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Abstract COVID-19 was declared as a pandemic by
the World Health Organization on March 11, 2020.
Here, the dynamics of this epidemic is studied by using
a generalized logistic function model and extended
compartmental models with and without delays. For
a chosen population, it is shown as to how forecast-
ing may be done on the spreading of the infection
by using a generalized logistic function model, which
can be interpreted as a basic compartmental model. In
an extended compartmental model, which is a mod-
ified form of the SEIQR model, the population is
divided into susceptible, exposed, infectious, quaran-
tined, and removed (recovered or dead) compartments,
and a set of delay integral equations is used to describe
the system dynamics. Time-varying infection rates are
allowed in the model to capture the responses to control
measures taken, and distributed delay distributions are
used to capture variability in individual responses to
an infection. The constructed extended compartmental
model is a nonlinear dynamical system with distributed
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delays and time-varying parameters. The critical role
of data is elucidated, and it is discussed as to how the
compartmental model can be used to capture responses
to various measures including quarantining. Data for
different parts of the world are considered, and com-
parisons are also made in terms of the reproductive
number. The obtained results can be useful for further-
ing the understanding of disease dynamics as well as
for planning purposes.

Keywords Dynamics and control of epidemics -
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1 Introduction

Since the first reported case of novel coronavirus
(SARS-CoV-2) in Wuhan, China, toward the end of
2019, this highly infectious disease first spread rapidly
within China and to its neighboring countries [1,2].
After China, the next confirmed cases occurred in
Japan, South Korea [3], and Thailand in late Jan-
uary, and soon thereafter in 2020, the USA reported
its first case in Washington State. In February, Europe
faced its first outbreak in Italy [4], with churches and
schools closing immediately thereafter and towns being
locked down [5]. By early March, following the World
Health Organization’s declaration of the coronavirus
as a pandemic, the USA imposed a ban on travelers
from Europe and declared a national emergency on
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March 13. As of May 4, more than 253,000 people
had died from COVID-19, with 3.6 million infections
confirmed in more than 180 countries and territories
globally [6]. The USA has taken the hardest hit from
the pandemic, with 1.22 million confirmed cases and
more than 70,000 deaths, at the time of writing of this
paper. The goal of this work has been to look at the
data available on the number of infections and study
the evolution of the infection dynamics.

In order to facilitate the authors’ quest to pursue
data-driven dynamics based on infection data, a statisti-
cal approach based on the generalized logistic function
has been taken along with studies of a delay differential
system. The logistic function, which was introduced by
Pierre Verhulst for population growth modeling [7],
is now widely used in various areas of science and
engineering. Applications include friction modeling in
mechanical systems [8], activation function in neural
networks [9], and infectious disease spreading in bio-
logical systems [10]. The generalized logistic function,
which has an asymmetric form in between the lower
and upper horizontal asymptotes, was used by Richards
[11] for modeling plant growth. This function has been
recently used for studying disease dynamics [12]. As
for the studies in spreading dynamics, logistic functions
and generalized logistic functions are essentially com-
partmental models [13] with a susceptible state and an
infected state (SI model). In reality, there exists a latent
period, when people are infected but not yet infectious.
Consideration of this aspect leads to the SEIR model
[14], in which one has susceptible, exposed, infectious,
and removed (recovered or dead) states. Moreover, if
mitigation measures are applied, a new state of quaran-
tine needs to be considered, which results in the SEIQR
model. However, in all of the aforementioned models,
the derivatives of the different states are only dependent
on their current values and assumed to be uniformly
distributed. Here, these models are extended through
introduction of distributed time delays.

Delay differential equations (DDEs) arise often
in various science and engineering applications, for
instance, in mechanical engineering [15—17]. Different
from ordinary differential equations, to solve DDEs,
one needs information on current states and past states
over time intervals in the past [18]. DDEs are critical
for modeling the spreading of COVID-19, since time
delays can be used to capture the durations of the latent,
quarantine, and recovery periods. A SEIR model with
two constant delays can be found in the work of [19],
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a study of the global behavior of SIER with delay can
be found in the studies [20,21], and an SIR model with
delays has been studied in [22]. Furthermore, stability
studies on the solutions of an SIR model can be found in
[23,24], and solutions of an SEIR model can be found
in the work of [25].

A primary objective of this paper is to use data-
driven dynamics to further the current understanding of
key aspects and features associated with the COVID-
19 outbreak, as well as to help assess the viability of
control strategies that are applicable for mitigation, for
example “flattening the curve.” The remainder of the
paper is organized as follows. In Sect. 2, based on
the susceptible-infected (SI) populations model, the S-
shaped logistic and generalized logistic functions are
introduced to describe the outbreak of the COVID-19
among various countries—China, Italy, Germany, and
the USA. With the goal of finding the inflection points
for these countries, parameters of the S-curve functions
for different countries are identified using an optimiza-
tion method. In Sect. 3, by considering the incubation
period and the quarantine state, an improved SEIQR
model with distributed time delays is developed. The
time delay is employed here to capture the time gap
between different (compartmental) states in the new
model. With data of confirmed cases, parameters are
identified and simulations together with prediction of
different geographic regions are presented. With the
developed models, potential mitigation strategies for
different scenarios are proposed. Finally, concluding
remarks are provided.

2 Generalized logistic function based data-driven
dynamics of COVID-19

In this section, the infection data of COVID-19 for the
US, as well as different countries from all over the
world, are gathered by using a web-read function of
MATLAB from the website of The COVID Tracking
Project [26] and Worldometers [27], respectively. The
determination of unknown parameters in the general-
ized logistic function is driven by the data of the total
confirmed number of positive cases of the COVID-19,
and a nonlinear regression algorithm is used. Then, the
inflection (peak) point of COVID-19 is predicted and
analyzed for different countries and regions. Followed
by that, considering each of the regions as an element
of the overall global system, a composite global model
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Fig. 1 Development of the composite global model and data-driven dynamics

which is comprised of 148 sub-models is developed, for
capturing and tracking the global COVID-19 dynam-
ics, as shown in Fig. 1.

