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Abstract We perform an analytical study of the

Lissajous and halo orbits around collinear points L1
and L2 in a spatial circular restricted three-body

problem of an arbitrary value of the mass ratio. Using a

canonical transformation procedure, we generate

complete and resonant normal forms through reduc-

tion to center manifolds. The coefficients in the normal

forms are explicitly expressed as functions of mass

ratio for the first time so that one can evaluate the

energy level at which bifurcation of halo orbit takes

place. Another contribution of this paper is giving the

analytical solutions of Lissajous and halo orbits in the

initial synodic reference system through the inverse

transformation of normalization. The analytical results

are the series form of normalized action-angle vari-

ables, and their coefficients are also explicitly

expressed as functions of mass ratio. Finally, compar-

ison results demonstrate that the solutions for a

Lissajous orbit derived through normalization method

and Lindstedt–Poincaré method are completely the

same, while the solutions for a halo orbit derived

through these two methods are different but have the

roughly equal accuracy.

Keywords Halo orbits � Lissajous orbits � Spatial
circular restricted three-body problem �Normalization

method � Lindstedt–Poincaré method

1 Introduction

Spatial circular restricted three-body problem

(SCR3BP) is a fundamental model to describe the

motion of a small body affected by the gravitational

attraction of two primaries. Different values of the

mass ratio l (0\ l B 1/2) of the primaries corre-

spond to different celestial systems, such as the Earth–

Moon case and the Sun–Earth case. On the line

connecting the two primaries exist three collinear

equilibrium points [1], which are linearly unstable for

arbitrary value of l. However, Lyapunov’s center

theory [2] guarantees each collinear point can generate

a pair of periodic orbit families, to which we refer as

the planar and the vertical Lyapunov families.

Quasiperiodic orbits, which form the so-called
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Lissajous family, are derived through the combination

of the planar and the vertical Lyapunov orbits. In

addition, well-known halo orbits arise at the first 1:1

bifurcation from the planar Lyapunov family [3, 4].

Halo orbits have been widely applied to many space

missions thanks to their perfect locations. For exam-

ple, communications satellites have been placed in a

halo orbit around the translunar L2 point [5, 6] and the

International Sun–Earth Explorer-3 was placed into a

halo orbit around the interior Sun–Earth L1 point

[7, 8].

The dynamics of the restricted three-body problem

are significantly perturbed by nonlinear terms, which

affect the stability of the linear periodic motions. Up to

now, many methods have been developed to calculate

and analyze the periodic motions under the effect of

nonlinear terms. Lindstedt–Poincaré method is a

classical approach to derive semianalytical solutions

of invariant tori in SCR3BP [9–11]. Qian et al. [12]

and Almeida et al. [13] studied periodic motions

around an equilibrium point in the planar circular

restricted three-body problem and SCR3BP within

extra perturbations, respectively. Many numerical

methods were proposed to generate more accurate

solutions. The well-known differential correction

method can be used to produce initial conditions

belonging to a periodic orbit by incorporating the

analytical approximations as the first guess in an

iterative process [14–17]. In addition, multiple shoot-

ing method [18, 19] and multiple Poincaré sections

[20] were employed to find quasiperiodic orbits in

SCR3BP.

Above-mentioned methods cannot provide a deeper

insight into the nature of global behavior in a

neighborhood of these solutions. To give a compre-

hensive description of the dynamics around these

collinear points, a perturbation theory based on the Lie

series method [11, 21–23] is a satisfactory option. It

succeeds in separating the hyperbolic and elliptic

directions by constructing a normal form to perform

the center manifold reduction. Combining the reduc-

tion to center manifold and a Fourier series correction

method, Gomez and Mondelo [24] developed a

procedure for the refinement and continuation of

invariant tori. As for halo orbits, because the unper-

turbed linear dynamics on the two-dimensional center

manifold is characterized by almost equal values of the

frequencies for all mass ratios, Celletti et al. [25] and

Ceccaroni et al. [26] preformed 1:1 resonant

perturbation theory to investigate the halo family

and to determine analytic expressions of the value of

the energy at which the bifurcation takes place.

Former scholars generally focused on a specific

case of SCR3BP, namely the value of the mass ratio is

fixed, but the mass ratio is considered as a variable in

this study. Analytical expressions of complete and

resonant normal forms are derived in Sect. 2.2, and

then the bifurcation energy of halo orbit is obtained as

a function of mass ratio. The primary contribution of

this paper is obtaining universal analytical results of

Lissajous and halo orbits in SCR3BP of an arbitrary

value of mass ratio. The explicit expressions of

coefficients parameterized by mass ratio in these

results are provided in Sect. 3 so that readers can

directly extract the corresponding solutions for their

interested cases. In addition, we compare the normal-

ization method with Lindstedt–Poincaré method in

Sect. 4, which confirms the rightness and effective-

ness of the normalization method.

