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Abstract In this paper, two new control methods

based on a Lyapunov-like function and a vector

Lyapunov function separately were put forward to

solve the asymptotic stabilization problem of general

fractional-order nonlinear systems with multiple time

delays. First, we deduced a new asymptotic stabiliza-

tion control criterion based on a Lyapunov-like

function after discussing the asymptotic stability

criterion of general fractional-order nonlinear sys-

tems. Moreover, to address the problem of multiple

time delays of the nonlinear system, we derived

another asymptotic stabilization control criterion

based on a vector Lyapunov function and anM-matrix

via the new controller. Finally, the feasibility and

effectiveness of the proposed controllers were verified

by several common fractional-order nonlinear

systems.

Keywords Fractional-order nonlinear systems �
Asymptotic stabilization � Stability analysis � Time

delays � M-matrix

1 Introduction

Recent years have witnessed the rapid development of

the fractional derivative concept in the whole scientific

community. An increasing number of researchers have

devoted themselves to the study of fractional deriva-

tives. Fractional derivatives have been applied in

mathematics, physics, biology, electrical engineering,

control and other fields, and achieved abundant

research results [1–8]. Fractional-order derivatives

are most widely used in fractional-order systems,

which are worthy of research since many systems in

nature are of non-integer order. There are often factors

interfering with the study process of a variety of

fractional-order systems, such as neural network

systems [4, 5], gene regulation network systems

[9, 10], HIV systems [11, 12], and Lorenz dynamical

systems [8, 13], which necessitates the investigation of

the stability and stabilization of fractional-order

systems. Scholars have put forward different stability

conditions and controllers of the fractional-order

systems after years of research. These methods can

be roughly divided into two types, with one based on a

Lyapunov function and the other based on eigenvalue

judgment. Since this paper focuses on the use of the

Lyapunov-like function and the vector Lyapunov

function to solve the problem, the method based on

eigenvalue judgment is adopted [14, 15]. Li et al.

derived the stability conditions for fractional-order

systems via a Lyapunov function [16], and other
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stability conditions via the Lyapunov direct method

[17]. Tuan et al. put forward a novel stability judgment

method based on the fractional-order Lyapunov func-

tion [18], and investigated the asymptotic stability of

nonlinear fractional-order differential equations next

year [19]. The method of relaxing piecewise quadratic

Lyapunov function was used to study the stability and

stabilization problems for a class of switched discrete-

time nonlinear systems by Zhu et al. [20]. Next year,

Zhu et al. investigated the problem of quasi-synchro-

nization for a class of discrete-time Lur’e-type

switched systems via virtue of the semi-time-varying

Lyapunov function [21]. The application of the

Lyapunov function was extended to a variety of

fractional-order derivatives byWei et al. [22, 23]. Cao

et al. obtained the sufficient criteria of asymptotic

stability based on fractional-order Lyapunov func-

tional [24]. However, the above-mentioned studies

only focused on the sufficient conditions of asymptotic

stability of the fractional-order system, without solv-

ing the instability problem of the fractional-order

system itself. In other words, the asymptotic stabi-

lization of the fractional-order systemwas achieved by

the corresponding control strategy. Moreover, these

methods ignored a more complicated situation, i.e.,

multiple time delays of the fractional-order system.

The comparison theorem is a widely used and

effective method to solve the stability and stabilization

of fractional-order systems at present. For instance,

the comparison theorem was used to discuss asymp-

totic stability of multivariable fractional-order sys-

tems with different fractional-orders in the paper of

Lenka [25], to deduce sufficient conditions of a

fractional-order neural network with multiple time

delays in the study of Cao et al. [26], and to address the

global stabilization of fractional-order memristor-

based neural networks with time delays in the article

of Jia et al. [27] However, the comparison theorem

method has a extremely complicated stability proof

process, conservative confinement conditions, and a

relatively low convergence rate, as indicated by the

experimental results. Motivated by works related to

the comparison theorem, we proposed two new control

methods based on a Lyapunov-like function and a

vector Lyapunov function separately, attempting to

overcome the deficiencies of the comparison theorem

and solve the asymptotic stabilization problem of

general fractional-order nonlinear systems with mul-

tiple time delays. Compared with the comparison

theorem, the first proposed integer-order Lyapunov

function-based method solved the problem of frac-

tional-order systems through a series of transforma-

tions, with less restriction, greatly enhancing the

physical meaning of the study. The M-matrix intro-

duced by the second proposed method tremendously

reduced the complexity of the derivation process with

a faster convergence rate.