2.1 The generalized logistic function

The susceptible-infectious (SI) model, which is also
called the simple epidemic model (SEM), is the sim-
plest form of all epidemic models, as shown in Fig. 2a.
The evolution of the infection number in an SI model
is also known as logistic growth and results in a logis-
tic function (sigmoid function). The logistic function
is centrosymmetric about the inflection point, which
means the decreasing (saturation) period mirrors the
growing period. However, for the COVID-19, from the
current data, it can be gleaned that the infection growth
occurs as a short outburst, followed by a long satura-
tion period. In this scenario, the logistic function is
no longer an appropriate descriptive function, since
the saturation period needs to be slowed down. The
generalized logistic function, also known as Richards’
curve, originally developed for plant growth modeling,
is an extension of the logistic or sigmoid functions,
allowing for more flexible S-shaped curves. By varying
only one parameter in the generalized logistic function
[11], the saturation period of the pandemic can be con-
trolled, which makes the model and prediction easier
and more realistic. Hence, based on current data, the
authors choose the generalized logistic function here
to capture the infection growth dynamics of COVID-
19. The generalized logistic function is the solution of

the Richards’ differential equation (RDE), which is a
nonlinear dynamical system, can be written as follows

dr/ S I\"
== (1-(5)) .

Then, the generalized logistic function is obtained via
direct integral as

N

()= ——"——
(1 4+ ePr—10))y

2

In Egs. (1), (2), S = S(¢) is the number of suscepti-
ble individuals in a population while / = 1(¢) is the
number of infectious individuals. N = S(¢) + I(¢) is
a constant, which typically represents the total popu-
lation. The infection rate 8 > 0 represents the rate of
spread of a pandemic and is the probability of transmit-
ting disease from an infected individual to a susceptible
individual. v > 01is the parameter affecting the position
of inflection point as well as the saturation period. For
v = 1, one has a symmetrical S-curve about the inflec-
tion point, that is, the logistic function. For v > 1, the
saturation period is shorter and the result is a faster satu-
ration compared to that noted with the logistic function.
For 0 < v < 1, the saturation period is longer than that
obtained with the logistic function. Therefore, for the
COVID-19 outbreak, it is expected that with the gen-
eralized logistic function and an optimized 0 < v < 1,
one will have a better match with the data. As shown in
Fig. 2b, the circles represent the number of confirmed
positive cases in the USA from March 1, 2020, to May
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Fig.2 a SImodel and b comparison between statistical fits with
the logistic function and the generalized logistic function for the
US COVID-19 data

4, 2020. The dotted line in blue is the least-squares fit-
ting done by using the logistic function (v = 1), while
the dashed line in orange represents the least-squares
fitting carried out by using the generalized logistic func-
tion with an optimized v = 0.011. The goodness of fit
of the models for the COVID-19 data shows that the
root mean squared error (standard error) of the gener-
alized logistic function is 1.15 x 10*, which is much
smaller than that for the logistic function (3.7 x 10%).
The generalized logistic function provides a better fit
because it is both unbiased at the growth-period and
saturation-period and produces smaller residuals. Four
parameters L, k, ¢, and v in the generalized logistic
function need to be identified from the COVID-19 data,
by using nonlinear regression algorithms.

2.2 Infection evolution: identified dynamics and
inflection point of COVID-19

The generalized logistic function Eq. (1) has four
unknown parameters L, k, ¢, and v, which should be
identified and optimized based on the COVID-19 data.
The nonlinear regression algorithm adopted here is a
form of regression analysis by which the data can be
modeled as any nonlinear function, such as the gener-
alized logistic function. The objective of the nonlinear
regression algorithm is to find an optimized point in
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linear regression algorithm in MATLAB

the four-dimensional parameter L — k — t — v space,
through minimization of the root mean squared error
(standard error) between the COVID-19 data and the
model predictions.

Although both the linear and nonlinear regression
algorithms are integrated into the Curve Fitting Tool-
box of MATLAB R2018a, finding the global optimal
point in the four-dimensional parameter space is still
not an easy problem due to the nonlinearity of the gen-
eralized logistic function. Therefore, to avoid a local
optimum, the parameter identification processes with
Eq. (1) are carried out as shown in Fig. 3. For each
loop as illustrated in the figure, the nonlinear regres-
sion algorithm is used to find a local minimum start-
ing from widely varying initial values (random) of the
parameters. And finally, the most extreme one is chosen
from these local minima as the global minimum when
the termination criteria are satisfied. Here, the authors
have used maximum loops of 50 and a minimum coef-
ficient of determination, called the R-squared value, of
0.99 for the termination criteria. If any of the criteria
are satisfied, the identification processes are terminated
and the optimized parameters have peaked, according
to the minimum of standard error between the data and
the model prediction. It should be noted that the pro-
posed criterion of termination here cannot guarantee
that a global optimum will be found, but the process is
expected to greatly increase the probability of realizing
a global optimum, instead of a local optimum.

Based on the parameter identification approach
described in this section, the COVID-19 infection
dynamics for several countries from North America,
South America, Europe, and Asia is found to be cap-
tured well by using the generalized logistic function
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Fig. 5 Generalized logistic function based COVID-19 dynam-
ics: a China, b South Korea, ¢ Italy, and d the USA

as shown in Fig. 4. In this figure, the abscissa is the
total number of test-positive cases, while the ordinate
is the daily increase in the number of positive cases;
that is, the derivative of the total cases. Hence, Fig. 4
can be considered as being representative of the phase
portraits of the dynamic system. From this plot with
logarithmic coordinates, one can discern two periods
of the COVID-19 pandemic: a) the exponential growth
period and b) the saturation period.

