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Abstract We report the novel colliding dynamics of
the rogue waves (RWs) for a three-component tran-
sient stimulated Raman scattering system arising from
nonlinear optics. The N -order RW solutions are con-
structed by utilizing the generalized Darboux transfor-
mation scheme. Then, the dynamics of the RWs are
analyzed. As N ≥ 2, the multiple RWs collide towards
a central point. During the collisions and interactions,
the peaks and troughs increase greatly. It is also inter-
esting and magical that all the RWs possess exquisite
symmetrical structures.

Keywords Transient stimulated Raman scattering
(TSRS) ·Generalized Darboux transformation (GDT) ·
N -order rogue wave (RW) solutions · Peak and trough ·
Colliding dynamics · Symmetrical structure

1 Introduction

Raman scattering effect was reported initially by
Raman and Krishnan and by Landsberg and Mandel-
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stam in 1928, respectively. It is an inelastic scatter-
ing phenomenon of photons by matter, meaning that
there exist an exchange of energy and a change in
the light’s propagation direction after being scattered.
The observation of stimulated, as opposed to spon-
taneous Raman scattering, was however not possible
until the development of the laser, a powerful coher-
ent source of light based on luminescent semiconduc-
tor materials. Stimulated Raman scattering (SRS) is
a typical nonlinear effect in optics. It can take place
when some Stokes photons have previously been gen-
erated by spontaneousRaman scattering (and somehow
forced to remain in the material), or when deliberately
injecting Stokes photons (“signal light”) together with
the original light (“pump light”). Since SRS was first
observed by Woodybury and Ng [1], it has become
one of two main tools to stimulate nonlinear optical
pluses in modern optics (another one is the well-known
stimulatedBrillouin scattering) [2], and has extensively
employed in a variety of optical systems, such as fiber
optics [3,4], ultra-fast photon [5], spectroscopy and
microscope optics [6], fiber amplifier [7,8], wavelength
division multiplexing technique [9,10].

Transient stimulatedRaman scattering (TSRS) inter-
actions in the molecular gas H2 and other gases were
first reported by Hagenlocker, Minck and Rado [11].
In transient interactions, the light pulse durations are
short compared to T2, themolecular de-excitation time,
due to molecular collisions [12]. TSRS can be used to
excite ultra-fast and ultra-short optical pulse [13,14].
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Very recently, it is even exploited to develop new opti-
cal fiber systems, e.g., gas-filled hollow-core photonic
crystal fibers [15–17].

In this article, we deal with a three-component cou-
pled TSRS system which reads [18,19]

qt = − i

2
p, (1)

px = 2iqw, (2)

wx = i (pq − q p) , (3)

where q = q(x, t) and p = p(x, t) are complex func-
tions, and w = w(x, t) is a real function, x and t
represents the normalized displacement ant time vari-
ables, respectively; the bar on the top of identifiers rep-
resents the conjugate of the indicated complex num-
bers. Equations (1)–(3) are traced back to the normal-
ization and neglecting diffraction for a TSRS system,
where q, p andw can be transformed back into the off-
diagonal density-matrix element, pump electric fields,
and Stokes electric fields in optical fields [18,20].

Solitons and breathers are generally generated due
to nonlinear factors and dispersion effects in nonlin-
ear system [21,22]. Rogue waves (RWs), also called
extreme waves or monster waves, were often observed
in ocean and coast [23,24]. Because of the conve-
nience of the desktop-based experiments, the research
on optical RWs has made a great progress in the
past two decades [25,26]. Mathematically, RWs can
be expressed as the rational function or semi-rational
function solutions of nonlinear evolution equations
[27]. Subsequently, Ohta et. al. [28,29] and Guo et.
al. [30] extended Darboux transformation (DT), after-
wards called as generalized Darboux transformation
(GDT), to seek for the RWs of nonlinear equations.
Lately, GDT was further extended to obtain the hybrid
breather and RW solutions [31].

In Ref. [18], by converting the system (1)–(3) to
the Ablowitz–Kaup–Newell–Segur system, then com-
bining DT and iterated Bäcklund transformation, the
multi-soliton solutions were acquired for the system.
The trivial initial solutions, explicit N-soliton solutions
in determinant form were presented by DT method
in Ref. [19]. The first-order RW solutions of the sys-
tem (1)–(3) were constructed, and their extremum and
asymptotic behaviors were also analyzed in Ref. [32].

Because the higher-order solutions can exhibit richer
dynamical properties of nonlinear systems [33,34],
they are often utilized to explore new natures during
the collisions and interactions [35], such as resonant
behavior [36], nonlinear superposition effect [37].

In this work, our main effort will be focused on the
higher-order RW solutions and their colliding dynam-
ics for the TSRS system (1)–(3). In Sect. 2, the N -order
RW solutions of the system are constructed by theGDT
method. The novel colliding dynamical properties are
discussed in Sect. 3. Some conclusions are given in the
final section.

