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Abstract Inspired by the coexistence of excitatory
and inhibitory neurons in real neural networks, we pro-
pose a motif of three coupled nodes, one with pos-
itive coupling and two with negative couplings, for
signal amplification. Utilizing the bistable overdamped
oscillator as well as the excitable neuron models, we
show that the response of the motif is optimized for an
intermediate range of coupling strength, i.e., coupling-
induced resonance. Through theoretical analyses, we
find that the underlying mechanism for the resonance
is an abrupt pitchfork bifurcation caused by the mixed
positive and negative couplings.

Keywords Signal amplification · Bistable over-
damped oscillator · Excitable neuron · Mixed
couplings · Motif · Pitchfork bifurcation

1 Introduction

Diverse animals possess particular sensory system that
can efficiently detect and response to external signals,
even when the signals are weak [1–3]. For example,
a crayfish can sensor perturbations in the surrounding
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environment caused by nearby predators [4], and a fox
can hear the footsteps of mice under the snow [5]. In
order to understand these natural phenomena, as well
as for relevant bionic applications, it has become an
important field in neuroscience of understanding the
origin of the ability for a sensory system to detect weak
signals [6–10].

At the single neuron level, researchers have discov-
ered that additional noise to an excitable neuron can
improve the detectability to a faint signal under certain
conditions. Such an noise-induced improvement may
arise from the effect known as stochastic resonance
(SR)—adding noise with suitable intensity makes a
weak signal accessible for an excitable neuron [11–
13]. This additional noise may originate from envi-
ronmental fluctuations or biochemical and electrical
activities [7,14]. Notably, noise with neither strong nor
small intensity can lead to stochastic resonance. For
small additional noise, the weak signal cannot be raised
enough to fire the sensory neuron, while too strong
noise will overwhelm the signal which leads to ran-
dom firings of the sensory neuron. In contrast, inter-
mediate noise may trigger the sensory neuron to fire
with a rhythmmatching the period of the driving signal,
which leads to an enhanced response. At the neuronal
population level, the SR response of a single neuron
can be further enhanced when coupled into an neuron
array, which is known as array-enhanced SR [15–17].
However, in most natural systems, neurons are orga-
nized through complex networks whose structures are
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neither purely random nor regular [18–21]. It has been
shown that the structure of coupling networks signifi-
cantly affects SR. For instance, small-world networks
with a small fraction of long-range links can lead to a
great improvement in SR [22,23]; scale-free networks
with hubs can amplify weak signals even without the
aid of additional noise, i.e., amplified signal response
is purely induced by star-like structure [24–26].

Recent efforts to understand signal amplification
focused on the effect of quenched noise inherent in the
neuronal populations [27–29]. In particular, the diver-
sity of network interactions plays an important role on
the performance of signal amplification,which is closer
to realistic cases since neuronal networks are highly
heterogeneous in their connections [30–33]. Remark-
ably, not only heterogeneity fromnetwork topology can
enhance signal amplification, but also heterogeneous
couplings can trigger resonance behavior. As one of the
most updated development, Liu et al. found that mixed
weighted positive and negative couplings in an ensem-
ble of bistable overdamped oscillators can enhance sig-
nal response in a form of coupling-induced resonance
[34]. With further analyses, they showed that in the
presence of mixed positive and negative couplings, the
oscillator population spontaneously splits into three
clusters—two with negative couplings and one with
positive coupling, and the enhanced resonance shows
significant associationwith the coordinated oscillations
of these three clusters. Although a three-cluster model
was proposed to explain the origin of the observed res-
onance, the underlying dynamic mechanism remains
unclear.

In this paper, we present an abrupt pitchfork bifur-
cation mechanism for this recently revealed coupling-
induced resonance. Specifically, we introduce a three-
node motif comprises two negatively coupled nodes
and one positively coupled node as a minimal case for
the three-cluster model. We investigate the response of
this three-node motif to an external subthreshold sig-
nal and find a well-reproduced coupling-induced res-
onance. We also show that with an increase in cou-
pling strength the motif undergoes an abrupt pitchfork
bifurcation which causes a dynamical transition from
small-amplitude oscillations to large-amplitude oscil-
lations, leading to the onset of resonance. This finding
implies that sensory systems could benefit from the
natural coupling diversity to optimize their responses
to weak external signals.