Besides, the time-domain COVID-19 dynamics of
China, South Korea, Italy, and the USA are illustrated
in Fig. 5a—d, respectively. In these figures, the left axis
corresponds to the total number of test-positive cases,
while the right axis corresponds to the daily increase
in the number of positive cases. The results show the
generalized logistic function predictions are consistent
with the COVID-19 data of China, Italy, and the USA
with a R-squared value greater than 0.995; neverthe-
less, the R-squared value for South Korea data is 0.981;
this is indicative of a rather discernible fitting error for
the generalized logistic function in this case, as shown
in Fig. 5b. This is mainly because the generalized logis-
tic function cannot be used to capture the plateau from
March 10 to April 5 in the daily increments data for
South Korea. The inflection points of the total cases,
that is, the peaks of the daily increments, are identified
with good consistency from the data. The identified
peak of COVID-19 in China is on February 7, while the
peaks of South Korea, Italy, and the USA are 25 days,
51 days, and 67 days later than China, respectively.

Additional model predicted curves for the countries
and regions all over the world are shown in Fig. 6. From
this figure, one can choose the countries and regions
with total confirmed cases more than 20,000 by May
4. It should be noted that the authors have treated each
state of the USA as an individual region due to the large
infected population in the USA. Based on the parameter
identification approach, through the curves in this fig-
ure, the authors show the model identified (predicted)
daily increment cases from late January 2020 when the
pandemic outbreak started in China, to the middle of
August 2020. From these plots, it can be seen clearly
that there are remarkable time lags among different
regions for the outbreaks of the COVID-19 pandemic.
These remarkable time lags indicate that simple models
with low degrees of freedom (DOF) are not sufficient
to capture the global dynamics of the COVID-19 infec-
tions from all over the world. To show the distribution
of the outbreak dates of the pandemic, histograms for
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Fig. 6 Model prediction of
daily case increments for
the countries and regions all
over the world with

confirmed COVID-19 case
> 20K by May 4, 2020
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the date of peaks identified from the current COVID-19
data for 148 countries and regions all over the world are
shown in Fig. 7. This histogram plot is illustrative of the
outbreak of the pandemic from one region to another
in quick succession after China and South Korea. At
the time of writing of the paper, the prediction was that
all the countries and regions worldwide would have
experienced the peak (at least, the first peak) of the
COVID-19 pandemic, by July 1, 2020.

2.3 Global model of COVID-19 dynamics

Given the significant time lags among different coun-
tries and regions for the outbreak of the COVID-19
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pandemic (Figs. 6, 7), it is natural to expect the global
dynamics of the pandemic to be governed by a high-
dimensional system; that is, it is not conceivable to
capture the global infection dynamics by using a simple
model with low degrees of freedom. Hence, inspired by
the finite element method (FEM) which is widely used
in mechanics, considering each of the regions as an ele-
ment of the overall global dynamic system, a compos-
ite global model is established to capture the combined
dynamics of countries and regions all over the world. As
shown in Fig. 1, the parameter identification approach
(Fig. 3) is utilized for each elemental sub-model, fol-
lowing which, the composite global model is con-
structed by assembling all of the 148 sub-models from
different regions all over the world. Thus, the global
model for the COVID-19 dynamics at hand is a high-
dimensional differential system with 148 sub-models.

The outcome of the COVID-19 dynamics model-
ing carried out by using a single generalized logistic
function is as shown in Fig. 8. The notable deviation
between the COVID-19 data and the model predic-
tion with the generalized logistic function confirms the
earlier statement that a low-dimensional model cannot
be used to capture the global dynamics. By contrast,
the outcome of composite global model shown in Fig.
9, which is comprised of 148 identified sub-models,
matches the worldwide COVID-19 data with good con-
sistency for both the total number of infection cases
and daily increments. The prediction from the model
with single generalized logistic function is that the daily
increments cases of COVID-19 will drop to 10 thou-
sand by late July; on the other hand, the prediction with
the composite global model is that one will have daily
increments of more than 100 thousand until August,
which is worrisome. With the composite global model,
one can see from Fig. 9 that there have been two waves
of COVID-19 pandemic spreading across the globe.
The first wave started in late January and ended in late
February in Wuhan, China. Subsequently, the second
wave started mainly in Europe and pushed to a surge
into the USA. This surge, which has remained over for a
long period in the USA, is being followed by one where
the spreading is occurring in Russia, Brazil, and India.

Itis important to note that all of the predictions made
in this section are based on both the generalized logis-
tic function and the COVID-19 data (positive tested
cases). The elemental sub-model of the system is quite
simple to avoid any over-fitting of the system dynamics.
However, with this data-driven prediction, it is impor-

tant to keep in mind that consideration has not been
given to other factors, such as the rising temperature due
to the seasonal changes, the differences and coupling
between the southern hemisphere and northern hemi-
sphere, measures and policies taken to counter the virus
in different regions. To study the effects of these fac-
tors on the pandemic, a more sophisticated model needs
to be established taking into a range of aspects, includ-
ing but not limited to different perspectives on infection
dynamics, control measures, viral transmission dynam-
ics, stability of the dynamics, long-term predictions,
and so forth.

3 Prediction and control of COVID-19 using an
improved SEIQR model with distributed time
delays

In this section, an improved epidemic model with time-
varying parameters and distributed time delays is pro-
posed based on the SEIQR model. With this model,
quantitative analysis of control measures and quaran-
tining is conducted. Based on the global COVID-19
data, some key aspects and parameters that are reflec-
tive of the effects of the measures and policies taken by
different countries are identified and discussed.