2 Reduction to center manifold

2.1 Dynamical model

To describe the motion of the small body in SCR3BP

more simple, a synodic reference system (O, X, Y,

Z) rotating with the angular velocity of the primaries is

proposed and the units of mass, length and time are

normalized so that the total mass, the distance between

two primaries and the period of the motion of the

primaries are 1, 1 and 2p, respectively. As shown in

Fig. 1, the origin O is located at the barycenter of the

primaries, the X-axis points to the larger primary from

Fig. 1 The location of two primaries in the synodic reference

system

123

2630 T. Luo et al.



the smaller one, the Z-axis is perpendicular to the

motion plane of two primaries and the Y-axis is

determined by right-hand rule. After the normaliza-

tion, the position of the smaller primary is at

(- 1 ? l, 0, 0), while the larger primary is at (l, 0, 0).
The dynamical model of the small body in the

synodic reference system can be expressed as

€R � 2J _R ¼ oX
oR

; J ¼
0 1 0

�1 0 0

0 0 0

2
4

3
5; ð1Þ

where R = [X, Y, Z]T is the position vector of the small

body, X X; Y; Zð Þ ¼ 1
2
X2 þ Y2ð Þ þ 1�l

r1
þ l

r2
is the

pseudo-potential function, r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � lð Þ2þY2 þ Z2

q

and r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ 1� lð Þ2þY2 þ Z2

q
are the distance to

two primaries, respectively. Equation (1) admits five

equilibrium points, of which three points located on

theX-axis are called collinear points. The origin can be

moved to L1 or L2 point through following

transformation:

X ¼ �cjxþ lþ a; Y ¼ �cjy; Z ¼ cjz; ð2Þ

where cj denotes the distance between Lj and the

smaller primary, a = - 1 ? c1 for L1 and

a = - 1 - c2 for L2. Then, the equation of motion

in the new variables can be written in the following

form:

€x� 2 _y� 1þ 2c2ð Þx ¼ o

ox

X
n� 3

cn lð ÞqnPn
x

q

� �
;

€yþ 2 _xþ c2 � 1ð Þy ¼ o

oy

X
n� 3

cn lð ÞqnPn
x

q

� �
;

€zþ c2z ¼
o

oz

X
n� 3

cn lð ÞqnPn
x

q

� �
; ð3Þ

where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
, pn is the Legendre poly-

nomials and the coefficient cn lð Þ ¼
1
c3
1

lþ �1ð Þn 1�lð Þcnþ1
1

1�c1ð Þnþ1

� �
for L1, cn lð Þ ¼

�1ð Þn
c3
2

lþ 1�lð Þcnþ1
2

1þc2ð Þnþ1

� �
for L2. By introducing the conju-

gated momenta px ¼ _x� y, py ¼ _yþ x and pz ¼ _z, the

Hamiltonian function of the system can be written as

H ¼ 1

2
p2x þ p2y þ p2z

� �
þ ypx � xpy

�
X
n� 2

cn lð ÞqnPn
x

q

� �
: ð4Þ

The state vector at a collinear point is [0, 0, 0, 0, 0,

0]T, and then the linearized Hamiltonian function

about this state is

H2 ¼
1

2
p2x þ p2y þ p2z

� �
þ ypx � xpy � c2x

2 þ c2
2
y2

þ c2
2
z2

ð5Þ

2.2 Normalization

Aimed at the above nearly integrable Hamiltonian

system, its Hamiltonian function Eq. (4) can be

simplified into specific normal form through normal-

ization procedure. The normal form succeeds in

separating the hyperbolic and elliptic behaviors so

that one can study the periodic and quasiperiodic

motions by only concerning the center manifolds.

Reference [11] provided a detailed and clear proce-

dures of normalization, which includes the diagonal-

ization of quadratic part through a symplectic matrix

transformation and the normalization of higher-order

terms through Lie series method. Here, we do not

repeat those lengthy calculations again and directly

give the results.

The linearized system always has one pair of real

eigenvalue, denoted by ± k1, and two pairs of pure

imaginary eigenvalues, denoted by ± x1i and ± x2i.

Then, the diagonalized form of the quadratic part can

be expressed as

H2 q1; q2; q3; p1; p2; p3ð Þ ¼ k1q1p1 þ ix1q2p2
þ ix2q3p3; ð6Þ

where (q, p) = (q1, q2, q3, p1, p2, p3) are complex

variables. Then, a specific normal form can be derived

through a canonical transformation, which is accom-

plished by choosing suitable generating functions

within Lie series method [11]. In complete normal

form, we should preserve these monomials qkq pkp (for

simplicity, we have kept the same name for complex

variables after normalization), where the indices

satisfy
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kq;1 ¼ kp;1; kq;2 ¼ kp;2; kq;3 ¼ kp;3: ð7Þ

In resonant normal form, we should preserve these

monomials qkq pkp where the indices satisfy

kq;1 ¼ kp;1; kq;2 � kp;2
�� �� ¼ kq;3 � kp;3

�� ��;
kq;2 � kp;2 þ kq;3 � kp;3 ¼ 0:

ð8Þ

When normalization is performed up to order 4 and

the hyperbolic behaviors are removed, the complete

normal form and resonant normal form of Hamiltonian

function expressed by action-angle variables are

H l;4ð Þ ¼ x1Ily þ x2Ilz þ a2200I
2
ly þ a0022I

2
lz

þ a1111IlyIlz; ð9Þ

and

H h;4ð Þ ¼ x1Ihy þ x2Ihz þ a2200I
2
hy þ a0022I

2
hz

þ IhyIhz a1111 þ 2a2002 cos 2 hhy � hhz
� 	� 	� 	

;

ð10Þ

where x1, x2, a2200, a0022, a1111 and a2002 are

coefficients depending only on parameter l. The

numbers of the subscript in a denote the exponents of

q2, q3, p2, p3 in monomials qkq pkp successively. We

can distinguish that the difference between the com-

plete normal form Eq. (9) and the resonant normal

form Eq. (10) is the synchronous resonance term

related to hhy - hhz, while other corresponding coef-

ficients are completely the same. The explicit expres-

sions of these coefficients are all listed in Appendix.

If either Iy or Iz vanishes, one obtains the nonlinear

normal mode Ey= x1Ihy? a2200Ihy
2 or Ez= x2Ihz?-

a0022Ihz
2 . For the motion in y-direction, x1 is the

fundamental frequency and a2200 can be considered as
a second-order coefficient for the high-order supple-

mented frequency. Similarly, for the motion in z-

direction, x2 is the fundamental frequency and a0022
can be considered as a second-order coefficient for the

high-order supplemented frequency. When Iy and Iz
both exist, the motions in y- and z-direction are

coupled with each other. Then, a1111 and a2002 can be

considered as two coupling coefficients, which can

affect the frequency in y- or z-direction through the

action in the other direction. Figure 2 demonstrates the

evolution of these coefficients as functions of the mass

ratio, where two black lines refer to mass ratios

corresponding to Sun–Earth system and Earth–Moon

system, respectively. Two subgraphs in the top row

correspond to x1 and x2, and two subgraphs in the

bottom row correspond to a2200, a0022, a1111 and a2002.
The list of subgraphs on the left is the evolution of the

coefficients for L1 point, while the list of subgraphs on

the right is the evolution of the coefficients for L2
point. Two fundamental frequencies x1 and x2

correspond to the linearized motions in x–y plane

and z-axis directions, respectively, and they dominate

in the actual values of two motion frequencies.

Subgraphs a1 and a2 demonstrate that the values of

x1 and x2 always keep close, which indicates that a

1:1 resonant periodic orbit, namely the well-known

halo orbit, could occur in all SCR3BP of any mass

ratio. In addition, the curves are remarkably flat when

the mass ratio is near or smaller than Sun–Earth

system, which demonstrates that the value of motion

frequencies is hardly changed with mass ratio. How-

ever, the value of motion frequencies becomes

dependent on mass ratio when mass ratio is near or

larger than Earth–Moon system.

2.3 Bifurcation of halo orbits

Let us implement the change in variables e ¼ Ihy þ Ihz,

< ¼ Ihy, t ¼ hhz and w ¼ hhy � hhz. Then, Hamilto-

nian (10) is transformed into H tr;4ð Þ ¼ x2eþ d<þ
a<2 þ be2 þ ce<þ d <2 � e<ð Þ cos 2wð Þ, where

d = x1 - x2 is defined as the detuning, which

provides a measure of the distance in the frequency

from the synchronous resonant, and constants are

a = a2200 ? a0022 - a1111, b = a0022, c = a1111-
- 2a0022, d = - 2a2002. Dynamical equations asso-

ciated with H(tr, 4) become

_e ¼ 0; _< ¼ 2d< < � eð Þ sin 2wð Þ;
_t ¼ x2 þ 2beþ c< � d< cos 2wð Þ;
_w ¼ dþ 2a< þ ceþ d 2< � eð Þ cos 2wð Þ:

ð11Þ

When the value of e is fixed, we obtain a one-

degree-of-freedom system in the phase plane (<, w).
Its equilibria correspond to periodic orbits of the

original system. If < ¼ e, then the motion takes place

in x–y plane, which approximately corresponds to the

planar Lyapunov orbit. If w = ±p/2, the equilibrium

points <l;�p=2ð Þ correspond to loop orbits. By

solving _w ¼ 0, we can obtain <l ¼ � dþ cþdð Þe
2 a�dð Þ . Halo

orbits are these loop orbits bifurcating from the planar

Lyapunov orbit. Thus, the quantity ely marking the

occurrence of the bifurcation of the halo orbits can be
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solved from <l ¼ e and the solution is ely ¼ � d
2aþc�d.

The energy level at which a bifurcation to halo orbit

occurs can be estimated as E = x2ely, which, coming

back to the original coefficients, gives the bifurcation

value

E ¼ x2 x1 � x2ð Þ
a1111 � 2 a2200 � a2002ð Þ : ð12Þ

Figure 3 shows the bifurcation thresholds com-

puted via Eq. (12) as a function of the mass ratio,

where the red and blue lines correspond to L1 and L2
points, respectively, and two black lines referring to

mass ratios correspond to the Sun–Earth system and

Earth–Moon system, respectively. The procedure of

the bifurcation of halo orbit can be described by

Poincaré section method. Figures 4 and 5 provide the

evolution of dynamics around L1 point in the Earth–

Moon system and Sun–Earth system, respectively.