2 Models and results

2.1 Bistable overdamped model

In this section, we consider a motif of three bistable
overdamped oscillators, described by

ẋi = xi − x3i + ci
3

3∑

j=1

(x j − xi ) + A sin(ωt),

i = 1, 2, 3, (1)

where ci represents the oscillator-dependent coupling.
The oscillator i acts attractively for ci > 0 and repul-
sively for ci < 0. According to the three-cluster model
[34], we set the couplings of the three oscillators in the
motif (1) as
⎛

⎝
c1
c2
c3

⎞

⎠ =
⎛

⎝
c

−c
−c

⎞

⎠ , (2)

where c ≥ 0 denotes the coupling strength.
Without coupling, i.e., c = 0, each oscillator in

motif (1) can generate two distinct responses to the
external signal A sin(ωt) depending on the signal
amplitude A. For A > Ac ≈ 0.39 each oscillator can
oscillate about its unstable fixed point xu = 0, while
for A < Ac they only jiggle around one of the two
stable fixed points xs = ±1. Following [34], a sub-
threshold signalwith amplitude A = 0.3 and frequency
ω = π/50 is considered, and the initial conditions of
the oscillators are set as
⎛

⎝
x1(0)
x2(0)
x3(0)

⎞

⎠ =
⎛

⎝
±1
±1
∓1

⎞

⎠ . (3)

Notably, it is required that the two oscillators with
negative couplings are set with different initial condi-
tions for signal amplification, but no specific require-
ment for the oscillator with positive coupling.

To quantify the response of the motif to the exter-
nal signal, we apply the spectral amplification factor
defined as [27]

η = 4

A2

∣∣∣
〈
eiωt X (t)

〉∣∣∣
2
. (4)

where X (t) = (x1(t) + x2(t) + x3(t))/3 denotes the
global dynamics of the motif and 〈·〉 stands for the time
average.

Figure 1a shows the spectral amplification factor η

versus coupling strength c,which exhibits a bell-shaped
structure with a jump at a critical coupling strength
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(a) (b)

(c)

(d)

Fig. 1 (Color online) Left: a The spectral amplification factor
η of Eq. (1) versus coupling strength c, where the dashed line
denotes the prediction of Eqs. (22)–(24). Right: Time series xi (t)
of Eq. (1) for b c = 0.1, c c = 0.4, and d c = 1.2, where the
green solid lines, red dashed lines, and blue dotted lines represent
x1(t), x2(t), and x3(t), respectively

c1 ≈ 0.23. Figure 1b–d further shows the oscillation
waves of the three oscillators for different coupling
strengths. One can observe a dynamical transition at
the critical coupling strength c = c1. For c < c1 there
exist only two oscillation clusters with small ampli-
tudes. When the coupling strength is beyond c1, the
positively coupled oscillator (the first oscillator) sep-
arates from the previous clusters and forms the third
oscillation cluster with amuch larger amplitude. Due to
its large oscillation amplitude, the behavior of the first
oscillator dominates the global dynamics of the motif.
This process is in agreement with the coupling-induced
resonance observed in Ref. [34], and thus, our three-
node motif is able to reproduce both the resonance and
the dynamical transition of the network.

To understand the observed resonance in the three-
node motif, we define y = (x2 + x3)/2 and z =
(x2 − x3)/2 as the mean dynamics and synchroniza-
tion error of the twooscillatorswith negative couplings,
respectively. Then, Eq. (1) can be rewritten as

ẋ1 =
(
1 − 2c

3

)
x1 − x31 + 2c

3
y + A sin(ωt), (5)

ẏ =
(
1 + c

3
− 3z2

)
y − y3 − c

3
x1 + A sin(ωt), (6)

ż = (1 + c − 3y2)z − z3. (7)

Since the second and third oscillators with negative
couplings have relatively smaller amplitudes compar-
ing to the first one, we may assume ẏ = ż = 0. For

(a) (d)

(b) (e)

(c) (f)

