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Abstract In the present article, a combination of
numerical and experimental studies is undertaken to
comprehend the influence of noise on the responses of
continuous-time dynamical systems. In particular, the
influence of white Gaussian noise on the chaotic and
periodic responses of bistable, Duffing oscillators is the
focus of this work. The noteworthy result of the con-
ducted studies concerns the presence of a pair of attrac-
tors, one being periodic and the other being chaotic: the
chaotic attractor response can be controlled and termi-
natedwith an appropriate noise level. For trajectories in
the basin of the chaotic attractor, white Gaussian noise
is added at a barely sufficient level to allow trajecto-
ries to eventually leave (within some specified time).
The authors report that trajectories leave via a special
escape route: the unstablemanifold of a fixed point sad-
dle on the basin boundary between the two basins of
attraction. Striking similarities and differences between
experimental and numerical investigation are discussed
in the work.
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List of symbols

x Nondimensional oscillator displacement
x1 Nondimensional oscillator position in state

space
x2 Nondimensional oscillator velocity in state

space
η Nondimensional damping factor
α Nondimensional linear stiffness
σE Amplitude of noise for experimental studies
Ω Nondimensional forcing frequency
F0 Nondimensional forcing amplitude
Ẇ (t) White Gaussian noise
σN Amplitude of noise for numerical simula-

tions
β Nondimensional nonlinear stiffness
ωn Linear natural frequency

1 Introduction

Dynamics of a nonlinear system depends on the param-
eters chosen in the governing equation of motion. With
a variation in the chosen control parameter, the quali-
tative behavior of nonlinear system can be drastically
changed. For certain parameter ranges, a nonlinear sys-
tem can exhibit chaotic behavior.

There is a large body of literature on chaotic attrac-
tors of a nonlinear system and their basins of attraction.
Bifurcation theory can be used to describe the way
in which different attractors are created or destroyed
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with the change in system parameters. There are sev-
eral routes to chaos, and a positive Lyapunov exponent
is indicative of chaos. After chaos is born, a further
variation in system parameters can lead to interesting
results that can have potential applications in control-
ling system dynamics. As a control parameter is varied,
a sudden discontinuous change in the chaotic attractor
of a dissipative dynamical system is called “crisis,” a
term introduced in reference [1]. A crisis occurs when
a chaotic attractor comes into contact with an unsta-
ble periodic orbit (see for example, [2,3] for a detailed
discussion). The crisis can be identified as a bound-
ary/exterior crisis, or interior crisis, or attractor merg-
ing crisis [1,2,4,5]. A 1D quadratic map can exhibit
all three types of crises [2]. The forced Duffing oscil-
lator is one of the non-autonomous systems, which can
exhibit crisis [6]. The Duffing equation has been the
subject of experimental and numerical investigations
over a wide range of system parameter values, and dif-
ferent dynamics have been observed with this system
including chaos, depending on the nature of the phys-
ical system being studied [7–11]. In the last decade,
extensive results on the effect of noise on nonlinear
systems dynamics have been reported [12–15]. Xu [16]
has investigated the stochastic bifurcation and crisis
through the global generalized cell mapping in a twin-
well Duffing system subject to a harmonic excitation
in the presence of noise.

Recently, in reference [15], the authors report how
the introduction of noise in a Duffing oscillator can
influence the frequency response curve and destroy
it. Here, the authors subject chaotic trajectories to
white Gaussian noise at low levels, levels that are
just sufficient to cause a trajectory to escape from the
basin. It is reported that there is specific escape route
that the trajectory always follows—according to the
authors’ experimental and computational results. Here,
the boundary of the basin of the chaotic attractor is the
stable manifold of a periodic orbit. This manifold is
captured through a stroboscopic plotting of data. As the
trajectory escapes, it is observed that it is essentially on
the basin boundary. The dynamics pulls the trajectory
to the fixed point on the boundary and the trajectory
escapes along the unstable manifold. The experiments
were repeated many times, and it was confirmed that
the trajectory always escapes the basin in the sameway.

In the conclusion section, the authors compare and
contrast the experiments with numerical simulations.
Here, the authors have compared their computational

investigationswith corresponding experimental studies
of the influence of white Gaussian noise on the chaotic
responses of a bistable Duffing oscillator. While the
present study concerns a specific system with specific
parameters, the authors believe that the observed phe-
nomena is quite general and the escape route would be
observed in a wide variety of nonlinear systems.