Bifurcation thresholds in two systems are located

within the ranges of [0.3, 0.33] and [0.33, 0.35],

respectively, which matches the analytical results in

Fig. 3.

3 Analytical solutions of halo and Lissajous orbits

3.1 Lissajous orbits

The inverse transformation of complete normal form

derives the analytical solutions of Lissajous orbits.

When the complete normalization is implemented up

to order 4, the explicit expressions of the initial

position variables as functions of the final action-angle

variables can be written as

Xl ¼ Xl1 þ Xl2 þ Xl3 þ � � � ;
Xl1 ¼ Xb0100

ffiffiffiffi
Iy

p
cos hy;

Xl2 ¼ Xb2000Iy sin
2 hy þ Xb0200Iy cos

2 hy

þ Xb0020Iz sin
2 hz þ Xb0002Iz cos

2 hz;

Xl3 ¼ Xb2100
ffiffiffiffi
I3y

q
sin2 hy cos hy

þ Xb1011
ffiffiffiffi
Iy

p
Iz sin hy cos hy cos hz þ Xb0300

ffiffiffiffi
I3y

q
cos3 hy

þ Xb0120
ffiffiffiffi
Iy

p
Iz cos hy sin

2 hz þ Xb0102
ffiffiffiffi
Iy

p
Iz cos hy cos

2 hz;

ð13Þ

b2

a1 a2

b1
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Fig. 2 Coefficients in Eq. (10) as functions of the mass ratio: a1 and b1 are the evolution of the coefficients for L1 point; a2 and b2 are

the evolution of the coefficients for L2 point

123

Lissajous and halo orbits in the restricted three-body problem 2633



Yl ¼ Yl1 þ Yl2 þ Yl3 þ � � � ;
Yl1 ¼ Yb1000

ffiffiffiffi
Iy

p
sin hy;

Yl2 ¼ Yb1100Iy sin hy cos hy þ Yb0011Iz sin hz cos hz;

Yl3 ¼ Yb3000
ffiffiffiffi
I3y

q
sin3 hy þ Yb1200

ffiffiffiffi
I3y

q
sin hy cos

2 hy

þ Yb1020
ffiffiffiffi
Iy

p
Iz sin hy sin

2 hz

þ Yb1002
ffiffiffiffi
Iy

p
Iz sin hy cos

2 hz

þ Yb0111
ffiffiffiffi
Iy

p
Iz cos hy sin hz cos hz;

ð14Þ

Zl ¼ Zl1 þ Zl2 þ Zl3 þ � � � ;
Zl1 ¼ Zb0010

ffiffiffiffi
Iz

p
sin hz;

Zl2 ¼ Zb1001
ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p
sin hy cos hz þ Zb0110

ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p
cos hy sin hz;

Zl3 ¼ Zb2010Iy
ffiffiffiffi
Iz

p
sin2 hy sin hz þ Zb1101Iy

ffiffiffiffi
Iz

p
sin hy cos hy cos hz

þ Zb0210Iy
ffiffiffiffi
Iz

p
cos2 hy sin hz

þ Zb0030

ffiffiffiffi
I3z

q
sin3 hz þ Zb0012

ffiffiffiffi
I3z

q
sin hz cos

2 hz;

ð15Þ

where Xl1, Yl1 and Zl1, Xl2, Yl2 and Zl2, and Xl3, Yl3 and

Zl3 are, respectively, defined as the first-order, second-

order and third-order terms of position variables, and

Xb0100, Xb2000, …, and Zb0012 (see ‘‘Online Appen-

dix’’ for explicit expressions) are coefficients which

only depend on the mass ratio of the system. The four

numbers in the subscripts of Xb0100, Xb2000, …, and

Zb0012 successively correspond to the indexes of sinhy,
coshy, sinhz and coshz. As we can see, every term is

constructed based on the triangular series of hy and hz,
which determines the quasiperiodic change of these

position variables. The explicit expressions of Xb0100,
Xb2000, …, and Zb0012 are listed in the ‘‘Online

Appendix.’’ Figures 6 and 7 show the evolutions of

coefficients in the analytical solution of Lissajous

orbits around L1 point and L2 point, respectively. The

first, second and third rows correspond to coefficients

in Eqs. (13), (14) and (15), respectively. Similar to the

changing tendencies of motion frequencies in Fig. 2,

these coefficients vary slowly when the mass ratio is

near or smaller than Sun–Earth system, while coeffi-

cients vary drastically when the mass ratio is near or

larger than Earth–Moon system.

