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Abstract We perform an analytical study of the
Lissajous and halo orbits around collinear points L,
and L, in a spatial circular restricted three-body
problem of an arbitrary value of the mass ratio. Using a
canonical transformation procedure, we generate
complete and resonant normal forms through reduc-
tion to center manifolds. The coefficients in the normal
forms are explicitly expressed as functions of mass
ratio for the first time so that one can evaluate the
energy level at which bifurcation of halo orbit takes
place. Another contribution of this paper is giving the
analytical solutions of Lissajous and halo orbits in the
initial synodic reference system through the inverse
transformation of normalization. The analytical results
are the series form of normalized action-angle vari-
ables, and their coefficients are also explicitly

Electronic supplementary material The online version of
this article (https://doi.org/10.1007/s11071-020-05875-1) con-
tains supplementary material, which is available to authorized
users.

T. Luo - M. Xu (<)

School of Astronautics, Beihang University,
Beijing 100191, China

e-mail: xuming@buaa.edu.cn

T. Luo
e-mail: luotong@buaa.edu.cn

G. Pucacco

Department of Physics, University of Roma Tor Vergata,
00133 Rome, Italy

e-mail: pucacco@roma?.infn.it

expressed as functions of mass ratio. Finally, compar-
ison results demonstrate that the solutions for a
Lissajous orbit derived through normalization method
and Lindstedt-Poincaré method are completely the
same, while the solutions for a halo orbit derived
through these two methods are different but have the
roughly equal accuracy.

Keywords Halo orbits - Lissajous orbits - Spatial
circular restricted three-body problem - Normalization
method - Lindstedt—Poincaré method

1 Introduction

Spatial circular restricted three-body problem
(SCR3BP) is a fundamental model to describe the
motion of a small body affected by the gravitational
attraction of two primaries. Different values of the
mass ratio u (0 < p < 1/2) of the primaries corre-
spond to different celestial systems, such as the Earth—
Moon case and the Sun—Earth case. On the line
connecting the two primaries exist three collinear
equilibrium points [1], which are linearly unstable for
arbitrary value of p. However, Lyapunov’s center
theory [2] guarantees each collinear point can generate
a pair of periodic orbit families, to which we refer as
the planar and the vertical Lyapunov families.
Quasiperiodic orbits, which form the so-called
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Lissajous family, are derived through the combination
of the planar and the vertical Lyapunov orbits. In
addition, well-known halo orbits arise at the first 1:1
bifurcation from the planar Lyapunov family [3, 4].
Halo orbits have been widely applied to many space
missions thanks to their perfect locations. For exam-
ple, communications satellites have been placed in a
halo orbit around the translunar L, point [5, 6] and the
International Sun—Earth Explorer-3 was placed into a
halo orbit around the interior Sun—Earth L; point
[7, 8].

The dynamics of the restricted three-body problem
are significantly perturbed by nonlinear terms, which
affect the stability of the linear periodic motions. Up to
now, many methods have been developed to calculate
and analyze the periodic motions under the effect of
nonlinear terms. Lindstedt—Poincaré method is a
classical approach to derive semianalytical solutions
of invariant tori in SCR3BP [9-11]. Qian et al. [12]
and Almeida et al. [13] studied periodic motions
around an equilibrium point in the planar circular
restricted three-body problem and SCR3BP within
extra perturbations, respectively. Many numerical
methods were proposed to generate more accurate
solutions. The well-known differential correction
method can be used to produce initial conditions
belonging to a periodic orbit by incorporating the
analytical approximations as the first guess in an
iterative process [14—17]. In addition, multiple shoot-
ing method [18, 19] and multiple Poincaré sections
[20] were employed to find quasiperiodic orbits in
SCR3BP.

Above-mentioned methods cannot provide a deeper
insight into the nature of global behavior in a
neighborhood of these solutions. To give a compre-
hensive description of the dynamics around these
collinear points, a perturbation theory based on the Lie
series method [11, 21-23] is a satisfactory option. It
succeeds in separating the hyperbolic and elliptic
directions by constructing a normal form to perform
the center manifold reduction. Combining the reduc-
tion to center manifold and a Fourier series correction
method, Gomez and Mondelo [24] developed a
procedure for the refinement and continuation of
invariant tori. As for halo orbits, because the unper-
turbed linear dynamics on the two-dimensional center
manifold is characterized by almost equal values of the
frequencies for all mass ratios, Celletti et al. [25] and
Ceccaroni et al. [26] preformed 1:1 resonant
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perturbation theory to investigate the halo family
and to determine analytic expressions of the value of
the energy at which the bifurcation takes place.

Former scholars generally focused on a specific
case of SCR3BP, namely the value of the mass ratio is
fixed, but the mass ratio is considered as a variable in
this study. Analytical expressions of complete and
resonant normal forms are derived in Sect. 2.2, and
then the bifurcation energy of halo orbit is obtained as
a function of mass ratio. The primary contribution of
this paper is obtaining universal analytical results of
Lissajous and halo orbits in SCR3BP of an arbitrary
value of mass ratio. The explicit expressions of
coefficients parameterized by mass ratio in these
results are provided in Sect. 3 so that readers can
directly extract the corresponding solutions for their
interested cases. In addition, we compare the normal-
ization method with Lindstedt—Poincaré method in
Sect. 4, which confirms the rightness and effective-
ness of the normalization method.