The M-matrix was first introduced in [28] for the

stability analysis and control of integer-order systems,

which has lower conservatism and less restriction than

negative definite matrices. In this paper, theM-matrix

was generalized to the stabilization control of frac-

tional-order systems for the first time. The vector

Lyapunov function was employed to solve the

asymptotic stability problem of nonlinear fractional-

order composite systems [29]. However, the asymp-

totic stabilization of the general nonlinear fractional-

order system with multiple time delays was never

solved. In this paper, we extended the vector Lya-

punov function method to the asymptotic stabilization

of the general nonlinear fractional-order system with

multiple delays for the first time, and applied the

Lyapunov-like function to the asymptotic stabilization

of general fractional-order nonlinear systems. The two

methods greatly reduce the control limitation and

afford a wider stability domain.

This paper has two main contributions. On the one

hand, the Lyapunov-like function was generalized to

general nonlinear fractional-order systems, and a new

control criterion for asymptotic stabilization of the

nonlinear fractional-order systems was put forward.

With this approach, asymptotic stabilization problems

of different kinds of nonlinear fractional-order sys-

tems can be solved. On the other hand, the vector

Lyapunov function and M-matrix were introduced to

solve the asymptotic stability of nonlinear fractional-

order systems with multiple time delays for the first

time. Moreover, a new asymptotic stability criterion

applicable to all nonlinear fractional-order systems

with multiple time delays is put forward.

The rest of the paper was organized as follows.

Section 2 reviews some definitions and lemmas. The

results of this paper are stated in Sect. 3. Section 4

covers some numerical simulations to illustrate the

correctness and feasibility of the proposed controllers.

Section 5 presents the conclusion of the paper.
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2 Preliminaries

For a general nonlinear fractional-order system

CD1xðtÞ ¼ f ðxðtÞÞ; ð2:1Þ

where the xðtÞ 2 Rn is the state of Eq. (2.1) and the

function f : Rn ! Rn satisfies f ð0Þ ¼ 0 and locally

Lipschitz continuous condition, the following lemmas

hold.

Lemma 1 [30] If f ðxðtÞÞ is an continuous in the time
dimension, then there exists a unique solution to the

fractional-order system (2.1), the unique solution is as

follow

xðtÞ ¼ x0 þ
Z 1

0

n1ðxÞuðx; tÞdx; ð2:2Þ

where uðx; tÞ is the solution of the initial value to the

fractional-order system (2.1), and x 2 0;1ð Þ:

ouðx; tÞ
ot

¼ �xuðx; tÞ þ f xðtÞð Þ;uð0; tÞ ¼ 0; ð2:3Þ

where n1ðxÞ ¼ ½sinðp1Þ=p�x�1;x 2 0;1ð Þ:

Lemma 2 [18] If the Lyapunov function V : Rn ! R

of (2.1) be a convex and continuously differentiable

function such that Vð0Þ ¼ 0: Then, the following

inequality holds for all t� 0:

CD1VðxÞ� oVðxÞ
ox

CD1x; ð2:4Þ

Lemma 3 [29] If P ¼ pij
� �

is an M - matrix, there

exists a diagonal matrix Q ¼ diag q1; q2; . . .qNf g with

elements qi [ 0; i 2 N; such that the matrix Z satisfies

the following equation

Z ¼ PTQþ QP; ð2:5Þ

Lemma 4 [16] If the convex and continuously

differentiable Lyapunov function V : Rn ! R of

(2.1) satisfies

b1ð xk kÞ�VðxÞ� b2ð xk kÞ; ð2:6Þ

D1VðxÞ� � b3ð xk kÞ; ð2:7Þ

8t� 0; where biði ¼ 1; 2; 3Þ are class - j functions

and the fractional-order operator is 1 2 0; 1ð Þ; then
the fractional-order system (2.1) is asymptotically

stable.

3 Main result

In this section, we will solve the stability and

stabilization problems of nonlinear fractional-order

systems via two different methods.

3.1 Stability analysis of nonlinear fractional-order

system

In this section, we derive a novel stability theorem of

the asymptotic stabilization of nonlinear fractional-

order systems via Lyapunov-like function and diffu-

sive realization. The Lyapunov-like function was first

appeared in [31]. Then, in [30], Wu et al. extended the

Lyapunov-like function method to analyze the exter-

nal stability of Caputo fractional-order system. First of

all, the general form of the all fractional-order

nonlinear system can be expressed as follows

CDaxiðtÞ ¼ aixiðtÞ þ fiðxiðtÞÞ þ giðxðtÞÞ;
i 2 1; 2; . . .;Nf g; ð3:1Þ

where xiðtÞ 2 Rni is the state of the i - th subsystem

and is a differentiable vector, the function fi : R
ni !

Rni are the nonlinear part of the systems and the

function gi : R

PN
i¼1

ni
! Rni ; i 2 1; 2; . . .;Nf g refers

to the nonlinear part of interconnections between the

state xiðtÞ and other state xjðtÞ:
We can rewrite the fractional-order system (3.1) to

the compact form as follows.