2 Higher-order RW solutions for the TSRS system
(1)–(3)

The first step of applying the GDT scheme is to find
the Lax pairs of the equation. The system (1)–(3) has
the following Lax pairs [19]

Ψx = UΨ,Ψt = V Ψ,Ψ =
(

ψ1

ψ2

)
, (4)

where

U = −iλσ1 + Q[0],

σ1 =
(
1 0
0 −1

)
,

Q[0] =
(

0 q[0]

−q[0] 0

)
,

V = 1

4λ

(
iw[0] −p[0]

p[0] −iw[0]

)
,

and λ is spectral eigenvalue parameter, q[0], p[0] and
w[0] are a set of initial solutions of the system (1)–(3).

Remark 1 The system (1)–(3) can be expressed as the
compatible condition of the Lax pairs (4), namely,Ut −
Vx + U V − V U = 0.

According to the GDT scheme, we derive the one-
fold DT as follows

Ψ [1] = T [1]Ψ,Ψ [1]
x = U [1]Ψ [1], Ψ [1]

t = V [1]Ψ [1],
(5)
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where T [1] has to satisfy

Tx [1] = U [1]T [1] − T [1]U, Tt [1] = V [1]T [1] − T [1]V, (6)

with

U [1] = −iλσ1 + Q[1],

Q[1] =
(

0 q[1]

−q[1] 0

)
,

V [1] = 1

4λ

(
iw[1] −p[1]

p[1] −iw[1]

)
.

Supposing

T [1] = λI − M [1], (7)

M [1] =
(

m[1]
11 m[1]

12

m[1]
21 m[1]

22

)
, (8)

then substituting Tx [1] = −M [1]
x and Tt [1] = −M [1]

t
into (6), it yields the DT solutions

q[1] = q[0] − 2im[1]
12 , (9)

p[1] = p[0] + 4m[1]
12t , (10)

w[1] = w[0] + 4im[1]
11t . (11)

Now, we take a set of initial solutions q, p andw for
the system (1)–(3) as follows

q[0] = p[0] = e− i
2 t , w[0] = 0. (12)

Therefore, Φ1 and Φ2 are the solutions of the Lax pair
equations (4) with the initial solutions (12) correspond-
ing to λ = λ1 = ih and λ = λ2 = −ih, respectively,
where

Φ1
Δ=

(
φ11

φ21

)

=

⎛
⎜⎜⎝

(
c1e

√
h2−1

(
x− 1

4ih t
)

− c2e
−√

h2−1
(

x− 1
4ih t

))
e− i

4 t

(
c1e

−√
h2−1

(
x− 1

4ih t
)

− c2e
√

h2−1
(

x− 1
4ih t

))
e

i
4 t

⎞
⎟⎟⎠ ,

Φ2
Δ=

(
φ12

φ22

)

=

⎛
⎜⎜⎝

(
−c1e

−√
h2−1

(
x+ 1

4ih t
)

+ c2e
√

h2−1
(

x+ 1
4ih t

))
e− i

4 t

(
c1e

√
h2−1

(
x+ 1

4ih t
)

− c2e
−√

h2−1
(

x+ 1
4ih t

))
e

i
4 t

⎞
⎟⎟⎠ ,

in which c1 =
√(

h−√
h2−1

)
√

h2−1
, c2 =

√(
h+√

h2−1
)

√
h2−1

, h =
1 + f 2.

By expanding Φ1 and Φ2 in the above expressions
with respect to h = 1 + f 2 at f = 0, it follows

Φ1

(
i
(
1 + f 2

))
= Φ

(0)
1 + Φ

(1)
1 f 2 + Φ

(2)
1 f 4

+ · · · + Φ
(n)
1 f 2n + · · · , (13)

Φ2

(
−i

(
1 + f 2

))
= Φ

(0)
2 + Φ

(1)
2 f 2 + Φ

(2)
2 f 4

+ · · · + Φ
(n)
2 f 2n + · · · , (14)

where

Φ
(0)
1

Δ=
(

φ110

φ210

)
=

⎛
⎝ (1 + 2θ) e− i

4 t

(1 − 2θ) e
i
4 t

⎞
⎠ ,

Φ
(0)
2

Δ=
(

φ120

φ220

)
=

⎛
⎝ − (

1 − 2θ
)

e− i
4 t

(
1 + 2θ

)
e

i
4 t

⎞
⎠ ,

Φ
(1)
1

Δ=
(

φ111

φ211

)
=

⎛
⎝

( 2
3 θ3 + θ2 + 1

2 θ − i
2 t − 1

4

)
e− i

4 t

(− 2
3 θ3 + θ2 − 1

2 θ + i
2 t − 1

4

)
e

i
4 t

⎞
⎠ ,

Φ
(1)
2

Δ=
(

φ121

φ221

)
=

⎛
⎜⎝

(
2
3 θ

3 − θ
2 + 1

2 θ + i
2 t + 1

4

)
e− i

4 t

(
2
3 θ

3 + θ
2 + 1

2 θ + i
2 t − 1

4

)
e

i
4 t

⎞
⎟⎠ ,

Φ
(2)
1

Δ=
(

φ112

φ212

)

=
⎛
⎝

( 1
15 θ5 + 1

6 θ4 + 1
2 θ3 − i

2 tθ2 + 1
4 θ2 − i

2 tθ − 1
16 θ + 3

8 i t + 3
32

)
e− i

4 t

(− 1
15 θ5 + 1

6 θ4 − 1
2 θ3 + i

2 tθ2 + 1
4 θ2 − i

2 tθ + 1
16 θ − 3

8 i t + 3
32

)
e

i
4 t

⎞
⎠ ,

Φ
(2)
2

Δ=
(

φ112
φ212

)
=

( −φ212

φ112

)
,

with θ = x + i
4 t, θ = x − i

4 t.