3.1 Improved SEIQR model with distributed time
delay

The SEIQR model is a compartment model widely used
for epidemiological modeling in disease propagation
[13,28] as well as computer virus in the internet [29].
Let it be supposed that the total population N is divided
into five compartments so that S(t) + E(t) + 1(¢) +
Q(t)+ R(t) = N, where the state variables S(z), E(¢),
1(t), O(t),and R(t) denote the population of ‘Suscepti-
ble’ (S), ‘Exposed’ (E), ‘Infectious’ (1), ‘Quarantined’
(0Q), ‘Removed’ (R) classes at any time ¢, respectively,
they are defined by follows

— S(t): Susceptible cases. Initially, S(z) equal to the
population N, which is assumed to be a constant

— E(t): Exposed cases, infected but not yet infectious,
in a latent period

— 1(t): Infectious cases, with infectious capacity but
neither quarantined nor recovered. One is consid-
ered to be infectious if and only if in this stage

@ Springer
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— Q(t): Quarantined cases, the infected individuals
are confirmed by tests and then isolated from others.
Quarantining will lead to loss of infectivity

— R(t): Removed cases (recovered or dead)

As depicted in the flow diagram of Fig. 10, trans-
missions occur among these four compartments during
the COVID-19 pandemic. The dynamics of the trans-
mission can be described as follows. Individuals in the
infectious (/) stage can transmit infection to their neigh-
bors through contacts. Individuals in the susceptible
(S) stage become infected, and they are assigned to
the exposed (E) stage immediately once contacts have
occurred. All the exposed (E) individuals are assumed
to become infectious (/) after a (random) latency period
ranging from 2 to 14 days. The infectious (/) individ-
ual might be quarantined (Q) and isolated once they
show symptoms and be tested. Finally, quarantined (Q)
individuals will be assigned to remove (R) stage after
some time. However, according to the recent reports
[30,31], asymptomatically infected individuals widely
exist, and they can transmit the virus. Consequently, a
secondary path of viral transmission needs to be con-
sidered; that is, infectious (/) individuals assigned to
the removed (R) stage without being quarantined or iso-
lated. It is notable that transmissions among these com-
partments take some random period for any exposed
individual and these time lags during the transmissions
result in a multiple distributed delay in the system.
Hence, based on the proposed flow diagram of Fig. 10,
the dynamical transfer flows among S, E, I, Q, and R
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compartments can be written in the form of differential
equations as follows:

S =—Age

E = Age — Aei

I' = Aei — Aiq — Ajr 3)
0= Aiq - Aqr

R = A + Aqr

here (°) is the derivative operation with respect to time
t. Ajy is the flow rate from compartment J to com-
partment K ; that is, the subscripts se, ei, iq, ir, and gr
denote the flow rate from Sto E, Eto I, I to Q, [ to R,
and Q to R, respectively. Here, the flow rates A j; are
nonlinear functions, which not only depend on the cur-
rent state variables but they are also related to the past
states of the system. Thus, the time-delay effects are
introduced into the system. Intuitively, the time delay
here rises from the period of incubation, the period of
infection, and the period of quarantine. According to
the flow diagram of Fig. 10, the flow rates among the
states A ji (for jk = se, e, iq, ir, gr) can be written as

S
Age(t) = :BNI

21—'21'
Ai(t) = f Dei (T) Age(t — T)dT

0
27
Aig(t) =¢ / ! Pig (D) Aei(t — T)dT “4)
0 2%

Air (1) = (1 - {)[) pir(f)Aei(t - t)dt

27T,
Agr (1) = /0 " per(@ Ayt — D)
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Here, g is the infection rate, which is the average num-
ber of effective contacts for each infectious individual
with others per unit time. 8 can be a time-dependent
variable, that is, B(¢), and controlled by taking mea-
sures against the epidemic. ¢ is the quarantine rate,
which is assumed to be a constant in this model. Besides
these two parameters, there are four distributed delays
in this integral equation system Eqs. (4): the delay
period from E to I (t¢;), from I to Q (tig), I to R (T;y),
and Q to R (t4,). For different individuals, the period
from one state to another can be very different. How-
ever, in statistics for a large population, the period of
incubation, infection, quarantine, and recovery should
follow some form of distribution. This has prompted
the authors to consider a novel model with distributed
delay in this research. In the literature [32,33], Weibull
distribution, gamma distribution, normal distribution,
and other positive skewed distribution are used widely.
Without the loss of generality, the authors assume all of
the distributed time delays, 7 ¢ (for jk = ei, iq, ir, qr),
to follow the normal distribution, as shown in Fig.
11. Hence, the probability density function p (i)
in Egs. (4) follows the normal distribution with a mean
value 7 and a standard deviation o j;, and this distri-
bution is written as
A

Tk

pik(Tik | Tjk, 0%) = ———e
J J J jk ok /277,' (5)
for jk =ei,iq,ir,and gr

The domain of the probability density function p i (7 k)
above is all real numbers spanning —oo to +00. How-
ever, the integral interval of the distributed delay in
Eqgs. (4) is chosen to be [0, 27 ] to not include the non-
physical interval less than zero and make the numerical
integration feasible. It should be noted that this trunca-
tion causes the integration of the density function over
the entire integral interval, that is, the area of the shaded
region in Fig. 11, to be less than 1. To normalize the
probability density function p j; in Eq. (5), a compen-
sation approach can be used by dividing the density
function by the shaded area, for instance, dividing p j«
by a compensation factor 0.68 for oy = 7, by 0.95
for ojx = 7jx/2, and by 0.997 for o, = 71 /3. Here,
the authors have chosen o, = 7, /4 with a compensa-
tion factor 0.9999 and the resulting probability density
function is shown as Fig. 11.