3.2 Halo orbits

The inverse transformation of resonant normal form

derives the analytical solutions of halo orbits. When

the resonant normalization form is implemented up to

order 4, the explicit expressions of the initial position

variables as functions of the final action-angle vari-

ables can be written as

Fig. 3 Bifurcation thresholds computed via Eq. (12) as a

function of the mass ratio: the red line for L1 and the blue line

for L2

Fig. 4 Bifurcation of halo orbit around L1 point in the Earth–Moon system
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Fig. 5 Bifurcation of halo orbit around L1 point in the Sun–Earth system

Fig. 6 Coefficients in the analytical solution of Lissajous orbits around L1 point: the first, second and third rows are for X, Y, and Z
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Xh ¼ Xh1 þ Xh2 þ Xh3 þ � � � ;
Xh1 ¼ Xc0110

ffiffiffiffi
Iy

p
cos hy;

Xh2 ¼ Xc2020Iy sin
2 hy þ Xc2002Iz sin

2 hy

þ Xc0220Iy cos
2 hy þ Xc0202Iz cos

2 hy;

Xh3 ¼ Xc2130

ffiffiffiffi
I3y

q
sin2 hy cos hy

þ Xc2112
ffiffiffiffi
Iy

p
Iz sin

2 hy cos hy

þ Xc0330

ffiffiffiffi
I3y

q
cos3 hy þ Xc0312

ffiffiffiffi
Iy

p
Iz cos

3 hy;

ð16Þ

Yh ¼ Yh1 þ Yh2 þ Yh3 þ � � � ;
Yh1 ¼ Yc1010

ffiffiffiffi
Iy

p
sin hy;

Yh2 ¼ Yc1120Iy sin hy cos hy þ Yc1102Iz sin hy cos hy;

Yh3 ¼ Yc3030

ffiffiffiffi
I3y

q
sin3 hy þ Yc3012

ffiffiffiffi
Iy

p
Iz sin

3 hy

þ Yc1230

ffiffiffiffi
I3y

q
sin hy cos

2 hy þ Yc1212
ffiffiffiffi
Iy

p
Iz sin hy cos

2 hy;

ð17Þ

Zh ¼ Zh1 þ Zh2 þ Zh3 þ � � � ;
Zh1 ¼ Zc0101

ffiffiffiffi
Iz

p
cos hy;

Zh2 ¼ Zc2011
ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p
sin2 hy þ Zc0211

ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p
cos2 hy;

Zh3 ¼ Zc2121Iy
ffiffiffiffi
Iz

p
sin2 hy cos hy

þ Zc2103

ffiffiffiffi
I3z

q
sin2 hy cos hy þ Zc0321Iy

ffiffiffiffi
Iz

p
cos3 hy

þ Zc0303

ffiffiffiffi
I3z

q
cos3 hy;

ð18Þ

where Xh1, Yh1 and Zh1, Xh2, Yh2 and Zh2, and Xh3, Yh3
and Zh3 are, respectively, defined as the first-order,

second-order and third-order terms of position vari-

ables, and Xc0110, Xc2020, …, and Zc0303. (see ‘‘Online

Appendix’’ for explicit expressions) are coefficients

which only depend on the mass ratio of the system.

The two numbers in the superscripts of Xc0110., Xc
20
20,…,

Fig. 7 Coefficients in the analytical solution of Lissajous orbits around L2 point: the first, second and third rows are for X, Y, and Z
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and Zc0303 successively correspond to the indexes of

sinhy and coshy, while the numbers in the subscripts of

Xc0110., Xc
20
20, …, and Zc0303 successively correspond to

the indexes of
ffiffiffiffi
Iy

p
and

ffiffiffiffi
Iz

p
. Different from the

expressions for Lissajous orbits, every term is con-

structed only based on the triangular series of hy,
which determines the periodic change in position

variables. The explicit expressions of Xc0110, Xc
20
20, …,

and Zc0303 are listed in the ‘‘Online Appendix.’’

Figures 8 and 9 show the evolutions of coefficients

in the analytical solution of halo orbits around L1 point

and L2 point, respectively. The first, second and third

rows correspond to coefficients in Eqs. (16), (17) and

(18), respectively. Similarly, these coefficients vary

slowly when the mass ratio is near or smaller than Sun–

Earth system, while coefficients vary drastically when

themass ratio is near or larger thanEarth–Moon system.

4 Comparison with Lindstedt–Poincaré method

In Ref. [10], Richardson presented a third-order

analytical solution for halo orbit around the collinear

points of the SCR3BP through the Lindstedt–Poincaré

method. The key techniques of the Lindstedt–Poincaré

method are eliminating the secular terms and solving

ordinary differential equations, which make it difficult

to be achieved through programmatic approach on

computer. In comparison, the analytical solutions can

be extended to higher order by simply setting the order

of normalization when we adopt the method proposed

in this paper. In addition, the analytical solution for

Lissajous orbit is also obtained through the normal-

ization method, which can be considered as a great

contribution of this paper. In Ref. [11], Jorba and

Masdemont obtained semianalytical solutions for halo

and Lissajous orbits through the Lindstedt–Poincaré

Fig. 8 Coefficients in the analytical solution of halo orbits around L1 point: the first, second and third rows are for X, Y, and Z
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method. Although they provided the results expanded

as formal series in powers of the amplitudes, the

coefficients in the series could not be explicitly

expressed and were computed again for a particular

case. In this paper, not only is the solution for

Lissajous orbit expanded as series in powers of the

amplitudes, but also the coefficients in the series are

explicitly expressed as functions of mass ratio. Thus,

the analytical solutions obtained in this paper can be

directly applied to a particular case without compli-

cated computation once again.