CDax ¼ Axþ f ðxÞ þ gðxÞ; ð3:2Þ

where

A ¼ diagfa1; a2; . . .; aNg; x ¼ x1; x2; . . .; xN½ �T;
f ðxÞ ¼ f1ðx1ðtÞÞ; f2ðxðtÞÞ; . . .; fNðxNðtÞÞ½ �T;
gðxÞ ¼ g1ðxðtÞÞ; g2ðxðtÞÞ; . . .; gNðxðtÞÞ½ �T:

ð3:3Þ

Assumption 1 We assume the nonlinear function

f ðxÞ; gðxÞ are all continuous in t and satisfies a locally

Lipschitz condition of xðtÞ; whose Lipschitz parame-

ters are L1 and L2, and f ð0Þ ¼ gð0Þ ¼ 0:

Theorem 1 If the nonlinear fractional-order system

(3.1) satisfies Assumption 1, and for positive definite

constant jf ; jg [ 0 and a positive definite matrix P

with all elements pij [ 0 for all i; j 2 1; 2; . . .; n; make
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the following matrix inequality hold, then the frac-

tional-order nonlinear system (3.1) is asymptotically

stable.

H1 P
� �jf I

� �
\0; ð3:4Þ

where

H1 ¼ PAþ ATPþ 2jf L
2
1I þ 2jgL

2
2I; ð3:5Þ

Proof We choose the following Lyapunov-like

function which is convex and continuously differen-

tiable of Eq. (3.1).

VðxÞ ¼
Z 1

0

naðxÞuTðx; tÞPuðx; tÞdx; ð3:6Þ

Then we take the derivative of (3.6), we have

_VðxÞ ¼
Z 1

0

naðxÞ
ouTðx; tÞ

ot
Puðx; tÞ þ uTðx; tÞP ouðx; tÞ

ot

� �
dx;

ð3:7Þ

Then, according to the Lipschitz condition, for any

positive definite constant jf ; jg [ 0; we can obtain

jf f TðxðtÞÞf ðxðtÞÞ � f TðxðtÞÞf ðxð0ÞÞ
�
�f ðxðtÞÞf Tðxð0ÞÞ þ f Tðxð0ÞÞf ðxð0ÞÞ

	
� 2jf L

2
1 xTðtÞxðtÞ � xTðtÞxð0Þ � xðtÞxTð0Þ
�

þxTð0Þxð0Þ
	
2jf L

2
1x

TðtÞxðtÞ � jf f
TðxðtÞÞf ðxðtÞÞ� 0;

ð3:8Þ

and

jg gTðxðtÞÞgðxðtÞÞ � gTðxðtÞÞgðxð0ÞÞ � gðxðtÞÞgTðxð0ÞÞ
�
þgTðxð0ÞÞgðxð0ÞÞ

	
� 2jgL

2
2 xTðtÞxðtÞ � xTðtÞxð0Þ
�

�xðtÞxTð0Þ þ xTð0Þxð0Þ
	
2jgL

2
2x

TðtÞxðtÞ
�jgg

TðxðtÞÞgðxðtÞÞ� 0;

ð3:9Þ

Then, according to Lemma 1, we have

_VðxÞ ¼
Z 1

0

naðxÞ
ouTðx; tÞ

ot
Puðx; tÞ þ uTðx; tÞP ouðx; tÞ

ot

� �
dx

¼
Z 1

0

naðxÞðð�xuTðx; tÞ þ ATxþ f TðxðtÞÞ

þ gTðxðtÞÞÞPuðx; tÞ þ uTðx; tÞPð�xuðx; tÞ þ Ax

þ f ðxðtÞÞ þ gðxðtÞÞÞdx

¼ �
Z 1

0

naðxÞxuTðx; tÞPuðx; tÞdxþ
Z 1

0

naðxÞðxTAT

þ f TðxðtÞÞ þ gTðxðtÞÞÞPuðx; tÞdx

�
Z 1

0

naðxÞuTðx; tÞPxuðx; tÞdx

þ
Z 1

0

naðxÞuTðx; tÞPðAxþ f ðxðtÞÞ þ gðxðtÞÞÞdx

¼ xTðtÞðPAþ ATPÞxþ xTðtÞPf ðxðtÞÞ þ xTðtÞPgðxðtÞÞ
þ f TðxðtÞÞPxðtÞ þ gTðxðtÞÞPxðtÞ

� 2

Z 1

0

naðxÞxuTðx; tÞPuðx; tÞdx

� xTðtÞðPAþ ATPÞxþ xTðtÞPf ðxðtÞÞ þ xTðtÞPgðxðtÞÞ
þ f TðxðtÞÞPxðtÞ þ gTðxðtÞÞPxðtÞ
þ 2jf L