2 Reduction to center manifold
2.1 Dynamical model

To describe the motion of the small body in SCR3BP
more simple, a synodic reference system (O, X, Y,
Z) rotating with the angular velocity of the primaries is
proposed and the units of mass, length and time are
normalized so that the total mass, the distance between
two primaries and the period of the motion of the
primaries are 1, 1 and 27, respectively. As shown in
Fig. 1, the origin O is located at the barycenter of the
primaries, the X-axis points to the larger primary from

Y
Small body
y r:
2
(14,0,0) X
Smaller primary Larger primary
VA4

Fig. 1 The location of two primaries in the synodic reference
system
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the smaller one, the Z-axis is perpendicular to the
motion plane of two primaries and the Y-axis is
determined by right-hand rule. After the normaliza-
tion, the position of the smaller primary is at
(= 1 + u,0,0), while the larger primary is at (u, 0, 0).
The dynamical model of the small body in the
synodic reference system can be expressed as

0O 1 0
J=|-1 0 o], (1)
0 0 0

y G 9)
R-2/R=—
oR’
whereR = [X, Y, Z]Tis the position vector of the small
body, Q(X,Y,Z) =3(X*+Y?)+=£4+L is the

pseudo-potential function, r; = \/ (X — p)*+Y? + 22

and r, = \/(X + 1 — p)*+Y?2 + 72 are the distance to
two primaries, respectively. Equation (1) admits five
equilibrium points, of which three points located on
the X-axis are called collinear points. The origin can be
moved to L; or L, point through following
transformation:

X=—px+puto, Y=-py Z=yz (2)

where y; denotes the distance between L; and the
smaller primary, a«=—1+7y; for L; and
o=— 1 — y, for L,. Then, the equation of motion
in the new variables can be written in the following
form:

. . 0 n X
i-2y—-(1 +262)X:&Z%(/1)P Pn(;>7

e 0 nn (X
V42284 (2 — 1)y Za—ch(u)p Pn(;)

n>3
0 X
Itcz==—Y cu(p)p"Pn <> ) (3)
0z ; P
where p = \/x% +y? + z2, p, is the Legendre poly-
nomials and the coefficient cn(p) =
a(1—p)y!
# (,U + (—1) (<17lj1)>1£+1> for Ly, cn(,u) =

n )l
(f,i) (,u + <(11+”>)’,%+,> for L,. By introducing the conju-
/2 72

gated momenta p, = x —y,p, =y +xand p, = Z, the
Hamiltonian function of the system can be written as

1 2 2 2
H=3 (px + 5 +pz> +Ypx — Xpy

n X
- atorn (%), @)
n>2 P

The state vector at a collinear point is [0, 0, 0, 0, 0,

O]T, and then the linearized Hamiltonian function
about this state is

1 2
Hy =5 (pi +r; +p§) P =y — o +
+sz
2

(5)

2.2 Normalization

Aimed at the above nearly integrable Hamiltonian
system, its Hamiltonian function Eq. (4) can be
simplified into specific normal form through normal-
ization procedure. The normal form succeeds in
separating the hyperbolic and elliptic behaviors so
that one can study the periodic and quasiperiodic
motions by only concerning the center manifolds.
Reference [11] provided a detailed and clear proce-
dures of normalization, which includes the diagonal-
ization of quadratic part through a symplectic matrix
transformation and the normalization of higher-order
terms through Lie series method. Here, we do not
repeat those lengthy calculations again and directly
give the results.

The linearized system always has one pair of real
eigenvalue, denoted by £ /;, and two pairs of pure
imaginary eigenvalues, denoted by £ w;i and £ w,i.
Then, the diagonalized form of the quadratic part can
be expressed as

H>(q1,92,93,P1,P2,P3) = J1qip1 + i0142p2
+ icozqug, (6)

where (q, p) = (91, 2. 43, P1, P2, p3) are complex
variables. Then, a specific normal form can be derived
through a canonical transformation, which is accom-
plished by choosing suitable generating functions
within Lie series method [11]. In complete normal
form, we should preserve these monomials g*ap*» (for
simplicity, we have kept the same name for complex
variables after normalization), where the indices
satisfy
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kg1 =kp1, kgop=kpo, kg3 =ky3. (7)

In resonant normal form, we should preserve these
monomials qX«p*» where the indices satisfy

kq,l = kp,1> kq.2 - kp,2| = |kq,3 - kp,3 P

(8)
kqA’z — kp‘z + kq73 — kp,3 =0.

When normalization is performed up to order 4 and
the hyperbolic behaviors are removed, the complete
normal form and resonant normal form of Hamiltonian
function expressed by action-angle variables are

HY = oIy + ool + 02000}, + ctoonal],
+ oyl 9)

and

H(hv4> = CUIIhy + wolp, + 05220011% + 0500221}%Z
+ Ihylhz(allll + 20002 COS(Z(th - 9111)))7
(10)