Delshams et al. [27] compared Lindstedt–Poincaré

series with Birkhoff normal forms in the spatial Hill’s

problem, and they proved that the truncated Lindstedt–

Poincaré series was just the solution to the truncated

Birkhoff normal form equations. Here, the numerical

results for halo and Lissajous orbits in the SCR3BP are

calculated through Lindstedt–Poincaré method and

normalization method, respectively, and then we

perform a comparison between them. According to

Ref. [11], the result for Lissajous orbit derived by

Lindstedt–Poincaré method is

X ¼
X1
i;j¼1

X
kj j � i; mj j � j

Xijkm cos kh1 þ mh2ð Þ

0
@

1
Aaib j;

Y ¼
X1
i;j¼1

X
kj j � i; mj j � j

Yijkm sin kh1 þ mh2ð Þ

0
@

1
Aaib j;

Z ¼
X1
i;j¼1

X
kj j � i; mj j � j

Zijkm sin kh1 þ mh2ð Þ

0
@

1
Aaib j;

ð19Þ

Fig. 9 Coefficients in the analytical solution of halo orbits around L2 point: the first, second and third rows are for X, Y, and Z
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where h1 ¼ xt þ /1, h2 ¼ tt þ /2, x ¼P1
i;j¼0 xijaib

j and t ¼
P1

i;j¼0 tija
ib j. To match the

first order of the analytical solutions obtained in

Sect. 3.1, namely Eqs. (13)–(15), we set the value of

X1010, Y1010, Z0101, x00 and t00 as

X1010 ¼ Xb0100; Y1010 ¼ Yb1000; Z0101 ¼ Zb0010;

x00 ¼ x1; t00 ¼ x2:

ð20Þ

Table 1 shows the numerical results of the coeffi-

cients of the Lissajous expansions aroundL1 point in the

Sun–Earth system, up to order 3. By substituting the

mass ratio of the Sun–Earth system into Eqs. (13)–(15)

and transforming the trigonometric series into the form

of Eq. (19), we can obtain the numerical results as

Xl ¼ 0:33917
ffiffiffiffi
Iy

p
cos hy þ 0:24074Iy þ 0:24642Iz

� 0:10422Iy cos 2hy � 0:10999Iz cos 2hz

þ 0:04674
ffiffiffiffi
I3y

q
cos hy þ 0:02322

ffiffiffiffi
Iy

p
Iz cos hy

� 0:03097
ffiffiffiffi
I3y

q
cos 3hy þ 0:50491

ffiffiffiffi
Iy

p
Iz cos hy � 2hz

� 	

� 0:02823
ffiffiffiffi
Iy

p
Iz cos hy þ 2hz

� 	
:

ð21Þ

Yl ¼ �1:09527
ffiffiffiffi
Iy

p
sin hy � 0:05665Iy sin 2hy

þ 0:06725Iz sin 2hz

� 0:03993
ffiffiffiffi
I3y

q
sin hy þ 0:02179

ffiffiffiffi
Iy

p
Iz sin hy

� 0:03456
ffiffiffiffi
I3y

q
sin 3hy

þ 1:62985
ffiffiffiffi
Iy

p
Iz sin hy � 2hz

� 	

� 0:00701
ffiffiffiffi
Iy

p
Iz sin hy þ 2hz

� 	
:

ð22Þ

Zl ¼ 0:99622
ffiffiffiffi
Iz

p
sin hz þ 0:37738

ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p
sin hy � hz

� 	

þ 0:11993
ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p
sin hy þ hz

� 	

� 0:0185Iy
ffiffiffiffi
Iz

p
sin hz þ 0:01403

ffiffiffiffi
I3z

q
sin hz

þ 0:01931
ffiffiffiffi
I3z

q
sin 3hz

þ 0:04654Iy
ffiffiffiffi
Iz

p
sin 2hy þ hz

� 	

� 1:3942Iy
ffiffiffiffi
Iz

p
sin 2hy � hz

� 	
:

ð23Þ

It turns out that the coefficients in Eq. (21)-(23)

completely equal the corresponding coefficients in

Table 1, which verifies that the solutions for the

Lissajous orbit derived through normalization method

and Lindstedt–Poincaré method are the same. This

comparison result confirms the rightness and effec-

tiveness of the normalization method.

In order to apply the Lindstedt–Poincaré method to

solving halo orbit, we must modify Eq. (3) by adding

the product of the factors4 and z to the third equation,

namely €zþ c2z ¼ o
oz

P
n� 3

cn lð ÞqnPn
x
q

� �
þ Dz, where

the factor 4 is expanded as a frequency-type series

D ¼
P1

i;j¼0 dija
ib j, with the condition 4 = 0. To

make sure periodic motions appear in the linearized

equation, the value of d00 is set as d00 = x2
2 - x1

2.