The rest of this work is organized as follows. In
Sect. 2, the authors describe the experimental arrange-
ment. In Sect. 3, themodeling efforts undertaken for the
nonlinear oscillator are presented. Numerical results
obtained are provided in Sect. 4. Experimental results
are provided in Sect. 5. In Sect. 6, the authors present
their conclusions.

2 Experimental arrangement

The experimental prototype of the Duffing oscillator
and schematic of the experimental setup is shown in
Fig. 1. The experimental arrangement consists of a can-
tilever steel structure with an attached tip mass mag-
net at its free end. The tip mass magnet is located in
the magnetic field of another magnet that is fixed in
a position close to it. The inter-magnet separation can
be varied and the magnet orientations can be reversed
to realize a nonlinear Duffing oscillator with either a
hardening or a softening (monostable or bistable) char-
acteristic. The other end of the cantilever structure is
excited by an electromagnetic shaker that is used to
provide the deterministic input (harmonic excitation)
and the additive Gaussian noise input. The excitation
provided by the shaker is along a direction normal
to the longitudinal axis of the beam oscillator allow-
ing for excitation of bending motions of the struc-
ture. Given the cantilever structure’s orientation, for
the purpose of the current experimental arrangement,
the influence of gravity is neglected in modeling the
cantilever structure dynamics. Several means are used
to gather experimental data. The free-end displacement
of the cantilever structure is measured by using a strain
gauge, which is secured close to the base of the can-
tilever structure, and the NI cDAQ-9178 with an NI
9235 module. The harmonic excitation amplitude is
measured by using a 3-axis accelerometer (SparkFun
ADXL337) that is attached to the shaker head at the
base of the cantilever structure. A LabVIEW® program
was developed to provide the deterministic harmonic
excitation andGaussian noise input to theBrüel&Kjær
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Noise-induced chaotic-attractor escape route 865

Fig. 1 Schematic of Duffing oscillator (a) and experimental
arrangement (b). The separation between the magnets and their
relative orientations are varied. An electromagnetic shaker is

used to provide the deterministic harmonic excitation along with
a white Gaussian noise input

electromagnetic shaker through NI modules. The same
LabVIEW® program is also used for real-time data
acquisition of the strain gauge and accelerometer sig-
nals. The natural frequencies of the system depend on
the inter-magnet separation and relative orientations of
the magnets.

Both hardening and softening characteristic of the
nonlinear systems were realized in the experiments, as
noted earlier. The experimental setup was noted to be
quite sensitive to the relative spacing of the magnets.
When both the magnets repel each other, the system
behaves as bistable, softening nonlinear oscillator with
two stable potential wells, as the zero tip deflection
position is unstable. On the other hand, when the mag-
nets attract each other, the system behaves as a monos-
table, nonlinear oscillator with hardening or softening
characteristic and the zero tip deflection position is sta-
ble. For the purpose of this article, the authors focused
on a bistable Duffing oscillator system with softening
characteristics. For all of the experimental studies, the
attention was on the chaotic dynamics for the deter-
ministic case and the influence of noise in making a
qualitative change.

3 Mathematical modeling and parametric
identification

An equation of motion of a Duffing oscillator with a
mass m, a viscous damping c, a linear stiffness k1,
a nonlinear stiffness k3, a forcing amplitude F , and
a forcing frequency ω can be nondimensionalized as
described in authors’ prior work [15]. The nondimen-
sional form of equation of motion may be written as

ẍ + ηẋ + αx + βx3 = F0 cos(Ωt). (1)

where the different nondimensional parameters are as
follows: η is the viscous damping, α is the linear stiff-
ness parameter, β is the scaled nonlinear (cubical) stiff-
ness, F0 is the scaled forcing amplitude, Ω is the fre-
quency ratio (Ω = ω/ωn), and t represents the nondi-
mensional time. The harmonic excitation or determin-
istic input is represented by F0 cos(Ωt). Different signs
of stiffness parameters α and β correspond to differ-
ent Duffing oscillator characteristics, as presented in
Table 1.