2
1x

TðtÞxðtÞ � jf f
TðxðtÞÞf ðxðtÞÞ þ 2jgL

2
2x

TðtÞxðtÞ
� jgg

TðxðtÞÞgðxðtÞÞ

¼ wTðtÞ
H1 P P

� �jf I 0

� 0 �jgI

2
64

3
75wðtÞ;

ð3:10Þ

where

wðtÞ ¼ ½xTðtÞ; f TðxðtÞÞ; gTðxðtÞÞ�T: ð3:11Þ

According to the conditions of Theorem 1, we can

obtain

_VðxÞ ¼ wTðtÞ
H1 P P

� �jf I 0

� 0 �jgI

2
64

3
75wðtÞ

\0;

ð3:12Þ

The fractional-order nonlinear system (3.1) is asymp-

totically stable, which completes the proof. h

Remark 1 Compared with the method of integration

from 0 to T of the Lyapunov-like function in [30, 31],

we obtained the asymptotically stability criterion of

fractional-order nonlinear system via directly differ-

entiating the Lyapunov-like function is conciser and

more convenient.
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3.2 Stabilization analysis of nonlinear fractional-

order system

Next, we will address the problem of stabilization of

nonlinear fractional-order system with multiple time

delay or not, respectively. First, we consider the case

that the nonlinear fractional-order system is without

time delay. A feedback controller is added to the

system (3.1) as follow,

CDax ¼ Axþ f ðxÞ þ gðxÞ þ BuðtÞ; ð3:13Þ

where, the feedback controller is

uðtÞ ¼ �KxðtÞ; ð3:14Þ

where, the K ¼ kij
� 	

n�n
; then, the (3.1) can be

rewritten as follow

CDax ¼ ðA� BKÞxþ f ðxÞ þ gðxÞ; ð3:15Þ

Theorem 2 If the controlled nonlinear fractional-

order system with control (3.15) satisfies Assumption

1, and for positive definite constant jf ; jg [ 0 and a

positive definite matrix P with all elements pij [ 0 for

all i; j 2 1; 2; . . .; n; and a matrix X[ 0 such that

(3.16), then the fractional-order system (3.15) is

asymptotically stabilization.

H2 P
� �jf I

� �
\0; ð3:16Þ

where H2 ¼ PA� X þ ATP� XT þ 2jf L21I þ
2jgL22I; the feedback gain matrix can be obtained by

solving BK ¼ P�1X:

Proof We choose the same Lyapunov-like function

as (3.7), and then we take the derivative as follow,

_VðxÞ ¼
Z 1

0

naðxÞðð�xuTðx; tÞ þ ðA� BKÞTx

þ f Tðxðt � sÞÞ þ gTðxðtÞÞÞPuðx; tÞ
þ uTðx; tÞPð�xuðx; tÞ þ ðA� BKÞx
þ f ðxðt � sÞÞ þ gðxðtÞÞÞdx

¼ �
Z 1

0

naðxÞxuTðx; tÞPuðx; tÞdx

þ
Z 1

0

naðxÞðxTðA� BKÞT þ f TðxðtÞÞ

þ gTðxðtÞÞÞPuðx; tÞdx

�
Z 1

0

naðxÞuTðx; tÞPxuðx; tÞdx

þ
Z 1

0

naðxÞuTðx; tÞPððA� BKÞxþ f ðxðtÞÞ

þ gðxðtÞÞÞdx
¼ xTðtÞðPA� PBK þ ATP� KTBTPÞx
þ xTðtÞPf ðxðtÞÞ þ xTðtÞPgðxðtÞÞ þ f TðxðtÞÞPxðtÞ

þ gTðxðtÞÞPxðtÞ � 2

Z 1

0

naðxÞxuTðx; tÞPuðx; tÞdx

� xTðtÞðPA� PBK þ ATP� KTBTPÞxðtÞ
þ xTðtÞPf ðxðtÞÞ þ xTðtÞPgðxðtÞÞ
þ f TðxðtÞÞPxðtÞ þ gTðxðtÞÞPxðtÞ þ 2jf L

2
1x

TðtÞxðtÞ
� jf f

TðxðtÞÞf ðxðtÞÞ þ 2jgL
2
2x

TðtÞxðtÞ
� jgg

TðxðtÞÞgðxðtÞÞ

¼ wTðtÞ
H2 P P

� �jf I 0

� 0 �jgI

2
64

3
75wðtÞ;

ð3:17Þ

we make X ¼ PBK, and then according to (3.16), one

has

_VðxÞ ¼ wTðtÞ
H4 P P

� �jf I 0

� 0 �jgI

2
64

3
75wðtÞ

\0:

ð3:18Þ

The fractional-order nonlinear system controlled is

asymptotically stabilization, which completes the

proof. h

Then, we consider the stabilization of the frac-

tional-order systems with multiple time delay. It is

unable to solve fractional-order systems with time

delay by using Lyapunov-like function functions.