Fig. 2 (Color online) Time series y(t) of Eqs. (6) and (9) for
a c = 0.02, b c = 0.1, c c = 0.2, d c = 0.4, e c = 1.2, and
f c = 2, where the red solid lines, blue dashed lines represent
Eqs. (6) and (9), respectively

ż = 0, we get z = 0 and z2 = 1 + c − 3y2. Accord-
ing to Fig. 1b–d, the two oscillators (i = 2, 3) with
negative couplings repel each other, indicating that the
root z = 0 cannot be physically observed. Substituting
z2 = 1 + c − 3y2 into Eq. (6) with the assumption
ẏ = 0 yields

− 6 + 8c

3
y + 8y3 − c

3
x1 + A sin(ωt) = 0. (8)

Since y is a small fluctuation, the cubic term y3 can
be neglected in Eq. (8), leading to

y = 3A sin(ωt) − cx1
6 + 8c

. (9)

Figure 2 shows the results of Eq. (9) for different
coupling strengths, which provide a good approxima-
tion to the numerical data of Eq. (6). This indicates
that ż = 0, ẏ = 0 and y3 ≈ 0 are reasonable approx-
imations. From Eq. (9), the global dynamics can be
expressed as

X (t) = x1 + 2y

3
= 1 + c

3 + 4c
x1 + A

3 + 4c
sin(ωt). (10)

Substituting Eq. (9) into Eq. (5) obtains

ẋ1 = αx1 − x31 + β sin(ωt), (11)

where α = (3 + 2c − 3c2)/(3 + 4c) and β =
A(3 + 5c)/(3 + 4c). Without periodic force, i.e.,
A = 0, Eq. (11) undergoes a pitchfork bifurcation
as c increases, where the bifurcation point is at c2 =
(1+√

10)/3. Figure 3a shows the bifurcation diagram
of the stable fixed points 〈x1〉 (oscillation centers) as
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(a) (b)

(c)

Fig. 3 (Color online) a The bifurcation diagram of Eq. (11) at
A = 0 and A = 0.3, respectively. b, c The bifurcation diagram
of Eq. (1) with purely positive (ci > 0) and purely negative
(ci < 0) couplings, respectively. The stable fixed points 〈x1〉 are
calculated by time average over 200T (T = 2π/ω) with different
initial conditions

a function of coupling c, where 〈x1〉 is the time aver-
age of x1(t) over 200T (T = 2π/ω) with different
initial conditions. As c approaches c2, the two stable
fixed points 〈x1〉 = ±√

αmove towards each other, and
eventually merge into one stable fixed point 〈x1〉 = 0
when c ≥ c2. In the presence of periodic forcing, i.e.,
A = 0.3, the bifurcation behaves similar as A = 0 until
c ≈ 0.23 which is just the critical coupling strength c1
shown in Fig. 1a. When c reaches c1, the two stable
fixed points abruptly lose their stability dropping into
the stable fixed point xs1 = 0, suggesting that c1 is the
abrupt pitchfork bifurcation point. For better compar-
ison, Fig. 3b and c shows the bifurcation diagram of
Eq. (1) with purely positive (ci > 0) and purely nega-
tive (ci < 0) couplings, respectively. In both of these
cases, two fixed points remain stable with c increasing,
so the first oscillator keeps jiggling around one of them.
This explains the small responses of the network with
purely positive and negative couplings shown in Ref.
[34]. Therefore, mixed positive and negative couplings
cause the stable fixed points to lose stability, initiat-
ing the dynamical transition and the coupling-induced
resonance.

