @ In [1 + e—2K1 4 e—2K4 + 6—2(K1+K4+A14)]> , Kb, K3 —> —00,

(iv)

where

~ ~

Ki =K1+ A+ A1z, K4 = Kyq+ Azq + Azg.
If K>, K3 = constant,

82 =) =) ) =)
—3(c? - pys; In[1+e2K2 47265 4 e2<K2+K3+A23)]> , K1, K4 — —o0,
w[4]sm+sm —> axz
-3 ( 2 e In [1 +e 2Kz 4 2K 4 e—2(Kz+K3+A23)]> . K1, K4 — +00,
X

where
Ky =Ko+ Ain+ A, K3 =Kz + A1z + Az
(v) If K», K4 = constant,

2
-3 <c2 — % In[1+e2K2 e72Ks 4 ez(K2+K4+A24)]> , K1, K3 > 400,
w[4]sm+sm — 5
_3 (

2 % n[1 4 e2Ka 4 o2Rs 6—2(1?2+1'_54+Az4)]) , K1, K3 — —o0,
X

where
Ky =Ky + A+ Axs, Ka=Ka+ Ajg + Asa.
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-15

Fig. 7 a, b Collision of two antidark soliton molecules in Eq. c=1,a= % M =—1,A= —%, A3 = —%, = —%, X1 =

(22) for N = 4 on the (x, ) and (y, #) planes. The parameters 24 %ﬁ 2 = _% + ﬁ /399, x3 = _% + é /143, x4 =

1 1 1 7
arrac=1la=35M=022=723=3M=13X=

WIS p=3+iV3.3=-3+1V143, yu =2+ 1V/11;b

(vi) If K3, K4 = constant,

2
w[4lsmism — ox

dx?

— 10+ 1 V/615. The other parameters are B = 10,%’ B =
10,000, B3 = 20,000, B4 = 3756

2 = = = =
-3 (c2 _ In[1+e2Ks 4 e2K4 4 e‘z(K3+K4+A34)]> , Ki, K > —o0,

32
-3 <c2 ——1n [1 +e 2K o 2Ks 4 e_Z(K3+K4+A34)]> , K1, Ky = 400,

where
K3=K3+ A3+ Az, Ka=Ky+ Ay + Ao

For illustration, we display in Fig. 7(a) and 7(b)
the collisions of two antidark soliton molecules on
the (x, ¢) and (y, ) planes, respectively. The colli-
sions on the (x, ¢) and (y, t) planes can be similarly
presented, and here we omit exhibiting them.

5 Conclusion

In summary, based on a quartet lax pair, we have con-
structed the N-antidark soliton solution represented in
a compact determinant form as well as the equiva-
lent Hirota’s bilinear N-soliton solution form for the
(3+1)D NEE (1) by the N-fold DT along with the limit
technique. The (3+1)D model, as a higher-dimensional
generalization of the KdV equation, is decomposed to
three integrable (1+1)D equations, i.e., the NLS equa-
tion, the cmKdV equation and the LPD equation. The
two- and the three-antidark soliton solutions on the

@ Springer

(x,y), (x,1), (x,2), (v, 1), (¥, ) and (t, z) planes have
been graphically exhibited. The asymptotic analysis
has been rigorously performed for the N-antidark soli-
ton solution. Moreover, by virtue of the velocity reso-
nant method, we have found that the soliton molecule
that has two antidark solitons propagating with the
same velocities can be formed on the (x, 1), (y, 1),
(v, z) and ¢, z planes, while on the (x, y) and (x, z)
planes it cannot be obtained. In addition, the elastic
collision between a soliton molecule and a common
soliton has been demonstrated by the asymptotic anal-
ysis method. Lastly, we have graphically and analyti-
cally discussed the elastic collision of two antidark soli-
ton molecules on the basis of the four-antidark soliton
solution. We hope these results may help understand
the soliton molecule dynamics in fields ranging from
hydrodynamics to nonlinear optics, and so on.
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Appendix: The derivation of Eq. (22)

Proof Considering the following N x N determinant
with respect to ¢

. 1 ok
g(é.):det fj *(Sjl;'i_ — *el(el 91)
Xj Xl Xj 1<ji<N
we have the expansion
ﬁ,
g() = H @V +art T 4 an).
Then, one can compute that
N
Bi
av =g/ ([ —=
i=1 i
N
1 {G—6* Bi
=det [ ——— @)/ -
X=X} E Xi =X

In terms of the determinant of the following Cauchy

matrix
o % = xl?
e ) =TT T 24
Xl — - X' Ix; — x/1?
im1 X i1<j<t M l
one obtains
ay = el @009 +rioy—05) |
B1B2--- BN
N 2
Ix; — xil
|2
1<j<l |X] X |

N N
e 2t Kj+2icja jiA D)

aN-2

375
Furthermore, we can calculate that
Bi
s =g (T 2
=i - Xi*
— ei(02—9§‘)+i(93—9§)+--<+i(91v—9;(,)
BaB3 -+ Bn
|X] - Xl|
l_[2<j <l |X |2
i @0 r)+1<0370;>+-.-+i<9N79;> !
) B1B3 - BN
I Ix; — xil
1 5.] <, [x; _Xl*|2
J#2

+el@ —07)+i(02—05) 4+ (ON-1-05_))

1 Nt I =l
I

BiBa--Bn—1 Sy — xR

Continuing the above process by following

N

1 " Bi
58 ©/ [[——=] -

. i i
i=1 i

1

_ N-—1 :31
@ =8 @/E %)

one can infer that

_ , | o
M = g(1) = det Bi 81+ RICRGY
Xl —

* —
Xj Xl X]
Z e 2 o K mAD
n=0,1
O
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