Thus, we take a new approach based on the vector

Lyapunov function and the M-matrix. First we convert
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the general fractional-order nonlinear system into a

form of which has multiple time delay as follow

CDaxiðtÞ ¼ aixiðtÞ þ bixiðt � sÞ þ fiðxiðt � sÞÞ
þ giðxðtÞÞ þ ciuiðtÞ;

i 2 1; 2; . . .;Nf g;
ð3:19Þ

then, we design the following distributed feedback

controller for each fractional-order subsystem

uiðtÞ ¼ kixiðtÞ; i 2 N; ð3:20Þ

The fractional-order nonlinear system (3.1) can be

rewritten as follows

CDaxiðtÞ ¼ ai � cikið ÞxiðtÞ þ bixiðt � sÞ þ fiðxiðt
� sÞÞ þ giðxðtÞÞ;

i 2 1; 2; . . .;Nf g;
ð3:21Þ

Assumption 2 There exists some constant #i [ 0

such that

oViðxiðtÞÞ
oxiðtÞ

fiðxiðt

� sÞÞ�#iU
1=2
3i xik kð ÞU1=2

3i xiðt � sÞk kð Þ;
i 2 1; 2; . . .;Nf g;

ð3:22Þ

Assumption 3 There exists a continuous nonde-

creasing function fiðuÞ[ u for u[ 0 such that:

fiðxðt � sÞÞk k\fi fiðxðtÞÞk kð Þ; i 2 1; 2; . . .;Nf g;
ð3:23Þ

U1=2
3i xiðt � sÞk kð Þ\fi U1=2

3i xiðtÞk kð Þ

 �

;

i 2 1; 2; . . .;Nf g;
ð3:24Þ

Assumption 4 Consider some nonnegative real

numbers Nij; � ij; ði; j ¼ 1; 2; . . .;NÞ; which can make

the following inequality hold

oViðxiÞ
oxi

giðxðtÞÞ
����

�����
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3ið xik kÞ

p XN
j¼1

Nij� ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3jð xj

�� ��Þ
q

;

ð3:25Þ

Theorem 3 For any nonlinear fractional-order

system composition of (3.19) which is controlled by

the decentralized feedback controller (3.20) satisfies

from Assumption 2 to 4, if the following judgment

matrix W is an M - matrix, it is asymptotically

stabilization.

W ¼

w11 w12 � � � w1j

w21 w22 � � � w2j

..

. ..
. . .

. ..
.

wi1 wi2 � � � wij

2
66664

3
77775
i�j

;

wij ¼
ð�ai þ ciki � bik kfi � #ifiÞ � Nij� ij; if i ¼ j;

�Nij� ij; otherwise;

�

ð3:26Þ

Proof We select a series of positive definite function

ViðxiÞ which satisfies the following conditions based

on Lemma 4 as the Lyapunov function of the

controlled nonlinear fractional-order system (3.21)

r1ið xik kÞ�ViðxiÞ� r2ið xik kÞ; ð3:27Þ

D1ViðxiÞ� � r3ið xik kÞ; ð3:28Þ

where riði ¼ 1; 2; 3Þ are class - j functions and the

fractional-order operator is 1 2 0; 1ð Þ: Then, we

choose the following vector function as the Lyapunov

function of the whole fractional-order system with a

set of positive definite constants qi [ 0,

VðxÞ ¼
XN
i¼1

qiViðxiÞ; ð3:29Þ

then, we take the fractional-order derivative of (3.29),

according to Lemma 2, the following inequality is

derived
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CDaVðxðtÞÞ�
XN
i¼1

qi
oViðxiÞ
oxi

CDaxiðtÞ

¼
XN
i¼1

qi
oViðxiÞ
oxi

aixiðtÞ þ bixiðt � sÞ½

þ fiðxiðt � sÞÞ þ giðxðtÞÞ þ ciuiðtÞ�

¼
XN
i¼1

qi
oViðxiÞ
oxi

ai � cikið ÞxiðtÞ þ bixiðt � sÞ½

þ fiðxiðt � sÞÞ þ giðxðtÞÞ�

�
XN
i¼1

qi½
oViðxiÞ
oxi

ai � cikið ÞxiðtÞ

þ bik kr1=23i xik kð Þr1=23i xiðt � sÞk kð Þ

þ #ir
1=2
3i xik kð Þr1=23i xiðt � sÞk kð Þ þ oViðxiÞ

oxi
giðxðtÞÞ�

�
XN
i¼1

qi½ ai � cikið Þr3i xiðtÞk kð Þ þ bifir3i xiðtÞk kð Þ

þ #ifir3i xik kð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3ið xik kÞ

p XN
j¼1

Nij� ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3jð xj

�� ��Þ
q

�

� � 1

2
rT3 xðtÞk kð Þ WTQþ QW

� 	
r3 xðtÞk kð Þ;

ð3:30Þ

we can always find a diagonal matrix Q ¼
diagfq1; q2. . .; qNg with elements qi [ 0; i 2 N; such

that the matrix Z ¼ WTQþ QW is positive definite.