In order to investigate how the abrupt bifurcation
affects signal amplification, we show in Fig. 4 the
potential function of Eq. (11) for different coupling
strengths, where the potential function is defined as

V = −α

2
x21 + 1

4
x41 − βx1 sin(ωt). (12)

(a) (b)

(c) (d)

Fig. 4 (Color online) The potential function of Eq. (12) for dif-
ferent coupling strengths. a c = 0.1, b c = 0.4, c c = 1.2, and
(d) c = 2. The solid lines, dashed lines, and dotted lines denote
the potential function at t = 0, t = π/2ω, and t = 3π/2ω,
respectively

When c is small, e.g., c = 0.1, the potential function is
W-shaped with two wells and one barrier in the middle
(Fig. 4a). Under periodic forcing, thewells periodically
rise and fall but maintaining the barrier. The particle to
overcome it from one well to the other needs to con-
sume more energy, so that it always stays within one
well. After the bifurcation point, e.g., c = 0.4, the
potential barrier periodically disappears and the width
of the well bottom still remains, which leads to produce
the large amplitude of oscillation. When the coupling
is large, e.g., c = 1.2, the potential function changes
from W-shape to U-shape with only one well, and the
width of well bottom become narrow, which leads to
the amplitude of oscillation becomes small. With fur-
ther increasing coupling strength, e.g., c = 2, the well
of theU-shaped potential function becomes narrow and
steep. Comparing to both the small and large coupling,
the potential function at c = 0.4, near the bifurcation
point c1, allows a wider range of oscillation leading to
the resonance signal amplification.

To analytically get the pitchfork bifurcation point
c1, we consider dV/dx1 = 0 at t = ±π/2ω, since the
potential barrier is much lower at the maximum (mini-
mum) of the periodic signal. Then, Eq. (12) reduces to
a cubic equation as

αx1 − x31 ± β = 0. (13)
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At the bifurcation point c = c1, Eq. (13) has two equal
roots which results in
(

β

2

)2

=
(α

3

)3
. (14)

Thus, the pitchfork bifurcation point c1 obeys the fol-
lowing relationship as

27A2

4
= (3 + 2c − 3c2)3

(3 + 4c)(3 + 5c)2
. (15)

From Eq. (15), the pitchfork bifurcation point only
depends on the signal amplitude A, which decreases
with A. For A = 0.3, Eq. (15) analytically gives the
pitchfork bifurcation point c∗ ≈ 0.18, which is close to
the numerical result c1 ≈ 0.23. The difference between
our estimate c∗ and the numerical result c1 is due to the
assumption ẏ = 0, since the analytical y, i.e., Eq. (9),
obtained from ẏ = 0 is smaller than the numerical
result for c < c1.

When c < c∗, the potential barrier remains and
the periodic signal β sin(ωt) is subthreshold. Thus,
the first oscillator vibrates around one of the stable
points. Assuming δ(t) as the vibration, then we can
write x1(t) = 〈x1〉 + δ(t), where 〈x1〉 = ±√

α are the
stable fixed points in the absence of periodic forcing
(A = 0). Inserting x1(t) into Eq. (11) and neglecting
δ(t)2 and δ(t)3, the dynamical equation of the vibration
can be simplified as

δ̇(t) = −2αδ(t) + β sin(ωt). (16)

This is a linear differential equation of first order, and
its solution is given by

δ(t) ≈ − βω

4α2 + ω2 cos(ωt) + 2β

4α2 + ω2 sin(ωt).(17)

Then, the approximate solution of Eq. (11) is

x1(t) = ±√
α + β√

ω2 + 4α2
sin(ωt − φ), (18)

where tan φ = ω/2α denotes the phase shift.
On the other hand, when c ≥ c∗ the potential barrier

disappears and the periodic signal β sin(ωt) becomes
suprathreshold. In this situation, the approximate solu-
tion of Eq. (11) for c∗ ≤ c < c2 can be obtained by
assuming the signal frequency ω is sufficient small.
Then, the periodic forcing β sin(ωt) can be taken as
a constant ±β. Thus, the oscillation amplitude of x1
can be approximately solved from the reduced equation
αx1 − x31 ± β = 0, which is

2

√
α

3
cosh

(
1

3
arcosh

(
3β

2α

√
3

α

))
. (19)

Assuming the first oscillator oscillates with a sine
wave, then its dynamics equitation can be expressed as

x1(t) = 2

√
α

3
cosh

(
1

3
arcosh

(
3β

2α

√
3

α

))
sin(ωt).

(20)

Similarly, for c ≥ c2 the dynamics equitation of x1
is

x1(t) = 2

√
−α

3
sinh

(
1

3
arsinh

(
−3β

2α

√
− 3

α

))
sin(ωt).