where i, @y, %200, %0022, %1111 and oipggp are
coefficients depending only on parameter p. The
numbers of the subscript in o denote the exponents of
@2, q3, P2, p3 in monomials gXip*» successively. We
can distinguish that the difference between the com-
plete normal form Eq. (9) and the resonant normal
form Eq. (10) is the synchronous resonance term
related to 0, — 0, while other corresponding coef-
ficients are completely the same. The explicit expres-
sions of these coefficients are all listed in Appendix.
If either I, or I, vanishes, one obtains the nonlinear
normal mode E,= wly,+ oczzoglﬁy or E.= wyly+—
aoozzlﬁz. For the motion in y-direction, w; is the
fundamental frequency and o500 can be considered as
a second-order coefficient for the high-order supple-
mented frequency. Similarly, for the motion in z-
direction, w, is the fundamental frequency and oo
can be considered as a second-order coefficient for the
high-order supplemented frequency. When 7, and I,
both exist, the motions in y- and z-direction are
coupled with each other. Then, ¢y and cx99> can be
considered as two coupling coefficients, which can
affect the frequency in y- or z-direction through the
action in the other direction. Figure 2 demonstrates the
evolution of these coefficients as functions of the mass
ratio, where two black lines refer to mass ratios
corresponding to Sun—Earth system and Earth—-Moon
system, respectively. Two subgraphs in the top row
correspond to w; and w,, and two subgraphs in the
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bottom row correspond to %500, %0022, %1111 and %2.
The list of subgraphs on the left is the evolution of the
coefficients for L, point, while the list of subgraphs on
the right is the evolution of the coefficients for L,
point. Two fundamental frequencies w; and @,
correspond to the linearized motions in x—y plane
and z-axis directions, respectively, and they dominate
in the actual values of two motion frequencies.
Subgraphs a; and a, demonstrate that the values of
w; and w, always keep close, which indicates that a
1:1 resonant periodic orbit, namely the well-known
halo orbit, could occur in all SCR3BP of any mass
ratio. In addition, the curves are remarkably flat when
the mass ratio is near or smaller than Sun—Earth
system, which demonstrates that the value of motion
frequencies is hardly changed with mass ratio. How-
ever, the value of motion frequencies becomes
dependent on mass ratio when mass ratio is near or
larger than Earth—-Moon system.

2.3 Bifurcation of halo orbits

Let us implement the change in variables & = I, + I,
= Ihy» L= th and lp = th — th. Then, Hamilto-
nian (10) is transformed into H™* = w,e + SR+
aR? + be? + ceR + d(R? — eR) cos(2y), where
0=w; — w, is defined as the detuning, which
provides a measure of the distance in the frequency
from the synchronous resonant, and constants are
a = Oxe0 + Goozz — %111, b = Ooozzs € = dqpni-
— 20gp22, d = — 20002. Dynamical equations asso-
ciated with H"* * become

=0, R =2dR(R—¢)sin(2y),
V= wy + 2be + cR — dRcos(2y), (11)

Y =0+2aR+ ce + d(2R — &) cos(2y).

When the value of ¢ is fixed, we obtain a one-
degree-of-freedom system in the phase plane (R, ).
Its equilibria correspond to periodic orbits of the
original system. If & = ¢, then the motion takes place
in x—y plane, which approximately corresponds to the
planar Lyapunov orbit. If yy = £7/2, the equilibrium
points (R, £7/2) correspond to loop orbits. By

solving w =0, we can obtain ¥; = — ‘S;éffj))g. Halo
orbits are these loop orbits bifurcating from the planar
Lyapunov orbit. Thus, the quantity &, marking the

occurrence of the bifurcation of the halo orbits can be
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Fig. 2 Coefficients in Eq. (10) as functions of the mass ratio: a; and by are the evolution of the coefficients for L, point; a, and b, are

the evolution of the coefficients for L, point

solved from R, = ¢ and the solution is &y = — 52—
The energy level at which a bifurcation to halo orbit
occurs can be estimated as E = w,¢y, which, coming
back to the original coefficients, gives the bifurcation
value

CU2(O)] — (1)2)

ar111 — 2(02200 — %2002) (12)
Figure 3 shows the bifurcation thresholds com-
puted via Eq. (12) as a function of the mass ratio,
where the red and blue lines correspond to L; and L,
points, respectively, and two black lines referring to
mass ratios correspond to the Sun—Earth system and
Earth-Moon system, respectively. The procedure of
the bifurcation of halo orbit can be described by
Poincaré section method. Figures 4 and 5 provide the
evolution of dynamics around L; point in the Earth—
Moon system and Sun—Earth system, respectively.
Bifurcation thresholds in two systems are located
within the ranges of [0.3, 0.33] and [0.33, 0.35],
respectively, which matches the analytical results in
Fig. 3.

3 Analytical solutions of halo and Lissajous orbits

3.1 Lissajous orbits

The inverse transformation of complete normal form
derives the analytical solutions of Lissajous orbits.
When the complete normalization is implemented up
to order 4, the explicit expressions of the initial
position variables as functions of the final action-angle
variables can be written as

Xi=Xn+Xp+Xp+--,
Xn :XﬁmOO\/ECOS Oy,

X = XBaooly sin” 0y + X a0l cos” 0,
+ X Bogaol- sin® 0 + X Bogoa L. cos” 0.,

Xp = X[)’ZIOO\/Esin2 0, cos 0,
+ XPB1o11+/I1. sin 0, cos 0, cos 0 + Xﬁ0300\/Ecos3 0,
+ XPBora0\/I1: cos 0y sin? 0, + X Byyg51/ I 1, cos 0, cos® 0.;

(13)
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Fig. 3 Bifurcation thresholds computed via Eq. (12) as a
function of the mass ratio: the red line for L; and the blue line

for L,

Y=Yn+Yp+Yz+---,

Yu = YBiooo/Iy sin by,
Y = Y Bi100ly sin 0y cos 0y + Y Byy111; sin 0 cos 0,

Y = Yﬁ3000\/é sin® 0, + Yﬁmo\/g sin 0, cos 0,
+ YBiga0\/I I sin 0y sin” 0,
+ YB1goa /I I sin 0, cos? 0,

+ YBo111y/ 11 cos 0, sin 0, cos 0,;
(14)

L =Zn+Zn+2Zp+--,
Zn = Zﬂomo\/l_zsm 0,
Zp = ZByoo1 /Iy v/ I sin 0, cos 0, + Z By 101/ Ty /I cos O, sin 0,
Zn = Zﬁzomly\/l_Z sin? 0, sin 0, + Zy 10,1, /I sin 0y cos 0, cos 0,
+ Zﬁozmly\/l_‘.cos2 0y sin 0,