2.1 First-order RW solutions

Proposition 1 Φ
(0)
1 and Φ

(0)
2 are the solutions of the

Lax pairs equations (4) corresponding to λ = λ1 = i
and λ = λ2 = λ1 = −i with the initial solutions (12).

The proposition can be verified by substituting Φ
(0)
1

and Φ
(0)
2 into the Lax pairs equations (4).

Theorem 1 The system (1)–(3) has the following one-
fold DT

T [1] = T1 (λ, λ1, λ2) = λI − M [1]
r , (15)

where

M [1]
r =

(
m[1]

11r m[1]
12r

m[1]
21r m[1]

22r

)
,

m[1]
11r = 1

Δ1
(λ1φ110φ220 − λ2φ120φ210) ,
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m[1]
12r = 1

Δ1
(λ2 − λ1) φ110φ120,

m[1]
21r = 1

Δ1
(λ1 − λ2) φ210φ220,

m[1]
22r = 1

Δ1
(λ2φ110φ220 − λ1φ120φ210) ,

Δ1 = φ110φ220 − φ120φ210,

and T [1] satisfies Eq. (6). Then, the system (1)–(3) has
the first-order RW solutions

q[1]
r = q[0] − 4

φ110φ120

Δ1
=

(
8i t − t2 − 16x2 + 12

)
t2 + 16x2 + 4

e− 1
2 i t , (16)

p[1]
r = p[0] − 8i

(
φ110φ120

Δ1

)
t

=
(
−t4 + 8i t3 + 8

(−4x2 + 3
)

t2 + 32
(
4i x2 − i

)
t − 16

(
4x2 + 1

)2)
(
t2 + 16x2 + 4

)2
e− 1

2 i t , (17)

w[1]
r = −4

(
φ110φ220 + φ210φ120

Δ1

)
t
= 128xt(

t2 + 16x2 + 4
)2 . (18)

Remark 2 T [1]|λ=λ j

(
φ1 j0

φ2 j0

)
= 0, j = 1, 2.

Owing to that the first-order RW solutions (16)–(18)
have been obtained in Refs. [32], their detailed proofs
and plots are no longer given. Readers can learn more
from this literature.

2.2 Second-order RW solutions

Consideration of Remark 2, as carrying out the twofold
DT, we are able to use the following Ψ j [1] to replace
Ψ [1]

Ψ j [1] = lim
f →0

(
λ j f 2 + T [1]|λ=λ j

) (
Φ

(0)
j + Φ

(1)
j f 2 + · · ·

)
f 2

= λ j Φ
(0)
j + T [1]|λ=λ j

Φ
(1)
j , j = 1, 2. (19)

It is necessary to denote

Ψ1[1] Δ=
(

φ11[1]
φ21[1]

)
, Ψ2[1] Δ=

(
φ12[1]
φ22[1]

)
, (20)

and redefine the twofold DT as

Ψ [2] = T [2]Ψ [1], Ψ [2]
x = U [2]Ψ [2], Ψ [2]

t = V [2]Ψ [2].
(21)

Theorem 2 The system (1)–(3) has the twofold DT as

T [2] = T2 (λ, λ1, λ2) = λI − M [2]
r , (22)

where

M [2]
r =

(
m[2]

11r m[2]
12r

m[2]
21r m[2]

22r

)
,

m[2]
11r = 1

Δ2
(λ1φ11[1]φ22[1] − λ2φ21[1]φ12[1]) ,

m[2]
21r = 1

Δ2
(λ1 − λ2) φ21[1]φ22[1],

m[2]
22r = 1

Δ2
(λ2φ11[1]φ22[1] − λ1φ21[1]φ12[1]) ,

Δ2 = φ11[1]φ22[1] − φ21[1]φ12[1].
T [2] satisfies

Tx [2] = U [2]T [2]−T [2]U [1], Tt [2] = V [2]T [2]−T [2]V [1],
(23)

with

U [2] = −iλσ1 +
(

0 q[2]

−q[2] 0

)
, V [2] = 1

4λ

(
iw[2] −p[2]

p[2] −iw[2]

)
.

(24)

Thus, we can calculate out the second-order RW solu-
tions of the system (1)–(3) as

q[2]
r = q[1]

r − 4
φ11[1]φ12[1]

Δ2
, (25)

p[2]
r = p[1]

r − 8i

(
φ11[1]φ12[1]

Δ2

)
t
, (26)

w[2]
r = w[1]

r − 4

(
φ11[1]φ22[1] + φ21[1]φ12[1]

Δ2

)
t
.

(27)

Remark 3 T [2]|λ=λ j
Ψ j [1] = 0, j = 1, 2.