In the current study, the authors have considered a
bistable, Duffing oscillator with softening characteris-
tics. For a low forcing amplitude, the Duffing oscillator
represented by Eq. (1) exhibits a hysteresis behavior
when the excitation frequency Ω is used as a control
parameter in a frequency range around the system res-
onance (Ω = 1).
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Table 1 Stiffness parameters and different Duffing oscillator
realizations

Linear stiff. Cubic stiff. Oscillator characteristic

α > 0 β > 0 Monostable, hardening

α > 0 β < 0 Monostable, softening

α < 0 β > 0 Bistable, softening

Table 2 Parameter identification for bistable, softening Duffing
oscillator of experiments

Parameter Value Parameter Value

ωn 2π × 48.34 rad/sec

η 0.085 α −0.5

β 0.2 F0 0.085

The linear natural frequenciesωn of the bistable soft-
ening Duffing oscillator are obtained from a low ampli-
tude impulse response test about the equilibrium posi-
tions. The rest of the parameters are obtained from free
oscillation data and fromcurvefitting of the experimen-
tal obtained deterministic frequency response curve to
the analytical frequency response curve. The experi-
mental frequency response curve is obtained by con-
ducting quasi-static frequency sweeps for increas-
ing and decreasing excitation frequencies. Additional
information on the parametric identification can be
found in the authors’ previous effort [15].

The parameter values, obtained through curve fit-
ting, are listed in Table 2. For a given experimental
arrangement, the parameter values of η, α, and β are
assumed to be constant and are used to conduct further
numerical and experimental studies. The parameters
F0 and Ω are chosen as control parameters and are
used in numerical simulations to produce bifurcation
diagrams.

Now, on top of the harmonic excitation or deter-
ministic input (F0 cos(Ωt)), consider a white Gaussian
noise input to the system represented by σN Ẇ (t). Here,
σN represents the noise amplitude,W (t) represents the
Wiener process, and Ẇ (t) represents a “mnemonic”
derivative. In the presence of the noise, the Duffing
oscillator equation given by Eq. (1) can be written as

ẍ + ηẋ + αx + βx3 = F0 cos(Ωt) + σN Ẇ (t). (2)

The above equation can be rewritten into the state-
space form as

ẋ1 = x2

ẋ2 = −ηx2 − αx1 − βx31 + F0 cos(Ωt) + σN Ẇ (t)
(3)

where x1 = x and x2 = ẋ .
To carry out numerical studies, the above equations

are written in the Langevin form of a differential equa-
tion as

dx1 = x2dt

dx2 =
(

− ηx2 − αx1 − βx31 + F0 cos(Ωt)
)
dt + σNdW

(4)

It is mentioned that in this differential form, one
no longer has the derivative of the Brownian motion
(which does not exist) but a differential white noise
which does exist. This system is integrated as an Itô
integral. It should be noted that since there is an addi-
tive (not a parametric) excitation, the Itô equations and
corresponding Stratonovich equations are equivalent.
The Euler–Maruyama method can be used to obtain
numerical solutions of Eq. (4) as in prior work of the
group (e.g., [14,15,17,18]). The quantity dW , is the
incremental noise, which has a mean that is equal to
zero and a standard deviation that is equal to

√
dt .

4 Numerical results

Getting chaos for numerical studies For the numeri-
cal simulations, the parameters have been chosen so
that the deterministic response of the system shows the
existence of a chaotic attractor aswell as stable periodic
attractor. To carry this out, after parametric identifica-
tion, the forcing amplitude F0 and forcing frequencyΩ

have been varied over sufficient ranges to observe the
chaotic response. The numerically obtained bifurcation
diagrams along with Lyapunov spectrum are shown in
Fig. 2. It is clear that the system behaves chaotically
for a range of parameter values. For this article, the
authors have chosen the parameter values as shown
in Table 3 where the system dynamics is chaotic or
periodic depending on the initial condition chosen. For
these parameter values, the basin of attraction along
with time series is shown in Fig. 3 and it confirms
the existence of a chaotic attractor as well as a stable
period-1 attractor.