(21)

Putting Eqs. (18) and (20)–(21) into Eq. (10) and
combining Eq. (4), we can analytically obtain the
response of the motif. Specifically, when c < c∗, the
spectral amplification factor is

η = (c2 − 12c − 9)2 + (3 + 4c)2ω2

4(3 + 4c)2(3 + 2c − 3c2)2 + (3 + 4c)4ω2 ,

(22)

which is independent of the signal amplitude A. When
c∗ ≤ c < c2, the spectral amplification factor is

η =

(
(1 + c)2

√
α
3 cosh

(
1
3arcosh

(
3β
2α

√
3
α

))
+ A

)2

(3 + 4c)2A2 ,

(23)

and for c ≥ c2, the spectral amplification factor
becomes

η =

(
(1 + c)2

√
− α

3 sinh

(
1
3 arsinh

(
− 3β

2α

√
− 3

α

))
+ A

)2

(3 + 4c)2A2 .

(24)

Figure 1a shows the theoretical result of Eqs. (22)–
(24), which predicts well with the numerical result
come from Eq. (1), except for the intermediate cou-
pling. The main reason for this deviation is that the
square-like wave of x1(t) is approximately represented
as the sine wave around c1 (Fig. 1c, d).

2.2 Excitable neuron model

To verify the above results in a more biologically real-
istic framework, we replace the bistable overdamped
oscillator by the FitzHugh–Nagumo (FHN) neuron
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(a) (b)

(c)

(d)

Fig. 5 (Color online) Left: a The spectral amplification factor
η of Eq. (25) versus coupling strength c, where the dashed line
denotes the prediction of Eq. (28). Right: Time series xi (t) of
Eq. (25) for b c = 0.02, c c = 0.1, and d c = 0.2, where the
green solid lines, red dashed lines, and blue dotted lines represent
x1(t), x2(t), and x3(t), respectively

model [35,36]. Then, the governing equations for the
motif becomes

εẋi = xi (1 − xi )(xi − a) − yi + ci
3

3∑

j=1

(x j − xi )

+A sin(ωt),

ẏi = bxi − yi − d, i = 1, 2, 3, (25)

where xi and yi represent the fast and slow variables
respectively. ε = 0.01, a = 0.5, b = 0.1, d = 0.05
are applied. With this setup, the FitzHugh–Nagumo
neuron model is bistable and excitable, which has two
stable fixed points as (xs1, y

s
1) = (0.11,−0.04) and

(xs2, y
s
2) = (0.89, 0.04). Similarly, the couplings of

neurons are set the same as in Eq. (2), and their ini-
tial conditions are assigned as follows:
⎛

⎝
x1(0), y1(0)
x2(0), y2(0)
x3(0), y3(0)

⎞

⎠ =
⎛

⎝
0.89, 0.04
0.89, 0.04
0.11, −0.04

⎞

⎠ , (26)

where two neurons with negative couplings are also
required to have different initial conditions. To model
a subthreshold signal, the amplitude and frequency of
the external input are set as A = 0.01 and ω = π/5,
respectively [36]. For simplicity, the response of the
motif to the external signal is estimated by the global
dynamics of the fast variables, i.e., X = (x1 + x2 +
x3)/3.

Figure 5a shows a similar resonance dependence
of the spectra amplification factor η on the coupling

strength c. Meanwhile, an abrupt jump of η occurs at
a critical coupling strength c3 ≈ 0.05. Time series of
xi (t) shown in Fig. 5b–d further indicate a dynamical
transition at c = c3—from the case of two oscilla-
tion clusters with small amplitudes to the case of three
oscillation clusters. Analogously, when c ≥ c3 the pos-
itively coupled neuron dominates the global dynamics
due to its large-amplitude firings.