+ Zﬂomo\/E sin’ 0, + ZBoor \/E sin 0, cos” 0.;

(15)

where Xll’ Yll and le, XIZ’ le and le, and X13, Yl3 and
Z5 are, respectively, defined as the first-order, second-
order and third-order terms of position variables, and
XPBo100s XP2000s ---» and ZPoo12 (see “Online Appen-
dix” for explicit expressions) are coefficients which
only depend on the mass ratio of the system. The four
numbers in the subscripts of Xfo1009, Xf$20005 --., and
Zfoo12 successively correspond to the indexes of sinf,,
cosd,, sind, and cosf,. As we can see, every term is
constructed based on the triangular series of 6, and 0.,
which determines the quasiperiodic change of these
position variables. The explicit expressions of Xf¢100,
Xﬁz()()(), .., and Zﬁ()()]g are listed in the “Online
Appendix.” Figures 6 and 7 show the evolutions of
coefficients in the analytical solution of Lissajous
orbits around L, point and L, point, respectively. The
first, second and third rows correspond to coefficients
in Eqs. (13), (14) and (15), respectively. Similar to the
changing tendencies of motion frequencies in Fig. 2,
these coefficients vary slowly when the mass ratio is
near or smaller than Sun—Earth system, while coeffi-
cients vary drastically when the mass ratio is near or
larger than Earth—-Moon system.

3.2 Halo orbits

The inverse transformation of resonant normal form
derives the analytical solutions of halo orbits. When
the resonant normalization form is implemented up to
order 4, the explicit expressions of the initial position
variables as functions of the final action-angle vari-
ables can be written as

Fig. 4 Bifurcation of halo orbit around L, point in the Earth-Moon system
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Fig. 5 Bifurcation of halo orbit around L, point in the Sun—Earth system

0.6
0.4
02
I 0
-0.2
0.4
-0.6

-0.8
-0.8

-0.6

04

02 0

0.2

04 0.6

- XﬁOlOD - )(ﬁZOO(J o )(BOZDD - )(ﬁl)ﬂl(l o )(BOODZ - Xﬁlll)ﬂ o mlﬂll o XﬁOSOU - XﬁOIZD - )(ﬁ(JIDZ
0.34 039= ' ] L3 i i i j
0.32 0.30 o
£ 0.30 202 e SLE ElMm
2028 2 \ 2
he 2020 g o
Z 026 g SHE ExM \ g
S 924 SEE E4M § ol \ S 00 f—=
o> 0.10 P \
0'20 0.05}-- : : / | -0.5 N
’ 0.00— - - :
-8 -6 —4 ) -8 -6 -4 -2 -8 -6 -4 ) 0
Logo(r) Log(u) Logo(n)
- YﬁlOOD - YﬂllOU - Yﬁ()l)]l - Yﬁ}OUU o YﬁlZOO o YﬂlOZO - YﬁlOOZ - Yﬁ(ll]l
T T 7 7 0.15 4
~0.90
SLE E4M 0.10 /
% _0.95 \ 2 L
g % 00 B
8 5 STHE EfM \\ 5, SLE EiM
= -1.00 £ 0.00 =
S g E
© 105 © -0.0 [ S -2 \
~0.10
-110= . : i i E -4 : i il
-0.1
-8 -6 -4 ) -8 -6 -4 -2 -8 -6 -4 -2 0
Logo(r) Logo(u) Logo(u)
- ZBOOIO - ZﬁlOOl - ZﬁOHO - ZﬁZOlO o ZﬁllDl o ZBDZIO - ZﬁOO}D - ZﬁODlZ
1.00[— i — ——
SLE E4M 0.4 2
—
209 o =
5 5 02 5 )
2 2 2
2 0.90 3 STE EM 2
30 S 00 / S, |
SFE 1 E \
0.85 -02 4 M.
-8 -6 —4 -2 -8 ~6 —4 ) -8 —6 —4 -2 0
Logo(w) Logo() Log(u)

Fig. 6 Coefficients in the analytical solution of Lissajous orbits around L; point: the first, second and third rows are for X, Y, and Z
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Fig. 7 Coefficients in the analytical solution of Lissajous orbits around L, point: the first, second and third rows are for X, Y, and Z

Xp=Xn +Xpp + Xz + -+,
X = Xy%\/l;cos 0y,
X = Xyggly sin’ 0, + Xy%glz sin’ 0,
+ X951, cos? 0, + XyO31. cos® 0,
X3 = Xy%é\/é sin’ 0y cos 0,
+ X5/ 1 sin” 0, cos 0,

+ Xygg \/;y; cos® 0, + Xy(])g \/I—ylz cos® 05

(16)

Yo=Yu+Yp+Ys+--,

Y, = Yyig\/i;sin 0y,
Yin = Yyapl, sin 0, cos 0, + Y1, sin 0, cos 0,

Yz = ngg\/gsin3 0y + Yy?g \/Tylz sin® 0,

+ Yy;%\/l?,sin 0y cos 0y + Yyi31/L I sin 0, cos® 0
(17)
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Zyn=Zn +Zip+Zy+---,
Zn = Zy3 /I cos 0,
s = 2R st 0+ 218 T Ecos*