Numerical simulations were conducted to study any
qualitative change in dynamics of the Duffing oscilla-
tor with variation of noise amplitude σN while inte-
grating Eq. 4. When the noise amplitude σN is varied,

123



Noise-induced chaotic-attractor escape route 867

Fig. 2 Plots of numerically obtained bifurcation diagram for
softening Duffing oscillators in Eq. (1). In plot (a), the authors
show a bifurcation diagram for a constant forcing amplitude
(F0 = 0.204). Plot (b) has the corresponding Lyapunov spec-

trum.ApositiveLyapunov exponent confirms a chaotic response.
Plot (c) has the bifurcation diagram for a constant forcing fre-
quency (Ω = 0.71)

Table 3 Parameter values forDuffing oscillator showing chaotic
realizations

Parameter Value Parameter Value

η 0.085 F0 0.204

α −0.5 Ω 0.71

β 0.2

the rest of the parameters are kept constant as shown in
Table 3. The basin of attraction with these parameter
values is shown in Fig. 3. The steady state response of
the deterministic system (σN = 0) is chaotic or peri-
odic depending on the initial point chosen. For any ini-
tial condition in the purple region, the system response
settles down on a chaotic attractor, whereas, for any ini-
tial condition in the yellow region, the response settles
down to a period-1 attractor. Both time series as well
as the corresponding stroboscopic maps are shown in

123



868 V. Agarwal et al.

Fig. 3 Numerical simulations using Euler–Maruyama scheme
for noise amplitude σN = 0. See Table 3 for system parameter
values. For the model, a chaotic attractor coexists with a periodic
attractor. Plot (a) is for the stroboscopic map. Purple color (B2)
and yellow color (B1) are used to identify the basins of attrac-

tion of the chaotic and periodic attractors, respectively. The black
dots in the purple region are the (stroboscopic) chaotic attractor,
while point “P” is a fixed point attractor. In plots (b) and (c), the
associated time series are shown. (Color figure online)

Fig. 3. The numerical results are obtained by integrat-
ing the stochastic differential equations, Eqs. (4), with
the Euler–Maruyama scheme, as discussed in [14]. The
initial conditions and parameters used (Table 3) to pro-
duce the response shown in Fig. 3, which is the deter-
ministic case, were also used for all of the stochas-
tic simulations as well. The numerical results are pro-
duced for more than 100 Euler–Maruyama simulations
in the time domain over 1000 time periods. Each of
these Euler–Maruyama simulations has the same noise
amplitude σN , but a different noise vector.

Escaping chaos Any qualitative change in the sys-
tem dynamics depends on the noise amplitude σN .
The numerical results show that, for a noise amplitude
0 ≤ σN < σc, with any initial condition in the chaotic
or periodic basin, the steady-state response settles down
on a noisy chaotic attractor or a noisy periodic attractor,
respectively, as shown in Fig. 4. There are no qualitative
changes observed in the system behavior. Here, σc rep-
resents the critical value of noise amplitude for which

the chaotic attractor faces a crisis. At that critical noise
amplitude σc, the chaotic attractor comes into contact
with the stable manifold at the saddle point as shown in
Fig. 11b and the chaotic attractor vanishes. The features
of this saddle point can be seen at the critical collapse of
the chaotic attractor at the critical event, the trajectory
moves rapidly toward the saddle along the stable man-
ifold of the saddle and then escapes along its unstable
manifold toward the fixed point (periodic) attractor.

The numerical path integration procedure [19,20]
based on the Gauss–Legendre integration rule has been
used to find out the critical noise amplitude limit σc,
for which there is a jump from chaotic attractor to the
periodic attractor occurs. This procedure is based on the
evolutionof probability density subjected to a harmonic
and a white Gaussian excitation where the periodicity
of the probability density function implies a steady state
response. For the given parameter values in Table 3, the
critical noise amplitude is found to be σc = 0.02. The
corresponding contour plot is shown in Fig. 5a.
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Fig. 4 Numerical simulations using Euler–Maruyama scheme
for noise amplitude σN = 0.015. The system parameter values
and basin colors are same as in Fig. 3. The black dots in the pur-
ple region are the (stroboscopic) noisy chaotic attractor, while
black dots in the yellow region are the (stroboscopic) noisy peri-
odic attractor. The black dots in plot (a) are the (stroboscopic)

noisy attractor for an initial condition in the yellow region and
plot (c) has the associated time series. The black dots in plot (b)
are the (stroboscopic) noisy attractor for an initial condition in
the purple region and plot (d) has the associated time series. The
system dynamics exhibits no qualitative changes. (Color figure
online)

With an initial condition in the chaotic attrac-
tor basin, with noise amplitude σN = 0.02, all
Euler–Maruyama simulations show an escape from the
chaotic attractor to the periodic attractor. The steady-
state trajectory stays on the noisy periodic attractor
thereafter. On the other hand, for all the initial con-
ditions in the periodic attractor basin (yellow), the tra-
jectory remains on the noisy periodic attractor without
any qualitative changes or escape. The stroboscopic
map along with the time series is shown in Fig. 6.