To analyze the resonance behavior, we rewrite
Eq. (25) as

εẋ1 = x1(1 − x1)(x1 − a) − y1 + 2c

3
(Mx − x1)

+A sin(ωt),

ẏ1 = bx1 − y1 − d,

εṀx =
(
−a − 3D2

x + c

3

)
Mx − (a + 1)(M2

x + D2
x )

−M3
x − My − c

3
x1 + A sin(ωt),

Ṁy = bMx − My − d,

εḊx = (
c − a − 3M2

x + 2(a + 1)Mx
)
Dx − D3

x − Dy,

Ḋy = bDx − Dy, (27)

where the definitions Mx = (x2 + x3)/2, My =
(y2 + y3)/2, Dx = (x2 − x3)/2, and Dy = (y2 − y3)/2
are used. Notably, Dx is a small value for the two
negatively coupled neurons (Fig. 5b–d), and thus, we
assume Ḋx = 0. Since the dynamics of the slow vari-
ables can be considered as constants comparing to the
fast variables, we also assume that the slow variables
satisfy ẏ1 = 0, Ṁy = 0, and Ḋy = 0. Providing these
assumptions, Eq. (27) can be reduced to

εẋ1 = x1(1 − x1)(x1 − a) − bx1 + d

+2c

3
(Mx − x1) + A sin(ωt),

εṀx =
(
2a + 2b − 8c

3
+ 2(a + 1)2

)
Mx

−8(a + 1)M2
x + 8M3

x + d − c

3
x1

+(a + 1)(c − a − b) + A sin(ωt). (28)

Equation (28) describes a system of two coupled
neurons, one (x1) acts attractively (ci > 0) while the
other (Mx ) acts repulsively (ci < 0). Figure 6a plots
the bifurcation diagram of the stable fixed points 〈x1〉
of Eq. (28) with A = 0 and A = 0.01, respectively.
For A = 0, the two stable fixed points approach each
other, and merge at c4 = 0.2, remaining a fixed point
〈x1〉 = 0.5. For A = 0.01, the system undergoes an
abrupt pitchfork bifurcation at c ≈ 0.08, leading to the
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(a) (b)

(c)

Fig. 6 (Color online) a The bifurcation diagram of Eq. (28) at
A = 0 and A = 0.01, respectively. b, c The bifurcation diagram
of Eq. (25) with purely positive (ci > 0) and purely negative
(ci < 0) couplings, respectively. The stable fixed points 〈x1〉 are
calculated by time average over 200T (T = 2π/ω) with different
initial conditions

occurrence of the resonance as well as the dynamical
transition at c3 = 0.05. This means the pitchfork bifur-
cation point c3 decreases with the increase in the ampli-
tude A. Meanwhile, Fig. 6b and c shows the bifurcation
diagram of x1(t) in Eq. (25) for both purely positive
couplings and purely negative couplings, respectively.
Similarly, two fixed points remain stable for A = 0 and
A = 0.01 as c increases. Collectively, only mixed pos-
itive and negative couplings can cause an abrupt pitch-
fork bifurcation, which leads to the coupling-induced
resonance. Finally, we insert X = (x1 + 2Mx )/3
obtained from Eq. (28) into Eq. (4) to evaluate the ana-
lytical spectral amplification factor η. Figure 5a shows
the result, which is approximately consistent with the
resonance behavior of Eq. (25). Note that the deviation
of Eq. (28) is large in the intermediate coupling and we
attribute this to the approximations of Ḋx = 0, ẏ1 = 0,
Ṁy = 0, and Ḋy = 0.

3 Conclusions

In conclusion, we have investigated the response of a
three-node motif with mixed attractive and repulsive
couplings to a weak external signal. We have found
that this simple motif can generate a bell-shaped reso-
nance on the coupling strength. We have revealed that
such coupling-induced resonance is the consequence of
an abrupt pitchfork bifurcation induced by the mixed
positive and negative couplings. We have also shown

that this abrupt bifurcation cannot appear for both the
purely positive couplings as well as the purely nega-
tive couplings. We have also demonstrated the mecha-
nism of mixed coupling-induced resonance works effi-
ciently for both the bistable overdamped oscillators and
the excitable neuron models. On the one hand, these
findings lead us to a speculation that the instability
and dynamical phase transition caused by mixed cou-
plings could be an efficient mechanism for processing
information in sensory systems, since heterogeneous
interactions are common in natural systems. On the
other hand, small motifs are easy to build and control;
thus, our findings may also provide new insights on the
design of simple but efficient artificial devices.
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