Zis = Zy21,\/I sin? 0, cos 0,
+ Zy(z); \/Esin2 0, cos 0, + Zyg?ly\/i;cos3 0,
+ Zygy /2 cos® Oy;
(18)

where Xj,1, Y1 and Z;,1, Xj0, Yio and Zj,, and X3, Y3
and Z,; are, respectively, defined as the first-order,
second-order and third-order terms of position vari-
ables, and X790, X739, ..., and Zy%3. (see “Online
Appendix” for explicit expressions) are coefficients
which only depend on the mass ratio of the system.
The two numbers in the superscripts of X y%., X 7%8,
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and ZyQ3 successively correspond to the indexes of
sinf, and cosf,, while the numbers in the subscripts of
Xy, Xy39, ..., and Zy93 successively correspond to
the indexes of /I, and +/I. Different from the
expressions for Lissajous orbits, every term is con-
structed only based on the triangular series of 0,,
which determines the periodic change in position
variables. The explicit expressions of Xy, X739, ...,
and Zygg are listed in the “Online Appendix.”
Figures 8 and 9 show the evolutions of coefficients
in the analytical solution of halo orbits around L, point
and L, point, respectively. The first, second and third
rows correspond to coefficients in Egs. (16), (17) and
(18), respectively. Similarly, these coefficients vary
slowly when the mass ratio is near or smaller than Sun—
Earth system, while coefficients vary drastically when
the mass ratio is near or larger than Earth—-Moon system.

4 Comparison with Lindstedt—-Poincaré method

In Ref. [10], Richardson presented a third-order
analytical solution for halo orbit around the collinear
points of the SCR3BP through the Lindstedt—Poincaré
method. The key techniques of the Lindstedt-Poincaré
method are eliminating the secular terms and solving
ordinary differential equations, which make it difficult
to be achieved through programmatic approach on
computer. In comparison, the analytical solutions can
be extended to higher order by simply setting the order
of normalization when we adopt the method proposed
in this paper. In addition, the analytical solution for
Lissajous orbit is also obtained through the normal-
ization method, which can be considered as a great
contribution of this paper. In Ref. [11], Jorba and
Masdemont obtained semianalytical solutions for halo
and Lissajous orbits through the Lindstedt—Poincaré
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Fig. 8 Coefficients in the analytical solution of halo orbits around L, point: the first, second and third rows are for X, ¥, and Z
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Fig. 9 Coefficients in the analytical solution of halo orbits around L, point: the first, second and third rows are for X, ¥, and Z

method. Although they provided the results expanded
as formal series in powers of the amplitudes, the
coefficients in the series could not be explicitly
expressed and were computed again for a particular
case. In this paper, not only is the solution for
Lissajous orbit expanded as series in powers of the
amplitudes, but also the coefficients in the series are
explicitly expressed as functions of mass ratio. Thus,
the analytical solutions obtained in this paper can be
directly applied to a particular case without compli-
cated computation once again.

Delshams et al. [27] compared Lindstedt—Poincaré
series with Birkhoff normal forms in the spatial Hill’s
problem, and they proved that the truncated Lindstedt—
Poincaré series was just the solution to the truncated
Birkhoff normal form equations. Here, the numerical
results for halo and Lissajous orbits in the SCR3BP are

@ Springer

calculated through Lindstedt-Poincaré method and
normalization method, respectively, and then we
perform a comparison between them. According to
Ref. [11], the result for Lissajous orbit derived by
Lindstedt-Poincaré method is

X=>Y > Xy cos(k0; + m0,) | o'/,
ij=1 \ |[k| <i,|m|<j

y=>"| S Yjuwsink0 +mbs) |,
ij=1 \ k| <i|m|<j

Z = Z Z Zijkm sin(k@l + m02) aiﬁjv

<
I
=

k| <i.Jm| <j

(19)
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where 0, = ot + ¢, 0, = vt + ¢, w=
Yool and v =Y jvjolf’. To match the
first order of the analytical solutions obtained in
Sect. 3.1, namely Egs. (13)—(15), we set the value of

X1010 Y1010, Zo101> @oo and vgg as

X1010 = XBoioos Y1010 = Y1000
Wop = W1, Voo = W2.

Zoi01 = ZPoo1os

(20)

Table 1 shows the numerical results of the coeffi-
cients of the Lissajous expansions around L, point in the
Sun—Earth system, up to order 3. By substituting the
mass ratio of the Sun—Earth system into Egs. (13)—(15)
and transforming the trigonometric series into the form
of Eq. (19), we can obtain the numerical results as

X; = 0.33917./1, cos 0, + 0.240741, + 0.246421,
— 0.104221, cos 20, — 0.109991_ cos 20,

+0.04674, /13 cos 0, +0.02322 /I, 1. cos 0,
~ 0.03097, /13 cos 30, -+ 0.50491 /T, - cos (0, — 20.)

—0.02823/1,1. cos (0, + 20;).
(21)

Y, = —1.09527,/1, sin 0, — 0.056651, sin 20,
+0.067251 sin 20.

—0.03993, /13 sin 0, +0.02179 /L, 1. sin 0,

— 0.03456, /17 sin 30,
+ 1.62985 /1,1 sin (0, — 20.)
—0.00701 /I sin (0y + 20.).
(22)

7 = 0.99622/1, sin 0, + 0.37738/I,+/I. sin(0, — 0,)
+0.11993/T,\/1, sin (0, + 0,)
—0.01851,/I: sin 0, + 0.01403\/E sin 0,
+0.01931,/13 sin 30,
+0.046541,/1, sin (20, + 0,)
— 1.39421,+/I. sin (20, — 0,).

z

It turns out that the coefficients in Eq. (21)-(23)
completely equal the corresponding coefficients in
Table 1, which verifies that the solutions for the
Lissajous orbit derived through normalization method
and Lindstedt-Poincaré method are the same. This
comparison result confirms the rightness and effec-
tiveness of the normalization method.