Then, based on Lemma 3, the following inequality is

derived

CDaVðxðtÞÞ� � 1

2
rT3 xðtÞk kð ÞZr3 xðtÞk kð Þ

\0; if xðtÞ 6¼ 0;
ð3:31Þ

where

r3 xðtÞk kð Þ ¼ r1=231 x1k kð Þ;r1=232 x2k kð Þ; . . .;r1=23N xNk kð Þ
h iT

:

ð3:32Þ

According to the Lemma 4, we can obtain that the

controlled nonlinear fractional-order system is asymp-

totically stabilization, which completes the proof. h

4 Numerical simulation of several common

fractional-order systems

In this section, we will demonstrate the effectiveness

and feasibility of our proposed control methods for

general nonlinear fractional-order systems through

several common fractional-order chaotic systems

Example 1 First the effectiveness of the proposed

controller based on Lyapunov-Like function is verified

by a fractional-order Chua’s circuit system, the model

of which without control is as follows

DaxðtÞ ¼ a ðbðyðtÞ � xðtÞÞ þ bxðtÞ � cð xðtÞ þ 1j j � xðtÞ � 1j jÞ½ �;
DayðtÞ ¼ xðtÞ � yðtÞ þ zðtÞ;
DazðtÞ ¼ �dyðtÞ;

8<
:

ð4:1Þ

where the coefficient parameters a; b; c; d are con-

stants, and we choose them:a ¼ 12; b ¼ 1; c ¼
0:3; d ¼ 17; with the fractional-order parameter a ¼
0:98; and the initial values are 0:1; 0:1; 0:1½ �: Then, we
rewrite the fractional-order Chua’s circuit system (4.1)

to a matrix form

CDavðtÞ ¼ AvðtÞ þ f ðvðtÞÞ þ gðvðtÞÞ; ð4:2Þ

where

vðtÞ ¼
xðtÞ
yðtÞ
zðtÞ

2
4

3
5;A ¼

0 0 0

0 �1 0

0 0 0

2
4

3
5; f ðvðtÞÞ

¼
�acð xðtÞ þ 1j j � xðtÞ � 1j jÞ

0

0

2
4

3
5; gðvðtÞÞ

¼
abyðtÞ

xðtÞ þ zðtÞ
�dyðtÞ

2
4

3
5;

ð4:3Þ

Next, the time responses and phase diagrams of the

fractional-order Chua’s circuit system without control

are shown in Fig. 1.

It is obvious that the fractional-order Chua’s circuit

system without control presents an unstable state.

Then we add the control input to the fractional-order

Chua’s circuit system

CDavðtÞ ¼ AvðtÞ þ f ðvðtÞÞ þ gðvðtÞÞ þ BuðtÞ; ð4:4Þ

where uðtÞ ¼ �KvðtÞ; and we have

CDav ¼ ðA� BKÞvþ f ðvÞ þ gðvÞ; ð4:5Þ

By calculating, we can obtain L1 ¼ 24
7
; L2 ¼

17;jf ¼ 0:1; jg ¼ 0:042:And according to the control

conditions of the proposed controller based on Lya-

punov-Like function, the conditions of Theorem 2, via

calculation, we have K ¼ diagð1:3; 1:3; 1:3Þ. Then the
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Fig. 1 The time responses and phase diagrams of (4.1) without control
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Fig. 2 The contrast time responses of the (4.1) and (4.5)
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contrast time responses of the fractional-order Chua’s

circuit system with control or not are shown in Fig. 2.

It is obvious that the system is asymptotically

stabilization after applying the proposed controller

based on Lyapunov-Like function. Compared with the

controller in other papers, the controller proposed in

this paper has a wider application range and can play a

role in different fractional-order parameters. Next we

illustrate the time responses of the fractional-order

Chua’s circuit system (4.1) with different fractional-

order parameters and the time responses of it with

control are shown in Fig. 3.

Obviously, for the fractional-order operators

selected randomly, the controller which satisfies the

conditions of Theorem 2 can effectively act on the

fractional-order Chua’s circuit system to make it

asymptotically stabilization.

Example 2 Then, the effectiveness and universality of

another proposed controller based on vector Lyapunov

functionwill be fully demonstrated through the example

of fractional-order Lorentz system with time delay.