Then, the result for halo orbit can be expressed as

X ¼
X1
i;j¼1

X
kj j � iþj

Xijk cos khð Þ

0
@

1
Aaib j;

Y ¼
X1
i;j¼1

X
kj j � iþj

Yijk sin khð Þ

0
@

1
Aaib j;

Z ¼
X1
i;j¼1

X
kj j � iþj

Zijk cos khð Þ

0
@

1
Aaib j;

ð24Þ

where h ¼ xt þ / and x ¼
P1

i;j¼0 xijaib
j. To match

the first order of the analytical solution obtained in

Sect. 3.2, namely Eqs. (16)–(18), we set the value of

X101, Y101, Z011 and x00 as

X101 ¼ Xc0110; Y101 ¼ Yc1010; Z011 ¼ Zc0101;
x00 ¼ x1:

ð25Þ

Table 2 shows the numerical results of the coeffi-

cients of the halo expansions around L1 point in the

Sun–Earth system, up to order 3. By substituting the

mass ratio of the Sun–Earth system into Eqs. (16)–(18)

and transforming the trigonometric series into the form

of Eq. (24), we can obtain the numerical results as
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Xh ¼ 0:33917
ffiffiffiffi
Iy

p
cos hy þ 0:24074Iy þ 0:24642Iz

� 0:10422Iy cos 2hy � 0:10999Iz cos 2hy

þ 0:04674
ffiffiffiffi
I3y

q
cos hy þ 0:05146

ffiffiffiffi
Iy

p
Iz cos hy

� 0:03097
ffiffiffiffi
I3y

q
cos 3hy � 0:01866

ffiffiffiffi
Iy

p
Iz cos 3hy;

ð26Þ

Yh ¼ �1:09527
ffiffiffiffi
Iy

p
sin hy � 0:05665Iy sin 2hy

þ 0:06725Iz sin 2hy � 0:03993
ffiffiffiffi
I3y

q
sin hy

þ 0:01478
ffiffiffiffi
Iy

p
Iz sin hy � 0:03456

ffiffiffiffi
I3y

q
sin 3hy

� 0:05961
ffiffiffiffi
Iy

p
Iz sin 3hy;

ð27Þ

Zh ¼ �0:99622
ffiffiffiffi
Iz

p
cos hy � 0:11993

ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p

þ 0:37738
ffiffiffiffi
Iy

p ffiffiffiffi
Iz

p
cos 2hy

� 0:02804Iy
ffiffiffiffi
Iz

p
cos hy � 0:01403

ffiffiffiffi
I3z

q
cos hy

þ 0:03404Iy
ffiffiffiffi
Iz

p
cos 3hy þ 0:01931

ffiffiffiffi
I3z

q
cos 3hy;

ð28Þ

It turns out that some coefficients in Eq. (26)–(28)

equal the corresponding coefficients in Table 2, while

others are different. Moreover, in order to compare the

analytical solutions derived through these two meth-

ods, we reset the linearized solution in Lindstedt–

Poincaré procedure, namely Eqs. (4a)–(4c) in Ref.

[11], as

X ¼ Xc0110a cos h; Y ¼ Yc1010a sin h;
Z ¼ Zc0101b cos h:

ð29Þ

Then, following the Lindstedt–Poincaré procedure,

we can also derive a third-order analytical solution for

halo orbit. Here, we do not give the complicated

expressions anymore. Results demonstrate that those

coefficients whose numerical solutions are equal in

two methods also have the same analytical expres-

sions, while those coefficients whose numerical solu-

tions are different in two methods also have the

different analytical expressions. In summary, we can

obtain the same conclusion that the solutions for halo

orbits derived by these two methods are partly

different through comparing analytical or numerical

solutions. The reason causing the differences is that

Table 1 Coefficients, up to order 3 of the Lindstedt–Poincaré expansion of the Lissajous orbits around L1 in the Sun–Earth system

i j xij tij

0 0 .2086453564223108E?01 .2015210662996640E?01

2 0 - .19793330921103466E?00 .25623574529952564E-01

0 2 .25623574529952564E-01 .16195976981230506E?00

i j k m Xijkm or Zijkm Yijkm

1 0 1 0 .3391700424065888E?00 - .1095270999402855E?01

0 1 0 1 .9962189144672732E?00

2 0 0 0 .240735994312677E?00 .0000000000000000E?00

2 0 2 0 - .10421885417013624E?00 - .5664916013778637E-01

0 2 0 0 .24642355008239508E?00 .0000000000000000E?00

0 2 0 2 - 10998869627427148E?00 .6725227040176095E-01

1 1 1 - 1 .3773759739986624E?00

1 1 1 1 .11993162155276677E?00

3 0 1 0 .46739047397258086E-01 - .3992674505450506E-01

3 0 3 0 - .30972381614462682E-01 - .3455727466578585E-01

1 2 1 - 2 .5049132658541867E?00 .1629854700400192E?01

1 2 1 0 .2322490685452064E-01 .2179380433454126E-01

1 2 1 2 - .2823410205572303E-01 - .701118576211499E-02

2 1 2 - 1 - .1394200550803349E?01

2 1 2 1 .4653723699886294E-01

0 3 0 3 .1930655501929184E-01
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the dynamical equation is modified during the Lind-

stedt–Poincaré procedure, but maintained as the

original form during normalization method.