In order to apply the Lindstedt—Poincaré method to
solving halo orbit, we must modify Eq. (3) by adding
the product of the factors A and z to the third equation,

namely 7+ ¢z = a% S ca(u)p"Py (ﬁ) + Az, where
n>3

the factor A\ is expanded as a frequency-type series
A= Z?j:o d;jociﬁj, with the condition A =0. To
make sure periodic motions appear in the linearized
equation, the value of dy, is set as doyg = w3 — o

Then, the result for halo orbit can be expressed as

X = Z Z X,]k COS(k@) O(iﬁj,
ij=1 \ k| <i+j

Y=>"| > Yusin(k0) |, (24)
ij=1 \ [k <it)

Z= Z Ziji cos(k0) | o',
ij=1 \ k| <i+j

where 0 = wt + ¢ and ® = Z;’;’:O a)ijociﬁj. To match
the first order of the analytical solution obtained in
Sect. 3.2, namely Eqgs. (16)—(18), we set the value of
Xio1> Y101, Zo11 and wgp as

01
Xio1 = X195
Wop = 1.

10 o1
Yior =Yy190  Zont = Zyy,

(25)

Table 2 shows the numerical results of the coeffi-
cients of the halo expansions around L; point in the
Sun—Earth system, up to order 3. By substituting the
mass ratio of the Sun—Earth system into Egs. (16)—(18)
and transforming the trigonometric series into the form
of Eq. (24), we can obtain the numerical results as
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Table 1 Coefficients, up to order 3 of the Lindstedt—Poincaré expansion of the Lissajous orbits around L, in the Sun—Earth system

i Jj Wj; Vjj

0 0 .2086453564223108E+01 .2015210662996640E+01

2 0 — .19793330921103466E+00 .25623574529952564E—01
0 2 .25623574529952564E—01 .16195976981230506E+-00
i J k m Xijkm or Zijkm )/Ijkrn

1 0 1 0 .3391700424065888E+00 — .1095270999402855E+01
0 1 0 1 .9962189144672732E+00

2 0 0 0 .240735994312677E+00 .0000000000000000E+00

2 0 2 0 — .10421885417013624E+00 — .5664916013778637E—01
0 2 0 0 .24642355008239508E+00 .0000000000000000E+-00

0 2 0 2 — 10998869627427148E+-00 .6725227040176095E—01

1 1 1 —1 .3773759739986624E+-00

1 1 1 1 .11993162155276677E+00

3 0 1 0 .46739047397258086E—01 — .3992674505450506E—01
3 0 3 0 — .30972381614462682E—-01 — .3455727466578585E—01
1 2 1 -2 .5049132658541867E+00 .1629854700400192E+01

1 2 1 0 .2322490685452064E—01 .2179380433454126E—01

1 2 1 2 — .2823410205572303E—01 — .701118576211499E—-02

2 1 2 —1 — .1394200550803349E+-01

2 1 2 1 .4653723699886294E—01

0 3 0 3 .1930655501929184E—01

Xy = 0.33917/1, cos 0, + 0.240741, + 0.246421,
— 0.104221, cos 20, — 0.109991; cos 20,

+0.04674, /13 cos 0, -+ 0.05146/L . cos 0,
— 0.03097\/5005 30, — 0.01866\/1:1Z cos 30y,
(26)
Yy = —1.09527./1, sin 0, — 0.056651, sin 20,
+0.067251. 5in 20, — 0.03993, /17 sin 0,
+0.01478/L . sin 0, — 0.03456, /I} sin 30,
—0.05961+/I,I sin 30,
(27)
Z, = —0.99622/I, cos 0, — 0.11993/T,\/T
+0.37738+/I,\/1, cos 20,
—0.028041,+/T. cos 0, — 0.01403\/Ecos 0,

+0.034041,/T. cos 30, +0.01931, /1 cos 30,
(28)
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It turns out that some coefficients in Eq. (26)—(28)
equal the corresponding coefficients in Table 2, while
others are different. Moreover, in order to compare the
analytical solutions derived through these two meth-
ods, we reset the linearized solution in Lindstedt—
Poincaré procedure, namely Egs. (4a)—(4c) in Ref.
[11], as

X = Xy(l)(l)oc cosf, Y= Yyigoc sin 0,

2
Z = 7)1 B cos 0. (29)

Then, following the Lindstedt—Poincaré procedure,
we can also derive a third-order analytical solution for
halo orbit. Here, we do not give the complicated
expressions anymore. Results demonstrate that those
coefficients whose numerical solutions are equal in
two methods also have the same analytical expres-
sions, while those coefficients whose numerical solu-
tions are different in two methods also have the
different analytical expressions. In summary, we can
obtain the same conclusion that the solutions for halo
orbits derived by these two methods are partly
different through comparing analytical or numerical
solutions. The reason causing the differences is that
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ot e e
Poincaré expansion of the 0 0 2086453564223108E+-01 — .2922144544766949E+00
gilr‘l’_g:’r‘g f;:’t‘:r’s Lyinthe 0 ~ .19793330921103466E-+00 1836623714737889E+01
0 2 25075951391062623E+00 — .17277604579917996E-+01
i J k Xiji or Ziji Y
1 0 1 :3391700424065888E+00 — .1095270999402855E+01
0 1 0 — .9962189144672732E+00
2 0 0 240735994312677E+00 .0000000000000000E+00
2 0 2 — .10421885417013624E-+00 — .5664916013778637E—01
0 2 0 24642355008239508E+00 .0000000000000000E+-00
0 2 2 .10367563403440155E+00 — .60287960157057424E—01
1 1 0 351604624974059 1E+00
1 1 2 — .11720154165801971E-+00
3 0 1 .0000000000000000E~+00 11100616986539415E+00
3 0 3 — .30972381614462682E—01 — .3455727466578585E—01
1 2 1 .0000000000000000E~+00 .1453120544073662E+00
1 2 3 2783272992989514E—01 [7748704911540644E—02
2 1 3 4562227542349283E—01
0 3 3 .18828666341107515E—01

the dynamical equation is modified during the Lind-
stedt—Poincaré procedure, but maintained as the
original form during normalization method.