First, we transform the traditional fractional-order

Lorentz system into a form with time delay, which is

shown as follow

Dax1ðtÞ ¼ aðx2ðtÞ � x1ðtÞÞ;
Dax2ðtÞ ¼ �x1ðt � sÞx2ðt � sÞ þ bx1ðtÞ � x1ðtÞx3ðtÞ;
Dax3ðtÞ ¼ cx3ðtÞ þ x1ðtÞx2ðtÞ; ð4:6Þ

where a ¼ 10; b ¼ 28; c ¼ � 8
3
; s ¼ 1 with the frac-

tional-order parameter a ¼ 0:98; and the initial values

are 0:1; 0:1; 0:1½ �: Then, the time responses of the

fractional-order Lorentz system without control are

shown in Fig. 4.
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Fig. 3 The time responses of (4.5) with different fractional parameters
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It is obvious that the time delayed fractional-order

Lorentz system without control presents an unsta-

ble state. Then, we add controllers, and then the (4.6)

can be rewritten to the follow form

Dax1ðtÞ ¼ �10x1ðtÞ þ 10x2ðtÞ þ c1u1ðtÞ;
Dax2ðtÞ ¼ �x1ðt � 1Þx2ðt � 1Þ þ 28x1ðtÞ

� x1ðtÞx3ðtÞ þ c2u2ðtÞ;

Dax3ðtÞ ¼ � 8

3
x3ðtÞ þ x1ðtÞx2ðtÞ þ c3u3ðtÞ;

ð4:7Þ

where uiðtÞ ¼ �kixiðtÞ; i ¼ 1; 2; 3; we select the input

coefficient c1 ¼ c2 ¼ c3 ¼ 1 and the vector Lyapunov

function of Eq. (4.7) is as follow

VðxðtÞÞ ¼ x21 þ x22 þ x23: ð4:8Þ

According to the requirements of Theorem 3, we

select f2 ¼ 3
2
[ 1; and the following inequality can be

obtained

oV2ðx2ðtÞÞ
ox2ðtÞ

f2ðx2ðt � 1ÞÞ� 2 x2ðtÞk k2 x2ðt � 1Þk k;

� 3 x2ðtÞk k3;
ð4:9Þ

by calculating, we have

oV1ðx1ðtÞÞ
ox1ðtÞ

g1ðxðtÞÞ� 2 x1ðtÞk k x2ðtÞk k;
oV2ðx2ðtÞÞ
ox2ðtÞ

g2ðxðtÞÞ� 56 x1ðtÞk k x2ðtÞk k þ 2 x1ðtÞk k x2ðtÞk k x3ðtÞk k;
oV3ðx3ðtÞÞ
ox3ðtÞ

g3ðxðtÞÞ� 2 x1ðtÞk k x2ðtÞk k x3ðtÞk k:

8>>>>>><
>>>>>>:

ð4:10Þ

Then, according to the conditions of Theorem 3,

through calculation, we have

k1 ¼ 4; k2 ¼ 15; k3 ¼
4

3
; ð4:11Þ
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Fig. 4 The time responses and phase diagrams of (4.6) without control

W ¼
ð�a1 þ c1k11 � #1f1Þ � N11� 11 �N12� 12 �N13� 13

�N21� 21 ð�a2 þ c2k2 � #2f2Þ � N22� 22 �N23� 23

�N31� 31 �N32� 32 ð�a3 þ c3k3 � #3f3Þ � N33� 33

2
64

3
75

¼
14 �2 0

�56 12 �2

�2 �2 4

2
64

3
75:

ð4:12Þ
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then, we can deduce the decision matrix W as follows

It is obvious that the matrix W is an M - matrix:

With the same advantages as the previous proposed

control method based on Lyapunov-like function, this

controller based on vector Lyapunov function pro-

posed in this paper also has a wide application range

and can work in different fractional-order parameters.

In the same way, we illustrate the time responses of the

system (4.7) with different fractional-order parameters

and the time responses of the fractional-order Lorentz

system with control are shown in Fig. 5.

The results show that, for randomly selected

fractional-order parameters, the proposed controller

based on vector Lyapunov function satisfies the con-

ditions of Theorem 3 can achieve satisfactory result.

In addition to its wide application in the selection of

fractional-order parameters, this control method also

has the advantages of being applicable to different

initial values. Without loss of generality, we illustrate
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Fig. 5 The time responses of (4.7) with different fractional parameters
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Fig. 6 The time responses of (4.7) with different initial values
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Fig. 7 The time responses and phase diagrams of (4.13) without control
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Fig. 8 The time responses of (4.14) with different fractional parameters
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the time responses of the system (4.7) with different

initial values and the time responses of the fractional-

order Lorentz system with control are shown in Fig. 6.

The results show that, for randomly selected initial

values, the proposed controller based on vector

Lyapunov function satisfies the conditions of Theo-

rem 3 can be also valid.

Remark 2 Although the previous method based on

Lyapunov-like function can solve the stability problem

of fractional-order derivative into integer-order deriva-

tive, which can greatly simplify the complexity of the

stability problem, it cannot solve the stability problem

of the fractional-order system with time delay. The

method based on vector Lyapunov function can not

only solve the stability problem of the fractional-order

system without time delay, but also with time delay

even multiple time delays. Thus, compared with the

previous method based on Lyapunov-like function, this

method based on vector Lyapunov function is more

widely used and less limited.