Proof It follows from (22)

Tx [2] = −(M [2]
r )x , Tt [2] = −(M [2]

r )t . (28)

Then, substituting (28) into (23) leads

q[2]
r = q[1]

r − 2im[2]
12r , (29)
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p[2]
r = p[1]

r + 4
(

m[2]
12r

)
t
, (30)

w[2]
r = w[1]

r + 4i
(

m[2]
11r

)
t
. (31)

Noticing that λ1 = i, λ2 = −i , and the expressions of
m[2]

11r , m[2]
12r , m[2]

21r andm[2]
22r defined by (22), the second-

order RW solutions (25)–(27) can be derived.
The explicit expressions of the second-order RW

solutions (25)–(27) are given in Appendix I. ��

2.3 Third-order RW solutions

Next, we will construct the third-order RW solutions
which are based on the second-order RW solutions
(25)–(27). It is requisite to redefine the threefold DT.
Noticing Remark 3, we take the following Ψ j [2] to
replace Ψ [2] used in the twofold DT

Ψ j [2] Δ=
(

φ1 j [2]
φ2 j [2]

)
= lim

f →0

(
λ j f 2 + T [2]|λ=λ j

) (
λ j f 2 + T [1]|λ=λ j

) (
Φ

(0)
j + Φ

(1)
j f 2 + Φ

(2)
j f 4 + · · ·

)
f 4

= λ2jΦ
(0)
j + λ j (T [2] + T [1])|λ=λ j

Φ
(1)
j + (T [2]T [1])|λ=λ j

Φ
(2)
j , j = 1, 2, (32)

namely, define

Ψ [3] = T [3]Ψ [2], Ψ [3]
x = U [3]Ψ [3], Ψ [3]

t = V [3]Ψ [3],
(33)

where U [3] and V [3] are just replaced respectively by
U [2] and V [2] in the expressions (24), while the super-
script ‘[2]’ related the identifiers q, p and w in (24)
is replaced by ‘[3]’, respectively. Here, the quotation
mark ‘’ added in ‘[2]’ and ‘[3]’ is to distinguish the
citation numbers [2] and [3] to the References.

Through supposing

T [3] = λI − M [3]
r , (34)

we are able to attain the third-order RW solutions

q[3]
r = q[2]

r − 2im[3]
12r , (35)

p[3]
r = p[2]

r + 4
(

m[3]
12r

)
t
, (36)

w[3]
r = w[2]

r + 4i
(

m[3]
11r

)
t
, (37)

where

M [3]
r =

(
m[3]

11r m[3]
12r

m[3]
21r m[3]

22r

)
,

m[3]
11r = 1

Δ3
(λ1φ11[2]φ22[2] − λ2φ21[2]φ12[2]) ,

m[3]
12r = 1

Δ3
(λ2 − λ1) φ11[2]φ12[2],

m[3]
21r = 1

Δ3
(λ1 − λ2) φ21[2]φ22[2],

m[3]
22r = 1

Δ3
(λ2φ11[2]φ22[2] − λ1φ21[2]φ12[2]) ,

Δ3 = φ11[2]φ22[2] − φ21[2]φ12[2].

The detailed expressions to x and t of the third-order
RW solutions (35)–(37) are given in Appendix II.

2.4 N th-order RW solutions

By continuing the iterative process above, we can
finally construct the N th-order RWsolutions of the sys-
tem (1)–(3).

Theorem 3 The N-fold DT of the system (1)–(3) is

T [N ] = TN (λ, λ1, λ2) = λI − M [N ]
r , (38)

where

M [N ]
r =

(
m[N ]

11r m[N ]
12r

m[N ]
21r m[N ]

22r

)
,

m[N ]
11r = 1

ΔN
(λ1φ11[N − 1]φ22[N − 1] − λ2φ21[N − 1]φ12[N − 1]),

m[N ]
12r = 1

ΔN
(λ2 − λ1) φ11[N − 1]φ12[N − 1],

m[N ]
21r = 1

ΔN
(λ1 − λ2) φ21[N − 1]φ22[N − 1],

m[N ]
22r = 1

ΔN
(λ2φ11[N − 1]φ22[N − 1] − λ1φ21[N − 1]φ12[N − 1]),

ΔN = φ11[N − 1]φ22[N − 1] − φ21[N − 1]φ12[N − 1].(
φ1 j [N − 1]
φ2 j [N − 1]

)
= λN−1

j Φ
(0)
j + λN−2

j

(
N−1∑
k=1

T [k]
)∣∣∣∣∣

λ=λ j

Φ
(1)
j
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+λN−3
j

⎛
⎝ ∑

1≤l<k≤N−1

T [k]T [l]
⎞
⎠

∣∣∣∣∣∣
λ=λ j

Φ
(2)
j

+λN−4
j

⎛
⎝ ∑

1≤s<l<k≤N−1

T [k]T [l]T [s]
⎞
⎠

∣∣∣∣∣∣
λ=λ j

Φ
(3)
j + · · ·

+λ
N−(n+1)
j

⎛
⎝ ∑

1≤s1<s2<···<sn−1<sn≤N−1

T [sn ]T [sn−1] · · · T [s1]
⎞
⎠

∣∣∣∣∣∣
λ=λ j

Φ
(n)
j

+ · · · + (T [N − 1]T [N − 2] · · · T [1])|λ=λ j
Φ

(N−1)
j , j = 1, 2,

and T [N ] satisfies the conditions as

Tx [N ] = U [N ]T [N ] − T [N ]U [N−1], Tt [N ]
= V [N ]T [N ] − T [N ]V [N−1], (39)

where

U [N ] = −iλσ1 +
(

0 q[N ]

−q[N ] 0

)
,

V [N ] = 1

4λ

(
iw[N ] −p[N ]

p[N ] −iw[N ]

)
.