Large noise amplitude Further, the noise amplitude
is increased in the simulation of Eqs. (4). For an inter-

mediate noise amplitude σc ≤ σN ≤ σ0, the chaotic
attractor is destroyed and the trajectory escapes to the
fixed point (periodic) attractor. On the other hand, the
periodic attractor shows no qualitative changes. Here,
the noise amplitude σ0 represents the noise limit where
the jump from the periodic attractor to the chaotic
attractor occurs. Again, the numerical path integration
procedure has been used to find out the noise ampli-
tude limit σ0. The corresponding contour plot is shown
in Fig 5c, wherein the noise amplitude limit is found
to be σ0 = 0.05. The time series results along with
stroboscopic maps for the intermediate noise ampli-
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Fig. 5 Contour plots of probability density of a bistable, soften-
ing Duffing oscillator (Eq. (2)). See Table 3 for system parameter
values. The numerical path integration procedure based on the
Gauss–Legendre integration rule is used to compute the evolu-
tion of probability density subjected to a harmonic and a white
Gaussian excitation. The periodicity of probability density func-
tion implies a steady state response. With a noise amplitude

σN < 0.02, there is no jump in the system response from one
attractor to another. With a noise amplitude 0.02 ≤ σN < 0.05,
there is probability of the system response jumping from the
chaotic attractor to the periodic attractor (fixed point), but there
is no jump from the periodic attractor to the chaotic attractor. For
a noise amplitude σN ≥ 0.05, there are continuous jumps from
chaotic attractor to the periodic attractor

Fig. 6 Numerical simulations using Euler–Maruyama scheme
for noise amplitude σN = 0.02. The system parameter values
and basin colors are same as in Fig. 3. In plot (a), the black
dots in the yellow region are the (stroboscopic) periodic attractor

with noise for an initial condition in the yellow region and plot
(b) shows the associated time series. The periodic attractor (in
yellow) exhibits no qualitative changes with the noise amplitude
σN = 0.02. (Color figure online)

tude σN = 0.045 ≤ σ0 are shown in Fig. 7. The asso-
ciated contour plot is shown in Fig. 5b. Additionally,
for a large noise amplitude σN ≥ σ0, a continuous
jump from a chaotic attractor to a periodic attractor
and a periodic attractor to a chaotic attractor occurs.
The contour plot for a noise amplitude σ = σ0 = 0.05
is shown in Fig. 5c. The time series results and stro-

boscopic maps are shown in Fig. 8 which confirms the
continuous jumps.

A comparison of numerical results with experimen-
tal findings is made in the next section. It should be
noted that there is no direct comparison between the
noise amplitude in the numerical simulations, σN , and
the noise amplitude in the experiments, σE . The noise
in numerical simulations are assumed to bewhiteGaus-
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Fig. 7 Numerical simulations using Euler–Maruyama scheme
for noise amplitude σN = 0.045. The system parameter values
and basin colors are same as in Fig. 3. In plot (a), the black
dots in the yellow region are the (stroboscopic) periodic attractor
with noise for an initial condition in the yellow region and in
plot (b), the black and green dots are the stroboscopic map with
noise for an initial condition in the purple region. The green dots
represent the stroboscopic map with noise for the last 200 time

periods. In plot (c), a part of the associated time series with noise
for an initial condition in yellow region is shown. In plot (d), a
part of the associated time series with noise for an initial condi-
tion in the purple region is shown. The chaotic attractor escapes
to the fixed point (periodic) attractor, but periodic attractor (in
yellow) exhibits no qualitative changes with the noise amplitude
σN = 0.045. (Color figure online)

sian noise, while the noise in the experiment is a com-
plicated function of several frequency response rela-
tionships with almost a flat power density spectrum
over the range of frequencies that are relevant to the
context [15].