Because of the differences, it is necessary to

compare the accuracy of the halo orbits derived

through these two methods. Here, we consider a

numerical solution generated by differential correc-

tion method is accurate, and then useffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dX2 þ dY2 þ dZ2

p
(dX, dY and dZ are the errors

between two trajectories along X-axis, Y-axis and Z-

axis, respectively) to estimate the error between a

third-order analytical solution and the corresponding

numerical solution. For normalization method, we

choose Iy = 0.3040, Iz = 0.1501, hy = 0, and the initial

state is determined as A0 = [- 0.989011, 0, 0.004404,

0, - 0.011665, 0]T. For Lindstedt–Poincaré method,

we choose a = 0.1870, b = 0.3909, h = 0, and the

initial state is determined as A0 = [- 0.989097, 0,

0.004465, 0, - 0.011705, 0]T. Figure 10 gives the

varying curve of the error during one period of the halo

orbit, where the blue line corresponds to normalization

method and the red line corresponds to Lindstedt–

Poincaré method. As we can see, two curves have the

same changing rules: There exist twice oscillations

during one period, and the moments of occurrence of

two peaks and one trough are close as well. The

magnitudes of two errors are both 10-4, which

indicates that the accuracies of the halo orbits derived

Table 2 Coefficients, up to

order 3 of the Lindstedt–

Poincaré expansion of the

halo orbits around L1 in the

Sun–Earth system

i j xij dij

0 0 .2086453564223108E?01 - .2922144544766949E?00

2 0 - .19793330921103466E?00 .1836623714737889E?01

0 2 .25075951391062623E?00 - .17277604579917996E?01

i j k Xijk or Zijk Yijk

1 0 1 .3391700424065888E?00 - .1095270999402855E?01

0 1 0 - .9962189144672732E?00

2 0 0 .240735994312677E?00 .0000000000000000E?00

2 0 2 - .10421885417013624E?00 - .5664916013778637E-01

0 2 0 .24642355008239508E?00 .0000000000000000E?00

0 2 2 .10367563403440155E?00 - .60287960157057424E-01

1 1 0 .3516046249740591E?00

1 1 2 - .11720154165801971E?00

3 0 1 .0000000000000000E?00 .11100616986539415E?00

3 0 3 - .30972381614462682E-01 - .3455727466578585E-01

1 2 1 .0000000000000000E?00 .1453120544073662E?00

1 2 3 .2783272992989514E-01 .7748704911540644E-02

2 1 3 .4562227542349283E-01

0 3 3 .18828666341107515E-01

Fig. 10 Errors between the analytical and numerical solutions

for normalization method and Lindstedt–Poincaré method

123

Lissajous and halo orbits in the restricted three-body problem 2641



through the normalization method and Lindstedt–

Poincaré method can be considered roughly the same.

In addition, the maximum value and variation range of

the error for the normalization method are both less

than those of the error for Lindstedt–Poincaré method.

Thus, from this viewpoint, the analytical solutions

derived by the normalization method are better.

5 Conclusions

Aimed at collinear points L1 and L2 in a spatial circular

restricted three-body problem of an arbitrary value of

the mass ratio, we succeed in obtaining the analytical

forms of complete and resonant normalized Hamilto-

nian functions. The expressions of the coefficients in

the normalization forms are explicitly provided as

functions of the mass ratio, and the formula for the

energy threshold at which the bifurcation to halo orbits

occurs is derived. Through implementing the inverse

process of complete and resonant normalization, we

can, respectively, generate the universal analytical

solutions of Lissajous and halo orbits in the initial

synodic reference system, which is considered as a

great contribution of this paper. In the explicit third-

order analytical solutions of Lissajous and halo orbits,

three position variables are both expressed as series

forms of normalized action and angle variables and the

coefficients are both parameterized by the mass ratio.

According to comparison results, the third-order

analytical solutions of Lissajous orbits derived

through normalization method and Lindstedt–Poin-

caré method are completely the same, which indicates

the validity and feasibility of the proposed normaliza-

tion method. The solutions of halo orbits derived

through two methods are different, but the maximum

value and variation range of the error for the normal-

ization method are both less than those of the error for

Lindstedt–Poincaré method.
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Appendix: Coefficients in two normal forms

Complete normal form: H CM;4ð Þ ¼ x1Ily þ x2Ilzþ
a2200I2ly þ a0022I2lz þ a1111IlyIlz:

Resonant normal form: H CM;4ð Þ ¼ x1Ihy þ x2Ihz þ
a2200I2hy þ a0022I2hz þ IhyIhz a1111þð
2a2002 cos 2 hhy � hhz

� 	� 	
Þ:

The coefficients are listed as follows.

x1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� c2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�8þ 9c2

ppq
ffiffiffi
2

p

x2 ¼
ffiffiffiffiffi
c2

p
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