Finally, the N th-order RW solutions of the system
(1)–(3) can be obtained as

q[N ]
r = q[N−1]

r − 4
φ11[N − 1]φ12[N − 1]

ΔN
, (40)

p[N ]
r = p[N−1]

r − 8i

(
φ11[N − 1]φ12[N − 1]

ΔN

)
t
,

(41)

w[N ]
r = w[N−1]

r

−4

(
φ11[N − 1]φ22[N − 1] + φ21[N − 1]φ12[N − 1]

ΔN

)
t
,

(42)

where

Ψ j [N − 1] =
(

φ1 j [N − 1]
φ2 j [N − 1]

)

= lim
f →0

(
λ j f 2 + T [N − 1)|λ=λ j · · · (λ j f 2 + T [1]|λ=λ j

) (
Φ

(0)
j + · · ·

))
f 2(N−1)

,

j = 1, 2.

The proof of the Theorem 3 could be come true by
the similar iteration method performed in the Theo-
rem 2. We here omit the derivation.

Remark 4

T [N ]|λ=λ j

(
Φ1 j [N − 1]
Φ2 j [N − 1]

)
= 0, j = 1, 2.

3 Dynamics of the multiple RWs

In order to explore the dynamics of the multiple RWs
of the TSRS system (1)–(3), we demonstrate the spa-
tiotemporal evolution plots of the second- and third-
order RW solutions in 3-dimension, density and con-
tour views (see Figs. 1, 2, 3, 4, 5, 6, and 7). From these
figures, we careful analyzed their geometrical struc-
tures, changes of peak and trough numbers.

(i) Symmetrical structure.
The symmetry is a class of fundamental features in

physical systems, such as gravitation versus repulsion,

-3 -2 -1 0 1 2 3
-10

-5

0

5

(c)(a) (b)

Fig. 1 The spatiotemporal pattern of the second-order RW |q|. The plots are given by the solution (25). a, b and c are the 3-dimension,
density and contour views, respectively
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(c)(a) (b)

-3 -2 -1 0 1 2 3
-10

-5

0

5

Fig. 2 The spatiotemporal pattern of the third-order RW |q|. The plots are given by the solution (35). a, b and c are the 3-dimension,
density and contour views, respectively

-8 -6 -4 -2 0 2 4 6 8
0

1

2

3

4

5

6

7

Fig. 3 The extreme values of the first-, second-, and third-order
RWs of |q|. The plots are given by the solutions (16), (25) and
(35) with t = 0. The maximum values of the first-, second-, and
third-order RWs reach 3, 5 and 7, respectively

particle versus antiparticle, incident versus reflected
lights. In general, the symmetrical structures have
excellent stability and robustness.

In photoelectric systems, the symmetry is evenmore
omnipresent from crystal structures of luminescent
material, to the various periodical and doubly period-
ical light waves. The symmetry in optics has gradu-
ally attracted attention. Recently, based on the symme-
try theory, the concept of symmetry breaking has been
introduced in order to deal with local nonequilibrium
and/or instability states in more complex applications,
e.g. spontaneous symmetry breaking in a parity-time
optical coupled system that judiciously involves a com-
plex index potential [38].

One of the difficulties for the symmetry research is
how to describe these structures mathematically. The
analytical solutions obtained in Sect. 2 provide a way
to unearth the geometrical structures.

-4 -2 0 2 4
-10

-5

0

5

(c)

Fig. 4 The spatiotemporal pattern of the second-order RW |p|. The plots are given by the solution (26). a, b and c are the 3-dimension,
density and contour views, respectively
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-4 -2 0 2 4
-10

-5

0

5

(c)

Fig. 5 The spatiotemporal pattern of the third-order RW |p|. The plots are given by the solution (36). a, b and c are the 3-dimension,
density and contour views, respectively

-3 -2 -1 0 1 2 3
-10

0

10
(c)

Fig. 6 The spatiotemporal pattern of the second-order RW w. The plots are given by the solution (27). a, b and c are the 3-dimension,
density and contour views, respectively

-3 -2 -1 0 1 2 3
-10

0

10
(c)

Fig. 7 The spatiotemporal pattern of the third-order RW w. The plots are given by the solution (37). a, b and c are the 3-dimension,
density and contour views, respectively.

It is magical that all the RWs of the system (1)–
(3) exhibit exquisite symmetry consisting of multiple
peaks and troughs. Moreover, |q|, |p| and w show dif-

ferent symmetrical structures. Next, we make a careful
analysis. Both |q| and |p| are symmetric with respect to
the x−axis, t−axis, and coordinate central point (0, 0),
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respectively (see Figs. 1, 2, 4, and 5). w is symmetric
with respect to the point (0, 0), and antisymmetric with
respect to the x−axis and t−axis, and (see Figs. 6 and
7). We take the first-order RWs as examples to verify
the symmetry observed from their figures. From the
first-order RW solutions (16)–(17), we can acquire

|q(x, t)| =
√

t4 + (
32x2 + 40

)
t2 + 16

(
4x2 − 3

)2
(
t2 + 16x2 + 4

) , (43)

|p(x, t)|

= 8
√(

3t2 − 16x2 − 2 − 1
8

(
t2 + 16x2

))2 + t2
(
t2 + 16x2 − 4

)2
(
t2 + 16x2 + 4

)2 .