5 Experimental results

Getting chaos in experimental system The experimen-
tal studies have been conducted with a forced bistable,

Duffing oscillator prototype with softening character-
istic. The deterministic response shows chaotic behav-
ior. After parametric identification through curve fitting
the experimentally obtained frequency response curve
to analytically obtained response curve, the numeri-
cally obtained bifurcation diagram helps to identify the
forcing amplitude F0 and forcing frequency Ω in the
chaotic region. For this study, the authors have chosen
F0 = 0.204 and Ω = 0.71. The experimental stud-
ies for these parameter values (Table 3) show chaotic
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Fig. 8 Numerical simulations using Euler–Maruyama scheme
for large noise amplitude (σN = 0.05). The system parameter
values and basin colors are same as in Fig. 3. In plot (a), the
black dots in the yellow region are the (stroboscopic) periodic
attractor with noise for an initial condition in the yellow region
and in plot (b), the black and green dots are the stroboscopic map
with noise for an initial condition in the purple region. The green
dots in plot (a) and (b) represent the stroboscopic mapwith noise

for the last 200 time periods. In plot (c), a part of the associated
time series with noise for an initial condition in yellow region is
shown. In plot (d), a part of the associated time series with noise
for an initial condition in the purple region is shown. A contin-
uous jump can be seen from the chaotic attractor to the periodic
attractor and periodic attractor to chaotic attractor with the noise
amplitude σN = 0.05. (Color figure online)

dynamics. Both the time series and the stroboscopic
map are shown in Fig. 9.

The numerical results are obtained by assuming
noise to be a white Gaussian noise, whereas in the
experimental studies, the noise is assumed to be a band-
limited white noise. Due to a constant power density
spectrum in the operating forcing frequency range of
interest, the band limited white noise may be treated
as being equivalent to a white Gaussian noise. In this
section, the experimental results are qualitatively com-
pared with numerical outcomes. For any noise ampli-

tude σE , the experiments are conducted for more than
15 runs and around 5000 time periods in each run.

Escaping chaos A small noise amplitude σE does
not result in an observable qualitative change and the
response is a noisy chaos. However, a further increase
in the noise amplitude σE results in an eventual but
sudden change in the qualitative behavior and the
response escapes from the chaotic basin. Here, the
noise level is just sufficient to cause the chaotic trajec-
tory to escape to the periodic attractor within a mean
time of 100 oscillation of the forced Duffing oscillator.
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Fig. 9 Stroboscopicmap alongwith the time series obtained through experimental study of a forced bistable, softeningDuffing oscillator
showing chaotic attractor

Fig. 10 Stroboscopic map along with the time series obtained
through experimental study of a forced bistable, softening Duff-
ing oscillator for noise amplitude σE = 2.0. In plot (a), the black
dots are the stroboscopic map with noise and the red dot is the
fixed point attractor for the deterministic case. In plot (b), the

associated time series with noise is shown. The system dynam-
ics shows continuous jumps from chaotic attractor to periodic
attractor and periodic attractor to chaotic attractor. (Color figure
online)

Similar to the numerical results, the authors observed
that there is a specific escape route that the trajectory
always follows—the escape trajectory is essentially on
the basin boundary. The dynamics pulls the trajectory
toward the fixed point on the basin boundary and then,
the trajectory escapes along the unstable manifold of
the saddle point; that is, the branch of the unstableman-

ifold that is outside the chaotic basin. The steady state
trajectory stays on the noisy periodic attractor there-
after.

Repetitions of this experiment show that when the
trajectory escapes, it always escapes the basin in the
same way. One of the experimental results is shown in
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Fig. 11 The chaotic attractor is destroyed by noise and the tra-
jectory escapes. In plot (a), the (stroboscopic) chaotic attractor
(green color) along with stable (Ws ) and unstable (Wu ) manifold
of the fixed point saddle (point “S”) for the deterministic system
are shown and point “P” is a fixed point attractor. In plot (b), the
numerical results for the chaotic attractor escape route (through
points p1 to p8) with noise σN = 0.02 are shown. The green dots
represent the stroboscopic map for the last 200 time periods. For
plot (c), a stroboscopic map is obtained through an experimental
study of a forced bistable, softening Duffing oscillator with noise
amplitude σE = 1.8. The start of the strobe for the experiments