The proposed, improved SEIQR model at hand,
given by Egs. (3), (4) is a time-varying system with

Normal distribution
= 2
5 TjRNN(Tjkl‘Tjk)

-
|
g o
S
F
>
)
=
Probability density pjy (zjx)

o

Tjie 2T,
Distributed time delay 7jy,

Fig. 11 Construction of improved SEIQR model: the distributed
time delay

multiple distributed time delays. Equations (3) form a
set of five differential equations, which represents the
framework of the SEIQR model. In the first equation
in Egs. (4), A, is the transition rate from the compart-
ment of susceptible individuals to the compartment of
infectious individuals, and it is also called the force of
infection [34]. For a susceptible individual, the transi-
tion from § to E is simultaneous once the individual
makes an effective contact with an infectious individ-
ual. The rest of the four equations in Egs. (4), which,
respectively, represent the flow rate of transition from
Stol,ItoQ,ItoR, and Q to R, are delay integral
equations. These four delay integral equations intro-
duce four distributed delays 7 into the system. The
distributed delays 7;; obey normal distribution with
mean values 7 j; and standard deviations o jz. Due to the
time delay, the system dimension is infinite while the
continuity and distribution of the delays introduce the
infinite number of time delays into the system. Hence,
analytical solutions for the proposed system are impos-
sible and numerical simulation is be conducted based
on discretization methods [35]. Comparing with the
most recent epidemic model with discrete delays given
in [36], in the proposed model with distributed delays,
one takes the individual differences in symptoms into
consideration. This is expected to result in a more real-
istic dynamic response to the virus and help improve
the epidemic model.

3.2 Numerical studies and model comparisons
The proposed dynamical system, which is given by
Egs. (3), (4), is a set of time-varying nonlinear differ-

ential equations with multiple distributed delays. Due
to the lack of a universal solver for this specific prob-
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Fig. 12 Comparison of predictions from the conventional
SEIQR model and the proposed SEIQR model with distributed
delays: a time-varying infection rate S, b predictions from
SEIQR model, and ¢ predictions from improved SEIQR model
with distributed delays

lem, numerical methods are developed for the simula-
tions and system identification in this research. For the
delay integral system described by Eqgs. (4), the com-
putations can be done via the convolution algorithm or
direct integral. The time step size of 1 day is chosen
for the numerical simulations since the historical data
of COVID-19 from all the worldwide health organiza-
tions are provided in one day intervals. The differential
equations given by Eqs. (3) are then integrated via lin-
ear four-step Adams—Bashforth methods [37] with the
same step size of 1 day. All of the numerical algorithms
have been developed based on the MATLAB R2018a
platform.

Numerical studies have been conducted with both
the conventional SEIQR model and the improved
SEIQR model with distributed delays, as shown in Fig.
12. For this comparison, the quarantine rate ¢ is set to
zero; this degenerates to the SEIR model without quar-
antine. The population N is set to 10 thousand. The
mean values of the distributed delays are set as fol-
lows 7,; = 5 days, 7;; = 4 days, 7, = 11 days, and
T;r = 15 days. The standard deviation is set to be one-
fourth of the mean values of the distributed delays; that
is,0jk = Tk /4. AsshowninFig. 12a, the infection rate
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B(¢) is set to 0.8 initially and drops to 0.1 at the 30th
day (the vertical dot-dashed line in the figure), which
represents the day on which measures taken to counter
the epidemic are put in place. In Figs. 12b, c, the y-
axis on the left is the accumulated total infected cases,
while the y-axis on the right is the daily increments in
infection cases. They can be written as follows:

t
Total infected cases = / Agi (D)df
0 t (6)

Agi (£)df
t—1

Daily increments of infection =

The dynamic responses obtained with the conven-
tional SEIQR model Fig. 12b and the improved model
Fig. 12c are found to be consistent with each other
before the measures are taken. However, there are sig-
nificant differences between the dynamics of these two
models after the measures are put in place on the 30th
day. In the conventional SEIQR model, an immediate
change in the predicted response can be observed with
the drop of B(¢), resulting in a nonsmooth peak. With
this model, one notes that the measures taken to counter
the virus have an immediate effect on the daily increase
in infection cases. Intuitively, this immediate response
is not realistic and doesn’t agree with the COVID-
19 data either. In contrast, with the improved model,
the response continues to increase until it reaches a
smooth peak for the daily increase in cases 3.8 days
later than the date on which measures were initiated.
This delayed response is more realistic and conforms
with the COVID-19 dynamics worldwide: for instance,
in the COVID-19 data in Wuhan, China, one noted a
peak of daily increments on February 4, 2020 while the
city locked down on January 23, 2020. Besides, with
the improved model, one notes a small bump around the
fortieth day. This feature matches well the COVID-19
dynamics in many counties and regions, such as South
Korea. In summary, when the system is time-invariant,
both the conventional SEIQR model and the improved
model with distributed delays can capture the dynamics
of the epidemic well. When the system is time-varying,
which is believed to be the scenario with the COVID-19
pandemic, the improved SEIQR model with distributed
delays is more realistic and has significant advantages
in capturing the system responses compared to the con-
ventional SEIQR model.
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3.3 Quantitative analysis of control measures

Infection control measures to reduce transmission of
COVID-19 include universal source control, for exam-
ple, covering the nose and mouth to contain respiratory
secretions, early quarantine, identification, and isola-
tion of patients with suspected disease, use of appro-
priate personal protective equipment, and environmen-
tal disinfection [38,39]. In the proposed model in Eqgs.
(3), (4), all the aforementioned control measures are
collectively captured through two means: (i) control of
infection rate 8 and (ii) control of quarantine rate ¢.