(44)

It is seen that

|q(−x, t)| = |q(x,−t)| = |q(−x,−t)| = |q(x, t)|,
|p(−x, t)| = |p(x,−t)| = |p(−x,−t)| = |p(x, t)|.
For the first-order RW solution (18) of w, it is easy to
attain that

w(−x,−t) = w(x, t), w(−x, t)

= w(x,−t) = −w(x, t).

(ii) The peak and trough numbers.
The peak and trough are two types of wave propaga-

tion patterns in spatiotemporal fields, which are related
to the amplitudes, frequencies and energies of waves.
Table 1 gives the peak and trough number of q, p andw

with the first-, second-, and third-order RWS. It is seen
that the peak and trough numbers of the RWs rapidly
increase as the order increases for the TSRS system
(1)–(3). Why does this happen? It can be regarded
as the result of the collision of multiple RWs. When
these RWs hit toward the coordinate origin (0, 0) at the
same time, the interaction between peaks and troughs
becomes more complex than that in the lower-order
case, and eventually generates more peaks and troughs.
The changes of the peak and trough numbers are the

Table 1 The peak and trough numbers of the RWs

Peak and trough
numbers

First-order
RW

Second-order
RW

Third-order
RW

|q| 3 11 23

|p| 4 12 24

w 4 12 24

same for |p| andw. Because all the RWs of |q|with dif-
ferent orders always possess a central peak which does
not split, the changes of |q| is different from |p| and
w. On the whole, as the order of the RWs is increased
once, it will cause each peak and trough to split into
two pieces except the central peak of |q|.

In addition, the collisions are often accompanied
by nonlinear superposition of amplitudes. Just as in
the case of collisions of multiple solitons or multi-
ple breathers, there exist amplitude superpositions at
the collision point [35,39]. Among |q|, |p| and w, the
amplitude superposition effect of |q| is the most signif-
icant. The maxima of the first-, second- and third-order
RWs of |q| can reach 3, 5 and 7, respectively (see Fig.
3).

It is noticeable that not all multiple RWs will col-
lide. Under some conditions, the multiple RWs may be
arranged dispersedly without collision [29,30].

4 Conclusions

In this article, the N -order RW solutions were obtained
for the TSRS system (1)–(3) by the GDT scheme. Fur-
thermore, the dynamical properties of the solutions are
analyzed. As N ≥ 2, the RWs will collide towards the
coordinate origin. As the results, the peaks and troughs
of higher-order RWs are almost twice as high as that of
lower-order RWs. It is also interesting that all the RWs
possess exquisite geometric symmetry. During the pro-
cess, there exists the nonlinear superposition effect to
amplitudes.

Within our best knowledge, a lot of higher-order RW
solutions have reported ceaselessly for various non-
linear evolution systems (equations) in recent decade;
however, the richness and novelty of dynamical prop-
erties, demonstrated by the higher-order RWs of the
TSRS system (1)–(3), are highly rare. The richness of
optical pulses will make it possible to transmit more
information bymodulation. In essence, these properties
are determined by certain inherent mechanics arising
from the refractive rate of optical frequency spectrum in
photoconductive and reflective materials. Fortunately,
the study here reconstruct the RW collision process
in theory. Therefore, these results would contribute to
more understanding to the TSRS systems, and help to
develop a new generation of optical fiber systems with
more excellent properties.
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Appendix I

The second-order RW solutions of Eqs. (1)–(3) are
expressed in details as follows

q[2]
r = −24

H2q

G2q
e− 1

2 i t ,

p[2]
r = −24

H2p

G2p
e− 1

2 i t ,

w[2]
r = H2w

G2w
,

where

H2q = − 1

24
t6 + i t5 +

(
−2x2 + 19

2

)
t4

+ (
32i x2 − 40i

)
t3 + (−32x4 + 48x2 − 66

)
t2

+ (
256i x4 + 384i x2 − 48i

)
t − 512x6

3
+384x4 + 480x2 − 120,

G2q = t6 + (
48x2 + 12

)
t4

+ (
768x4 + 3456x2 + 432

)
t2

+4096x6 + 3072x4 + 6912x2 + 576,

H2p = − 1

24
t12 + i t11 + (−4x2 + 11

)
t10

+ (
80i x2 − 68i

)
t9 + (−160x4 + 432x2 − 234

)
t8

+ (
2560i x4 + 768i x2 + 288i

)
t7

+
(
3584x4 + 9600x2 − 864 − 10240x6

3

)
t6

+ (−40960x8 − 40960x6 + 82944x4

+50688x2 + 864
)

t4 + (
327680i x8 + 1245184i x6

+1400832i x4 + 258048i x2 + 11520i
)

t3

+ (−262144x10 − 589824x8 + 4030464x6

+4055040x4 + 912384x2 + 6912
)