Because of the differences, it is necessary to
compare the accuracy of the halo orbits derived
through these two methods. Here, we consider a
numerical solution generated by differential correc-
tion method is accurate, and then use
VOX?2 4+ 0Y?% + 6Z% (60X, 0Y and OZ are the errors
between two trajectories along X-axis, Y-axis and Z-
axis, respectively) to estimate the error between a
third-order analytical solution and the corresponding
numerical solution. For normalization method, we
choose I, = 0.3040, I, = 0.1501, 0, = 0, and the initial
state is determined as Ay = [— 0.989011, 0, 0.004404,
0, — 0.011665, O]T. For Lindstedt—Poincaré method,
we choose o = 0.1870, f =0.3909, 6 =0, and the
initial state is determined as Ay = [— 0.989097, 0,
0.004465, 0, — 0.011705, O]T. Figure 10 gives the
varying curve of the error during one period of the halo
orbit, where the blue line corresponds to normalization
method and the red line corresponds to Lindstedt—

x 10~

Error | AU

Normalization
Lindstedt-Poincaré | |

100 150 200
t / day

Fig. 10 Errors between the analytical and numerical solutions
for normalization method and Lindstedt-Poincaré method

Poincaré method. As we can see, two curves have the
same changing rules: There exist twice oscillations
during one period, and the moments of occurrence of
two peaks and one trough are close as well. The
magnitudes of two errors are both 107* which
indicates that the accuracies of the halo orbits derived
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through the normalization method and Lindstedt—
Poincaré method can be considered roughly the same.
In addition, the maximum value and variation range of
the error for the normalization method are both less
than those of the error for Lindstedt—Poincaré method.
Thus, from this viewpoint, the analytical solutions
derived by the normalization method are better.

5 Conclusions

Aimed at collinear points L; and L, in a spatial circular
restricted three-body problem of an arbitrary value of
the mass ratio, we succeed in obtaining the analytical
forms of complete and resonant normalized Hamilto-
nian functions. The expressions of the coefficients in
the normalization forms are explicitly provided as
functions of the mass ratio, and the formula for the
energy threshold at which the bifurcation to halo orbits
occurs is derived. Through implementing the inverse
process of complete and resonant normalization, we
can, respectively, generate the universal analytical
solutions of Lissajous and halo orbits in the initial
synodic reference system, which is considered as a
great contribution of this paper. In the explicit third-
order analytical solutions of Lissajous and halo orbits,
three position variables are both expressed as series
forms of normalized action and angle variables and the
coefficients are both parameterized by the mass ratio.
According to comparison results, the third-order
analytical solutions of Lissajous orbits derived
through normalization method and Lindstedt—Poin-
caré method are completely the same, which indicates

@ Springer

the validity and feasibility of the proposed normaliza-
tion method. The solutions of halo orbits derived
through two methods are different, but the maximum
value and variation range of the error for the normal-
ization method are both less than those of the error for
Lindstedt—Poincaré method.
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Appendix: Coefficients in two normal forms

Complete normal form: HM*) = oI, + wolj+
062200112), + 002213 + o111yl

Resonant normal form: H™#4 = oI,y + wnly, +
022001 ;z,y + o221 ;Z,Z + Dyl (11114

20(20()2 Ccos (2 (th — th)) )
The coefficients are listed as follows.

V2ot VeV 819G
W) = \/z

0)22\/5



Lissajous and halo orbits in the restricted three-body problem

2643

1120 — 8944c; + 17376¢3 — 11100c3 + 2025¢5 + 3402¢5

(177601/2 3368¢)°

+4616¢3% + 1179¢)2 + 1134c9/2)

96 — 1072¢; + 22402 — 1580} + 261c% + 486¢3

—3(1 +2¢)

(176c1/2 4882 + 584037 + 159c7/2+162c§/2)t1

Cq

%2200 = 1/2 32 5/2 7/2
16621+ 22)7 (24 = 208¢2 + 1313 + 63¢3 + Sdcd + (44c)” — 276} + 29637 + 18] )1
—9((—=3 49+ c2 —42c3) 3 + (1 — 5¢ + 4¢3 + 36¢3) ca)

%0022 = 5 3 7

16(c2 — 5¢3 + 4c3 + 36c3)
(849262 = 10963 = 2763 + (456} = 963 )1 ) 3
—9\/51‘2
(14 2¢2) (8 = 60z + 553 + 9] + (8¢} = 236} + 36} )1 ) 4
ain =
8¢ (1 + 2¢) ((—4 +33¢s — 262 + 9¢3)1y +40ck? — 157¢3% + 10265 + 2707/2)
—8+4c; (47 = 51v2nn ) + 2763 (~85+ 16v2nn, ) +2673¢] + 486c}
2
&
3 80/ (51— 36v2 ) + (959 + 444v/20 ) + 99631 + 162¢]/ %,
(14 ex(=7 + 18¢2)) (120 — 484c; + 42962 + 546 + (160(:1/2 1’ + 18c5/2) )c4
%2002 =
8¢2v/20 (1 + c2(—7 + 18¢2)) ((12 — 17cy + 18c3)1y — 104cY? +69¢3/ + 5463+ )
where

t1 =v—84+9¢c
I2=\/2—C2—|—\/EE\/—8+9C2

References

1

2.