Quarantine is used to separate someone who has
been exposed to COVID-19 and confirmed to be pos-
itive by testing, away from others. Quarantine helps
prevent the spread of disease by isolating infectious
individuals from others. Depending on the policies in
different regions, quarantined people may be in isola-
tion or just stay at home. Here, the quarantined indi-
viduals are those individuals who have tested positive
and are isolated from others. An infectious individ-
ual would lose infectivity, once that person is quaran-
tined. The quarantine rate ¢ is the ratio of quarantined
cases to the infectious cases. Extensive COVID-19 test-
ing and screening can increase the quarantine rate ¢,
which requires more coronavirus testing according to
the World Health Organization. The quarantine rate ¢
and the infection rate B are the only two parameters
that the authors can use to control against the spread-
ing of the virus in the improved SEIQR model with
distributed time delays, given by Egs. (3), (4). In this
subsection, control of the infection spread is studied by
tuning the infection rate 8 and the quarantine rate ¢.

Two variables, namely “total confirmed cases” and
“daily increments of confirmed,” have been introduced
into the improved SEIQR model since the states S, E,
I, Q, and R in Eq. (3) are almost not realistic to be
observed directly in the real world. The total number
of confirmed cases and its derivative, that is, the daily
increments in confirmed cases, are the most widely
used data in epidemiology for COVID-19. According
to the proposed model with distributed delays (Fig. 10),
they can be written as

t
Total confirmed cases = / Aiq(D)di
0 ' (7N
Azq(i)df

t—1

Daily increments of confirmed =
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Fig.13 Control of infection spread through quarantine, for pop-
ulation N = 1 million, infection rate § = 0.5, and different
quarantinerates:a ¢ = 0.1,b¢ =0.5,andc ¢ =1

The total cases and daily increments as defined above
include only the infectious individuals confirmed by
tests and they are observable variables, which distin-
guishes them from the total infected cases and daily
increment of infection, as given in Eq. (6).

To show the effectiveness of quarantining in pre-
venting an epidemic from spreading, quantitative anal-
ysis of the control of an epidemic is carried out. As
shown in Fig. 13, as the quarantine rate ¢ is increased
from 10 to 50%, and 100%, the number of total infected
cases (dashed blue lines) shows some slight drops from
almost 1 million to 0.8 million, while the daily incre-
ments of infections (dashed orange lines) show signif-
icant drops from 56K per day to 22K per day. How-
ever, both the total confirmed cases and daily incre-
ments of confirmed are increased due to the increase
of COVID-19 testing in quarantine. The results reveal
that the total number of infected cases would not have
a significant drop by having more quarantining, but the
peak of daily infection of an epidemic can be slowed
down by increasing the quarantine rate.

@ Springer



1538 X. Liu et al.
50K T T 1] : L - . . : : :
EEE taking measures against the pandemic
!, Sosl@ F=1 \&

c ) x| i By =013

S 40Kf i 0 : :

B o 70K T T 3 T T T 1.6K
% / ) (b) : - - ~Total infected cases .

E o 60K I |—Total confirmed cases by tests B K 14K

© 30Kr o ! |- - -Daily increments of infected ] 57 12K

2 r/ 50K ! |—Daily increments of confirmed z )
g v 8 | & K B
S 20K+ T 2 40K i S £
g / 9 | e 08K G
£ ., w | PIA =

/ S 30K | ! o i
> . o | L 06K =
S 1oK| bl \ 3 i 5
o A \ AN 20K i 0.4K
44227 "N N i
g%zc RS So - 1/
Laf? NS e s el 10K Y 0.2K
oK — . . . . LIRSS LR LLL A -
0 10 20 30 40 50 60 70 80 920 100 0K Ll = 0K
Days ]

Fig. 14 Flattening of the curve of the COVID-19 epidemic by
quarantining, for population N = 1 million, infection rate § =
0.4, and different quarantine rates ¢ range from 0 to 1

More comparisons of daily increments of infections
for different quarantine rates ¢ (0% to 100%) have been
carried out, and the corresponding results are shown in
Fig. 14. The curves show that an increase in the quar-
antine rate ¢ can “flatten the curve” [40], which can
be helpful from the standpoint of a healthcare system.
With the effects of “flattening the curve” as illustrated
in this figure, the peak value of daily increments of
infection reduced from 50K per day to 13K per day,
and the peak position is also delayed by 17 days, allow-
ing more time for healthcare capacity to increase and
better cope with the patient load. Besides the increase
in quarantine rate, decreasing the infection rate g is
the other approach to control against the spreading of
an epidemic. Effective decrease in the infection rate 8
is generally due to the control interventions, including
lockdown of a city or region, stay-at-home order, social
distance measures, wearing masks in public places, and
so on. A lot of measures, policies, and orders have
been taken by local municipalities and governments
and state governments worldwide since the outbreak
of the COVID-19. To capture the effects of these mea-
sures, the authors have introduced a time-varying infec-
tion rate 8(¢) into the COVID-19 model.