is arbitrary and is not synchronized with the clock used for plots
(a) and (b). The chaotic attractor is destroyed by noise and the
trajectory escapes. The chaotic attractor escape route (through
points p1 to p12) with noise σE = 1.8 is shown. The black cir-
cles represent the stroboscopic map for the last 200 time periods.
In both plots (b) and (c), the trajectory moves rapidly toward the
saddle (point “S”) along the stable manifold (basin boundary) of
the saddle and then escapes along its unstable manifold toward
the fixed point (periodic) attractor. See Fig. 12 for the time series
plot. See Sect. 6 for similarities and differences between numer-
ical and experimental system. (Color figure online)
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Fig. 12 The chaotic attractor is destroyed by noise and the tra-
jectory escapes. In plot (a), numerical time series plot is shown.
In plot (b), the experimental time series plot is shown. Red color
is used in the time window when noise is introduced. The time

series shows that the chaotic attractor escapes to the periodic
attractor (fixed point). See Fig. 11 for the stroboscopic map. See
Sect. 6 for similarities and differences between numerical and
experimental results. (Color figure online)

Fig. 11c. The experimental findings are in agreement
with the numerical results shown in Fig. 11b.

Large noise amplitude For a large noise amplitude,
one does not necessarily follow the above route. Hence,
it is essential to keep the noise level as low as possible to
observe the exit route. Similar to the numerical results
shown in Fig. 8, a large noise amplitude quickly leads
to continuous jumps from chaotic attractor to periodic
attractor and back to the chaotic attractor, repeatedly as
shown in Fig. 10. The stroboscopic map shows a cloud
of points on the chaotic and periodic attractor with con-
tinuous jumps. It should be noted that a particular range
of amplitude of noise σE is needed to control and termi-
nate the chaotic response andmove the response toward
a stable periodic attractor.

6 Conclusions

In this paper, the authors have examined the effects
of a white Gaussian noise on the chaotic and peri-
odic responses of a harmonically forced bistable, Duff-
ing oscillator with softening characteristics. Numerical
simulation results have been carried out for more than
100 Euler–Maruyama simulations in the time domain
over 1000 time periods and the experimental results are

obtained for more than 15 experimental runs with 5000
time periods for each run.

Similarities and differences between numerical and
experimental systems (1)The systemshere are observed
stroboscopically. The appearance of an experimental
plot depends strongly on the phase of the strobe that is
upon the instant the strobe is started. Hence, much of
the difference between the numerical and experimental
chaotic attractor is due to the difference in the phase
of observation. (2) The parameter range for observing
chaos coexisting with a periodic attractor is in a similar
range for the two systems. (3) The boundary saddle S is
shifted but the basin boundary in both systems is dom-
inated by a fixed point saddle and its stable manifold.
(4) There is no direct comparison between the noise
amplitude in the numerical simulations, σN , and the
noise amplitude in the experiments, σE . The noise in
numerical simulations is assumed to be white Gaussian
noise, while the noise in the experiments is a compli-
cated function of several frequency response relation-
ships with almost a flat power density spectrum over
the range of frequencies that are relevant to the context.
(5) For both studies, with the addition of noise, as the
amplitude reaches a critical value, there is a change. A
typical attractor in the chaotic regime quickly escapes
to the periodic attractor. This departure is always via a
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special escape route: the unstable manifold of a saddle
point on the basin boundary between the two basins of
attraction.

The authors would like to note that the dynam-
ics observed here can be expected in other two-
dimensional cases as well. For instance, with regard to
reference [1], the escape along the unstablemanifold of
the unstable periodic saddle located on the boundary of
a basin of attraction of a chaotic attractor will be similar
to that observed here with the fixed-point saddle in the
present case. This would be the case, when the period
of the saddle m = 1. For m > 1, the situation would
be this simple.

While the authors’ study here concerns a specific
system with specific parameters, in future work, the
authors plan to build on the current study and examine
the effect of noise on the escape route of high dimen-
sional nonlinear systems. These findings also suggest
that a range of noise amplitude can be used to control
the chaotic dynamics without any change in system
parameter values.
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