t2

+(1048576i x10 + 3932160i x8 − 5111808i x6

−3833856i x4 − 995328i x2 + 27648i)t

−2097152

3

(
x6 + 3

4
x4 + 27x2

16
+ 9

64

)2

,

G2p = (
t6 + (

48x2 + 12
)

t4 + (
768x4 + 3456x2 + 432

)
t2

+4096x6 +3072x4 + 6912x2 + 576
)2

,

H2w = 384
(
t8 + (

64x2 + 144
)

t6

+ (
1536x4 + 768x2 + 864

)
t4

+ (
16384x6 + 12288x4 + 3072x2 + 2304

)
t2 + 65536x8

+589824x6 + 221184x4 + 36864x2 + 20736
)

xt,

G2w = (
t6 + (

48x2 + 12
)

t4 + (
768x4 + 3456x2 + 432

)
t2

+4096x6 + 3072x4 + 6912x2 + 576
)2

.

Appendix II

The third-order RW solutions of Eqs. (1)–(3) are expressed in
details as follows

q[3]
r = 48

H3q

G3q
e− 1

2 i t ,

p[3]
r = −24

H3

G3p
e− 1

2 i t ,

w[3]
r = 768

H3q

G3q
,

where

H3q = − 1

48
t12 + t11i +

(
43

2
− 2x2

)
t10

+ (
80i x2 − 260i

)
t9 + (−80x4 + 1080x2 − 1845

)
t8

+ (
2560i x4 − 3840i x2 + 7200i

)
t7

+
(
19200x4 + 16320x2 + 9360 − 5120x6

3

)
t6

+ (
40960i x6 + 92160i x4 − 23040i x2 + 17280i

)
t5

+ (−20480x8 + 143360x6 + 1958400x4 + 1324800x2

−75600) t4 + (327680i x8 + 1638400i x6 − 9216000i x4

−6451200i x2 + 748800i)t3 + (−131072x10

+491520x8 + 4177920x6 − 15667200x4

−10713600x2 + 1468800)t2 + (
1048576i x10

+3932160i x8 + 13762560i x6 − 7372800i x4

−2764800i x2 + 691200i
)

t + 1209600 − 1048576x12

3

+1572864x10 + 4915200x8 + 14745600x6

−19353600x4 − 9676800x2,

G3q = t12 + 96t10x2 + 3840t8x4 + 81920t6x6

+983040t4x8 + 6291456t2x10 + 16777216x12

+24t10 + 17280t8x2 + 798720t6x4 + 12779520t4x6

+70778880t2x8 + 25165824x10 + 2160t8 + 1797120t6x2

+149760t6 + 9216000t4x4 + 460062720t2x6

+141557760x8 + 13824000t4x2 + 221184000t2x4

+613416960x6 + 864000t4 + 248832000t2x2

+221184000x4 + 12441600t2 + 199065600x2 + 8294400,
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H3p = (−68797071360000 + 5863676313600t10x2