As shown in Figs. 15a, c, e, a piecewise linear func-
tion is used to describe the time-varying infection rate
B(t). The drop of B(¢) on the 26th day is reflective of
the measures and orders that are taken to counter the
epidemic. Here, it is assumed that it takes seven days
for the measures and directives to completely activated;
this results in a slope during the linear drop of the infec-
tion rate B(¢) as seen in the figures. In Fig. 15a, b, the
infection rate drops from Sy = 1 to §; = 0.013 after
taking measures against the epidemic. From the pre-
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dicted system response, it can be observed that the daily
increments in infection continuously increases until a
local peak is reached 8 days after the measures are ini-
tiated. Then, after a short period (five days) of drop, the
daily increments of infection start increasing again and
the system diverges. A rising tail can overwhelm health
systems, leading to high fatalities, and herd immunity
eventually. In Fig. 15¢c, d with the infection rate drop
to B1 = 0.09, the system response can be said to be
convergent and the daily increments of infection drop
slowly but with a very long tail. In this scenario, the
daily increments of infection are flattened by taking
measures, but the total number of infected cases con-
tinuously increases almost linearly and this can still
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lead to a tremendous number of infected cases after a
very long saturation period. In Fig. 15e, f with the infec-
tion rate drop to 81 = 0.025, the daily increments of
infection drop rapidly with a very short tail and there is
a quick saturation in the total number of infected cases.
For the control of COVID-19, this is the best scenario
since the epidemic can be ended within 1 month after
taking measures. However, to drop the infection rate
drop to 0.025 is a great challenge for both the govern-
ment and the people.

With the results of Fig. 15b, d, f, the authors have
illustrated that slightly different infection rates lead to
quite different consequences. An undesirable scenario
is one with herd immunity. In this case, one can have
break down of healthcare systems and high fatalities. A
slightly better scenario is the slow drop case with a very
long tail. In this case, the pandemic is under control and
one will eventually converge. However, the suffering
can be prolonged for a long time. Relatively speaking,
the best scenario is the rapid drop situation with a short
tail. In this case, the pandemic is ended quickly within
about 1 month after taking measures and the suffering
is not as prolonged as compared to the previous situa-
tion. By examining the current COVID-19 data from all
over the world, one can notice that all the COVID-19
curves in different countries and regions can be cat-
egorized into these three types mentioned above and
the associated dynamics can also be explained by the
SEIQR model with distributed delays and time-varying
infection rates.

3.4 Data driven dynamics of COVID-19 based on the
distributed-delay model

The nonlinear distributed delay systems given by Eqgs.
(3), (4) provide a feasible mathematical framework to
describe the evolution of COVID-19 infection dynam-
ics as well as for modeling the control performances
associated with quarantine and other measures. To have
a better understanding of the COVID-19 dynamics and
to forecast an epidemic’s evolution with high confi-
dence, identification of the nonlinear dynamical sys-
tem from the time series of COVID-19 data is highly
important. Based on the nonlinear regression algorithm
and the parameter identification approach used and
described in Fig. 3, a similar approach is used to fit the
dynamics of the proposed epidemic model Egs. (3), (4)
with the COVID-19 data.

Based on the data from the Web site of The COVID
Tracking Project [26] and Worldometers [27], the iden-
tified parameters from the data are as follows:

— Po: original infection rate before taking any mea-
sures

— Bi: infection rate after taking measures

— t,: start date for implementation of measures

{: quarantine rate

Ro: original reproduction number before taking any

measures

R;: reproduction number after taking measures

Here, the reproduction numbers Rg and R are deduced
from the stability of the delay system Egs. (3), (4),
after linearization and discretization of the continuous
distributed delay. The reproduction number is a Floquet
multiplier for the simplified system of Egs. (3), (4), and
this can be approximated as

Ro.1 = fo1(Ctig + (1 = OTir) ®)

where the Ry 1 is used to denote Rp or Ry and By i is
used to denote By or B1. The Floquet multiplier Rp ;
determines the stability of the solution obtained for the
epidemic dynamics; that is, if the magnitude of Rg i
is greater than 1, the system is unstable and the con-
sequence is herd immunity, which is an undesired sce-
nario as mentioned in the last paragraph of Sect. 3.3.
If the magnitude of Rg ; is 1, the system is critically
stable. If the magnitude of Ry ; is less than 1, the sys-
tem is stable. For the COVID-19 pandemic, the initial
reproduction numbers before measures are taken Ry
are always great than 1 (generally between 3 and 4),
as identified in Table 1. The reproduction number after
taking of measures, R is the key to determine the evo-
lution of epidemic dynamics. The smaller the magni-
tude of R; is, the faster COVID-19 spreading ends.
With the identified parameters from the COVID-
19 data as listed in Table 1, the predicted data-driven
dynamics of COVID-19 in these countries is shown
in Fig. 16. The results illustrate excellent consistency
between the COVID-19 data and the predictions from
the constructed SEIQR model with distributed delays.
The proposed model can capture most of the features
of the COVID-19 dynamics observed from data, such
as the bump on the daily increments of South Korea
from March 9, 2020, to March 25, 2020, and the con-
tinuous linear increase in the total infection cases in the
USA and UK. The identified date #,, when the measures
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Fig. 16 Identified COVID-19 dynamics from data of different countries (upto May 7 data), based on the model with distributed delays

Table 1 Key parameters identified from the COVID-19 data of different countries worldwide, based on the proposed epidemic model

with distributed delays Egs. (3), (4)

Countries Bo Bi tm ¢ Ry R

China 0.50 0.022 Jan. 31 0.65 3.90 0.17
South Korea 1.38 0.048 Feb. 19 0.54 12.5 0.43
Ttaly 0.57 0.140 Mar. 12 0.85 3.22 0.79
Spain 0.83 0.160 Mar. 17 0.91 4.16 0.80
France 0.49 0.078 Mar. 23 0.73 3.41 0.54
Germany 0.63 0.107 Mar. 19 0.84 3.63 0.62
[N} 0.78 0.200 Mar. 23 0.92 3.81 0.98
UK 0.55 0.160 Mar. 27 0.78 3.50 0.99
Brazil 0.56 0.230 Mar. 23 0.58 4.82 1.98