Example 3 Then, an example of fractional-order Liu

system is given to illustrate that the proposed control

method can solve the problem of multiple time delays.

First, we transform the traditional fractional-order Liu

system into a form with multiple time delays, which is

shown as follow

Dax1ðtÞ ¼ �x1ðt � sÞ þ x22ðtÞ;
Dax2ðtÞ ¼ ax2ðt � sÞ þ bx1ðtÞx3ðtÞ;
Dax3ðtÞ ¼ cx3ðt � sÞ þ dx1ðtÞx2ðtÞ;

ð4:13Þ

where a ¼ 2:5; b ¼ �4; c ¼ �5; d ¼ 4; s ¼ 1; and the

initial values are 0:1; 0:1; 0:1½ �: Then, the time

responses of the fractional-order Liu system without

control are shown in Fig. 7.

It is obvious that the time delayed fractional-order

Liu system without control presents an unstable state.

Then, we add controllers, and then the (4.13) can be

rewritten to the follow form

Dax1ðtÞ ¼ �x1ðt � sÞ þ x22ðtÞ þ e1u1ðtÞ;
Dax2ðtÞ ¼ 2:5x2ðt � sÞ � 4x1ðtÞx3ðtÞ þ e2u2ðtÞ;
Dax3ðtÞ ¼ �5x3ðt � sÞ þ 4x1ðtÞx2ðtÞ þ e3u3ðtÞ;

ð4:14Þ

where uiðtÞ ¼ �kixiðtÞ; i ¼ 1; 2; 3; we select the input

coefficient e1 ¼ e2 ¼ e3 ¼ 1 and the vector Lyapunov

function of Eq. (4.14) is as follow

VðxðtÞÞ ¼ x21 þ x22 þ x23: ð4:15Þ

We select f2 ¼ 3
2
[ 1; which satisfy the require-

ments of Theorem 3, and the following inequality can

be obtained

oViðxiðtÞÞ
oxiðtÞ

xiðt � 1Þ� 2 xiðtÞk k xiðt � 1Þk k;

� 3 xiðtÞk k2;
ð4:16Þ

by calculating, we have

oV1ðx1ðtÞÞ
ox1ðtÞ

g1ðxðtÞÞ� 2 x1ðtÞk k x2ðtÞk k2;
oV2ðx2ðtÞÞ
ox2ðtÞ

g2ðxðtÞÞ� 8 x1ðtÞk k x2ðtÞk k x3ðtÞk k;
oV3ðx3ðtÞÞ
ox3ðtÞ

g3ðxðtÞÞ� 8 x1ðtÞk k x2ðtÞk k x3ðtÞk k:

8>>>>>><
>>>>>>:

ð4:17Þ

Then, according to the conditions of Theorem 3,

through calculation, we have

k1 ¼ 9; k2 ¼ 15; k3 ¼ 13; ð4:18Þ

then, we can deduce the decision matrix W as follows
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Fig. 9 The time responses of (4.14) with different initial values
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It is obvious that the matrix W is an M - matrix: In

the same way, we illustrate the time responses of the

system (4.14) with different fractional-order parame-

ters and different initial value. Then, the time

responses of the fractional-order Lorentz system with

control are shown in Figs. 8 and 9.

The results show that, for randomly selected

fractional-order parameters and initial values, the

proposed controller based on vector Lyapunov func-

tion satisfy the conditions of Theorem 3 can also

achieve satisfactory result.

5 Conclusion

In this paper, new stabilization conditions are acquired

using two different control strategies based on a

Lyapunov-like function and a vector Lyapunov func-

tion separately, capable of solving both the asymptotic

stability problem of nonlinear fractional-order systems

and the asymptotic stabilization problem of nonlinear

fractional-order systems with multiple time delays.

The correctness and validity of the proposed novel

control methods are verified by the simulating results

of several common nonlinear fractional-order sys-

tems, including the fractional-order Chua’s circuit

system, the fractional-order Lorentz system and the

fractional-order Liu system. In particular, the control

technology of the fractional-order Chua’s circuit

system is already highly developed in the actual

circuit system engineering. The new methods put

forward in this paper can provide new directions and

ideas for the control of the fractional-order Chua’s

circuit in practice, and they are applicable to many

other practical fractional nonlinear systems, such as

fractional gene regulatory network systems, fractional

HIV systems, fractional financial systems, fractional-

order switched PWA systems, fractional-order

switched Lur’e systems, etc. Therefore, the new

methods have effective practical value and important

practical significance. In the future research, we will

extend the proposed control methods to all fractional-

order operators.
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