+14631321600t12 + 317708697600t10

−3302259425280000x2 + 934502400t16x4

+55349084160t14x6 + 1545244508160t12x8

+24653246496768t10x10 + 233232830300160t8x12

+1252412463513600t6x14 + 3209886758338560t4x16

+1385384650997760t2x18 + 242749440t16x2

+55738368000t14x4 + 4413770956800t12x6

+132747205017600t10x8 + 1731416744263680t8x10

+9302641465098240t6x12 + 24306078921523200t4x14

+144723218006016000t2x16 + 597196800t14x2

+3116571033600t12x4 + 171102563205120t10x6

+1042250150707200t8x8 + 25878842258227200t6x10

+101828091130675200t4x12 + 437509420587417600t2x14

+372385382400t12x2 + 81575490355200t10x4

−7063369836134400t8x6 + 31944127964774400t6x8

+135834568438579200t4x10 + 1109637442673049600t2x12

−1424967069597696t2x20 + 322560t18x2

−192t22x2 − 16896t20x4 − 901120t18x6 − 32440320t16x8

−830472192t14x10 − 15502147584t12x12

−212600881152t10x14 − 2126008811520t8x16

−15118284881920t6x18 − 72567767433216t4x20

−211106232532992t2x22 + 145152t20x2

+8171520t18x4 + 250675200t16x6

+4246732800t14x8 + 27481079808t12x10

−372051542016t10x12 − 10436770529280t8x14

−108233175859200t6x16 − 577243604582400t4x18

−449198603580211200x12 − 328132065440563200x10

+3135283200000t8 − 295491065610240000x8

+37933940736000t6 − 98236102606848000x6

+106062151680000t4 − 43296290242560000x4

+343985356800000t2 − 3649684635648000t8x4

−13086731796480000t6x6 + 162585315901440000t4x8

+1078953337316966400t2x10 − 541776936960000t8x2

−3247221768192000t6x4 + 28668504047616000t4x6

+993319635124224000t2x8 − 692174979072000t6x2

+22427845263360000t4x4 + 98333947330560000t2x6

+1674062069760000t4x2 + 76685802209280000t2x4

+4127824281600000t2x2 − 871679074605465600i t x12

−127975292928000i t9x2 − 1009444445591961600i t x10

−804675007807488000i t x8 − 1013760i t19x2

−24883200i t17x2 − 1875640320i t15x4

−2884239360i t15x2 − 108291686400i t13x4

−14119537213440i t11x6 − 307757894860800i t9x8

−172777257188720640i t x16 − 37955174400i t13x2

−14663968358400i t11x4 − 1781521396531200i t9x6

−396318966231859200i t x14 − 3000316723200i t11x2

−961884979200000i t9x4 − 1146617856000i t5

−275188285440000i t − 15552i t21

−26276659200i t11 − 414720i t17 − 2587852800i t13

−812187648000i t9 − 4299816960000i t7

+58851789373440i t9x12 + 538073502842880i t7x14

+2931572877557760i t5x16 + 8312307905986560i t3x18

+8233143068786688i t x20 + 94560583680i t13x6

+7379122913280i t11x8 + 183585692712960i t9x10

+2261300281344000i t7x12 + 14360996248289280i t5x14

+42006841739182080i t3x16 + 38790770227937280i t x18

+810589177774080i t7x10 + 47675167777751040i t5x12

+143981047657267200i t3x14 + 1988422218547200i t7x8

+27939234706882560i t5x10 + 374332169650176000i t3x12

+169205760i t15 + 68797071360000i t3 + 8448i t21x2

+675840i t19x4 + 32440320i t17x6

+1038090240i t15x8 + 23253221376i t13x10

+372051542016i t11x12 + 580542139465728i t3x20

+844424930131968i t x22 + 15482880i t17x4

+3680501760i t15x6 + 166471925760i t13x8

+4008009793536i t11x10 + 10616152522752000i t7x6

+38159442247680000i t5x8 + 290977162356326400i t3x10

+5705570451456000i t7x4 + 65458120163328000i t5x6

+283619239133184000i t3x8 + 828622503936000i t7x2

+31041238597632000i t5x4 + 143244675514368000i t3x6

+3756320096256000i t5x2 + 67145941647360000i t3x4

+245394567069696000i t x6 + 6421059993600000i t3x2

+63109846794240000i t x4 + 9906778275840000i t x2

+48i t23 + 840960i t19 − t24 − 281474976710656x24

+1104t22 − 844424930131968x22 − 143136t20

−5383208929591296x20 + 2638080t18

−27707693019955200x18 + 12960000t16

−58334589411655680x16 + 1542758400t14

−191479949977190400x14,

G3p = (t12 + 96t10x2 + 3840t8x4 + 81920t6x6 + 983040t4x8

+6291456t2x10 + 16777216x12 + 24t10 + 17280t8x2

+798720t6x4 + 12779520t4x6 + 70778880t2x8

+25165824x10 + 2160t8 + 1797120t6x2 + 9216000t4x4

+460062720t2x6 + 141557760x8 + 149760t6

+13824000t4x2 + 221184000t2x4 + 613416960x6

+864000t4 + 248832000t2x2 + 221184000x4

+12441600t2 + 199065600x2 + 8294400)2

H3w = (t20 + 160t18x2 + 11520t16x4

+491520t14x6 + 13762560t12x8 + 264241152t10x10

+3523215360t8x12 + 32212254720t6x14

+193273528320t4x16 + 687194767360t2x18

+1099511627776x20 + 360t18 + 51840t16x2

+3317760t14x4 + 123863040t12x6
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+2972712960t10x8 + 47563407360t8x10

+507343011840t6x12 + 3478923509760t4x14

+13915694039040t2x16 + 24739011624960x18

+58320t16 + 1566720t14x2 + 205701120t12x4

+13377208320t10x6 + 327942144000t8x8

+3424565329920t6x10 + 13480828600320t4x12

+26285199851520t2x14 + 250482492702720x16

+1175040t14 + 60825600t12x2

+6317015040t10x4 + 983826432000t8x6

+15741222912000t6x8 + 25874493603840t4x10

+63780264345600t2x12 + 315422398218240x14

+34214400t12 + 1161216000t10x2 + 301252608000t8x4

+35417751552000t6x6 + 77120667648000t4x8

+76101451776000t2x10 + 574022379110400x12

+522547200t10 + 41803776000t8x2

+8676075110400t6x4 + 138817201766400t4x6

+171228266496000t2x8 + 547930452787200x10

+15676416000t8 + 1003290624000t6x2

+31417329254400t4x4 + 256842399744000t2x6

+1027369598976000x8 + 322486272000t6

+3248750592000t4x2 + 51980009472000t2x4

+1320903770112000x6 + 913711104000t4

+4777574400000t2x2 + 233910042624000x4

+1194393600000t2 + 19110297600000x2

+4299816960000)t x,

G3w = (t12 + 96t10x2 + 3840t8x4 + 81920t6x6

+983040t4x8 + 6291456t2x10 + 16777216x12 + 24t10

+17280t8x2 + 798720t6x4 + 12779520t4x6

+70778880t2x8 + 25165824x10 + 2160t8

+1797120t6x2 + 9216000t4x4 + 460062720t2x6

+141557760x8 + 149760t6 + 13824000t4x2

+221184000t2x4 + 613416960x6 + 864000t4

+248832000t2x2 + 221184000x4 + 12441600t2

+199065600x2 + 8294400)2.
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