were initiated also matches the reality, for example, the
identified date t,,, of China is January 31, 2020, while
the actual period of lock down of cities and stay-at-
home order taken by the Chinese government is in the
window of January 23, 2020,—January 28, 2020.
From the results shown in Fig. 16 and Table 1, one
can also assess the effectiveness of measures taken to
counter COVID-19 in different countries. As listed in
Table 1, the R; numbers of China and South Korea
indicate that they these countries undertook measures,
which helped best control the COVID-19 spread, with
a reproduction number being R; < 0.5. The effec-
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tiveness of COVID-19 control in France, Germany,
Italy, and Spain were effective but with a little higher
reproduction number R;. Comparatively speaking, the
COVID-19 control measures in the USA and UK have
not been as effective at the time of writing this paper,
as those undertaken in the previously mentioned coun-
tries, since the reproduction number R; is close to 1;
that is, the system has critical stability. In this scenario,
the daily infected cases will continue to drop gradually
a very long tail and one can reach a tremendously high
number of total infected cases, as shown in Fig. 16g, h.
These results suggest that USA and UK will experience



COVID-19: data-driven dynamics, statistical

1541

COVID-19 spreading for an extended period of time.
Switching to the southern hemisphere, the reproduc-
tion number R; of Brazil is still around 2. This means
an exponential outbreak of the COVID-19 pandemic.
If this reproduction number is not controlled to come
under 1 in the following weeks, the scenario can poten-
tially lead to herd immunity, as shown in Fig. 16i. This
is not a welcome situation for healthcare systems.

4 Concluding remarks

In this work, the spreading of COVID-19 among dif-
ferent geographical regions worldwide has been mod-
eled and studied based on the concepts of data-driven
dynamical systems. First, the authors have used gen-
eralized logistic functions to study the local infection
spreading in different regions. Based on a nonlinear
regression algorithm, the statistical fit of the gener-
alized logistic model has been optimized in a four-
dimensional parameter space and the system dynamics
prediction and forecasting is driven by the COVID-
19 data. Subsequently, inspired by the notion of the
finite element method from mechanics, a composite
global model with 148 elements (sub-models for dif-
ferent regions) is established. In this composite global
model, each of the regions worldwide is regarded as
an element of the overall global system and the global
model construction is based on COVID-19 data from
all over the world. This construction of a global model
based on generalized function based statistical models
for local regions, and the use of this model to make pre-
dictions and forecasting is one of the original contribu-
tions of this work. This methodology may be employed
for studies on global spreading of other pandemics as
well.

As an extension of the generalized logistic function
model, which in essence is a two-compartment model,
an extended compartment model is constructed based
on the SEIQR model. In this model, both time- vary-
ing parameters such as time-varying infection rates and
distributed time delays to reflect the differences in indi-
vidual responses to an infection are introduced. This
is another important and original aspect of this work.
With this model, one is able to quantitatively assess the
effectiveness of different control measures taken such
as lock down of regions and quarantining. Again, the
methodology employed here may be adopted for stud-
ies of other epidemics. Based on the COVID-19 data,

some key parameters, which can reflect the effects of
the measures and policies taken in different regions and
different countries, have been identified and discussed.
Based on the observed data-driven dynamics, the fol-
lowing remarks are made.

(i) There are significant time lags among different
regions, for the outbreak of the COVID-19 pan-
demic, as shown in Figs. 6 and 7. Based on the
current data and current situation, from the gener-
alized logistic model prediction, one can glean that
most of the countries and regions worldwide would
have passed the infection peak of the COVID-19
by July. For understanding the global dynamics
of the COVID-19, the proposed composite global
model is attractive compared to a model with low
degrees of freedom. The composite global model
has helped capture two or more waves of COVID-
19 sweeping the globe. The first phase came to
notice in late January in Wuhan, China. Subse-
quently, the second phase started in Europe and
moved to the USA. The next spreading phase is
expected to be dominated by the dynamics in the
USA, Russia, Brazil, and India, as shown in Fig.
9.

(i) The improved SEIQR model with time-varying
infection rate and distributed delays is found to be
better suited for understanding COVID-19 infec-
tion dynamics with and without control measures.
With this model predictions, one is not only able to
capture the effectiveness of the control measures
but also anomalies such as the bump seen in the
South Korea data. Based on the prediction compar-
ison with available COVID-19 infection data, it is
clear that with just a conventional SEIQR model,
one is not able to capture the COVID-19 dynamics
well. With the new distributed delay model pre-
sented here, one can also understand how mea-
sures such as quarantining can help observations
such as “flattening of the curve” (Fig. 14). Itis also
shown that slight differences in infection rates can
lead to quite different consequences. To control
the COVID-19 infection dynamics, the measures
taken against the epidemic need to be strict enough
to guarantee that the infection rate §; is less than
a critical value, as shown in Fig. 15.

(iii) Based on the data-driven COVID-19 dynamics
studied with the distributed delay model, it is evi-
dent the measures taken in countries such as China
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and South Korea were effective in dropping the
reproduction number R; to be below 0.5. With
regard to Europe, in France, Germany, Italy, and
Spain, after the measures that were taken, the R
value dropped to be in the range from 0.6 to 0.8.
In the USA and UK, this reproduction number is
close to 1. A reproduction number less than 0.5 is
desirable, as it means a swift end to the spreading
of the epidemic. In general, a number below 1 indi-
cates system stability. On the other hand, when the
reproduction number is close to 1, where one has
critical stability, the COVID-19 infection dynam-
ics can persist for an extended period of time and
even lead to herd immunity. In the southern hemi-
sphere, for the current data from Brazil, one has
a reproduction number around 2, which is highly
undesirable.

One needs to temper the observations made in this
work, by noting that in the modeling undertaken here,
many aspects are not captured such as for example,
the seasonal variations in temperature. These additional
aspects need to be considered as well for appropriate
use of findings from the current work.
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