. Brouwer,

D., Clemence, G.M.: Methods of Celestial
Mechanics. Academic Press, New York (1961)

Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian
Dynamical Systems and the N-Body Problem. Springer,
New York (1991)

. Henrard, J.: Periodic orbits emanating from a resonant

equilibrium. Celest. Mech. 1(3—4), 427-466 (1970)

. Pucacco, G., Marchesiello, A.: An energy-momentum map

for the time-reversal symmetric 1:1 resonance withZ, x Z,
symmetry. Physica D 271, 10-18 (2014)

. Farquhar, R.W.: The utilization of halo orbits in advanced

lunar operations. NASA technical note. NASA TN D-6365
(1971)

10.

. Farquhar, R.W., Karne, A.A.: Quasi-periodic orbits about

the translunar libration point. Celest. Mech. 7, 458473
(1973)

. Farquhar, R.-W., Muhonen, D.P., Newman, C.R., Hue-

berger, H.S.: Trajectories and orbital maneuvers for the first
libration-point satellite. J. Guid. Control Dyn. 3(6), 549-554
(1980)

. Richardson, D.L.: Halo orbit formulation for the ISEE-3

mission. J. Guid. Control Dyn. 3(6), 543-548 (1980)

. Farquhar, R.W.: The control and use of libration-point

satellites. NASA CR-95948: 1-214 (1968)

Richardson, D.L.: Analytic construction of periodic orbits
about the collinear points. Celest. Mech. 22(3), 241-253
(1980)

@ Springer



2644

T. Luo et al.

11.

13.

14.

15.

16.

17.

19.

Jorba, AA, Masdemont, J.: Dynamics in the center manifold
of the collinear points of the restricted three-body problem.
Physica D 132(1-2), 189-213 (1999)

. Qian, Y.J., Yang, X.D., Zhang, W., Zhai, G.Q.: Periodic

motion analysis around the libration points by polynomial
expansion method in planar circular restricted three-body
problem. Nonlinear Dyn. 91(1), 39-54 (2018)

Almeida, A.K.D., Prado, A.F.B.A., Yokoyama, T., Sanchez,
D.M.: Spacecraft motion around artificial equilibrium
points. Nonlinear Dyn. 91(3), 1473-1489 (2018)

Mihai, P., Vladimir, C.: The domain of initial conditions for
the class of three-dimensional halo periodical orbits. Acta
Astronaut. 36(4), 193-196 (1995)

Koon, W.S., Lo, M.W., Marden, J.E., Ross, S.D.: Dynam-
ical Systems, the Three-Body Problem and Space Mission
Design. California Institute of Technology, Pasadena
(2006)

Xu, M., Xu, S.J.: J, invariant relative orbits via differential
correction algorithm. Acta. Mech. Sin. 23, 585-595 (2007)
Ferrari, F., Lavagna, M.: Periodic motion around libration
points in the elliptic restricted three-body problem. Non-
linear Dyn. 93(2), 453-462 (2018)

. Howell, K.C., Pernicka, H.J.: Numerical determination of

Lissajous trajectories in the restricted 3-body problem.
Celest. Mech. 41(1-4), 107-124 (1987)

Qian, YJ., Yang, X.D., Jing, W.X., Zhang, W.: An
improved numerical method for constructing halo/Lissajous
orbits in a full solar system model. Chin. J. Aeronaut. 31(6),
1362-1374 (2018)

@ Springer

20.

21.

22.

23.

24.

25.

26.

27.

Kolemen, E., Kasdin, N.J., Gurfil, P.: Multiple Poincaré
sections method for finding the quasiperiodic orbits of the
restricted three body problem. Celest. Mech. Dyn. Astron.
112(1), 47-74 (2012)

Jorba, A.: A methodology for the numerical computation of
normal forms, centre manifolds and first integrals of
hamiltonian systems. Exp. Math. 8(2), 155-195 (1999)
Celletti, A.: Stability and Chaos in Celestial Mechanics.
Springer, Berlin; published in association with Praxis Pub-
lishing Ltd., Chichester, ISBN: 978-3-540-85145-5 (2010)
Bucciarelli, S., Ceccaroni, M., Celletti, A., Pucacco, G.:
Qualitative and analytical results of the bifurcation thresh-
olds to halo orbits. Ann. Mat. 195(2), 489-512 (2016)
Gomez, G., Mondelo, J.M.: The dynamics around the col-
linear eqiualibrium points of the RTBP. Physica D 157,
283-321 (2001)

Celletti, A., Pucacco, G., Stella, D.: Lissajous and halo
orbits in the restricted three-body problem. J. Nonlinear Sci.
25, 343-370 (2015)

Ceccaroni, M., Celletti, A., Pucacco, G.: Halo orbits around
the collinear points of the restricted three-body problem.
Physica D 317, 28-42 (2016)

Delshams, A., Masdemont, J., Roldan, P.: Computing the
scattering map in the spatial Hill’s problem. Discrete Con-
tin. Dyn. Syst. Ser. B 10(2-3), 455-483 (2008)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps

and

institutional affiliations.



	Lissajous and halo orbits in the restricted three-body problem by normalization method
	Abstract
	Introduction
	Reduction to center manifold
	Dynamical model
	Normalization
	Bifurcation of halo orbits

	Analytical solutions of halo and Lissajous orbits
	Lissajous orbits
	Halo orbits

	Comparison with Lindstedt--Poincaré method
	Conclusions
	Acknowledgements
	Appendix: Coefficients in two normal forms
	References




